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Physical Properties
and Principles

21 Darcy's Law

The birth of groundwater hydrology as a quantitative science can be traced to the
year 1856. It was in that year that a French hydraulic engineer named Henry
Darcy published his report on the water supply of the city of Dijon, France. In the
report Darcy described a laboratory experiment that he had carried out to analyze
the flow of water through sands. The results of his experiment can be generalized
into the empirical law that now bears his name.

Consider an experimental apparatus like that shown in Figure 2.1. A circular
cylinder of cross section A is filled with sand, stoppered at each end, and outfitted
with inflow and outflow tubes and a pair of manometers. Water is introduced into
the cylinder and allowed to flow through it until such time as all the pores are
filled with water and the inflow rate Q is equal to the outflow rate. If we set an
arbitrary datum at elevation z = 0, the elevations of the manometer intakes are

¥
Oh
G 3
I, I, hp m
! l —Datum
Cross sechion A Q t=0

Figure 2,1 Experimental apparatus for the illustration of Darcy's law.
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d the elevations of the fuid levels are i, and 4. The distance between,

7. and z, an i

:l;e manometer intakes 15 Al

We will define v, the specific discharge through the cylinder, as
e wi s

_9 :
=2 @1

If the dimensions of 0 are [L*/T] and those of A are [L?], v has the dimensions of
‘ vel’?‘ﬂ?sf&z{’:zi]r.nents carried out by Darcy showed that 2 is directly proportional

. — h, when Alis held constant, and inversely proportional to Al when 4, —j,
toh, — — h, (an arbitrary sign convention that will

is held constant. If we define Al = h,
;iand us in good stead in later developments), we have v < —Ah and v o 1/A

Darcy's law can now be written as

g —K%’; (2.2)
or, in differential form,
v= —K% 2.3)

In Eq. (2.3), & is called the hydraulic head and dh/d! is the hydraulic gradient.
K is a constant of proportionality. It must be a property of the soil in the cylinder,
for were we to hold the hydraulic gradient constant, the specific discharge would
surely be larger for some soils than for others. In other words, if dh/d! is held
constant, » o« K. The parameter X is known as the hydraulic conductivity. It has
high values for sand and gravel and low values for clay and most rocks. Since Ak
and Al both have units of length [L], a quick dimensional analysis of Eq. (2.2)
shows that X has the dimensions of a velocity [L{7]. In Section 2.3, we will show
that K is a function not only of the media, but also of the fluid flowing through it.

An alternative form of Darcy’s law can be obtained by substituting Eq. (2.1)
in Eq. (2.3) to yield

= dh
0 Kdl A (2.4)
This is sometimes compacted even further into the form

0 = —KXi4 (2.5)

where / is the hydraulic gradient,

Darcy's law is valid for ground
regard to Figure 2.1 and Eq. (2.3), if
conductivity X are held constant, » |
for @ values greater than 90°
against gravity.

water flow in any direction in space. With
t}_w hydraulic gradient dh/dl and the hydraulic
s independent of the angle §. This is true even
when the flow is being forced up through the cylinder

b sl
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We have noted that the specific discharge » has the dimensions of a velocity,
or flux. For this reason it is sometimes known as the Darcy velocity or Darcy flux.
The specific discharge is a macroscopic concept and it is easily measured. It must be
clearly differentiated from the microscopic velocities associated with the actual
paths of individual particles of water as they wind their way through the grains of
sand (Figure 2.2). The microscopic velocities are real, but they are probably impos-
sible to measure. In the remainder of the chapter we will work exclusively with
concepts of flow on a macroscopic scale. Despite its dimensions we will not refer
to v as a velocity; rather we will utilize the more correct term, specific discharge.

Q—> Al —>

Figure 2.2 Macr pic and micre ic concepts of groundwater flow.

P

This last paragraph may appear innocuous, but it announces a decision of
fundamental importance. When we decide to analyze groundwater flow with the
Darcian approach, it means, in effect, that we are going to replace the actual
ensemble of sand grains (or clay particles or rock fragments) that make up the
porous medium by a representative continuum for which we can define macroscopic
parameters, such as the hydraulic conductivity, and utilize macroscopic laws, such
as Darcy’s law, to provide macroscopically averaged descriptions of the microscopic
behavior. This is a conceptually simple and logical step to take, but it rests on some
knotty theoretical foundations. Bear (1972), in his advanced text on porous-media
flow, discusses these foundations in detail. In Section 2.12, we will further explore
the interrelationships between the microscopic and macroscopic descriptions of
groundwater flow.

Darcy’s law is an empirical law. It rests only on experimental evidence. Many
attempts have been made to derive Darcy’s law from more fundamental physical
laws, and Bear (1972) also reviews these studies in some detail. The most successful
approaches attempt to apply the Navier-Stokes equations, which are widely knoewn
in the study of fluid mechanics, to the flow of water through the pore channels of
idealized conceptual models of porous media. Hubbert (1956) and Irmay (1958)
were apparently the earliest to attempt this exercise.

This text will provide ample cvidence of the fundamental importance of
Darcy’s law in the analysis of groundwater flow, but it is worth noting here that it is
equally important in many other applications of porous-media flow. It describes
the flow of soil moisture and is used by soil physicists, agricultural engineers, and
soil mechanics specialists. It describes the flow of oil and gas in deep geological
formations and is used by petroleum reservoir analysts. It is used in the design of
filters by chemical engineers and in the design of porous ceramics by materials
scientists. It has even been used by bioscientists to describe the flow of bodily fluids
across porous membranes in the body.
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Darcy’s law is a powerful empirical law and its components deserye our
careful attention. The next two sections provide a more detailed look at tpe physi
significance of the hydraulic head & and the hydraulic conductivity k. Hicy

2.2 Hydraulic Head and Fluid Potential

The analysis of a physical process that involves flow usually requires the recognitio
of a potential gradient. For example, it is known that heat flows through 501idn
from higher temperatures toward lower and that electrical current flows throug}i
electrical circuits from higher voltages toward lower. For these processes, the tem.
perature and the voltage are potential quantities, and the rates of flow of heat 54
electricity are proportional to these potential gradients. Our task is to determiy,
the potential gradient that controls the flow of water through porous media,

Fortunately, this question has been carefully considered by Hubbert in pj
classical treatise on groundwater flow (Hubbert, 1940). In the first part of this sec.
tion we will review his concepts and derivations.

Hubbert’s Analysis of the Fluid Potential

Hubbert (1940) defines potential as “a physical quantity, capable of measurement
at every point in a flow system, whose properties are such that flow always occurs
from regions in which the quantity has higher values to those in which it has lower,
regardless of the direction in space” (p. 794). In the Darcy experiment (Figure 2.1)
the hydraulic head A, indicated by the water levels in the manometers, would appear
to satisfy the definition, but as Hubbert points out, “to adopt it empirically without
further investigation would be like reading the length of the mercury column of
a thermometer without knowing that temperature was the physical quantity being
indicated” (p. 795).

Two obvious possibilities for the potential quantity are elevation and fluid
pressure. If the Darcy apparatus (Figure 2.1) were set up with the cylinder vertical
(6 = 0), flow would certainly occur down through the cylinder (from high elevation
to low) in response to gravity. On the other hand, if the cylinder were placed in 2
horizontal position (f = 90°) so that gravity played no role, flow could presumably
be induced by increasing the pressure at one end and decreasing it at the other.
Individually, neither elevation nor pressure are adequate potentials, but we ¢
tainly have reason to expect them to be components of the total potential quantity

It will come as no surprise to those who have been exposed to potential co™
cepts in elementary physics or fluid mechanics that the best way to search out 0f
quarry is to examine the energy relationships during the flow process. In fact, the
classical definition of potential as it is usually presented by mathematicians 27
Physicists is in terms of the work done during the flow process; and the work don¢
In moving a unit mass of fluid between any two pointsin a flow system is a meast’®
of the energy loss of the unit mass. .

Fluid flow through porous media is a mechanical process. The forces dri¥'"
the fluid forward must overcome the frictional forces set up between the moving
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