Springbank Off-Stream Storage Project Preliminary Geotechnical Assessment Report

Volume 4 of 4

Prepared for: Alberta Transportation 3rd Floor – Twin Atria Building 4999 – 98 Avenue Edmonton, AB T6B 2X3

Prepared by: Stantec Consulting Services Ltd Calgary, Alberta

Project No. 110773396

December 8, 2020

Sign-off Sheet

This document entitled "Volume 4, Springbank Off-Stream Storage Project Preliminary Geotechnical Assessment Report," containing Attachments 5 - 14, was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Alberta Transportation (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

(signature) Andrew Bayliss, P.Eng, Geotechnical Engineer

Prepared by

Prepared by

(signature) Chris Jones, PE, Geotechnical Engineer

Prepared by

(signature)

Vince Severance, PE, Geotechnical Engineer

Aur A

Reviewed by

(signature) Hugo Aparicio, P.Eng, Geotechnical Engineer

Sign-off Sheet

Authenticated by _

(signature) Dan Back P.Eng., Geotechnical Engineer

> Stantec Consulting Ltd. APEGA Permit Number P258

Validated by _____

(signature)

Jeff Berg P.Eng., Senior Principal

Revision	Date	Description
0	September 25, 2020	Original Submittal
0-A	December 8, 2020	Re-Issued Rev. 0 to fix electronic display errors and remove
		Draft marks. No new content or revisions incorporated.

ATTACHMENT 5 MATERIAL PROPERTIES DESIGN BASIS MEMO

To:	Syed Abbas	From:	Hugo Aparicio/Dan Back
	Alberta Transportation		Stantec
File:	110773396	Date:	November 20, 2019

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum - Selection of Soil Material Properties

1.0 INTRODUCTION

This document provides a summary of the process followed to select the geotechnical soil parameters to design the Diversion Channel and the earthen embankment Storage Dam. The parameter selection was based on the findings from the recently completed geotechnical and hydrogeological investigations performed at the project site.

1.1 **PROJECT OVERVIEW**

SR1 is comprised of three primary project components:

- 1. Diversion Structure with Floodplain Berm;
- 2. Diversion Channel; and
- 3. Off-Stream Storage Dam and Reservoir.

The Diversion Structure is located on the main channel and floodplain of the Elbow River upstream of Highway 22. The Floodplain Berm is located on the South floodplain of the Elbow River. The Floodplain Berm constrains flow within the Elbow River active channel and floodplain, and directs flow through the Diversion Structure.

Located on the north bank of the Elbow River, the Diversion Channel connects the Diversion Structure to the Off-stream Storage Reservoir and runs in a north easterly direction passing under Twp. Road 242 and Hwy 22 before discharging into the reservoir. The proposed channel bottom width is 24 m with 3H:1V side slopes. The side slopes are steepened to 2H:1V within the rock cut areas. Channel gradient varies from 0.1 percent to 0.2 percent. The maximum channel depth is 6.4 m. The total channel length is approximately 4,700 m.

The Off-steam Storage Dam and Reservoir are located between Hwy 1 and the Elbow River; and predominantly east of Hwy 22. The Dam Embankment is a zoned earthen structure approximately 4,000 m long with a maximum embankment height of 27 m. The Off-Stream Storage Dam and reservoir area outlets to the Elbow River via an unnamed tributary stream that currently runs through the land which the reservoir will occupy.

November 20, 2019 Syed Abbas Page 2 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

1.2 GENERAL SITE GEOLOGY

The SR1 Project Site is underlain by Upper Cretaceous to Tertiary bedrock deposited in the Alberta Foreland Basin and subsequently deformed by the Laromide Orogeny. More specifically, the project site is underlain by three bedrock formations: Brazeau, Coalspur and Paskapoo formations.

The Brazeau Formation subcrops beneath the western portion of the SR1 Project Site. It underlies the Floodplain Berm, Diversion Structure and Diversion Channel between approximate Stations 10+000 and 13+200 m. The dominant lithology is mudstone, siltstone and fine-grained sandstone. Coaly shale and coal beds are common.

The Coalspur Formation subcrops beneath the Diversion Channel between Stations 13+200 and 14+700 m, the Emergency Spillway, Diversion Channel Outlet, the west Dam abutment and western portion of the Dam footprint between approximate Stations 20+000 to Station 21+400 m. The Coalspur Formation consists of a sequence of inter-bedded mudstone, siltstone and fine-grained sandstone with subordinate coarser grained sandstone layers and channel lag deposits.

The Paskapoo Formation subcrops beneath the east dam abutment, the eastern portion of the dam footprint between approximate Stations 21+400 and 24+000 m, the LLOW and the Reservoir. The Paskapoo is comprised of an inter-bedded non-marine sandstone, siltstone and mudstone with minor amounts of bentonite and coal.

Generalized stratigraphy for the project site is shown in Figure 1.

Syed Abbas Page 3 of 63

Figure 1. Generalized Site Stratigraphy

1.3 GENERAL SOIL CHARACTERIZATION

The soils characterized across the project site generally consist of alluvium, colluvium, and glaciogenic units. Alluvium was observed within the Elbow River valley along the Floodplain Berm alignment and diversion structure location and fluvial deposits were encountered within the valley of the Unnamed Creek along the Storage Dam alignment. Colluvium associated with landslides and eroded steep slopes was observed along the natural slopes of the Elbow River. Most of the soils across the Diversion Channel and Storage Dam alignments are glaciogenic soil units consisting of glacial lacustrine clays and silts of moderate to high plasticity and glacial till clays, silts, and sands of low plasticity.

The overall project site was divided into 13 different geographical zones for soil characterization purposes as discussed in Section 2.0 of this memo. The average soil thickness of the predominant glaciogenic soil units (lacustrine and till) was evaluated for each zone. This is presented in Figure 2 and Figure 3.

Figure 2. Average Soil Thickness – Glacial Lacustrine

Syed Abbas Page 5 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.0 EMBANKMENT AND FOUNDATION SOIL PROPERTIES

The initial field exploration was performed between March 21 and August 25, 2016. A total of 41 borings and 26 CPT soundings were completed within the footprint of the Storage Dam. In addition, 38 borings and 3 CPT soundings were completed along the Diversion Channel, five borings were completed at the potential borrow site, and 15 borings were drilled at the diversion structure/Floodplain Berm. The field activities consisted of advancing auger borings, sonic borings, and CPT borings. At certain locations, both CPT and auger borings were advanced near each other to calibrate CPT results. Boring logs, laboratory testing, and CPT data were reviewed to develop soil horizons and soil material properties. The field exploration information is included in Stantec's Geotechnical Investigation Report (Stantec 2016).

A supplemental field exploration was performed in 2018. The fieldwork was completed in two (2) mobilizations. The first mobilization was between April 21 and May 9, 2018. The first mobilization consisted of three (3) boreholes within the Elbow River (DB1 to DB3) for the proposed Debris Barrier and 11 boreholes and 6 Seismic Cone Penetration Test soundings within the dam footprint to assess proposed Low-Level Outlet alignment options. The second mobilization was between September 24 and October 31, 2018. The second mobilization consisted of four (4) boreholes to further characterize the glaciolacustrine and glacial till units within the dam footprint, two (2) boreholes to assess an alternate LLO alignment as requested by Alberta Environment and Parks (AEP), and 14 test pits and trenches throughout the dam footprint. Delays were encountered during the second mobilization fieldwork due to inclement weather which required demobilization of the test-pitting excavator on October 4, 2018 and re-mobilizing on October 29, 2018. The supplemental field exploration information is included in Stantec's Geotechnical Investigation Report (Stantec 2018). Data from the borings were used to characterize the subsurface materials along the Diversion Channel, Floodplain Berm, and dam sites. Soil samples from the Diversion Channel and borrow site boring locations were used to characterize the planned embankment materials, assuming the excavated soils will be used to construct the dam. These disturbed samples from the Diversion Channel were used to remold and test specimens in the laboratory to determine representative embankment properties.

The overall project site was divided into 13 different geographical zones for characterization purposes. The zone locations are shown on the plan view in Attachment 1. Borings and laboratory test results were organized by zone for the different soil types to determine soil parameters for use in the analyses. The footprints of the Floodplain Berm and Diversion Structure were designated as Zones 1 and 2, respectively. The footprint of the Diversion Channel was divided into six zones (Zones 3 through 8) and the footprint of the Storage Dam was divided into five zones (Zones 9 through 13). The Diversion Channel and borrow site borings were reviewed to determine characteristics for the material to be used to construct the Storage Dam. Below is a summary of the soil classifications determined within each of the 13 project zones.

November 20, 2019 Syed Abbas Page 6 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

As described by the general soil characterization described before, two predominant soils were encountered at the project site: glacial lacustrine and glacial till. The glacial lacustrine was typically encountered as olive brown to brown, medium to high-plastic, clay and silt. The glacial till was typically encountered as dark brown to grey, sandy, silty clay with variable gravel content.

Design soil parameters were selected for the seepage and stability analyses of the embankment dam and the Diversion Channel based on the laboratory test results and the field exploration data. Rock parameters were selected for Diversion Channel slope stability based on both laboratory test results and field observations of the rock mass.

2.1 SOIL CLASSIFICATIONS

Soil classifications were determined by the Unified Soil Classification System (USCS) (ASTM D2487) from laboratory testing consisting of Atterberg limits testing (ASTM D4318) and hydrometer grainsize analyses (ASTM D422). A summary of the USCS soil classifications determined for glacial lacustrine soil samples obtained in the different project zones is presented in Table 1.

Footuro	7000	Povince	Number of USCS	USCS Classifications
Floodplain	Zone	EDO Harry ED.7	Classifications	
Berm		FB3 thru FB7	0	NO GL SOIIS
Diversion Structure	2	DS1 thru DS9	1	CL (1)
	3	DC1 thru DC12	3	CH (2) CL (1)
	4	H10 thru H13	4	CH (1) CL (3)
Diversion	5	DC13 thru DC17	7	СН (7)
Channel	6	H1 thru H4	1	CH (1)
	7	DC19 – DC24	8	CH (8)
	8	DC25 thru DC34	10	CH (8) CL (2)
Storage	9	D1 thru D9	8	CH (7) CL (1)
Dam	10	D10 thru D25	29	CH (26) CL (3)

Table 1. Summary of Glacial Lacustrine USCS Soil Classifications Grouped by Project Zone

Syed Abbas Page 7 of 63

			Number of USCS	
Feature	Zone	Borings	Classifications	USCS Classifications
	11	D26 thru D40, D42, D57 thru D63 GL1 thru GL4 LLO01 thru LLO06, LLO17 thru LLO18	57	CH (22) CL (34) SC (1)
	12	D41 thru D50 LLO06 thru LLO07	0	No GL Soils
	13	D51 thru D52 LLO09 thru LLO16	4	CH (3) CL (1)
	Borrow	BS1 thru BS5	16	CH (6) CL (10)
	Geo Wells	GW1 thru GW11	16	CH (10) CL (6)
Total Site		164	CH (101) CL (62) SC (1)	

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Approximately 62 percent of the glacial lacustrine soil samples classified as CH (Clay of High plasticity) and 38 percent classified as CL (Clay of Low plasticity). The spatial distribution of glacial lacustrine CH and CL soil classifications is presented graphically in Figure 4.

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 4. Spatial Distribution of Glacial Lacustrine USCS Soil Classifications

USCS soil classifications determined for glacial till soils from samples obtained from the different project zones are summarized in Table 2.

Feature	Zone	Borings	Number of USCS Classifications	USCS Classifications
Floodplain Berm	1	FB3 thru FB7	0	No GT Soils
Diversion Structure	2	DS1 thru DS9	9	CL (8) GM (1) *
Diversion	3	DC1 thru DC12	42	CL (38) GM (2) * GC (1) * SC (1) *
Channel	4	H10 thru H13	5	CL (5)
	5	DC13 thru DC17	12	CL (7) CL-ML (2) ML (1) SC-SM (1) SC (1)

Table 2. Summary of Glacial Till USCS Soil Classifications Grouped by Project Zone

Syed Abbas Page 9 of 63

Feature	Zone	Borings	Number of USCS Classifications	USCS Classifications
	6	H1 thru H4	6	CL (4) ML (1) SC (1)
	7	DC19 - DC24	7	CL (4) CL-ML (2) SC (1)
	8	DC25 thru DC34	18	CL (15) CL-ML (2) GC (1) *
	9	D1 thru D9	8	CL (7) CL-ML (1)
	10	D10 thru D24	23	CL (21) CL-ML (1) GC (1) *
	11	D26 thru D40, D42, D57 thru D63 GL1 thru GL4 LLO01 thru LLO06, LLO17 thru LLO18	38	CL (32) CL-ML (1) ML (2) SC (1) GW (2) *
Storage Dam	12	D41 thru D50 LLO06 thru LLO07	24	CL (14) SC (1) SM (1) GC (2)* GW (2)* GW-GM (1)* GM (3)*
	13	D51 thru D52 LLO09 thru LLO16	6	CL (6)
	Borrow	BS1 thru BS5	14	CL (14)
	Geo Wells	GW1 thru GW11	15	CL (14) CL-ML (1)
Total Site		227	CL (189) CL-ML (10) ML (4) SC-SM (1) SC (6)* SM(1) GC (5)* GM (6)* GW-GM (1) GW(4)*	

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

*Basal Sand/Gravel Till Layer

The spatial distribution of the glacial till USCS soil classifications is presented graphically in Figure 5.

Syed Abbas Page 10 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 5. Spatial Distribution of Glacial Till USCS Soil Classifications

USCS soil classifications determined for alluvial soils encountered along the Floodplain Berm alignment are summarized in Table 3. The spatial distribution of the alluvial USCS soil classifications is presented graphically in Figure 6.

Feature	Zone	Borings	Number of USCS Classifications	USCS Class	ifications
Floodplain Berm	1	FB3 thru FB7	4 (Alluvial)	GW-GM (2)	GP (2)

Syed Abbas Page 11 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 6. Spatial Distribution of Fluvial and Alluvial USCS Soil Classifications

The subsurface soils are comprised of glaciogenic units consisting mostly of glacial lacustrine and glacial till soils. The following is a detailed description of each soil unit and project location.

Page 12 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

- Glacial lacustrine (GL), which is described as an olive green to brown, intermediate to high plasticity, lean to fat CLAY. Particle size distribution testing indicated that the GL is typically comprised of between 50 and 70 % clay sized particles and 30 to 50 % silt sized particles. The GL deposits within the first quarter section of the Drainage Channel (Zone 3) range from zero to 3 meters in thickness, and not present within half of the borings. In the remainder of the Diversion Channel (Zones 4 through 8), the GL ranged continuously from 2 to 5 meters in thickness with an exception along a ridge near Station 14+000 where no GL was present. The thickness of the GL typically ranges from 2 to 6 meters at the western end of the dam (from approximate Station 20+300 to 21+800) and toward the eastern end of the dam (from Station 22+700 to 23+200). In the center of the dam from Station 21+800 to Station 22+700, the GL is thicker, ranging from 8 to 15 meters in thickness. The GL is not present in the vicinity of the unnamed creek which crosses the dam site near Station 23+200. Isolated layers of GL are present east of the unnamed creek. Glacial till (GT), which is described as brown to grey, low to intermediate plasticity, lean CLAY with sand and gravel. There is large variability and inconsistency in the thickness of the GT layer. The thickness of the GT within the upstream half of the Diversion Channel (Zones 3 through 5) typically ranges from 9 to 20 meters. In the downstream half of the Diversion Channel (Zones 7 and 8), the GL ranges continuously from 2 to 9 meters. Within the Storage Dam footprint, the thickness ranges from 1 to 15 meters with the thickest layers generally in the center portion of the Storage Dam (from Station 22+100 to 23+000).
- Alluvial sand and gravely soils were encountered within the Floodplain Berm borings (FB3 through FB7). The fluvial sand was described as dense, dark brown to brown, silty sand. The fluvial gravel was described as very dense, brown, gray and black, well graded to poorly graded gravel with silt and sand. The thickness of the fluvial soils ranges from 3 to 4 meters along the Floodplain Berm alignment.
- Alluvial sand and gravel soils were encountered in the low-lying area of the unnamed creek near Station 23+200 of the Storage Dam. The alluvial sand was described as dense, brown, clayey sand with gravel and silty sand with gravel. The alluvial gravel was described as very dense, clayey and silty gravel with sand. The thickness of the alluvial soils ranges from 1 to 7 meters in the area of the unnamed creek.

2.2 UNIT WEIGHT

2.2.1 Data

Unit weight values were determined (ASTM D2167) for 88 undisturbed GT and GL samples. A summary of the insitu dry and moist unit weight values is presented in Figure 7 and 8. The spatial distribution of insitu moist unit weight values for both undisturbed GL and GT soil samples are summarized in Figure 9 and Figure 10, respectively.

Figure 7. Project Wide Dry Unit Weight Values – GT and GL

Syed Abbas Page 14 of 63

Figure 9. Spatial Distribution of Unit Weight Values – Glacial Lacustrine

Figure 10. Spatial Distribution of Unit Weight Values – Glacial Till

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Standard Proctor moisture-density tests (ASTM D698) were performed on nine (9) disturbed GL bag samples and 24 disturbed GT samples. Maximum dry unit weight values obtained from standard Proctor tests are presented in Figure 11. Estimated embankment unit weight values for GL and GT samples compacted to 98 percent of standard proctor density are presented in Figure 12.

Figure 11. Standard Proctor – Maximum Dry Unit Weight

Syed Abbas Page 16 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 12. Estimated Embankment Density – 98% Proctor

2.2.2 Selected Parameters

Unit weights for in-situ soils were selected based on average results of laboratory testing and typical values from published sources. For the glacial lacustrine and glacial till soils, average laboratory unit weight test results were used to select the in-situ unit weight of 18 kN/m3 for both soils.

For the embankment sand drain and alluvial gravel material, typical values from Table 6 "Typical Values of Soil Index Properties" of NAVFAC DM 7.1 were selected. The embankment sand drain was assumed to be a relatively dense, clean uniform sand yielding a wet unit weight of approximately 21 kN/m3. The alluvial gravel was assumed to be a relatively dense, silty sand and gravel yielding a wet unit weight of approximately 22 kN/m3.

For the Storage Dam embankment materials, unit weights were selected using the moisture-density laboratory test results and specified compaction requirements. Assuming the material is placed to 98% maximum dry density at +2% optimum moisture for the glacial lacustrine soil and at optimum moisture for the glacial till soil, average wet densities from the results of the laboratory tests were calculated.

For weathered bedrock, the unit weight was assumed equal to the sand drain material. A summary of the selected unit weight values is presented in Table 4.

November 20, 2019 Syed Abbas Page 17 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Material Name	Unit Weight (kN/m³)
Embankment Shell	20
Embankment Core	20
Sand Drain	21
Glacial Lacustrine	18
Glacial Till	18
Gravel	22
Weathered Bedrock	21

Table 4. Soil Density and Strength Parameters

2.3 MOISTURE CONTENT

Project wide natural moisture content values from laboratory test results were reviewed. In-situ moisture content were reviewed and compared to optimum moisture content from the standard Proctor moisture-density lab testing. This data was reviewed for constructability purposes. Plots for glacial lacustrine and glacial till soil sample natural moisture content are included in Figure 13 and Figure 14.

Page 18 of 63

Figure 13. Glacial Lacustrine Natural Moisture Content

Figure 14. Glacial Till Natural Moisture Content

November 20, 2019 Syed Abbas Page 19 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.4 PERMEABILITY

2.4.1 Data

A total of 36 falling head permeability tests (ASTM D5084) were performed on undisturbed and remolded GL and GT soil samples. The test results were reviewed and summarized by zone and by soil type, and geometric means of the test results were calculated for each zone. Additionally, eight CPT field dissipation tests were reviewed to evaluate the horizontal hydraulic conductivity of the two predominant soil types.

The results of 17 falling head permeability tests performed on undisturbed and remolded GL soil samples are summarized in Table 5. The results of the four CPT field dissipation tests performed in GL are summarized in Table 6.

Zone	Sample Type	Number of Falling Head Permeability Tests	Geometric Mean k√ (m/sec)
5	Remolded	1	1.10E-10
7	Undisturbed]	1.90E-10
8	Undisturbed	1	7.70E-10
10	Undisturbed	3	2.00E-10
11	Undisturbed	6	3.42E-10
12	Undisturbed	2	1.80E-10
Borrow	Remolded	2	7.14E-10
Geohydro Well	Undisturbed	1	3.20E-10
Total Site	Undisturbed	14	3.07E-10
TOTAL SITE	Remolded	3	5.12E-10

Table 5. Summary of Permeability Values from Laboratory Testing – Glacial Lacustrine

Table 6. Summary	v of CPT Pore Pressu	e Dissipation Tests	– Glacial Lacustrine
	,		

Zone	Number of CPT Pore Pressure Dissipation Tests	Geometric Mean kh(m/sec)
8	1	1.24E-9
11	3	1.46E-10
Total Site	4	2.49E-10

The range of permeability values obtained from undisturbed and remolded GL soil samples from different project zones is presented graphically in Figure 15 and Figure 16.

Sved Abbas Page 20 of 63

Figure 15. Spatial Distribution of Undisturbed Glacial Lacustrine Permeability Test Results

Figure 16. Spatial Distribution of Remolded Glacial Lacustrine Permeability Test Results

November 20, 2019 Syed Abbas Page 21 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

The results of 19 falling head permeability tests performed on undisturbed and remolded GT soil samples are summarized in Table 7. The results of the four CPT field dissipation tests performed in GT soil are summarized in Table 68.

Zone	Sample Type	Number of Falling Head Permeability Tests	Geometric Mean k _v (m/sec)
2	Undisturbed	3	2.00E-10
3	Remolded	4	1.17E-10
4	Remolded	2	4.42E-10
5	Remolded	1	1.50E-9
7	Undisturbed	1	7.70E-10
8	Remolded	1	8.90E-11
9	Undisturbed	1	3.50E-10
10	Undisturbed	1	4.50E-11
11	Remolded	2	6.05E-11
10	Remolded	1	5.10E-10
ΙZ	Undisturbed	1	5.80E-11
Borrow	Remolded	1	1.00E-9
Total Site	Undisturbed	7	2.61E-10
ioidi sile	Remolded	12	3.81E-10

Table 7. Summary of Permeability Values from Laboratory Testing – Glacial Till

Zone	Number of CPT Pore Pressure Dissipation Tests	Geometric Mean k _h (m/sec)
8	3	2.59E-8
11	1	3.03E-10
Total Site	4	8.51E-9

The range of permeability values obtained from undisturbed and remolded GT soil samples and CPT dissipation field tests from each project zone is presented graphically in Figure 17 and Figure 18.

November 20, 2019 Syed Abbas Page 22 of 63

Figure 17. Spatial Distribution of Undisturbed Glacial Till Permeability Test Results

Figure 18. Spatial Distribution of Remolded Glacial Till Permeability Test Results

November 20, 2019 Syed Abbas Page 23 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.4.2 Selected Parameters

The laboratory falling head test results and the CPT data were used in selecting permeability values for seepage analyses. The permeability parameters selected for the analyses are presented in Table 9.

	kν	k h	
Material Name	(m/s)	(m/s)	k h /k v
Embankment Shell	3.00E-10	3.00E-10	1.00
Core	3.00E-11	1.00E-10	3.33
Drain	1.00E-05	1.00E-05	1.00
Glacial Lacustrine	3.00E-11	1.00E-10	3.33
Glacial Till	3.00E-10	3.00E-10	1.00
Gravel	1.00E-06	1.00E-06	1.00
Weathered Bedrock			

Table 9. Saturated Hydraulic Conductivity Parameters

Vertical permeability parameters for the glacial till soil was selected by using the geometric mean of the laboratory test results for all samples obtained. These results are included in Section 2.4.1. CPT dissipation test data was reviewed for the glacial till to determine the horizontal permeability and horizontal to vertical ratio; however, there was a large variation in the four tests performed on glacial till soils. Based on the known depositional history of the glacial till, a horizontal to vertical ratio of one (1) was selected for glacial till.

For glacial lacustrine soil, the CPT dissipation test data had consistent results for the four tests performed, with a geometric mean of about 3.00E-10 m/s. The geometric mean from the falling head permeability tests conducted on undisturbed glacial lacustrine soil samples was also 3.00E-10 m/s. Based on the characteristics of the soil and its depositional history (lake deposits in horizontal seams), it did not seem appropriate to use a horizontal to vertical ratio of one (1) for the glacial lacustrine soil. Also, it was assumed the glacial lacustrine soil must have a lower permeability than the glacial till soil due to the sand and gravel content in the glacial till. Since a permeability of 3.00E-10 m/s was selected for glacial till, a horizontal permeability of 1.00E-10 m/s was selected for the glacial till, a horizontal permeability of 1.00E-10 m/s was selected for the glacial till values for lake deposits from Cedergren "Seepage, Drainage, and Flow Nets (1989)". This resulted in vertical permeability of 3.00E-11 m/s.

Permeability tests conducted on remolded samples yielded similar results to those conducted on undisturbed soil samples. Because of this, the same values were selected for foundation soils and corresponding embankment soils.

November 20, 2019 Syed Abbas Page 24 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Typical values from Table 6 of Soil Mechanics in Engineering Practice (Terzaghi, 1967) for clean sands and gravel with silt and sand were used for the sand drain material and alluvial gravel, respectively.

2.5 DRAINED SHEAR STRENGTH

2.5.1 Data

A total of 83 consolidated undrained triaxial (ASTM D4767) tests were performed on undisturbed and remolded GL and GT soil samples. A summary of the soil types subjected to consolidated undrained (CU) triaxial testing are presented in Table 10.

Test Type	Soil Type Sample Type		Completed
CU Triaxial Tests	Glacial Lacustrine	Undisturbed	39
		Remolded	5
	Glacial Till	Undisturbed	22
		Remolded	17
	Total		83

Table 10. Summary of Consolidated Undrained (CU) Triaxial Tests

The test results were reviewed and summarized by zone and by soil type, and best fit angle of friction values were calculated for each zone. The results of 44 CU triaxial tests performed on undisturbed and remolded GL soil samples are summarized in Table 11. The p-q plots of the combined CU test data for undisturbed and remolded GL soil samples are presented in

November 20, 2019 Syed Abbas Page 25 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 19 and Figure 20, respectively. The range of best fit friction angles from single point CU tests performed on undisturbed and remolded GL soil samples from each project zone is presented graphically in Figure 21 and Figure 22, respectively.

Feature	Zone	Sample Type	Number of CU Triaxial Tests	Best Fit Friction Angle (°)
	4	Undisturbed	1	17.3
	4	Remolded]	27.9
Diversion	5	Undisturbed	2	2
Channel	7	Undisturbed	1	25.1
	8	Undisturbed	3	25.2
		Remolded	1	21.6
	10	Undisturbed	13	22.8
	11	Undisturbed	16	24.5
Storage		Remolded	1	25.1
Dam	13	Undisturbed	2	29.5
	13	Remolded	2	24.5
	Borrow	Undisturbed	1	25.3
Total	C:+-	Undisturbed	39	23.6
101013116		Remolded	5	24.3

Table 11. Summary of Average Drained Shear Strength Values for Stability Analysis – Glacial Lacustrine

Syed Abbas Page 26 of 63

Figure 19. CU Triaxial Test Results - Undisturbed Glacial Lacustrine

Figure 20. CU Triaxial Test Results - Remolded Glacial Lacustrine

November 20, 2019 Syed Abbas Page 27 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

CU triaxial tests performed on undisturbed glacial lacustrine specimens were typically performed until 20 percent axial strain was obtained. The CU test results typically produced a peak shear stress followed by a lower residual shear strength. Residual shear strengths either stabilized after 9 to 12 percent axial strain occurred or continued to decrease with additional strain.

Laboratory CU test results were reviewed to determine residual strength of the GL soil. The test results that clearly demonstrated a peak strength followed by a uniform residual strength yielded an average peak shear strength of 24 degrees and an average residual shear strength of 19 degrees after approximately 10 percent strain occurred.

Syed Abbas Page 28 of 63

Figure 21. Spatial Distribution of CU Triaxial Test Results - Undisturbed Glacial Lacustrine

Figure 22. Spatial Distribution of CU Triaxial Test Results - Remolded Glacial Lacustrine

November 20, 2019 Syed Abbas Page 29 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

The results of 39 consolidated undrained triaxial tests on undisturbed and remolded GT soil samples are summarized in Table 12. The p-q plots of the combined CU test data for undisturbed and remolded GT soil samples are presented in Figure 23 and Figure 24, respectively. The range of best fit friction angles from single point CU tests performed on undisturbed and remolded GT soil samples from each project zone is presented graphically in Figure 25 and Figure 26.

Table 12. Summary of Average Drained Shear Strength Values for Stability Analysis – Glacial Till

		Sample	Number of CU Triaxial	Best Fit Friction Angle
Feature	Zone	Туре	Tests	(°)
	2	Undisturbed	3	27.4
	3	Remolded	4	21.3
	4	Undisturbed	1	25.0
Diversion		Remolded	2	25.5
Channel	6	Remolded	1	32.8
	7	Undisturbed	1	33.6
	8	Undisturbed	5	30.8
		Remolded	1	26.7
	9	Undisturbed	2	26.7
	10	Undisturbed	5	28.0
	11	Undisturbed	2	24.9
Storago		Remolded	1	25.9
Dam	12	Undisturbed	1	25.8
Dam		Remolded	1	31.3
	13	Undisturbed	2	29.1
		Remolded	1	25.7
	Borrow	Remolded	6	28.4
Total Site		Undisturbed	22	27.5
		Remolded	17	27.7

November 20, 2019 Syed Abbas Page 30 of 63

Figure 23. CU Triaxial Test Results - Undisturbed Glacial Till

Figure 24. CU Triaxial Test Results - Remolded Glacial Till

November 20, 2019 Syed Abbas Page 31 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

CU triaxial tests performed on undisturbed glacial till specimens were typically performed until 20 percent axial strain was obtained. The CU test results typically produced a peak shear stress followed by a lower residual shear strength. Residual shear strengths either stabilized after 7 to 15 percent axial strain occurred or began to increase or decrease with additional strain.

Laboratory CU test results were reviewed to determine residual strength of the GT soil. The test results that clearly demonstrated a peak strength followed by a uniform residual strength yielded an average peak shear strength of 27 degrees and an average residual shear strength of 25 degrees after approximately 10 percent strain occurred.

Figure 25. Spatial Distribution of CU Triaxial Test Results - Undisturbed Glacial Till

November 20, 2019 Syed Abbas Page 32 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.5.2 Selected Parameters

Consolidated undrained triaxial tests were conducted on both undisturbed and remolded soil samples. Strength parameters were generally selected by fitting a best-fit line through the p-q plot data points. Results of tests conducted on undisturbed samples were evaluated for the foundation soils and results of tests conducted on the remolded samples were evaluated for the embankment soils.

Test results were initially evaluated by geographic zone; however, upon review, it was noted that the test results were similar regardless of zone (Figure 21 and Figure 25). Therefore, strengths were selected by constructing a best-fit line through the data points. The p-q plots for tests conducted on undisturbed samples are presented in Figure 19 and Figure 23 for glacial lacustrine and glacial till, respectively.

Page 33 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Tests conducted on remolded samples were reviewed for the embankment materials. Best-fit lines were constructed through the data points. The test results conducted on remolded glacial lacustrine and glacial till soil samples were nearly identical to those conducted on undisturbed samples. Plots of the test results on remolded glacial lacustrine and glacial till soil samples are included in Figure 20 and Figure 24, respectively.

For drained strengths for glacial lacustrine, glacial till, embankment shell, and embankment core materials, the friction angle was selected using the best-fit line. The best-fit line for both the glacial till and glacial lacustrine soils indicate a cohesion intercept of zero. This is consistent with what is expected for a normally to slightly overconsolidated clay.

In addition to the consolidated undrained triaxial test results yielding zero cohesion for the best fit line, published literature suggests no cohesion for drained strengths of normally consolidated clay. Overconsolidated clays will have cohesion; however, an envelope with cohesion greater than zero will overestimate strengths at low stress levels (shallow depths). Cohesion may be used for overconsolidated soils at great depths. The deeper glacial tills at the project site appear to be normally consolidated (Figure 42), so, in Stantec's opinion, no cohesion is warranted. Additionally, the CU test data obtained does not support cohesion.

The drained strength for the sand drain material and weathered bedrock were selected using correlations for coarse grained soils between dry unit weights and angle of internal friction (NAVFAC 1986). For the sand drain, assuming a dry unit weight of 18 kN/m³ for a poorly graded sand, a friction angle of 33° was selected. For the alluvial gravel, assuming a dry unit weight of 20 kN/m³ for a well graded gravel, a friction angle of 35° was selected. The weathered rock was assumed to be a well

November 20, 2019 Syed Abbas Page 34 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

graded gravel with silt and sand. Assuming a dry unit weight of 20 kN/m³, a friction angle of 35° was selected. The drained strength parameters selected for the analyses are presented in Table 13.

	Drained Strength				
	Cohesion	Friction Angle			
Material Name	(кра)	(aegrees)			
Embankment Shell (GL)	0	24			
Embankment Core (GT)	0	28			
Foundation Glacial Lacustrine	Variable c/p u	indrained strength			
Foundation Glacial Till	0	27			
Sand Drain	0	33			
Alluvial Gravel	0	35			
Weathered Rock	0	35			

Table 13. Selected Drained Soil Strength Parameters

2.6 UNDRAINED SHEAR STRENGTH

2.6.1 Data

2.6.1.1 UU Triaxial Tests

A total 11 unconsolidated undrained (UU) triaxial (ASTM D2850) tests were performed on undisturbed and remolded GL and GT soil samples. Summaries of the soil types subjected to triaxial testing are presented in Table 14.

Table 14. Summary of Unconsolidated Undrained (CU) Triaxial Tests

Test Type	Soil Type	Sample Type	Completed
UU Triaxial Tests		Undisturbed	10
	Giacial Lacustrine	Remolded	
		Undisturbed	
	Glacial III	Remolded	1
	Т	11	

The spatial distribution of undrained strengths from 11 unconsolidated undrained triaxial tests performed on undisturbed and remolded GL and GT soil samples are summarized in Figure 27.

Syed Abbas Page 35 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 27. Spatial Distribution of Triaxial Undrained Strength Test Results

The UU test results were reviewed and summarized by zone and by soil type. The results of 10 UU triaxial tests performed on undisturbed and remolded GL soil samples are summarized in Table 15. One UU triaxial test performed on a remolded GT soil sample is summarized in Table 16.

Table 15. Summary of Average Undrained Shear Strength Values for Stability Analysis – GlacialLacustrine

Feature	Zone	Sample Type	Number of UU Triaxial Results	Average Undrained Strength (kPa)
	3	Undisturbed	1	325
Diversion	5	Undisturbed	3	132
Diversion	7	Undisturbed	1	76
Channel	10	Undisturbed	1	65
	11	Undisturbed	4	171
Tot	al Site	Undisturbed	10	155

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Table 16. Summary of Average Undrained Shear Strength Values for Stability Analysis – Glacial Till

Feature	Zone	Sample Type	Number of UU Triaxial Results	Average Undrained Strength (kPa)
Diversion Channel	3	Remolded	1	125

2.6.1.2 CPT Data

Undrained strength (S_u) from CPT data was calculated using a N_{kt} value of 15. Kleven (1981) showed that for normally consolidated marine clays, the cone factor N_{kt} varied between 11 and 19 with an average value of 15. Aas et al. (1986) correlated plasticity index to N_{kt} . The results indicate that N_{kt} increases with increasing plasticity, ranging from 8 to 16 for plasticity indexes from 3 to 50%. A large number of studies have been performed resulting in N_{kt} values between 15 and 20 (ESOPT 1974). Based on this information, an N_{kt} value of 15 was chosen for the glacial lacustrine and glacial till soils.

Soil horizon breaks were determined using nearby soil borings where available and SBT values from the CPT data. The data was summarized by soil type for all samples and by geographic zone. Project wide results of Su versus depth for glacial lacustrine are included in Figure 28.

November 20, 2019 Syed Abbas Page 37 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 28. CPT Undrained Shear Strength versus Depth – Glacial Lacustrine – Project Wide

Project wide results of S_{ν} versus depth for glacial till are included in Figure 29.

November 20, 2019 Syed Abbas Page 38 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 29. CPT Undrained Shear Strength versus Depth – Glacial Till – Project Wide

CPT soundings were advanced in Zone 8, Zone 9, Zone 11, and Zone 12. The range of undrained strength from the CPT soundings for glacial lacustrine soil by zone is included in Figure 30.

Syed Abbas Page 39 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 30. CPT Undrained Shear Strength – Glacial Lacustrine – By Zone

The range of undrained strength from the CPT soundings for glacial till soil by zone is included in Figure 31.

Figure 31. CPT Undrained Shear Strength – Glacial Till – By Zone

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.6.1.3 Undrained Strength Envelopes from CU Triaxial Tests

Using data from the CU tests, undrained strength envelopes were fit to plots of shear strength on the failure plane $(S_u)_{ff}$ versus specimen consolidation pressure (σ'_{con}) (FERC 2006; USBR 2011). The undrained strength envelope is represented by Mohr-Coulomb parameters (c and ϕ) as shown in Figure 32.

The undrained shear strength on the failure plane $(S_u)_{\rm ff}$ was calculated for each CU test performed. In a triaxial compression test, failure develops on a plane that is oriented at $(45^\circ + \phi'/2)$ above horizontal (Duncan et al. 2014). The shear stresses on the failure plane in a particular CU test can be determined using Mohr's circle and the equation shown in Figure 32.

Here, σ_{df} is the measured deviator stress at failure and ϕ ' is the drained friction angle.

Figure 32 – Undrained Strength Envelope Representing the Failure Plane Shear Stresses Measured in CU Triaxial Tests

The results of $(S_u)_{ff}$ versus (σ'_{con}) for 39 CU tests performed on undisturbed Glacial Lacustrine specimens are included in Figure 33. An undrained strength envelope fit through the data results in c = 15 kPa and ϕ = 20°. Likewise, the results from 22 CU tests performed on undisturbed Glacial Till specimens (Figure 34) indicate c = 60 kPa and ϕ = 19°. The higher strength of the undisturbed Glacial Till likely reflects, in part, the higher preconsolidation pressures in this glacial material. The undrained

November 20, 2019 Syed Abbas Page 41 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

cohesion and friction angle values shown in Figure 33 and Figure 34 were obtained by linear regression.

Figure 33. CU Triaxial Test Undrained Strength Envelope – Undisturbed Glacial Lacustrine

November 20, 2019 Syed Abbas Page 42 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 34. CU Triaxial Test Undrained Strength Envelope – Undisturbed Glacial Till

Results of $(S_u)_{ff}$ versus (σ'_{con}) for three CU tests performed on remolded Glacial Lacustrine samples and for 16 CU tests on remolded Glacial Till samples are plotted separately in Figures 35 and 36.

An undrained strength envelope fit through the remolded Glacial Lacustrine data in Figure 35 results in c = 25 kPa and ϕ = 15°. Likewise, an undrained strength envelope fit through the remolded Glacial Till data in Figure 36 results in c = 80 kPa and ϕ = 19°. The undrained cohesion and friction angle values shown in Figures 35 and 36 were obtained by linear regression.

During construction of the dam, these materials may be mixed to varying degrees within the embankment core and shell. However, depending on the sequence of construction and how the borrow pits are developed, there could be continuous zones of the compacted Glacial Lacustrine soil, which has a lower undrained strength.

November 20, 2019 Syed Abbas Page 43 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 36. CU Triaxial Test Undrained Strength Envelope - Remolded Glacial Till

November 20, 2019 Syed Abbas Page 44 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.6.1.4 Direct Simple Shear Testing

<u>General</u> – Direct simple shear (DSS) tests were performed to establish S_u/σ_v' (c/p) ratios appropriate for undrained analyses of the lacustrine clay layer. These tests were performed in accordance with ASTM D 6528-17. The four initial (June 2018 program) tests were performed at a shearing rate of five percent per hour. Subsequent tests were performed at a shearing rate of one percent per hour. The tests were performed by the TetraTech laboratory in Richmond, BC. While the 2016 tube samples were cut and evaluated prior to shipment to Vancouver, the other DSS samples were sent as intact Shelby tube samples.

<u>Normally Consolidated Tests</u> – The conditions within the glacial lacustrine clay layer under the embankment dam will vary with both applied load and pore pressure. To characterize possible behavior, variations in consolidation stress were utilized in the DSS tests to replicate the impact of stress history on the soil. To model the normally consolidated condition, samples were run at relatively high confining stresses. The initial program used stresses slightly higher than the measured preconsolidation pressures. Later OCR 1.0 tests were run at a confining stress of 500 kPa, well above observed preconsolidation pressures within the glacial lacustrine clay soil at the SR1 storage dam site.

<u>OCR = 2.0 Tests</u> – The glacial lacustrine clay typically exhibits some overconsolidation, varying from high OCR values near the surface to 2.0 or less at depths of four metres and greater. To replicate higher OCR conditions, the preconsolidation stress at each requested DSS test location was estimated from adjacent 1-D consolidation data and relative depths. As a companion to each normally consolidated test, a second DSS was performed using a consolidation stress equal to one half of the estimated preconsolidation stress.

<u>Test Results</u> – The main testing program began in late October 2018 and was completed during January 2019. The high consolidation stress tests began right away. The OCR 2.0 testing was initiated when 1-D consolidation tests in adjacent areas had been completed and analyzed to assign DSS test parameters.

As testing progressed, difficulties developed with the low confining stress (OCR 2.0) tests. Due to sample shear stiffness and generally low-end friction, the samples were partially sliding along the interface with the filter stones / platens, rather than yielding with shear deformation. These tests were performed with roughened, grooved porous metallic filter stones, but the friction was not enough to overcome the sample shear stiffness at the low normal pressure. The OCR 2.0 tests were then modified by first consolidating the samples to the full estimated preconsolidation stress and then unloading back to the specified consolidation for shearing. This "seated" the samples into the platen, but some slippage still occurred.

November 20, 2019 Syed Abbas Page 45 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Ultimately replacement platens were utilized. These were made of the same roughened porous metallic material but had raised fins designed to penetrate into the sample ends. The raised fin platens improved the test results, producing higher shear resistance when tested on adjacent samples, but some slippage still occurred as the fins sheared through the base of the sample.

Overall, the DSS tests have not provided a full measure of the undrained shear strength of the Glacial Lacustrine clay. In most tests, the measured response partly represents the slipping resistance of the interface between the soil and the DSS end platens. Despite the slippage, these tests are considered meaningful as they provide a lower-bound of available shear strength. Table 17 below provides the basic results of the DSS testing.

November 20, 2019 Syed Abbas Page 46 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Borehole	Sample	Depth (m)	σ _{v'} * (kPa)	S _{u5%} (kPa)	Su/σv'	Test OCR**
LLO1	ST4	3.32	120	87	0.725	2.0
LLO1	ST4	3.34	270	85	0.315	1.0
LLO1	ST7	4.92	140	53	0.379	1.9
LLO1	ST7	4.94	300	82	0.273	1.0
D14	ST8	3.18	60	46	0.767	2.1
D14	ST8	3.22	500	140	0.280	1.0
D60	ST2	1.00	500	113	0.226	1.0
GL1A	ST2	1.30	45	49	1.089‡	2.0
GL1A	ST2	1.37	500	127	0.254	1.0
GL1A	ST5	2.69	55	57	1.036‡	2.0
GL1A	ST5	2.72	500	134	0.268	1.0
GL1A	ST8	3.88	66	85	1.288‡	2.0
GL1A	ST8	2.92	500	150	0.300	1.0
GL1A	ST11	5.24	77	98	1.273‡	2.0
GL1A	ST11	5.27	500	137	0.274	1.0
GL1A	ST14	6.67	112	88	0.786‡	2.0
GL1A	ST14	6.70	500	143	0.286	1.0
GL1A	ST17	8.03	132	96	0.727‡	2.0
GL1A	ST17	8.06	500	140	0.280	1.0
GL2	ST3	1.79	73	43	0.589	2.0
GL2	ST3	1.82	500	132	0.264	1.0
GL2	ST6	3.12	73	27	0.369	2.2
GL2	ST6	3.16	500	128	0.256	1.0
GL2	ST10	4.92	90	50	0.556‡	2.0
GL2	ST10	4.97	500	131	0.262	1.0
GL2	ST13	6.29	100	43	0.430	2.0
GL2	ST13	6.32	500	131	0.262	1.0
GL2	ST16	8.09	105	96	0.873‡	2.0
GL2	ST16	8.12	500	135	0.270	1.0
GL2	ST19	9.40	110	81	0.736‡	2.0
GL2	ST19	9.46	500	120	0.240	1.0
GL3A	ST5	3.08	68	52	0.765‡	2.0
GL3A	ST5	3.12	500	122	0.244	1.0
GL4	ST4	2.24	68	53	0.779 [‡]	2.0
GL4	ST4	2.27	500	125	0.250	1.0
LLO17	ST4	2.10	68	31	0.456	2.0
LLO17	ST4	2.14	500	113	0.226	1.0

Table 17. Results of Direct Simple Shear Testing of Glacial Lacustrine Clay

*Test consolidation stress applied during shearing. ** σ_p ' established from nearby 1-D consolidation testing. *Tests performed with raised rib platens.

November 20, 2019 Syed Abbas Page 47 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

OCR 1.0 tests: Count 19, Mean $S_u/\sigma_v' = 0.265$, Standard Deviation $S_u/\sigma_v' = 0.0216$ OCR 2.0 tests: Count 18, Mean $S_u/\sigma_v' = 0.757$, Standard Deviation $S_u/\sigma_v' = 0.2701$

The undrained strength ratio (S_u/σ_v') can be used to model the shear strength of a soil as a function of the effective vertical stress. The S_u/σ_v' value is dependent on the consolidation state of the soil where a constant value can be used for normally consolidated soils, and the ratio increases as OCR increases. A correlation between S_u/σ_v' and OCR was suggested by Ladd (1992) and is shown in **Equation 1**:

$$\frac{S_u}{\sigma'_v} = S * OCR^{0.8}$$
 Equation 1

where:

 S_u = Shear strength (assumes ϕ = 0) σ_v ' = Vertical effective pressure S = Normally consolidated shear strength ratio OCR = Overconsolidation Ratio 0.8 = empirical exponent

The results of the direct simple shear tests conducted on the undisturbed glacial lacustrine soil samples indicate an average S_u/σ_v' of 0.265 for normally consolidated soil samples, and an average S_u/σ_v' of 0.757 for soil samples with an OCR of 2. Refer to Figure 37 for a plot of all DSS results. Design strength ratios were selected as 0.265 and 0.757 for OCR of 1.0 and 2.0, respectively.

A relationship is needed to calculate S_u/σ_v ' for any OCR. This was accomplished by using the above values (selected from the DSS test results) and solving for the exponent in Equation 2. The resultant exponent was calculated as 1.5, somewhat higher the empirical value suggested by Ladd. The relationship used to calculate S_u/σ_v ' for the stability analyses for the glacial lacustrine foundation soils is then:

$$\frac{S_u}{\sigma'_v} = 0.265 * OCR^{1.5}$$

Equation 2

This equation is depicted on the results of the direct simple shear tests shown in Figure 37 below. The selected equation results in 54% of the DSS test results above the S_U/σ_V ' envelope.

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 37. $S_{\upsilon}/\sigma_{\nu}'$ versus OCR for the Glacial Lacustrine Foundation

2.6.2 SELECTED PARAMETERS

2.6.2.1 Undrained Strength for UU Tests and CPT Data

Undrained strength parameters for the glacial lacustrine and glacial till soils were initially selected using the results of the unconsolidated undrained laboratory testing.

For the glacial lacustrine soil, a preliminary undrained strength of 100 kPa was selected using the USACE two-thirds rule for the UU laboratory test results. CPT data was then evaluated. Using an Nkt value of 15, two-thirds of the CPT data points were above 120 kPa. Because the Nkt value was selected as a typical value and not based on site correlations, a value of 100 kPa was selected for the undrained shear strength of the glacial lacustrine soil. Approximately 80% of the CPT data points fall above this value. If an Nkt value of 18 could be justified, approximately two-thirds of the data points would fall above 100 kPa.

One unconsolidated undrained triaxial test was conducted on glacial till soil. This sample was obtained from DC1. No CPT borings were advanced near this boring, so a correlation between the UU test result and Nkt value was not performed. The result of the UU test was 125 kPa.

November 20, 2019 Syed Abbas Page 49 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Undrained strength values from CPT data using an Nkt value of 15 were reviewed as shown on Figure 29. The CPT data for glacial till is more variable than glacial lacustrine. Approximately 95% of the CPT data points fall above 120 kPa. If an Nkt value of 26 could be supported, it would result in approximately two-thirds of the CPT data above the selected undrained shear strength of 120 kPa. Due to the large variability in CPT data for glacial till, the presence of many outliers, and the results of the UU test, an undrained strength of 120 kPa was selected for analysis.

The selected GL and GT undrained strength parameters from the UU tests and the CPT data are presented in Table 18. It is assumed that the sand? drain, gravel materials, and weathered bedrock are free-draining, and drained strength should be used for these materials in any undrained analyses.

	Undrained Strength			
Material Name	Cohesion (kPa)	Friction Angle (degrees)		
Embankment Shell	120	0		
Embankment Core	100	0		
Drain	0	33		
Glacial Lacustrine	100	0		
Glacial Till	120	0		
Gravel	0	35		
Weathered Bedrock	0	35		

Table 19. Selected Undrained Soil Strength Parameters from UU Tests and CPT Data

2.6.2.2 Strength Parameters from Undrained Strength Envelope Evaluation

The selected GL and GT undrained strength parameters from the undrained strength envelope evaluation are presented in Table 19.

Table 20. Selected Undrained Strengt	h Parameters from Undrained	Strength Envelope Evaluation
--------------------------------------	-----------------------------	------------------------------

	Undrained Strength				
Material Name	Cohesion Friction Ang				
Malenal Name	(кга)	(degrees)			
Remolded Glacial Lacustrine	25	15			
Remolded Glacial Till	80	19			
Embankment Shell/Core	40	17			
Glacial Lacustrine	15	20			
Glacial Till	60	19			

Syed Abbas Page 50 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.6.2.3 Strength Parameters from Direct Simple Shear Testing

An S_u/σ_v ' value of 0.23 is often used for normally consolidated clays; however, the direct simple shear and CU test results indicate a higher S_u/σ_v ' value is appropriate for the glacial lacustrine soil. This is likely due to the glacial lacustrine having a higher silt content than the typical clay soil and some percentage of sand.

Direct simple shear test results were evaluated. However, these were conducted from soil samples with limited spatial distribution. There was some scatter in S_u/σ_v ' value obtained from the thirty CU tests conducted at confining pressures resulting in normally consolidated conditions. Because of this, the thirtieth percentile value of 0.32 was selected as a reasonable value for the S_u/σ_v ' from CU tests. This value from the CU tests correlates well with the 0.29 value obtained from the direct simple shear tests. An S_u/σ_v ' value of 0.29 was selected for normally consolidated glacial lacustrine.

For glacial lacustrine with an OCR value of 2, the average results from the direct simple shear test was used to select the S_u/σ_v ' value of 0.56. For OCR equal to 4, which is the average insitu OCR from consolidation testing, the equation S_u/σ_v ' = S * OCR^{0.8} was used to calculate a value of 0.87 using S = 0.29.

The soil parameters selected for use in the static stability analysis are included in Table 21. For the seismic stability, undrained strengths were reduced by 20 percent.

			Bilinear Envelope				
		Drained	Segment	Undrained	Segment		
Material	Unit Weight (kN/m³)	Friction Angle (degrees)	Cohesion (kPa)	Friction Angle (degrees)	Cohesion (kPa)	Su/σv'	
Sand Drain	21	33	0				
Glacial Lacustrine (OCR = 1)	18					0.29	
Glacial Lacustrine (OCR = 2)	18					0.56	
Glacial Lacustrine (OCR = 4)	18					0.87	
Glacial Till	18	27	0	19	60		
Embankment	20	24	0	20	15		
Weathered Bedrock	21	35	0				

Table 21. Selected Soil Parameters from DSS Testing

November 20, 2019 Syed Abbas Page 51 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.7 COMPRESSIBILITY OF SOILS

2.7.1 Laboratory Data

The pre-consolidation yield stress and over-consolidation ratio (OCR) for the glaciogenic deposits in Zones 9-11 (the dam footprint) have been estimated from 1D consolidation testing and CPT data.

Thirty-three (33) one-dimensional consolidation tests (ASTM D2435) were undertaken on undisturbed GL samples. The yield stress (commonly referred to as the pre-consolidation stress) was calculated using the Casagrande approach and used to derive the overconsolidation ratio (OCR), recompression index (C_r), and compression index (C_c) for each test. The data from the consolidation testing is presented in Table 22.

ID	Unit	Depth (m)	Pre- Consolidation Pressure (kPa)	In-situ Void Ratio	OCR	Cc	Cr
DC33	GL	3.00-3.60	190	0.894	3.2	0.25	0.09
DC34	GL	3.00-3.60	180	0.760	3.0	0.27	0.06
D2	GL	1.50-1.95	205	0.767	6.6	0.21	0.09
D12	GL	2.70-3.20	400	0.696	7.6	0.24	0.06
D14	GL	3.00-3.50	125	0.629	2.1	0.13	0.04
D14	GL	4.60-5.10	265	0.778	3.0	0.20	0.05
D14	GL	6.10-6.60	270	0.690	2.4	0.17	0.03
D16	GL	3.00-3.45	230	0.706	4.0	0.15	0.03
D20	GL	0.90-1.35	190	0.516	9.4	0.13	0.04
D20	GL	2.70-3.20	160	0.652	3.0	0.16	0.05
D20	GL	5.40-6.00	285	0.654	2.8	0.24	0.08
D20	GL	7.60-8.05	180	0.580	1.3	0.09	0.01
D28	GL	3.50-3.92	275	0.607	4.1	0.21	0.04
D30	GL	1.70-2.15	100	0.526	2.9	0.13	0.03
D30	GL	4.40-4.85	120	0.581	1.4	0.12	0.03
D36	GL	4.50-4.95	280	0.619	3.3	0.23	0.03
D51	GL	2.70-3.15	270	0.573	5.1	0.21	0.06
D59	GL	2.40-2.89	260	0.629	5.5	0.19	0.05
D60	GL	0.80-1.25	140	0.767	7.6	0.21	0.04

Table 22. Summary of Consolidation Test Results – Glacial Lacustrine

November 20, 2019 Syed Abbas Page 52 of 63

D68	GL	4.40-4.85	160	0.448	1.9	0.12	0.02
LLO05	GL	3.00-3.45	120	0.573	2.1	0.11	0.03
LLO12	GL	3.00-3.45	115	0.713	2.0	0.16	0.05
LLO17	GL	2.25-2.70	145	0.728	3.3	0.19	0.06
GL1A	GL	1.50-1.95	95	0.692	3.1	0.12	0.03
GL1A	GL	4.05-4.50	200	0.525	2.6	0.16	0.04
GL1A	GL	5.40-8.85	160	0.552	1.6	0.12	0.03
GL1A	GL	7.20-7.65	240	0.532	1.8	0.12	0.02
GL2	GL	1.95-2.40	155	0.570	4.0	0.13	0.03
GL2	GL	5.10-5.55	190	0.636	2.0	0.16	0.04
GL2	GL	7.35-7.80	210	0.594	1.5	0.13	0.03
GL2	GL	8.25-8.70	155	0.658	1.0	0.17	0.04
GL3	GL	3.25-3.70	150	0.537	2.4	0.14	0.03
GL4	GL	2.40-2.85	145	0.854	3.1	0.19	0.06

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Project wide results of pre-consolidation pressure versus depth and overconsolidation ratio versus depth for GL soils are included in Figure 38 and Figure 39. The spatial distribution of the Cr and Cc values obtained from 15 consolidation tests performed on undisturbed and remolded GL and GT soil samples are summarized in Figure 40.

November 20, 2019 Syed Abbas Page 53 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 39. Over Consolidation Ratio with Depth - Glacial Lacustrine

November 20, 2019 Syed Abbas Page 54 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Due to difficulty in obtaining undisturbed Shelby tube samples of glacial tills, only eleven onedimensional consolidation tests were undertaken on undisturbed GT samples. The data from the consolidation testing is presented in Table 23.

Project wide results of pre-consolidation pressure versus depth and overconsolidation ratio versus depth for GT soils are included in Figure 41 and Figure 42. The spatial distribution of the C_r and C_c values obtained from the 13 consolidation tests performed on undisturbed GT soil samples are summarized in Figure 43.

ID	Unit	Depth (m)	Yield Stress (kPa)	In-situ Void Ratio	OCR	Cc	Cr
D8	GT	1.80-2.30	310	0.612	8.4	0.15	0.03
D11	GT	1.60-1.90	245	0.669	7.8	0.18	0.06
D62	GT	4.60-5.05	87	0.489	1.0	0.15	0.02
D68	GT	7.60-8.10	200	0.588	1.4	0.17	0.03
LLO08	GT	4.60-5.05	115	0.576	1.3	0.15	0.04
LLO12	GT	4.60-5.05	120	0.505	1.4	0.09	0.02
LLO12	GT	7.60-8.05	120	0.504	0.9	0.13	0.02
LLO17	GT	4.05-4.50	110	0.467	1.4	0.08	0.02
GL1A	GT	10.90-11.35	205	0.516	1.0	0.08	0.02
GL2	GT	10.5-10.95	135	0.482	0.7	0.08	0.02
GL2	GT	11.55-12.00	90	0.304	0.4	0.08	0.02

Table 23. Summary of Consolidation Test Results – Glacial Till

November 20, 2019 Syed Abbas Page 55 of 63

Reference: Springbank Off –Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 41. Pre-Consolidation Pressure Versus Depth - Glacial Till

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

2.7.2 Selected Parameters

Spatial consolidation test parameters of pre-consolidation pressure (Pc), Cc and Cr were used in the settlement analyses to calculate foundation soil settlement below the proposed embankment at specific embankment cross section locations. Settlement of the embankment core was estimated from an empirical settlement equation for earthfill clay core dams (Hunter and Fell, 2003).

3.0 BEDROCK PROPERTIES

A total of 97 rock core borings were completed at the SR1 Project site during the 2016 exploration. Boring logs, and associated laboratory testing are included in the Geotechnical Factual Report (Stantec 2016).

As discussed in Section 1.2 above, the project site is underlain by three primary bedrock formations; the Brazeau Formation, the Coalspur Formation and the Paskapoo Formation. The Diversion Channel passes over (and through) both the Brazeau and Coalspur formations. The Storage Dam lies largely over the Paskapoo Formation, with a small section of the western abutment over the Coalspur Formation. Since the deeper rock cutting occurs near the western (inlet) end of the Diversion Channel, the Brazeau Formation is most critical to understand rock cut stability.

November 20, 2019 Syed Abbas Page 57 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

3.1 DESCRIPTION OF BEDROCK FORMATIONS

For the Brazeau Formation, the dominant lithology is mudstone, siltstone and fine grained sandstone. Coaly shale and coal beds are common. Mudstone greenish-grey to dark grey, soft and generally weathered, siltstone, laminated, thin coal and coaly shale beds; numerous thin bentonites. Fractured throughout.

The Coalspur Formation is a sequence of inter-bedded mudstone, siltstone, fine grained sandstone with subordinate coarser grained sandstone layers and channel lag deposits, and coal; subordinate conglomerate and bentonite.

The Paskapoo Formation is comprised of an inter-bedded non-marine sandstone, siltstone and mudstone with minor amounts of bentonite and coal. Sandstone, pale grey, thick- to thin-bedded, commonly cross-stratified, Mudstone, gray to greenish-gray, with minor conglomerate, mollusc coquina, and coal.

3.2 BED AND JOINT ORIENTATION

The surficial geology at the SR1 Project Site – progressing west to east - exhibits a transition from steeply dipping (near vertical beds) to sub horizontal bedding. The Brazeau Formation at the western limit of the site, in addition to the transition from vertical to lesser dip angles, also contains significant local folding. In general the bedding alignment of the formations could be observed in outcrops along the Elbow River and along Highway 22. The variation of the bedding can be described as follows: Note that "OCxx" refers to Outcrop number as described in the Geotechnical Appendix of the Preliminary Design Report.

Brazeau Formation

- At Diversion Inlet (Diversion Channel Station 10+000) OC01 Dip ENE at 75 to 85 degrees
- Near Diversion Channel Station 10+500 at OC04 Dip SW at 20 to 45 degrees
- Near Diversion Channel Station 10+700 at OC05 Dip NE at 30 to 70 degrees
- Shallow Syncline occurs at this location
- Near Diversion Channel Station 10+900 at OC05 Dip SW at 25 to 64 degrees
- Near Diversion Channel Station 12+100 at OC08- Dip NE at 40 to 50 degrees
- Near Diversion Channel Station 12+300 at OC09 Dip NE at 25 to 50 degrees
- Near Diversion Channel Station 12+500 at OC10 Dip NE at 15 to 30 degrees
- Near Diversion Channel Station 12+900 at OC11 Dip NE at 15 to 30 degrees

November 20, 2019 Syed Abbas Page 58 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Coalspur Formation Begins

• Near Diversion Channel Station 13+400 at OC06&07 – Dip NE at 25 to 35 degrees

Paskapoo Formation Begins

• Near Storage Dam Station 22+200 at OC13 – Dip NE at 10 to 15 degrees

Each of the formations - but particularly the Brazeau Formation - are highly fractured, with multiple joint sets perpendicular to and parallel to the bedding orientation. Given the numerous different joints observed, detailed mapping of joints was not attempted.

3.3 UNCONFINED COMPRESSION TESTS

A total of 5 unconfined compression tests were completed on the samples retrieved. The results of UCS testing are summarized in Table 24. All tests were performed on Brazeau Formation samples. Refer to the Geotechnical Factual Report (Stantec 2016) for complete results of compression testing.

Borehole	Depth (m)	Rock Material	Strain at Failure (%)	Compressive Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
DS1	5.2	Sandstone	0.475	33.48	8.22	0.287
DS2	2.7	Mudstone	0.634	37.41	7.36	0.374
DS3	4.7	Mudstone	0.654	31.39	7.42	0.354
DS5	5.5	Mudstone	0.445	2.62	1.29	0.001
DS6	30.7	Shale	0.665	1.22	1.11	0.000

Table 24 Summary of Unconfined Compression Tests on Rock

3.4 DIRECT SHEAR TESTS

A total of five (5) direct shear tests were completed on the samples retrieved. Each test consisted of three individual shears with all test sets performed one each at 70, 140 and 210 kPa normal stress. The results of shear testing are summarized in Table 25. All tests were performed on Brazeau Formation samples. Refer to the Geotechnical Factual Report (Stantec 2016) for complete results of shear testing.

November 20, 2019 Syed Abbas Page 59 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

	Depth	Test Interface		Peak Friction	Residual Friction
Boring	(m)	Туре	Bedrock Type	Coefficient	Coefficient
D\$10	3.89	Natural	Mudstone	0.83	0.79
DS1	3.35	Smooth Sawn	Mudstone / Siltstone	0.57	0.45
DS2	-	Smooth Sawn	Mudstone	0.50	0.41
DS6	33.49	Intact Sample	Mudstone	0.81	0.81
DS9	4.19	Smooth Sawn	Siltstone	0.83	0.80

Table 25 Summary of Direct Shear Testing on Rock

3.5 PERMEABILITY TESTING

The results of packer testing and groundwater slug testing in the Paskapoo unit are summarized in Table 26 and Table 27, respectively. These indicate the in-situ hydraulic conductivity ranged between 6.5E-5 and 6.1E-8 m/s. This is comparable to a slightly permeable (widely to very widely spaced discontinuities) rock mass.

Table 26. Results of Packer Testing Based on Bedrock Type

Bedrock Type	Number of Tests	Minimum Permeability (m/s)	Maximum Permeability (m/s)	Average Permeability (m/s)
Mudstone	5	2.2E-7	4.3E-5	8.8E-6
Claystone	2	1.6E-7	2.3E-6	1.2E-6
Siltstone	5	4.2E-6	1.1E-7	1.6E-6
Sandstone	4	3.3E-7	2.8E-5	9.9E-6
Mixed	20	6.1E-8	6.5E-5	5.4E-6

Table 27. Results of Slug Test in Bedrock

ID	Ground Elevation (m)	Top of Screen (El. M)	Base of Screen (El. M)	K _r Hvorslev Method (m/s)	Kr KGS Method (m/s)
D51	1194.4	1165.4	1163.9	1.46E-5	-
GW1	1211.7	1199.5	1196.5	1.16E-6	2.33E-6
GW4	1204.3	1185.7	1182.6	8.77E-7	1.93E-6
GW6	1196.5	1177.6	1174.5	2.83E-9	3.84E-9

3.6 DENSITY / UNIT WEIGHT

Selected samples of the rock core obtained from the borings were measured for unit weight. A summary of the results is provided in Table 28. All selected samples are from the Brazeau Formation.

Syed Abbas Page 60 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Boring	Depth (m)	Bedrock Type	Unit Weight (kN/m³)
FB6	6.15	Sandstone, poor quality	25.1
DC6	25.37	Sandstone, fair quality	23.3
DC6	26.67	Sandstone, fair quality	23.8
DC7A	21.76	Siltstone, v. poor quality	30.0

Table 28 Bedrock Measured Unit Weights

3.7 BEDROCK STRENGTH PARAMETERS FOR MOHR-COULOMB EVALUATION

Following the submittal of the Draft Preliminary Design Report, bedrock materials were re-evaluated. In the preliminary design, the Hoek-Brown methodology was used to develop separate properties for the sandstone beds and other bedrock. On re-evaluation, it was determined that a simplified Hoek-Brown approach would be most appropriate. This approach developed the general rock mass characteristics with the sandstone included.

In order to use the Hoek-Brown criterion for estimating the strength of jointed rock masses, four properties of the rock mass need to be estimated. These include the following:

- Uniaxial compressive strength (UCS) of intact rock pieces
- Value of the Hoek Brown constant "mi" for the intact rock pieces
- Value of the Geological Strength Index (GSI) for the rock mass
- Disturbance Factor (D)

The selection of these properties is described below.

UCS of Intact Rock Pieces

Five UCS tests were performed on samples of the Brazeau Formation. UCS tests were performed on mudstone, shale, and sandstone. The UCS for this formation varied from 1.22 Mpa to 37.41 Mpa for shale, mudstone, and sandstone samples. **A UCS of 3.0** was selected to represent the Brazeau Formation based on the range of tested values. The selected UCS value corresponds to a "very weak", highly weathered rock based on tables provided in Practical Rock Engineering (Hoek, 2006).

Hoek-Brown Constant "mi"

The Hoek-Brown constant "m_i" was selected from a table provided in Practical Rock Engineering (Hoek, 2006) according to material type. The material type was selected as shale, in which a range of values of 6 +/- 2 is recommended. **An m_i value of 6** was selected based on the wide range of relatively low quality materials that form the Brazeau Formation.

November 20, 2019 Syed Abbas Page 61 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Geologic Strength Index (GSI)

The Geologic Strength Index (GSI) provides a number which, when combined with the intact rock properties, can be used for estimating the reduction in the rock mass strength for different geological conditions (Hoek, 2006). The GSI varies from 0 to 100 based on descriptive estimates of the rock structure and the surface quality of the rock.

The Brazeau Formation can be described by three GSI structure categories including very blocky, blocky/disturbed/seamy, and disintegrated. The Brazeau Formation can be described by three GSI surface condition categories including fair, poor, and very poor. Based on these descriptive categories, the GSI is estimated to range between 30 and 40. **A GSI value of 35** was selected.

Disturbance Factor (D)

The Disturbance Factor (D) is used to adjust the Hoek-Brown shear strength of the near surface rock mass due to excavation disturbance. The Disturbance Factor varies from 0 to 1.0, for no effect, and for maximum disturbance effect, respectively. This adjustment is only applied to the disturbed face of the rock mass, generally less than 1 to 2 m in thickness. For controlled blasting, or mechanical or hand excavation in poor quality rock masses (no blasting), D is taken as zero, and has no effect on the Hoek-Brown shear strength model. Based on the generally poor quality of the rock mass, and anticipated mechanical excavation or excellent quality controlled blasting, D is estimated equal to 0 (no effect on Hoek-Brown shear strength).

Note that the input parameters UCS and GSI have each increased slightly from the values provided in the Preliminary Design Report to account for the inclusion of the sandstone within the combined unit. The Disturbance Factor included previously (0.7) would only be applicable to the upper 1 to 2 m of the rock mass, so the value of 0.0, which is representative of the rest of the rock mass, has been selected for the re-evaluation.

The Geostudio software uses Hoek-Brown parameters to develop a shear-normal strength function. The generated function from Geostudio using the Hoek-Brown parameters discussed above is included in Figure 44.

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

Figure 44. Shear-Normal Function using Hoek-Brown Parameters from Geostudio

3.8 BEDROCK STRENGTH ON BEDS & JOINTS FOR KINEMATIC WEDGE ANALYSES

The Brazeau Formation is characterized by numerous closely spaced bedding and joint planes with variable orientations. There does not appear to be predominant bedding or joint orientations with significant persistence that would tend to control stability of slopes through potential wedge, planar, or toppling type failures. In general, the size of the blocks created by the bedding and joints is anticipated to be relatively small in comparison within the size of the rock slope being analyzed. Accordingly, it is possible that there may be locations where unfavorable orientation of bedding and joints relative to a slope face may cause localized failures. However, it is anticipated that these failures will likely be relatively limited, both laterally and vertically. Therefore, it is believed that the overall strength of the Brazeau Formation is more appropriately characterized through analytical methods that model isotropic rock mass behavior such as the Hoek-Brown methodology (Hoek, 2006).

November 20, 2019 Syed Abbas Page 63 of 63

Reference: Springbank Off – Stream Reservoir (SR1) – Updated Geotechnical Materials Properties Design Basis Memorandum

4.0 SUMMARY

The Geotechnical parameters selected in accordance with the discussions in Section 3 above were used to perform the analysis of the Diversion Channel excavated side slopes and the Storage Dam side slopes and foundation. Additional discussion of the use of these parameters in the analyses can be found in the respective Stability Analysis Memorandums for those elements.

STANTEC CONSULTING SERVICES INC.

Dan Back P. Eng., P.E. Principal Phone: (859) 422-3000 Fax: (859) 422-3100 Dan.Back@Stantec.com

c. John Montgomery John Menninger Norm Fallu Eric Monteith Hugo Aparicio P. Eng., P.E. Senior Principal Phone: (859) 422-3037 Fax: (859) 422-3100 Hugo.Aparicio@Stantec.com

ATTACHMENT 7 PSHA REPORT

Seismic Hazard Assessment – Springbank Off-Stream Dam and Reservoir

FINAL REPORT

Prepared for: Alberta Transportation 3rd Floor – Twin Atria Building 4999 – 98 Avenue Edmonton, AB T6B 2X3

Prepared by: Stantec Consulting Ltd. 4730 Kingsway Burnaby, BC V5H 0C6 Phone: (604) 436-3014 Fax: (604) 436-3752

Project No. 110773396

February 28, 2017

Rev.	Date	Description	Author	Reviewer	Approver
2	28-Feb-2017	Final Report	C. Longley	W. Quong	A. Bayliss
1	14-Feb-2017	Revised to Address Reviewer Comments	C. Longley	W. Quong	A. Bayliss
0	28-Nov-2016	Draft issued for review	C. Longley	W. Quong	A. Bayliss

Table of Contents

1.0		. 1
2.0	GEOLOGICAL AND TECTONIC SETTING	. 2
2.1	GEOLOGICAL SETTING	.2
2.2	TECTONIC SETTING	.3
3.0	SEISMIC DESIGN CRITERIA	. 4
4.0	ANALYSIS METHODOLOGY	. 5
4.1	SEISMIC SOURCE MODELS	. 5
	4.1.1 Regional Source Model	. 6
	4.1.2 Local Source Model	. 7
4.2	MAGNITUDE RECURRENCE PARAMETERS	.7
4.3	GROUND MOTION PREDICTION EQUATIONS	12
	4.3.1 Active Crustal Sources	12
	4.3.2 Stable Cratonic Core	12
	4.3.3 Cascadia Interface Source	13
	4.3.4 Treatment of Uncertainty in GMPEs	13
4.4	PROBABILISTIC ANALYSIS	14
5.0	RESULTS AND RECOMMENDATIONS	16
5.1	EARTHQUAKE DESIGN GROUND MOTION	16
	5.1.1 Horizontal EDGM Values	16
	5.1.2 Vertical EDGM Values	17
5.2	DEAGGREGATION OF SEISMIC HAZARD	19
5.3	EARTHQUAKE TIME HISTORIES	20
5.4	MANAGEMENT OF INDUCED SEISMICITY RISK	23
6.0	CLOSURE	24
7.0	REFERENCES	25

LIST OF TABLES

Table 1. Coordinates of Seismic Source Boundaries (Regional Model)	6
Table 2. Coordinates of Boundaries for Additional Sources (Local Model)	7
Table 3. Completeness Windows for Seismic Source Zones	8
Table 4. List of Input Parameters for Seismic Sources (Regional Model)	10
Table 5. List of Input Parameters for Seismic Sources (Local Model)	11
Table 6. Standard Deviation Values for GMPEs	14
Table 7. Horizontal EDGM Values for an AEP of 1/10,000 at the SR1 Project Site	16
Table 8. Ratio of Vertical to Horizontal Ground Motions	18
Table 9. Hazard Contributions by Source to the EDGM for the SR1 Project Site	19
Table 10. Deaggregation of Magnitude and Distance for the EDGM	20
Table 11. List of Selected Earthquake Motion Records	21

LIST OF FIGURES

Horizontal EDGM Values for an AEP of 1/10,000 at the SR1 Site	17
Vertical EDGM Values for an AEP of 1/10,000 at the SR1 Site	18
Geometric Mean of Horizontal Response Spectra for the	
Selected Earthquake Records (5% Damping)	22
Vertical Response Spectra for the Selected Earthquake Records	
(5% Damping)	23
	Horizontal EDGM Values for an AEP of 1/10,000 at the SR1 Site Vertical EDGM Values for an AEP of 1/10,000 at the SR1 Site Geometric Mean of Horizontal Response Spectra for the Selected Earthquake Records (5% Damping) Vertical Response Spectra for the Selected Earthquake Records (5% Damping)

LIST OF APPENDICES

APPENDIX A	DRAWINGS	A .1
APPENDIX B	MAGNITUDE RECURRENCE RELATIONS	B.1
APPENDIX C	HAZARD CURVES	C.1
APPENDIX D	DEAGGREGATION PLOTS	D.1
APPENDIX E	REVIEW LETTER FROM DR. GAIL ATKINSON	E.1

SEISMIC HAZARD ASSESSMENT - SPRINGBANK OFF-STREAM DAM AND RESERVOIR

Introduction February 28, 2017

1.0 INTRODUCTION

Stantec Consulting Ltd. (Stantec) has completed a seismic hazard assessment for the Springbank Off-Stream Dam and Reservoir (SR1) project. The project is being developed by the Government of Alberta to divert and temporarily store floodwater from the Elbow River Basin. The project is located approximately 18 km west of Calgary, AB, and will include a diversion structure, a diversion channel and a maximum 27 m high dam.

The purpose of this seismic hazard assessment was to define ground motion parameters for use in seismic design of the proposed dam and associated appurtenant structures to satisfy the Canadian Dam Association (CDA) Dam Safety Guidelines (2007). The scope of work for this study consisted of the following:

- Review of geological, geotechnical and geophysical information for the project site, and review of historical seismicity within the project region;
- Development of a seismic source model reflective of the geological and tectonic setting of the project;
- Development of magnitude recurrence parameters to define the frequency of occurrence of earthquakes over a range of magnitudes for each seismic source;
- Selection of appropriate Ground Motion Prediction Equations (GMPEs) for use in estimation of earthquake ground motions;
- Probabilistic analysis to define the Earthquake Design Ground Motion (EDGM) with an Annual Exceedance Probability (AEP) of 1/10,000 at the SR1 site; and
- Selection of earthquake records for use in dynamic analysis of the proposed dam and associated appurtenant structures.

This report summarizes the geological and tectonic setting of the project, outlines our analysis methodology, provides recommended ground motion parameters for use in seismic design of the proposed dam and associated appurtenant structures, and provides appropriate earthquake records for use in dynamic analysis.

Geological and Tectonic Setting February 28, 2017

2.0 GEOLOGICAL AND TECTONIC SETTING

2.1 GEOLOGICAL SETTING

In support of the Environmental Impact Assessment (EIA) for the SR1 project, Stantec carried out a terrain assessment for project area. As indicated in our terrain assessment study, the project area is underlain by the Paleogene-aged sedimentary rocks of the Paskapoo Formation, consisting of mudstone and siltstone with lesser sandstone, conglomerate, coquina and coal (Prior et al., 2013).

Based on 1:50,000-scale mapping for the Calgary Urban Area (Moran, 1986), the project area is predominantly mapped as consisting of silt and clay glaciolacustrine deposits. However, a significant portion of the project area in mapped as Spy Hill drift overlying rocks from the Porcupine Hills formation. This material is a pebble-loam till overlying sandstone, siltstone and mudstone. Scattered bedrock outcrops and the fluvial sediments of the modern Elbow River constitute relatively minor coverage of the project area. Areas of glacial and modern fluvial sediments, characterized as silt overlying gravel possibly with minor sand, are subordinate in the project area and mapped in smaller units along the Elbow River; pebbly loamy till is mapped overlying bedrock in some areas (Moran, 1986).

The subsurface conditions encountered in the Stantec geotechnical investigation at the site were generally consistent with the published information on geology and surficial geology. At the diversion structure site, boreholes on the southeast side of the Elbow River indicated up to 2.1 m of overburden soil consisting of silty gravel with some sand and inferred cobbles. Boreholes on the northwest side of the river indicated overburden soil consisting of up to 11.7 m of stiff to hard clay, underlain by very dense sandy gravel to clayey gravel which extended to a maximum depth of 14.1 m. Bedrock underlying the overburden soils on both side of the river consisted of interbedded deposits of claystone, siltstone, mudstone, shale, and sandstone.

At the dam site, the overburden soils were found to consist primarily of stiff to hard clay to a depth of up to 20.1 m below the ground surface, with some zones of dense to very dense sand and gravel occurring mostly near the northeastern end of the dam footprint. Similarly to the diversion structure site, bedrock underlying the overburden soils consisted of interbedded deposits of claystone, siltstone, mudstone, shale, and sandstone.

Shear wave velocity measurements were obtained during the Stantec subsurface investigation by means of Seismic Cone Penetration Test (SCPT) and Multi-channel Analysis of Surface Waves (MASW) testing. Based on the measurements recorded in the SCPT and MASW tests, the lower bound values for shear wave velocity in the top 30 m below the ground surface (i.e., V_{s30}) were approximately 265 m/s at the dam site and 425 m/s at the diversion structure site.

Geological and Tectonic Setting February 28, 2017

2.2 TECTONIC SETTING

The SR1 project site is located near the eastern limit of the Cordilleran deformation belt, which is characterized by closely spaced, low displacement, north-northwest to south-southeast trending thrust faults. Notably, the Brazeau thrust fault is mapped as crossing the proposed diversion channel approximately 2 km west of the dam site. Based on our review of published literature, no information is available with respect to known active faults in the project region. However, we consider that because of its proximity to the dam site, the Brazeau thrust fault should be evaluated by a specialist in earthquake geology to confirm whether any evidence exists of activity within the Holocene epoch (i.e., approximately the last 10,000 years), which would impact our assessment. The current assessment implicitly assumes that this fault does not concentrate seismicity above that experienced by the surrounding areas.

The SR1 project site is situated in an area of low to moderate seismic activity. Historical seismicity near the project site is shown on Drawings 1 and 2 in **Appendix A**, which indicate the epicentral locations and magnitudes for recorded earthquakes in the project region. The locations and magnitudes of the recorded earthquakes are sourced from the Canadian Composite Seismicity Catalogue (CCSC11) for Western Canada (Macias-Carrasco et al., 2011), and the Alberta Geological Survey (AGS) database (Stern et al, 2016). The CCSC11 database includes records up to the end of 2010, and the AGS database includes records up to the end of 2015.

Induced seismicity is common in the foothills region of Alberta. Notable areas in which induced seismicity has been documented include the Crooked Lake Sequences (Schultz et al., 2015a) located approximately 30 km west of Fox Creek, the Brazeau River Cluster (Schultz et al., 2014) located approximately 150 km northwest of Calgary, the Rocky Mountain House Seismogenic Zone (Wetmiller, 1986) located approximately 100 km northwest of Calgary, and the Cardston Earthquake Swarm (Schultz et al., 2015b) located approximately 200 km southeast of Calgary. Induced seismicity in the foothills region has been linked to both hydraulic fracturing (i.e., "fracking") and waste injection activities associated with oil and gas extraction (Atkinson et al., 2016).

Seismic Design Criteria February 28, 2017

3.0 SEISMIC DESIGN CRITERIA

The proposed SR1 dam will be classified as an extreme consequence dam in accordance with the Canadian Dam Association (CDA) Dam Safety Guidelines (2007). For an extreme consequence dam, these guidelines stipulate that the dam and associated appurtenant structures must be designed to resist an Earthquake Design Ground Motion (EDGM) with an Annual Exceedance Probability (AEP) of 1/10,000. The AEP level for the EDGM corresponds to the mean estimate of hazard.

EDGM parameters are to be described in terms of acceleration response spectra, peak ground motion parameters, magnitudes, distances and time histories. Deaggregation is required to identify the relative contributions of earthquakes with varying magnitudes and distances to seismic hazard, such that the most probable scenario events can be identified for use in time history selection and engineering design.

The CDA Dam Safety Guidelines (2007) note that because of differences in methodology for seismic safety evaluation and differences in performance criteria, seismic loads prescribed in building codes do not apply to dams and associated appurtenant structures. Moreover, the hazard estimates generated for the National Building Code of Canada (NBCC) are not site-specific, since little attention was paid to local factors or to uncertainty in the tectonic setting. Accordingly, to define the appropriate EDGM parameters for a specific site, a seismic hazard assessment must be conducted.

The CDA Dam Safety Guidelines (2007) state that seismic hazard is to be evaluated on the basis of current knowledge and standards, and should be based on both (i) local and regional geotectonic information; and (ii) a statistical analysis of historical earthquakes experienced in the region, taking into account all potential seismic sources capable of contributing significantly to seismic hazard at the site. In Canadian practice, seismic hazard is typically evaluated based on a probabilistic approach. As such, it is necessary to define seismic sources and to develop magnitude recurrence parameters for each source. Ground Motion Prediction Equations (GMPEs) should be selected to reflect the region and the types of seismic sources therein. Local subsurface conditions should also be taken into account in estimation of design ground motions.

Sources of uncertainty in the seismic hazard assessment include uncertainty in seismic source models, magnitude recurrence rates and GMPEs. These sources of uncertainty are to be assessed quantitatively to evaluate their impact on the estimated ground motions.

Analysis Methodology February 28, 2017

4.0 ANALYSIS METHODOLOGY

The Stantec evaluation consisted of a Probabilistic Seismic Hazard Assessment (PSHA) to define the Earthquake Design Ground Motion (EDGM) with an Annual Exceedance Probability (AEP) of 1/10,000 at the SR1 project site, located at latitude 51.048°, longitude -114.421°.

The PSHA included development of two alternative seismic source models. One model was regional in nature, incorporating clusters of induced earthquakes within broad areal sources. The other incorporated local sources reflecting the locations of past earthquake clusters. The robust approach was utilized, and seismic hazard was ultimately defined considering the higher of the values produced for the two alternative source models.

Magnitude recurrence parameters were estimated for each seismic source to define the rate of recurrence of earthquakes therein over a range of magnitudes. A key assumption in PSHA is that seismicity is uniformly distributed across each individual seismic source. Maximum magnitudes for each source were selected to reflect the information presented in Geological Survey of Canada (GSC) Open File 7576, which documents the 2015 National Building Code of Canada (NBCC) seismic hazard model. Published Ground Motion Prediction Equations (GMPEs) were utilized to relate earthquake characteristics to ground motions at the SR1 project site. The EDGM with an AEP of 1/10,000 was evaluated using EqHaz software (Assatourians and Atkinson, 2013). EqHaz software utilizes the method of Monte Carlo Simulation to generate a simulated earthquake catalogue, and computes the resulting earthquake motions using the specified GMPEs.

The probabilistic analysis included treatment of epistemic uncertainty using the "logic-tree" approach, whereby weighted sets of alternative input parameters and GMPEs are incorporated into the analysis to reflect incomplete knowledge of physical mechanisms, differences in expert opinions of modeling assumptions and extrapolation beyond observed ranges of data. Furthermore, the analysis included treatment of aleatory variability by incorporation of standard deviations in the GMPEs to reflect the inherent variability in prediction of future events.

4.1 SEISMIC SOURCE MODELS

As discussed above, our PSHA included development of two alternative seismic source models. The first model was regional in nature, incorporating clusters of induced earthquakes into broad areal sources based on an appreciation that the locations of induced earthquakes will vary spatially and temporally. The second model incorporated local sources reflecting past clusters of induced earthquakes to evaluate whether further activity in these same areas could significantly impact seismic hazard at the project site. For definition of seismic hazard at the project site, we utilized the robust approach, whereby the EDGM was defined considering the higher of the values from the two alternative source models. We also include recommendations on how to mitigate the potential for new induced seismicity clusters that could be initiated by future oil and gas activities in close proximity to the project site (see Section 5.4).

Analysis Methodology February 28, 2017

4.1.1 Regional Source Model

The regional source model developed in the Stantec assessment was modified from that developed by the GSC for the 2015 NBCC model. Namely, our analysis considered seismic sources within an approximately 300 km radius around the project site, in addition to the Cascadia Interface Source (CIS). Our analysis included modified versions of the Flathead Lake (FHLm), Rocky Mountain South (ROCSm), Southern British Columbia (SBCm) and Stable Cratonic Core (SCCm) areal source zones from the 2015 NBCC model. The Foothills zone in the 2015 NBCC model was not included as a distinct source in the Stantec model. Rather, portions thereof were assigned to the adjacent ROCSm and SCCm source zones to better reflect historical seismicity patterns in the project region.

Extensive work was completed by others for characterization of the CIS source in the 2015 NBCC model. Accordingly, no modifications were made to this source, with the exception of simplifying the interface geometry for compatibility with the EqHaz software capabilities.

The coordinates of the seismic sources included in the regional model are provided in Table 1. The regional seismic source model is also depicted on Drawing 1 in **Appendix A**.

FH	Lm	ROC	CSm	SB	Cm	SC	SCCm		IS
Lat.	Long.								
48.60°	-114.80°	54.00°	-116.40°	53.40°	-119.30°	48.00°	-111.00°	40.35°	-125.95°
48.60°	-114.00°	52.40°	-114.70°	52.80°	-118.00°	48.00°	-112.50°	41.00°	-126.17°
48.00°	-113.31°	48.00°	-112.50°	51.50°	-116.30°	52.40°	-114.70°	42.00°	-126.36°
47.00°	-112.20°	48.00°	-113.31°	50.40°	-115.60°	54.00°	-116.40°	43.00°	-126.40°
47.00°	-114.80°	48.60°	-114.00°	48.60°	-114.80°	54.00°	-111.00°	44.00°	-126.36°
-	-	48.60°	-114.80°	47.90°	-114.80°	-	-	44.80°	-126.28°
-	-	50.40°	-115.60°	47.90°	-119.00°	-	-	45.34°	-126.22°
-	-	51.50°	-116.30°	50.50°	-121.00°	-	-	46.00°	-126.10°
-	-	52.80°	-118.00°	51.50°	-121.00°	-	-	46.40°	-126.00°
-	-	53.40°	-119.30°	-	-	-	-	47.00°	-125.85°
-	-	54.00°	-118.80°	-	-	-	-	47.24°	-125.83°
-	-	-	-	-	-	-	-	47.36°	-125.87°
-	-	-	-	-	-	-	-	47.44°	-126.00°
-	-	-	-	-	-	-	-	47.89°	-127.00°
-	-	-	-	-	-	-	-	48.00°	-127.25°
-	-	-	-	-	-	-	-	48.34°	-128.00°

Table 1. Coordinates of Seismic Source Boundaries (Regional Model)

Analysis Methodology February 28, 2017

In the regional source model, clusters of induced seismicity were not defined as distinct seismic sources, but rather were considered to contribute to the broad areal sources in which they are situated. Such seismicity clusters are present at several locations within and near the boundaries of the ROCSm source zone. This approach demonstrates appreciation that induced seismicity may occur at any location where "fracking" or waste injection activities are carried out, and that locations of induced seismicity in the future will not necessary mirror those which have been observed in the past. However, it is acknowledged that this approach does not address the possibility of new clusters of activity near to the site. This issue is addressed in Section 5.4.

4.1.2 Local Source Model

The local source model included the seismic sources from the regional model, in addition to distinct sources for documented or suspected areas of induced seismicity. Namely, the local source model included areal sources for the previously noted Brazeau River Cluster (BRC), Cardston Earthquake Swarm (CES), Crooked Lake Sequences (CLS) and Rocky Mountain House Seismogenic Zone (RMH), in addition to an area approximately 30 km south of the project site (LOC) where clustering suggests the likelihood of induced seismicity.

The coordinates of the additional seismic sources included in the local model are provided in Table 2. The local seismic source model is also depicted on Drawing 2 in **Appendix A**.

BRC		CES		CLS		LOC		RMH	
Lat.	Long.								
52.60°	-116.30°	48.90°	-113.00°	54.00°	-117.80°	50.80°	-114.20°	51.90°	-115.50°
52.90°	-116.30°	49.40°	-113.00°	54.80°	-117.80°	50.55°	-114.20°	52.40°	-115.50°
52.90°	-116.00°	49.40°	-112.30°	54.80°	-116.80°	50.55°	-114.40°	52.40°	-115.00°
52.60°	-116.00°	48.90°	-112.30°	54.00°	-116.80°	50.80°	-114.40°	51.90°	-115.00°

Table 2. Coordinates of Boundaries for Additional Sources (Local Model)

The local source model was considered for evaluation of whether further activity in areas of past "fracking" or waste injection could be expected to significantly impact seismic hazard at the project site. It should be noted that in the local source model, earthquakes occurring in distinct clusters within the ROCSm zone were not considered in estimation of magnitude recurrence parameters for the overall ROCSm zone.

4.2 MAGNITUDE RECURRENCE PARAMETERS

Magnitude recurrence parameters for areal seismic sources in the both the regional and local models were represented by truncated exponential relations, and magnitude recurrence parameters for the CIS source were represented using a characteristic relation. As previously noted, extensive work was completed by others for characterization of the CIS source in the

Analysis Methodology February 28, 2017

2015 NBCC model; therefore, no modifications to the magnitude recurrence parameters for this source were made in our study. Moreover, no changes were made to the magnitude recurrence parameters for the SCCm source, with the exception of scaling to the reduced source area.

For the FHLm, ROCSm, SBCm and induced earthquake cluster sources (i.e., BRC, CES, CLS, LOC and RMH), magnitude recurrence parameters were derived from historical earthquake data. Magnitude recurrence parameters for the FHLm, ROCSm and SBCm sources were estimated utilizing the Canadian Composite Seismicity Catalogue (CCSC11) for Western Canada (Macias-Carrasco et al., 2011), which contains earthquake data for events up to the end of the year 2010. The CCSC11 database can be found at <u>www.seismotoolbox.ca</u> (Atkinson et al.). Since rates of induced seismicity are constantly changing, magnitude recurrence parameters for the BRC, CES, CLS, LOC and RMH sources were estimated also using the Alberta Geological Survey (AGS) database (Stern et al., 2016), which contains earthquake data up to the end of the year 2015. All events in the CCSC11 database are presented in terms of moment magnitude, which is a measurement of earthquake magnitude in terms of seismic moment. Magnitudes for earthquakes in the AGS database were converted to moment magnitudes using the same factors used in the CCSC11 database.

The completeness windows considered for estimation of magnitude recurrence parameters in the FHLm, ROCSm and SBCm sources correspond to those utilized by the GSC for comparable zones in development of the 2010 NBCC model, as documented in GSC Open File 4459. The completeness windows considered for estimation of magnitude recurrence parameters for the BRC, CES, CLS, LOC and RMH sources were defined to reflect the period within which recurrence rates appear to be complete in the historical records. The completeness windows considered in GSC open File 4459.

Varia		Seismic Source									
rear	FHLm	ROCSm	SBCm	BRC	CES	CLS	LOC	RMH			
2015	-	-	-	-	-	M2.0	-	-			
1995	-	-	-	M2.9	-	-	-	-			
1990	-	-	-	M3.5	-	-	-	-			
1980	-	-	-	-	M3.5	-	-	-			
1975	-	-	-	-	-	-	M2.7	M2.6			
1966	-	M3.0	M3.0	-	-	-	-	-			
1965	-	M3.3	M3.3	-	-	-	-	-			
1960	M4.0	M4.3	M4.3	-	-	-	-	-			
1940	M4.8	M4.8	M4.8	-	-	-	-	-			
1917	M5.3	M5.3	M5.3	-	-	-	-	-			
1899	M5.8	M5.8	M5.8	-	-	-	-	-			

Table 3. Completeness Windows for Seismic Source Zones

Analysis Methodology February 28, 2017

The trend of recurrence data reflecting the relative frequency of earthquake occurrence within each source zone as a function of magnitude was modeled as a Gutenberg-Richter relation, which is defined as follows:

 $Log N(M) = a - b^*M$

where "N(M)" is defined as the number of earthquakes per year of magnitude greater than "M", "M" is the moment magnitude, "a" is the y-intercept of the Gutenberg-Richter relation, and "b" is the slope of the relation.

Plots of the magnitude recurrence parameters for seismic sources in the regional model are presented in **Appendix B-1**, and plots of the magnitude recurrence parameters for seismic sources in the local model are presented in **Appendix B-2**. It should be noted that the value of "N₀" shown on the magnitude recurrence plots is equivalent to the value of 10^{"a"} with "a" as defined in the equation above, and the value of "Beta" is equivalent to the value of "b" in the equation above multiplied by the natural logarithm of 10.

Since the magnitude recurrence parameters for the SBCm source are well defined by historical records, the "best estimate" of the magnitude recurrence relation for the SBCm source was characterized by plotting a best-fit line through the historical data. For the FHLm, ROCSm and induced earthquake cluster sources (i.e., BRC, CES, CLS, LOC and RMH), best-fit lines through the historical data often produce unrealistically high "Beta" values, which could result in underestimation of the recurrence rates for large magnitude earthquakes, and thus underestimation of seismic hazard at the SR1 project site. As such, the magnitude recurrence parameters for these source zones were defined by taking a typical "Beta" value of 2.30 for the project region, extended through historical data for higher magnitude earthquakes within these sources.

The maximum magnitudes considered for earthquakes in each seismic source were based on those for the corresponding regions in GSC Open File 7576, which documents the 2015 NBCC seismic hazard model. The magnitude recurrence relations were truncated at the maximum magnitudes defined therein. Focal depths of 5 km were considered for all seismic sources, with the exception of the CIS source, for which the fault geometry was modeled to approximately match the geometry defined in GSC Open File 7576.

Treatment of epistemic uncertainty in the magnitude recurrence parameters for each seismic source was accomplished by development of upper and lower bound curves to the "best estimate" magnitude recurrence relations. The slopes and y-intercepts of the bounding curves were selected such that the upper and lower bounds widen at higher magnitudes. The widening bounds reflect the greater uncertainty in the magnitude recurrence relations at higher magnitudes, for which less earthquake data are available. The "best estimate", upper bound and lower bound magnitude recurrence relations were assigned weights of 0.68, 0.16 and 0.16, respectively, for the seismic hazard analysis.

Analysis Methodology February 28, 2017

Treatment of epistemic uncertainty in the values of maximum magnitude for each seismic source was accomplished by considering the "best estimate", upper bound and lower bound values of maximum magnitude and their corresponding weights in GSC Open File 7576. Namely, the "best estimate", upper bound and lower bound estimates of maximum magnitude for each source were assigned weights of 0.6, 0.1 and 0.3, respectively.

The full suite of input parameters defined for sources in the regional model, in addition to their associated weights, are presented in Table 4.

Parameters		Soonario	Weight	Seismic Source					
		scenario		FHLm	ROCSm	SBCm	SCCm	CIS	
	Beta	llooor	0.17	2.00	2.00	1.55	1.69	-5.0	
	No	Upper	0.16	3,899	1,423	247	15	0.002*	
Magnitude	Beta	Deat	0.68	2.30	2.30	1.75	2.00	-3.5	
Recurrence Parameters	No	Best		9,589	2,593	369	40	0.002*	
	Beta	Lower	0.16	2.60	2.60	1.95	2.26	-5.0	
	No	Lower		23,585	4,725	550	94	0.002*	
		Upper	0.1	7.7	7.7	7.7	7.2	9.22	
Maximum Magnitude		Best	0.6	7.3	7.2	7.2	7.0	9.11	
		Lower	0.3	7.2	7.0	7.0	6.8	9.02	
Focal Dep	th	Best	1.0	5.0	5.0	5.0	5.0	N/A**	

Table 4. List of Input Parameters for Seismic Sources (Regional Model)

 * N $_{0}$ value provided for the Cascadia Interface Source corresponds to number of characteristic earthquakes per year greater than M8.5

** The geometry of the CIS source was modeled directly; therefore, no specific focal depth was assumed for this source.

The full suite of input parameters defined for sources in the local model, in addition to their associated weights, are presented in Table 5.

Analysis Methodology February 28, 2017

Parameters		<u>Cooncrio</u>	Weight		Seismic Source								
		scenario		FHLm	ROCSm	SBCm	BRC	CES	CLS	LOC	RMH	SCCm	CIS
	Beta	llooar	0.17	2.00	2.00	1.55	2.00	2.00	2.00	2.00	2.00	1.69	-5.0
	No	upper	0.16	3,899	565	247	223	291	13,630	50	858	15	0.002*
Magnitude	Beta	Post	0.68	2.30	2.30	1.75	2.30	2.30	2.30	2.30	2.30	2.00	-3.5
Parameters	No	Desi		9,589	1,197	369	472	532	24,835	105	1,564	40	0.002*
	Beta	Lower	0.16	2.60	2.60	1.95	2.60	2.60	2.60	2.60	2.60	2.26	-5.0
	No	LOWEI	0.16	23,585	2,534	550	999	967	45,252	222	2,850	94	0.002*
		Upper	0.1	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.2	9.22
Maximur Magnitud	n e	Best	0.6	7.3	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.0	9.11
maginioue		Lower	0.3	7.2	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.8	9.02
Focal Depth		Best	1.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	N/A**

Table 5. List of Input Parameters for Seismic Sources (Local Model)

* No value provided for the Cascadia Interface Source corresponds to number of characteristic earthquakes per year greater than M8.5

** The geometry of the CIS source was modeled directly; therefore, no specific focal depth was assumed for this source.

Analysis Methodology February 28, 2017

4.3 GROUND MOTION PREDICTION EQUATIONS

Ground Motion Prediction Equations (GMPEs) are utilized to estimate the levels of ground motion that will occur at a site based on various factors, including earthquake magnitude, source-to-site distance, source characteristics and site characteristics. Three different source types were included our seismic hazard model: active crustal sources (FHLm, ROCSm, SBCm, BRC, CES, CLS, LOC, RMH), a stable cratonic source (SCCm) and a subduction interface source (CIS). Accordingly, our model incorporated appropriate GMPE suites for each of these source types. Details with respect to the selected GMPE suites are provided in the following sections.

4.3.1 Active Crustal Sources

For active crustal sources, Stantec considered the Next Generation Attenuation (NGA) West-2 GMPEs developed by Abrahamson et al. (2014), Boore et al. (2014), Campbell and Bozorgnia (2014) and Chiou and Youngs (2014). Namely, Stantec defined a "best estimate" GMPE model by weighting each of the four NGA West-2 GMPEs by a factor of 0.25. Similarly to the approach recommended by Atkinson and Adams (2013), Upper and lower bound alternatives were then defined by addition or subtraction of a logarithmic factor, "Delta", as defined below:

Delta (crustal) = min (0.10+0.0007* R_{epi} , 0.3) log(g) units

Since the NGA West-2 GMPEs are defined based on nearest distance to the rupture surface (R_{rup}) or nearest distance to the surface projection of the fault (R_{jb}) , it was necessary to convert these distance measurements to a form which can be applied for areal sources. For application of these GMPEs to our areal source zones, we converted distance measurements of R_{rup} or R_{jb} to equivalent measurements of hypocentral distance (R_{hypo}) or epicentral distance (R_{epi}) , respectively, using the method by Goda et al. (2010). Where applicable, we subsequently converted R_{hypo} measurements to R_{epi} assuming a focal depth of 5 km for earthquakes occurring within the active crustal sources.

The GMPE models for our active crustal sources were defined for the site-specific ground conditions at the proposed diversion channel and dam sites. Specifically, the GMPE models were developed considering a representative shear wave velocity in the top 30 m (i.e., V_{s30}) of 425 m/s at the diversion structure site and 265 m/s at the dam site, as indicated in Seismic Cone Penetration Test (SCPT) and Multi-Channel Analysis of Surface Waves (MASW) testing in these areas. It should be noted that the V_{s30} value of 425 m/s is also applicable for the top of bedrock underlying the dam site, whereas the V_{s30} value of 265 m/s represents the surface of the soil deposits at this location.

4.3.2 Stable Cratonic Core

For the SCCm source, Stantec utilized the suite of GMPEs recommended by Atkinson and Adams (2013) for Eastern North America, which were utilized in the 2015 NBCC seismic hazard model to represent stable cratonic sources. This suite of GMPEs includes a "best estimate" comprising the

Analysis Methodology February 28, 2017

geometric mean of the GMPEs by Pezeshk et al. (2011), Atkinson and Boore (2006), Atkinson (2008) as revised in Atkinson and Boore (2011), and two variations of Silva et al. (2002), each defined for or converted to a reference ground condition corresponding to the Site Class B/C boundary (i.e., $V_{s30} = 760$ m/s). Upper and lower bound alternatives were defined similarly to the approach described above for active crustal GMPEs. The reader is directed towards Atkinson and Adams (2013) for further details.

In the Stantec seismic hazard model, the ground motions for the SCCm source zone were initially computed for the Site Class B/C boundary (i.e., $V_{s30} = 760$ m/s) reference condition, then subsequently converted to the site-specific ground conditions using the approach described in the GMPE by Boore and Atkinson (2008).

4.3.3 Cascadia Interface Source

For the CIS source, Stantec utilized the suite of GMPEs recommended by Atkinson and Adams (2013) for interface events in the Cascadia region. Atkinson and Adams (2013) recommend a "best estimate" GMPE defined using the Atkinson and Macias (2009), Ghofrani & Atkinson (2013), Abrahamson et al. (2013) and Zhou et al. (2006) GMPEs, with weights of 0.5, 0.2, 0.2 and 0.1, respectively. Upper and lower bound alternatives were defined by Atkinson and Adams (2013) to approximately bound these four interface GMPE models. The upper and lower bound alternatives were defined by the addition or subtraction of a logarithmic factor, "Delta", as defined below:

Delta (interface) = min (0.15+0.0007* R_{cd} , 0.35) log(g) units

In the Stantec seismic hazard model, the ground motions for the CIS source zone were initially computed for the Site Class B/C boundary (i.e., $V_{s30} = 760$ m/s) reference condition, then subsequently converted to the site-specific ground conditions using the approach in the GMPE by Boore and Atkinson (2008).

4.3.4 Treatment of Uncertainty in GMPEs

Treatment of epistemic uncertainty in the GMPEs discussed above was accomplished by the inclusion and weighting of the three alternative GMPEs for each source type. For each source type, the "best estimate", upper bound and lower bound GMPEs were assigned weights of 0.5, 0.25 and 0.25, respectively.

Treatment of aleatory variability was accomplished by incorporation of the applicable standard deviation values for the selected GMPEs, as listed in Table 6. No limit was placed on the number of standard deviations incorporated into the analysis.

Analysis Methodology February 28, 2017

	Standard Deviation – log(g) units							
Parameter	Active	Crustal	Stable Cratonic	Concerneller behaviores				
	V _{s30} = 425 m/s	V _{s30} = 425 m/s V _{s30} = 265 m/s		Cascadia interface				
PGV	0.26	0.26	0.27	0.27				
PGA	0.26	0.25	0.23	0.23				
Sa(0.05s)	0.27	0.26	0.23	0.23				
Sa(0.1s)	0.28	0.26	0.23	0.23				
Sa(0.2s)	0.27	0.24	0.23	0.23				
Sa(0.3s)	0.27	0.25	0.235	0.235				
Sa(0.5s)	0.28	0.27	0.25	0.25				
Sa(1.0s)	0.30	0.29	0.27	0.27				
Sa(2.0s)	0.31	0.31	0.27	0.27				
Sa(5.0s)	0.31	0.31	0.27	0.27				
Sa(10.0s)	0.30	0.30	0.27	0.27				

Table 6.Standard Deviation Values for GMPEs

4.4 **PROBABILISTIC ANALYSIS**

The EDGM with an AEP of 1/10,000 was computed using EqHaz software (Assatourians and Atkinson, 2013). EqHaz software implements the method of Monte Carlo simulation to compute ground motions in three stages, as described below. EqHaz software has been validated by the software developer against other industry-standard software, EZ-FRISK and FRISK 88, for several sites in Western and Eastern Canada, as documented by Assatourians and Atkinson (2013).

- EqHaz1 (Stage 1) involves the creation of a simulated earthquake catalogue of a specified duration much longer than the return period for the earthquake of interest in the study. A simulated duration of 1,000,000 years was considered in the Stantec assessment. Simulated earthquakes of varying magnitudes are created at random locations across each seismic source throughout the specified duration, based on the magnitude recurrence parameters input for each source. EqHaz1 incorporates epistemic uncertainty in the input parameters using the "logic-tree" approach to incorporate the alternative sets of magnitude recurrence parameters and maximum magnitudes in addition to their associated weights.
- EqHaz2 (Stage 2) calculates the distances between the randomly selected earthquake locations and the site of interest, and computes the associated ground motions for each individual event in the simulated earthquake catalogue. EqHaz2 incorporates epistemic uncertainty in the GMPEs by inclusion of the "best estimate" and bounding curves in

Analysis Methodology February 28, 2017

addition to their associated weights. Furthermore, EqHaz2 incorporates aleatory variability implicitly by consideration of the standard deviations in the GMPEs.

3. **EqHaz3** (Stage 3) is utilized to process the results of the EqHaz2 calculations. Among the outputs are hazard curve data and sorted lists of ground motions from which the mean hazard probabilistic ground motions corresponding to EDGM can be obtained. In addition, deaggregation data is generated to facilitate interpretation of representative earthquake magnitudes and distances for different ground motion parameters.

Our probabilistic seismic hazard assessment incorporated the following two assumptions, which were reflected in our inputs to the EqHaz analysis software:

- 1. Consistent with the approach for the 2015 NBCC seismic hazard model, the contributions of earthquakes smaller than M4.8 were excluded, since earthquakes of smaller magnitudes are not considered to be of engineering concern (with the exception of induced events at very close epicentral distances, which are addressed in Section 5.4).
- 2. Hazard contributions from sources more than 300 km from the site, with the exception of those from the Cascadia Interface Source, were excluded because the hazard contributions beyond this cut-off distance are insignificant.

Results and Recommendations February 28, 2017

5.0 **RESULTS AND RECOMMENDATIONS**

5.1 EARTHQUAKE DESIGN GROUND MOTION

5.1.1 Horizontal EDGM Values

Based on the results of our analysis, the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV) and peak 5% damped spectral accelerations for the horizontal component of the Earthquake Design Ground Motion (EDGM) with an Annual Exceedance Probability (AEP) of 1/10,000 at the diversion structure and dam sites are presented in Table 7. The peak 5% damped spectral accelerations are also presented in Figure 1. Motions for intermediate periods may be estimated by means of linear interpolation between the values provided in Table 7. For all ground motion parameters, the regional source model was found to govern over the local source model in the robust approach.

EDGM values for the proposed diversion structure correspond to those for $V_{s30} = 425$ m/s, which represents a lower bound of the V_{s30} values obtained from Multi-channel Analysis of Surface Waves (MASW) tests in the vicinity of the diversion structure. EDGM values for the proposed dam correspond to those for $V_{s30} = 265$ m/s, which represents a lower bound of V_{s30} values from Seismic Cone Penetration Tests (SCPTs) and MASW tests in the vicinity of the dam. It should be noted that the EDGM values presented in Table 7 are reflective of those that would occur at the ground surface at the subject locations. If motions are input at the top of rock beneath the dam, it would be appropriate to consider the $V_{s30} = 425$ m/s values for the dam site.

Devenue atox	EDGM Values for an A	AEP of 1/10,000
rdrameter	Diversion Structure (V _{s30} = 425 m/s)	Dam (V _{s30} = 265 m/s)
PGV	17.5 cm/s	23.4 cm/s
PGA	0.26 g	0.28 g
Sa(0.05s)	0.34 g	0.33 g
Sa(0.1s)	0.54 g	0.47 g
Sa(0.2s)	0.63 g	0.64 g
Sa(0.3s)	0.54 g	0.69 g
Sa(0.5s)	0.35 g	0.52 g
Sa(1.0s)	0.18 g	0.26 g
Sa(2.0s)	0.072 g	0.11 g
Sa(5.0s)	0.022 g	0.034 g
Sa(10.0s)	0.0062 g	0.0087 g

Table 7.	Horizontal EDGM	Values for an AE	P of 1/10.000	at the SR1	Project Site

Results and Recommendations February 28, 2017

Figure 1. Horizontal EDGM Values for an AEP of 1/10,000 at the SR1 Site

In addition to the EDGM values for an AEP of 1/10,000, hazard curves are presented in **Appendix C** to indicate the AEP for a wide range of ground motion intensities. Hazard curves are provided only for the V_{s30} = 425 m/s site condition, since the shapes of the hazard curves for different site conditions are similar.

5.1.2 Vertical EDGM Values

To evaluate EDGM values with an AEP of 1/10,000 for the vertical component, Stantec considered the ratio of the Ground Motion Prediction Equation (GMPE) by Stewart et al. (2016) for the vertical component to the corresponding GMPE by Boore et al. (2014) for the horizontal component. The Vertical to Horizontal (V/H) ratios for PGA, PGV and spectral acceleration for periods of 2.0 s or less were computed from the ratio of the median motions predicted by these GMPEs for a magnitude of 6.0 and a distance of 20 km, which approximately correspond to the mean magnitude and distance values from the deaggregation data for the EDGM for these parameters (as discussed in Section 5.2). For spectral accelerations predicted by these GMPEs for a magnitude of 7.25 and a distance of 250 km, which approximately correspond to the mean magnitude and distance values from the deaggregation data for the EDGM for these Ionger period motions (as discussed in Section 5.2).

The V/H ratios utilized to evaluate the EDGM value with an AEP of 1/10,000 at the SR1 project site are presented in Table 8. The resulting peak 5% damped spectral accelerations for the vertical component are presented in Figure 2.

Results and Recommendations February 28, 2017

Davana ataz	Ratio of Vertical to Horizont	al Ground Motions
rarameter	Diversion Structure (V _{s30} = 425 m/s)	Dam (V _{s30} = 265 m/s)
PGV	0.41	0.39
PGA	0.56	0.56
Sa(0.05s)	0.86	0.94
Sa(0.1s)	0.72	0.81
Sa(0.2s)	0.47	0.50
Sa(0.3s)	0.41	0.40
Sa(0.5s)	0.40	0.36
Sa(1.0s)	0.42	0.37
Sa(2.0s)	0.51	0.43
Sa(5.0s)	0.58	0.48
Sa(10.0s)	0.91	0.76

Table 8. Ratio of Vertical to Horizontal Ground Motions

Figure 2. Vertical EDGM Values for an AEP of 1/10,000 at the SR1 Site

Results and Recommendations February 28, 2017

5.2 DEAGGREGATION OF SEISMIC HAZARD

Deaggregation data provides information to facilitate interpretation of which sources contribute significantly to seismic hazard at the site of interest. Table 9 indicates the percentage of the total seismic hazard for the EDGM with an AEP of 1/10,000 at the SR1 project site that is contributed by each seismic source. It should be noted that the hazard contributions from all seismic sources for a given period sum to 100%.

As indicated in Table 9, seismic hazard at the SR1 project site for all ground motion parameters is dominated by contributions from the ROCSm source zone, in which the SR1 project site is located. Contributions from the CIS source become significant for spectral accelerations at periods of 5.0 s and longer, and contributions from the SBCm source become significant for spectral acceleration at a period of 10.0 s. Contributions to seismic hazard from other sources in our model were found to be insignificant (i.e., were less than 10%) for all of the ground motion parameters evaluated.

Demonster	Hazard Contribution by Seismic Source								
Parameter	FHLm	ROCSm	SBCm	SCCm	CIS				
PGA	0%	100%	0%	0%	0%				
PGV	0%	97%	2%	0%	1%				
Sa(0.05s)	0%	98%	0%	2%	0%				
Sa(0.1s)	0%	100%	0%	0%	0%				
Sa(0.2s)	0%	100%	0%	0%	0%				
Sa(0.3s)	0%	100%	0%	0%	0%				
Sa(0.5s)	0%	99%	1%	0%	0%				
Sa(1.0s)	0%	95%	5%	0%	0%				
Sa(2.0s)	0%	92%	8%	0%	0%				
Sa(5.0s)	2%	69%	6%	0%	23%				
Sa(10.0s)	8%	52%	15%	5%	20%				

Table 9. Hazard Contributions by Source to the EDGM for the SR1 Project Site

Deaggregation data also provides information to facilitate interpretation of the characteristics of earthquakes (i.e., magnitudes and distances) which contribute significantly to seismic hazard at the site of interest. Magnitude-distance deaggregation plots for PGA, PGV and spectral acceleration for periods of 0.05 to 10.0 s are provided in **Appendix D**. In addition, the mean and mode magnitudes and distances for each ground motion parameter are listed in Table 10. The mean magnitude and distance values fall in the range M5.8 to M6.5 and 15 to 50 km, respectively, for ground motion parameters at periods of 2.0 s or less. For periods of 5.0 s or longer, the mean magnitudes and distances are in the order of M7.25 and 270 km, respectively.

Results and Recommendations February 28, 2017

Demonster	M	ean	Mode			
Parameter	Magnitude	Distance (km)	Magnitude	Distance (km)		
PGA	5.8	16	5.3	10		
PGV	6.3	34	5.7	10		
Sa(0.05s)	5.9	15	5.9	10		
Sa(0.1s)	5.8	16	5.7	10		
Sa(0.2s)	5.9	17	5.7	10		
Sa(0.3s)	6.0	16	5.7	10		
Sa(0.5s)	6.1	23	5.7	10		
Sa(1.0s)	6.2	32	5.5	10		
Sa(2.0s)	6.5	48	6.5	10		
Sa(5.0s)	7.2	264	9.1	870		
Sa(10.0s)	7.3	276	6.5	10		

Table 10. Deaggregation of Magnitude and Distance for the EDGM

Based on the deaggregation data, we consider that a magnitude of 6.0 would be appropriate for use in liquefaction or slope displacement analyses for the proposed dam. Magnitude 6.0 corresponds to the typical mean (i.e., expected) magnitude value for ground motion parameters at the periods of greatest interest for the proposed dam and associated appurtenant structures.

5.3 EARTHQUAKE TIME HISTORIES

Stantec has selected a suite of linearly scaled earthquake records to approximately match the uniform hazard spectrum for an AEP of 1/10,000 over a period range of 0.05 to 2.0 s, which is expected to encompass the period range applicable for the proposed dam and associated appurtenant structures. Motions were selected to represent the soft rock conditions in the vicinity of the dam site, which typically fall within the rage of Site Class C (i.e., 360 m/s < V_{s30} < 760 m/s). Based on the deaggregation data obtained from our probabilistic analysis, Stantec considered the following magnitude and distance ranges in our earthquake record search:

- Moment magnitude between 5.0 and 6.5; and
- Joyner-Boore distances of 5 to 60 km.

Earthquakes of all mechanisms (i.e., strike-slip, reverse, normal, etc.) were included in our earthquake search. Preference was given to ground motions recorded at free-field instrument locations. In selection of representative earthquake records, Stantec limited the minimum and maximum linear scaling factors to 0.4 and 2.5, respectively.

Results and Recommendations February 28, 2017

In total, Stantec selected 11 sets of crustal earthquake records (i.e., three orthogonal components) from the Pacific Earthquake Engineering Research (PEER) Centre's Ground Motion Database to approximately match the target ground motion characteristics. The selected ground motion records are summarized in Table 11, and the unscaled records are included as an attachment to the pdf of this report.

No.	RSN No.	Earthquake	Mw	Mechanism	R _{jb} (km)	V _{s30} (m/s)	Scaling Factor (Horizontal)	Scaling Factor (Vertical)
1	212	Livermore-01 (1980)	5.8	strike slip	23.9	403	1.65	1.67
2	246	Mammoth Lakes-06 (1980)	5.94	strike slip	41.8	371	1.87	2.02
3	321	Mammoth Lakes-11 (1983)	5.31	strike slip	7.1	382	2.29	2.16
4	548	Chalfant Valley-02 (1986)	6.19	strike slip	21.6	371	1.35	1.12
5	671	Whittier Narrows-01 (1987)	5.99	reverse-oblique	31.6	508	2.00	2.19
6	3605	Lazio-Abruzzo_Italy (1984)	5.8	Normal	20.0	437	2.24	1.53
7	3859	Chi-Chi_ Taiwan-05 (1999)	6.2	Reverse	53.0	438	2.47	2.12
8	4139	Parkfield-02_CA (2004)	6	strike slip	9.5	417	1.06	1.30
9	6057	Big Bear-01 (1992)	6.46	strike slip	26.2	362	1.93	1.81
10	6060	Big Bear-01 (1992)	6.46	strike slip	40.9	368	1.81	1.39
11	6878	Joshua Tree_ CA (1992)	6.1	strike slip	21.4	368	1.48	1.45

Table 11. List of Selected Earthquake Motion Records

The mean value of magnitude for the selected earthquake records is 6.02, the mean value of distance (R_{jb}) is 27 km, and the mean value of V_{s30} is 402 m/s. The mean scaling factors applied to the ground motion records are 1.83 for the horizontal components and 1.70 for the vertical components. It should be noted that in addition to scaling for the purpose of matching the uniform hazard spectrum for an AEP of 1/10,000 over a period range of 0.05 to 2.0 s, scaling was also conducted to ensure that the average of the response spectra for the selected records was not less than 90% of the uniform hazard spectrum at any point within the period range of interest.

The geometric mean of the 5% damped acceleration response spectra for the horizontal components of each selected earthquake record set is plotted in Figure 3, along with the suite average and the "target" response spectrum, corresponding to the horizontal EDGM with an AEP of 1/10,000.

Results and Recommendations February 28, 2017

Figure 3. Geometric Mean of Horizontal Response Spectra for the Selected Earthquake Records (5% Damping)

The 5% damped vertical acceleration response spectra for the selected earthquake record sets are plotted in Figure 4, along with the suite average and the "target" response spectrum, corresponding to the vertical EDGM with an AEP of 1/10,000.

Results and Recommendations February 28, 2017

Figure 4. Vertical Response Spectra for the Selected Earthquake Records (5% Damping)

5.4 MANAGEMENT OF INDUCED SEISMICITY RISK

It should be recognized that although induced seismicity was incorporated into the Stantec seismic hazard model through inclusion of induced events in our regional and local source models, induced seismicity due to future "fracking" or waste injection in close proximity to the project site could substantially increase seismic hazard at the site. As such, we recommend that the owner take the following approach for managing risk associated with induced seismicity:

- 1. Obtain a 5 km exclusion zone for hydraulic fracturing and disposal wells around the extreme consequence facility to ensure no very near events are generated; and
- 2. Implement a real-time monitoring system to monitor activity of M>2 within 25 km of the facility, and develop a response plan in case earthquake rates become higher than those that are acceptable based on the design parameters or other considerations.

Closure February 28, 2017

6.0 CLOSURE

This report was prepared for the exclusive use of Alberta Transportation and its agents for specific application to the Springbank Off-Stream Dam and Reservoir project. Any use of this report or the material contained herein by third parties, or for other than the intended purpose, should first be approved in writing by Stantec.

This seismic hazard assessment was completed by Chris Longley, M.Eng., P.Eng., and Wayne Quong, M.A.Sc., P.Eng., with consultation and review by Gail Atkinson, Ph.D., P.Geo. A letter documenting the review by Dr. Atkinson is provided in **Appendix E**.

We trust that this report meets your present requirements. If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully,

STANTEC CONSULTING LTD.

Original signed by:

Chris Longley, M.Eng., P.Eng Geotechnical Engineer Phone: (604) 436-3014 Fax: (604) 436-3752 chris.longley@stantec.com

Original signed by:

Wayne Quong, M.A.Sc., P.Eng. Senior Associate, Geotechnical Phone: (604) 436-3014 Fax: (604) 436-3752 wayne.quong@stantec.com

References February 28, 2017

7.0 **REFERENCES**

- Abrahamson, N., et al. (2013). "B.C. Hydro Ground Motion Prediction Equations for 639 Subduction Earthquakes". *Earthquake Spectra*, submitted.
- Abrahamson, N. et al. (2014). "Summary of the ASK14 ground motion relation for active crustal regions". *Earthquake Spectra*, Volume 30, No. 3, pages 1025–1055.
- Adams, J. and Halchuk, S. (2003). "Fourth Generation Seismic Hazard Maps of Canada: Values for over 650 Canadian Localities intended for the 2005 National Building Code of Canada". Geological Survey of Canada – Open file 4459, 155p.
- Assatourians, K. and Atkinson, G. (2013). "EqHaz An Open Source Probabilistic Seismic Hazard Code Based on the Monte Carlo Simulation Approach". Seismological Research Letters, Volume 84, No 3, May/June 2013.
- Atkinson, G. (2008). "Ground-motion prediction equations for eastern North America from a referenced empirical approach: implications for epistemic uncertainty". Bulletin of the Seismological Society of America 98, 1304-1318.
- Atkinson, G. and Adams, J. (2013). "Ground motion prediction equations for application to the 2015 Canadian national seismic hazard maps". *Canadian Journal of Civil Engineering*, 2013, 40(10): 988-998, 10.1139/cjce-2012-0544
- Atkinson, G. and Boore, D. (2006). "Earthquake Ground-Motion Prediction Equations for Eastern North America". Bulletin of the Seismological Society of America, December 2006. Volume 96, No. 6, pages 2181–2205.
- Atkinson, G. and Boore, D. (2011). "Modifications to Existing Ground-Motion Prediction Equations in Light of New Data". Bulletin of the Seismological Society of America, June 2011. Volume 101, No. 3, pages 1121-1135.
- Atkinson, G. and Macias, M. (2009). "Predicted Ground Motions for Great Interface Earthquakes in the Cascadia Subduction Zone". *Bulletin of the Seismological Society of America*, June 2009. Volume 99, No. 3, pages 1552-1578.
- Atkinson, G. et al. (2016). "Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin". Seismological Research Letters, DOI: 10.1785/0220150263.
- Boore, D. and Atkinson, G. (2008). "Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV and 5% Damped PSA at Spectral Periods between 0.01 s and 10.0 s". *Earthquake Spectra*, Volume 24, No. 1, pages 99-138.

References February 28, 2017

- Boore, D et al. (2014). "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes". *Earthquake Spectra*, Volume 30, No. 3, pages 1057–1085.
- Campbell, K. and Bozorgnia, Y. (2014). "NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra". *Earthquake Spectra*, Volume 30, No. 3, pages 1087–1115.

Canadian Dam Association (2007). Dam Safety Guidelines.

- Chiou, B. and Youngs, R. (2014). "Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra". *Earthquake Spectra*, Volume 30, No. 3, pages 1117–1153.
- Ghofrani, H. and Atkinson, G. (2013). "Ground-motion prediction equations for interface earthquakes of M7 to 9 in Japan based on empirical data". *Bulleting of Earthquake Engineering*, submitted.
- Goda, K. et al. (2010). "Impact of using updated seismic information on seismic hazard in western Canada". Canadian Journal of Civil Engineering, Volume 37: pages 562-575.
- Halchuk, S. et al. (2014). "Fifth Generation Seismic Hazard Model Input Files as Proposed to Produce Values for the 2015 National Building Code of Canada". Geological Survey of Canada – Open File 7576.
- Macias-Carrasco, M., Fereydouni, A., Goda, K., and Atkinson, G. 2011. Canadian Composite. Seismicity Catalogue (CCSC11) for Western Canada.
- Moran, S.R. (1986). Surficial Geology of the Calgary Urban Area. Bulletin No. 53. Terrain Sciences Department, Alberta Research Council, Edmonton, Alberta, Canada.
- Pettapiece, W. (1986). Physiographic Subdivisions of Alberta. Ottawa: Land Resource Centre, Research Branch. 1:1,500,000.
- Pezeshk, S. et al. (2011). "Ground-motion prediction equations for eastern North America from a hybrid empirical method". Bulletin of the Seismological Society of America, in review.
- Prior, G. et a. (2013). Bedrock geology of Alberta. Alberta Energy Regulator, AER/AGS Map 600. 1:1,000,000.
- Schultz, R. et al. (2014). An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well. Journal of Geophysical Research, Solid Earth, 119, 3410–3423, doi:10.1002/2013JB010836.

References February 28, 2017

- Schultz, R. et al. (2015a). Hydraulic Fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks. Geophysical Research Letters, 42, doi:10.1002/2015GL063455.
- Schultz, R. et al. (2015b). The Cardston Earthquake Swarm and Hydraulic Fracturing of the Exshaw Formation (Alberta Bakken Play). Bulletin of the Seismological Society of America, doi: 10.1785/0120150131.
- Silva, W. et al. (2002). Development of regional hard rock attenuation relations for central and eastern North America, Technical Report, Pacific Engineering and Analysis, El Cerrito, CA. www.pacificengineering.org.
- Stern, V. et al. (2016). Alberta earthquake catalogue, version 4.0 (GIS data, point features). Alberta Energy Regulator, AER/AGS Digital Dataset 2013-0017.
- Stewart, J. et al. (2016). "NGA-West2 Equations for Predicting Vertical-Component PGA, PGV and 5%-Damped PSA from Shallow Crustal Earthquakes". Earthquake Spectra, Volume 32, No. 2, pages 1005-1031.
- Wetmiller, R. (1986). "Earthquakes near Rocky Mountain House, Alberta, and their relationship to gas production facilities". *Canadian Journal of Earth Sciences*, Volume 23, No. 2, pages 172-181.
- Zhao, J. et al. (2006). "Attenuation relations of strong ground motion in Japan using site classification based on predominant period". Bulletin of the Seismological Society of America, Vol. 96, pp. 898-913.

Appendix A Drawings February 28, 2017

Appendix A DRAWINGS

Appendix B Magnitude Recurrence Relations February 28, 2017

Appendix B MAGNITUDE RECURRENCE RELATIONS

Appendix B-1 Magnitude Recurrence Parameters (Regional Model)

Appendix B-2 Magnitude Recurrence Parameters (Local Model)

SEISMIC HAZARD ASSESSMENT - SPRINGBANK OFF-STREAM DAM AND RESERVOIR

Appendix C Hazard Curves February 28, 2017

Appendix C HAZARD CURVES

SEISMIC HAZARD ASSESSMENT - SPRINGBANK OFF-STREAM DAM AND RESERVOIR

Appendix D Deaggregation Plots February 28, 2017

Appendix D DEAGGREGATION PLOTS

SEISMIC HAZARD ASSESSMENT - SPRINGBANK OFF-STREAM DAM AND RESERVOIR

Appendix E Review Letter from Dr. Gail Atkinson February 28, 2017

Appendix E REVIEW LETTER FROM DR. GAIL ATKINSON

Gail Atkinson, Ph.D., P.Geo Engineering Seismologist 196 McLeod Rd. White Lake, ON K0A 3L0

Feb. 28, 2017

Mr. Wayne Quong Stantec Consulting Ltd. 500-4730 Kingsway Burnaby, BC V5H 0C6

Review of Seismic Hazard Assessment-Springbank Off-Stream Dam and Reservoir Stantec Report Feb. 28, 2017 (Project No. 110773396)

Dear Mr. Quong

I have reviewed the Stantec Report providing a Seismic Hazard Assessment for the Springbank Off-Stream Dam and Reservoir (as prepared for Alberta Transportation), dated Feb. 28, 2017 (Project 110773396). I am satisfied that this report is technically sound and represents good state-of-the-art practice in seismic hazard assessment for similar facilities in Canada. It is noted that Section 5.4, Management of Induced Seismicity Risk, contains important recommendations that are integral to the report and its findings.

Thank you for the opportunity to interact with the Stantec team in carrying out this important seismic hazard assessment.

Yours truly

Sail atkinson

Gail Atkinson, Ph.D., P.Geo., FRSC Engineering Seismologist

ATTACHMENT 9 FLOODPLAIN BERM

Attachment 9.1 Seepage and Stability Analysis Attachment 9.1 Seepage and Stability Analysis Attachment 9.1.1 Seepage Analyses Section 0+900

Name: Bedrock Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.15 Rotation: 0 ° Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-08 m/sec

Alberta Transportation SR1 Floodplain Berm

Section 0+900 Seepage Analysis Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m

Name: Gravel with Sand and Silt Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-10 m/sec

kv=1.00E-10 m/sec

Name: Bedrock Model: Saturated / Unsaturated Ky//Kx' Ratio: 0.15 Rotation: 0 ° Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-08 m/sec

Alberta Transportation SR1 Floodplain Berm

Section 0+900 Seepage Analysis Flood Operations Headwater = 1219.2 m Flood Operations Tailwater = 1218.4 m

Name: Gravel with Sand and Silt Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-10 m/sec

kv=1.00E-10 m/sec

Name: Bedrock Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.15 Rotation: 0 ° Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-08 m/sec

Alberta Transportation SR1 Floodplain Berm

Section 0+900 Seepage Analysis Max IDF Headwater = 1219.7 m Max IDF Tailwater = 1218.9 m

Name: Gravel with Sand and Silt Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Topsoil Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-10 m/sec

kv=1.00E-10 m/sec

Section 1+600

Section 1+600 Seepage Analysis Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Name: Riprap Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Bedrock Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.15 Rotation: 0 °

kv=1.00E-08 m/sec

Name: Riprap Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 °

kv=3.00E-04 m/sec

Name: Impervious 1A Model: Saturated / Unsaturated Ky//Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-10 m/sec

Name: Fine Filter 3A Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 ° kv=1.00E-010 m/sec

Name: Fine Filter 3A d Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-05 m/sec

Section 1+600 Seepage Analysis Flood Operations Headwater = 1216.1 m Flood Operations Tailwater = 1212.1 m Name: Riprap Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Bedrock Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.15 Rotation: 0 °

kv=1.00E-08 m/sec

Name: Riprap Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 °

kv=3.00E-04 m/sec

Name: Impervious 1A Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotatio: 0 °

kv=1.00E-10 m/sec

Name: Fine Filter 3A Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 ° kv=1.00E-10 m/sec

Name: Fine Filter 3A Model: Saturated / Unsaturated

Model: Saturated / Unsaturated Ky/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-05 m/sec

Distance (m)

Section 1+600 Seepage Analysis Max IDF Headwater = 1217.4 m Max IDF Tailwater = 1213.8 m

Name: Riprap Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-06 m/sec

Name: Bedrock Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.15 Rotation: 0 °

kv=1.00E-08 m/sec

Name: Riprap Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=3.00E-04 m/sec

Name: Impervious 1A Model: Saturated / Unsaturated Ky'/Kx' Ratio: 0.3 Rotation: 0 °

kv=1.00E-10 m/sec

Name: Fine Filter 3A Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 ° kv=1.00E-10 m/sec

Name: Fine Filter 3A Model: Saturated / Unsaturated Ky'/Kx' Ratio: 1 Rotation: 0 °

kv=1.00E-05 m/sec

Distance (m)

Attachment 9.1 Seepage and Stability Analysis Attachment 9.1.2 Stability Analyses Section 0+900

Section 0+900 Load Case: End of Construction Undrained, Static Strengths Incipient Motion in the Downstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: End of Construction Undrained, Static Strengths Incipient Motion in the Upstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Long Term Drained, Static Strengths Incipient Motion in the Downstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Long Term Drained, Static Strengths Incipient Motion in the Upstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Flood Operations - USBR Method Drained, Static Strengths Incipient Motion in the Downstream Direction

Flood Operations Headwater = 1219.2 m Flood Operations Tailwater = 1218.4 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Max IDF Flood - USBR Method Drained, Static Strengths Incipient Motion in the Downstream Direction

Max IDF Headwater = 1219.7 m Max IDF Tailwater = 1218.9 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Flood Operations - USACE Method Undrained, Static Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (SDD)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (SDD)	Mohr-Coulomb	20	0	35
	Impervious 1A (SDD)	Mohr-Coulomb	20	0	24
	Topsoil (SDD)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Max IDF Flood - USACE Method Undrained, Static Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (SDD)	Mohr-Coulomb	21	0	24
	Gravel with Sand and Silt (SDD)	Mohr-Coulomb	20	0	35
	Impervious 1A (SDD)	Mohr-Coulomb	20	0	24
	Topsoil (SDD)	Mohr-Coulomb	20	0	24

Section 0+900 Load Case: Rapid Drawdown - Flood Operations to Normal Condition Undrained, Static Strengths Incipient Motion in the Upstream Direction

Flood Operations Headwater = 1219.2 m Flood Operations Tailwater = 1218.4 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Bedrock (SDD)	Mohr-Coulomb	21	0	24	0	24
	Gravel with Sand and Silt (SDD)	Mohr-Coulomb	20	0	35	0	35
	Impervious 1A (SDD)	Mohr-Coulomb	20	0	24	25	15
	Topsoil (SDD)	Mohr-Coulomb	20	0	24	25	15

Section 0+900 Load Case: Rapid Drawdown - Max IDF Flood to Normal Condition Undrained, Static Strengths Incipient Motion in the Upstream Direction

Max IDF Headwater = 1219.7 m Max IDF Tailwater = 1218.9 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Bedrock (SDD)	Mohr-Coulomb	21	0	24	0	24
	Gravel with Sand and Silt (SDD)	Mohr-Coulomb	20	0	35	0	35
	Impervious 1A (SDD)	Mohr-Coulomb	20	0	24	25	15
	Topsoil (SDD)	Mohr-Coulomb	20	0	24	25	15

Section 0+900 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Normal Headwater = 1217.4 m Normal Tailwater = 1216.6 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Seismic - Post Earthquake Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 0+900 Load Case: Seismic - Post Earthquake Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600

Section 1+600 Load Case: End of Construction Undrained, Static Strengths Incipient Motion in the Downstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (undrained)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Riprap (undrained)	Mohr-Coulomb	20	0	35			
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: End of Construction Undrained, Static Strengths Incipient Motion in the Upstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (undrained)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Riprap (undrained)	Mohr-Coulomb	20	0	35			
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Long Term Drained, Static Strengths Incipient Motion in the Downstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Fine Filter 3A (drained)	Mohr-Coulomb	21	0	33
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Riprap (drained)	Mohr-Coulomb	20	0	35
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 1+600 Load Case: Long Term Drained, Static Strengths Incipient Motion in the Upstream Direction

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Fine Filter 3A (drained)	Mohr-Coulomb	21	0	33
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Riprap (drained)	Mohr-Coulomb	20	0	35
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 1+600 Load Case: Flood Operations - USBR Method Drained, Static Strengths Incipient Motion in the Downstream Direction

Operations Headwater = 1216.1 m Operations Tailwater = 1212.1 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Fine Filter 3A (drained)	Mohr-Coulomb	21	0	33
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Riprap (drained)	Mohr-Coulomb	20	0	35
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 1+600 Load Case: Flood Max IDF - USBR Method Drained, Static Strengths Incipient Motion in the Downstream Direction

Max IDF Headwater = 1217.4 m Max IDF Tailwater = 1213.8 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Bedrock (drained)	Mohr-Coulomb	21	0	24
	Fine Filter 3A (drained)	Mohr-Coulomb	21	0	33
	Gravel with Sand and Silt (drained)	Mohr-Coulomb	20	0	35
	Impervious 1A (drained)	Mohr-Coulomb	20	0	24
	Riprap (drained)	Mohr-Coulomb	20	0	35
	Topsoil (drained)	Mohr-Coulomb	20	0	24

Section 1+600 Load Case: Flood Operations - USACE Method Undrained, Static Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m ³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (undrained)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Riprap (undrained)	Mohr-Coulomb	20	0	35			
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Flood Max IDF - USACE Method Undrained, Static Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (undrained)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (undrained)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (undrained)	Mohr-Coulomb	20	0	35			
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Riprap (undrained)	Mohr-Coulomb	20	0	35			
	Topsoil (undrained)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Rapid Drawdown - Flood Operations to Normal Condition Undrained, Static Strengths Incipient Motion in the Upstream Direction

Fine Filter 3A Mohr-Coulomb 21 0 33 0 33 (RDD) Gravel with Sand Mohr-Coulomb 20 0 35 0 35 and Silt (RDD) Impervious 1A Mohr-Coulomb 20 0 24 25 15 (RDD) Riprap (RDD) Mohr-Coulomb 20 0 35 0 35 Topsoil (RDD) Mohr-Coulomb 20 0 24 25 15

Unit

21

Weight (kPa) (kN/m³)

0

Cohesion' Phi'

(°)

24 0

Cohesion Phi

R (°)

24

R (kPa)

Flood Operations Headwater = 1216.1 m Flood Operations Tailwater = 1212.1 m

Color

Name

Bedrock (RDD)

Model

Mohr-Coulomb

Section 1+600 Load Case: Rapid Drawdown - Max IDF Flood to Normal Condition Undrained, Static Strengths Incipient Motion in the Upstream Direction

Max IDF Headwater = 1217.4 m Max IDF Tailwater = 1213.8 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Bedrock (RDD)	Mohr-Coulomb	21	0	24	0	24
	Fine Filter 3A (RDD)	Mohr-Coulomb	21	0	33	0	33
	Gravel with Sand and Silt (RDD)	Mohr-Coulomb	20	0	35	0	35
	Impervious 1A (RDD)	Mohr-Coulomb	20	0	24	25	15
	Riprap (RDD)	Mohr-Coulomb	20	0	35	0	35
	Topsoil (RDD)	Mohr-Coulomb	20	0	24	25	15

Section 1+600 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Flood Operations Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Pseudostatic Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m Max IDF Headwater/Tailwater applied as surcharge

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Seismic - Post Earthquake Undrained, Seismic Strengths Incipient Motion in the Downstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Impervious 1A (undrained)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Section 1+600 Load Case: Seismic - Post Earthquake Undrained, Seismic Strengths Incipient Motion in the Upstream Direction

Normal Headwater = 1213.6 m Normal Tailwater = 1211.1 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Bedrock (EQ)	Mohr-Coulomb	21	0	24			
	Fine Filter 3A (EQ)	Mohr-Coulomb	21	0	33			
	Gravel with Sand and Silt (EQ)	Mohr-Coulomb	20	0	35			
	Impervious 1A (EQ)	Bilinear	20	0		24	15	141
	Riprap (EQ)	Mohr-Coulomb	20	0	35			
	Topsoil (EQ)	Bilinear	20	0		24	15	141

Attachment 9.2 Settlement Analysis

Station	Station (m)	Embankment Height (m)	Foundation Settlement (mm)
0+800	800	1.3	11.0
1+000	1000	2.2	15.2
1+200	1200	3.6	19.9
1+400	1400	4.0	21.1
1+600	1600	5.4	24.4

SR1 Floodplain Berm
Settlement Calculations for Berm Centerline Sta. 0+800

Nearest Consolidation Test Samples: No consolidation testing on foundation materials: cohesionless

1220.8

1219.5

1215.5

1.3

4.3 ft

4.3 ft (1.3 m) Embankment

Date Calc b Check

Foundation Thickness (m) 4.0 13.1 ft Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

127.3

$\Delta H_i = H_c \frac{1}{C'} \log \left(\frac{\sigma'_o + \Delta \sigma_v}{\sigma'_o} \right)$

Based on avg. N=34.5, silty sand and gravel,

C' = 117

Top of Embankment El.:

Embankment Thickness (m)

Existing Grade El.:

Est. Top of Rock El.:

(Immediate Settlement)

Foundation Material (Sandy Gravel) One Layer 4.0 m (13.1 ft)

Sandy Gravel Unit Weight = 17.4 kN/m ³ (110.7 lb/ft ³)								
Location	Mid Pt. (ft)	H _c (ft)	C'	σ' _o (psf)	H _e (ft.)	Δσ _v (psf)	ΔН	
0+000 (Crest)	6.5616	13.1	117	726.37	4.27	542.94	0.027	
						S	SUM =	0.027 feet
			13.1	2.625				8 mm

Foundation Material (Sandy Gravel) Five Layers - 2.625 Feet Thick

Sandy Gravel Unit Weight = 17.4 kN/m³ (110.7 lb/ft³) 110.7 Mid Pt. (ft) H_c (ft) C' ΔH Location σ'₀ (psf) H_e(ft.) Δσ_v(psf) 0+000 (Crest) 1.31 2.625 117 145.27 4.27 542.94 0.015 0+000 (Crest) 3.94 2.625 117 435.82 4.27 542.94 0.008 2.625 542.94 0+000 (Crest) 6.56 117 726.37 4.27 0.005 2.625 0+000 (Crest) 9.19 117 1016.92 4.27 542.94 0.004 2.625 542.94 0.003 0+000 (Crest) 11.81 117 1307.46 4.27 13.123 SUM = 0.036 feet

11 mm

13.1 ft (4.0 m) Foundation Material - Sandy Gravel

	2019-11-19
ру	D. Back
< by	V. Severance

Nearest Consolidation Test Samples: No consolidation testing on foundation materials: cohesionless

Based on avg. N=34.5, silty sand and gravel, C' = 117

Embankment Unit Weight = 20 kN/m ³ (127.3 lb/ft ³)						
Foundation Thickness (m)	4.0	13.1 ft				
Est. Top of Rock El.:	1214					
Embankment Thickness (m)	2.2	7.2 ft				
Existing Grade El.:	1218					
Top of Embankment El.:	1220.2					

127.3

 $\Delta H_{i} = H_{c} \frac{1}{C'} \log \left(\frac{\sigma'_{o} + \Delta \sigma_{v}}{\sigma'_{o}} \right)$

Hough Method from FHWA Pub. FHWA NHI-06-088 (Immediate Settlement)

Foundation Material (Sandy Gravel) One Layer 4.0 m (13.1 ft)

Sandy Gravel Unit Weight = 17.4 kN/m³ (110.7 lb/ft³) 110.7 Location Mid Pt. (ft) H_c (ft) C' H_e(ft.) Δσ_v(psf) ΔH σ'_o (psf) 117 0+000 (Crest) 6.55 13.1 725.09 918.82 0.040 7.22 SUM = 0.040 feet

13.1 2.625

Foundation Material (Sandy Gravel) Five Layers - 2.625 Feet Thick

Sandy Gravel Unit Weight = 17.4 kN/m³ (110.7 lb/ft³)

110.7

Location	Mid Pt. (ft)) H _c (ft)	C'	σ'₀ (psf)	H _e (ft.)	Δσ _v (psf)	ΔН
0+000 (Crest)	1.31	2.625	117	145.27	7.22	918.82	0.019
0+000 (Crest)	3.94	2.625	117	435.82	7.22	918.82	0.011
0+000 (Crest)	6.56	2.625	117	726.37	7.22	918.82	0.008
0+000 (Crest)	9.19	2.625	117	1016.92	7.22	918.82	0.006
0+000 (Crest)	11.81	2.625	117	1307.46	7.22	918.82	0.005
		13.123					
							SUM =

7.2 ft (2.2 m) Embankment

13.1 ft (4.0 m) Foundation Material - Sandy Gravel

12 mm

15 mm

- 2019-11-19
- D. Back
- V. Severance

Nearest Consolidation Test Samples: No consolidation testing on foundation materials: cohesionless

Based on avg. N=34.5, silty sand and gravel, C' = 117

Top of Embankment El.:	1219.6					
Existing Grade El.:	1216					
Embankment Thickness (m)	3.6	11.8 ft				
Est. Top of Rock El.:	1212					
Foundation Thickness (m)	4.0	13.1 ft				
Embankment Unit Weight = 20 kN/m ³ (127.3 lb/ft ³)						

 $\Delta H_{i} = H_{c} \frac{1}{C'} \log \left(\frac{\sigma'_{o} + \Delta \sigma_{v}}{\sigma'_{o}} \right)$

Hough Method from FHWA Pub. FHWA NHI-06-088 (Immediate Settlement)

127.3

Foundation Material (Sandy Gravel) One Layer 4.0 m (13.1 ft)

Location	Mid Pt. (ft)	H _c (ft)	C'	σ'₀ (psf)	H _e (ft.)	Δσ _v (psf)	ΔΗ	
0+000 (Crest)	6.55	13.1	117	725.09	11.81	1503.53	0.055	
							SUM =	0.055 feet
			13.	1 2.625				17 mm
undation Ma	terial (Sand Weight = 17.4	y Gravel 4 kN/m ³ (1) Five La 10.7 lb/ft ³)	yers - 2.625	5 Feet Thic	<u>k</u> 110.7		
undation Ma dy Gravel Unit Location	terial (Sand Weight = 17.4 Mid Pt. (ft)	<mark>y Gravel</mark> 4 kN/m ³ (1 H _c (ft)) Five La 10.7 lb/ft ³) C'	<u>yers - 2.625</u> σ' _o (psf)	5 Feet Thic H₅(ft.)	<u>k</u> 110.7 Δσ _v (psf)	ΔН	
undation Ma ndy Gravel Unit Location 0+000 (Crest)	terial (Sand Weight = 17.4 Mid Pt. (ft) 1.31	y Gravel 4 kN/m ³ (1 H _c (ft) 2.625) Five La 10.7 lb/ft ³) C' 117	<u>yers - 2.625</u> თ' _o (psf) 145.27	5 Feet Thic H _e (ft.) 11.81	<u>k</u> 110.7 Δσ _v (psf) 1503.53	ΔH 0.024	
undation Ma ndy Gravel Unit Location 0+000 (Crest) 0+000 (Crest)	terial (Sand Weight = 17.4 Mid Pt. (ft) 1.31 3.94	y Gravel 4 kN/m ³ (1 H _c (ft) 2.625 2.625) Five La 10.7 lb/ft ³) C' 117 117	<u>yers - 2.625</u> σ'₀ (psf) 145.27 435.82	5 Feet Thic H _e (ft.) 11.81 11.81	<u>k</u> 110.7 Δσ _v (psf) 1503.53 1503.53	ΔH 0.024 0.015	
undation Ma ady Gravel Unit Location 0+000 (Crest) 0+000 (Crest) 0+000 (Crest)	terial (Sand Weight = 17.4 Mid Pt. (ft) 1.31 3.94 6.56	y Gravel kN/m ³ (1 H _c (ft) 2.625 2.625 2.625) Five La 10.7 lb/ft ³) C' 117 117 117	<u>yers - 2.625</u>	5 Feet Thic H _e (ft.) 11.81 11.81 11.81	<u>k</u> 110.7 Δσ _ν (psf) 1503.53 1503.53 1503.53	ΔH 0.024 0.015 0.011	
undation Ma ady Gravel Unit Location 0+000 (Crest) 0+000 (Crest) 0+000 (Crest) 0+000 (Crest)	terial (Sand Weight = 17.4 Mid Pt. (ft) 1.31 3.94 6.56 9.19	y Gravel kN/m ³ (1 H _c (ft) 2.625 2.625 2.625 2.625 2.625) Five La 10.7 lb/ft ³) C' 117 117 117 117	yers - 2.625 o'o (psf) 145.27 435.82 726.37 1016.92	5 Feet Thic H _e (ft.) 11.81 11.81 11.81 11.81 11.81	<u>κ</u> 110.7 Δσ _v (psf) 1503.53 1503.53 1503.53 1503.53	ΔH 0.024 0.015 0.011 0.009	

11.8 ft (3.6 m) Embankment

20 mm

13.1 ft (4.0 m) Foundation Material - Sandy Gravel

- 2019-11-19
- D. Back
- V. Severance

Nearest Consolidation Test Samples: No consolidation testing on foundation materials: cohesionless

Based on avg. N=34.5, silty sand and gravel, C' = 117

Top of Embankment El.:	1219					
Existing Grade El.:	1215					
Embankment Thickness (m)	4.0	13.1 ft				
Est. Top of Rock El.:	1211					
Foundation Thickness (m)	4.0	13.1 ft				
Embankment Unit Weight = 20 kN/m ³ (127.3 lb/ft ³)						

127.3

$\Lambda H - H$	$\frac{1}{-100}$	$\left(\sigma'_{o} + \Delta \sigma_{v} \right)$	
$\Delta m_i - m_c$	$\overline{C'}^{10g}$	$\left(\sigma'_{o} \right)$	

Hough Method from FHWA Pub. FHWA NHI-06-088 (Immediate Settlement)

Foundation Material (Sandy Gravel) One Layer 4.0 m (13.1 ft)

Sandy Gravel Unit Weight = 17.4 kN/m ³ (110.7 lb/ft ³)						110.7		
Location	Mid Pt. (ft)	H _c (ft)	C'	σ'₀ (psf)	H _e (ft.)	Δ _{σv} (psf)	ΔН	_
0+000 (Crest)	6.55	13.1	117	725.09	13.12	1670.58	0.058	
							SUM =	0.058 feet
			13.1	2.625				18 mm
Foundation Mat	erial (Sand	y Grave	I) Five Lay	ers - 2.625	Feet Thic	<u>k</u>		
Sandy Gravel Unit	4 kN/m ³ (1	10.7 lb/ft ³)	110.7					
Location	Mid Dt (ft)	LJ /#4\	C	-' (nof)	LI /#4)	A = (nof)	۸ U	

Location	Mid Pt. (ft) H _c (ft)	C'	σ'₀ (psf)	H _e (ft.)	Δσ _v (psf)	ΔH
0+000 (Crest)	1.31	2.625	117	145.27	13.12	1670.58	0.025
0+000 (Crest)	3.94	2.625	117	435.82	13.12	1670.58	0.015
0+000 (Crest)	6.56	2.625	117	726.37	13.12	1670.58	0.012
0+000 (Crest)	9.19	2.625	117	1016.92	13.12	1670.58	0.009
0+000 (Crest)	11.81	2.625	117	1307.46	13.12	1670.58	0.008
		13.123					
							SUM =

13.1 ft (4.0 m) Embankment

13.1 ft (4.0 m) Foundation Material - Sandy Gravel

21 mm

- 2019-11-19
- D. Back
- V. Severance

Nearest Consolidation Test Samples: No consolidation testing on foundation materials: cohesionless

Based on avg. N=34.5, silty sand and gravel, C' = 117

Top of Embankment El.:	1218.4					
Existing Grade El.:	1213					
Embankment Thickness (m)	5.4	17.7 ft				
Est. Top of Rock El.:	1209					
Foundation Thickness (m)	4.0	13.1 ft				
Embankment Unit Weight = 20 kN/m ³ (127.3 lb/ft ³)						

 $\Delta H_i = H_c \frac{1}{C'} \log \left(\frac{\sigma'_o + \Delta \sigma_v}{\sigma'_o} \right)$

Hough Method from FHWA Pub. FHWA NHI-06-088 (Immediate Settlement)

127.3

Foundation Material (Sandy Gravel) One Layer 4.0 m (13.1 ft)

Sandy Gravel Unit Weight = 17.4 kN/m³ (110.7 lb/ft³) 110.7 Location Mid Pt. (ft) H_c (ft) C' H_e(ft.) σ'_o (psf) Δσ_v(psf) ΔH 0+000 (Crest) 6.55 117 2255.29 0.069 13.1 725.09 17.72 SUM = 0.069 feet 13.1 2.625 21 mm Foundation Material (Sandy Gravel) Five Layers - 2.625 Feet Thick Sandy Gravel Unit Weight = 17.4 kN/m³ (110.7 lb/ft³) 110.7 Location Mid Pt. (ft) H_c (ft) C' σ'_o (psf) H_e(ft.) Δσ_v(psf) ΔH 2255.29 0+000 (Crest) 1.31 2.625 117 145.27 17.72 0.027 0+000 (Crest) 3.94 2.625 117 435.82 17.72 2255.29 0.018 0+000 (Crest) 6.56 2.625 117 726.37 17.72 2255.29 0.014 0+000 (Crest) 9.19 2.625 117 1016.92 17.72 2255.29 0.011 0+000 (Crest) 11.81 2.625 117 1307.46 17.72 2255.29 0.010 13.123 SUM = 0.080 feet

17.7 ft (5.4 m) Embankment

13.1 ft (4.0 m) Foundation Material - Sandy Gravel

24 mm

- 2019-11-19
- D. Back
- V. Severance

ATTACMENT 10 DIVERSION STRUCTURE

Attachment 10.1 Stability Analysis Design Memo

Preliminary Design Memo

Internal Design Team Use Only

Alberta Transportation SR-1 Project Diversion Structures Estimated Bedrock Design Parameters

Checked By: Dan Back

Calculated By: Vince Severance

Based on unconfined compressive strength testing performed on shale and sandstone bedrock samples from in the vicinity of the Diversion Structures.

Table 1 - Estimated Bedrock Strength Parameters - Diversion Structure

Bedrock Type	Percent Bedrock Type Below Bearing Elev.	Unconfined Compressive Strength (psi)	Estimated Basic Friction Angle	Cohesion (psf)
Shale	30	4940	29	4000
Mudstone	40	280	24	2000
Claystone	20	280	24	2000
Sandstone	10	3500	32	6000

Weighted Basic Friction Angle =	26.3 degrees	
Weighted Unconf. Comp. Strength =	2000 psi	
Recommended Preliminary Friction Angle =	26 degrees	(Normal Cases)
Recommended Prelim. UC Strength =	1800 psi	(Normal Cases)

References:Barton, Typical Values of Basic Friction Angle (1973).FMSM, Lock and Dam 10 DSSS Laboratory Testing on Shale (1999).ASTM D-5878, Rock Mass Rating System (2008).

August 8, 2016

Table 2 - Estimated Cross Bed Strength Parameters - Diversion Structures

	Percent	Unconfined	Hoek-Brown Coefficients			Estimated	Estimated
	Bedrock Type	Compressive Strongth	Mi Value	GSI Value	D Value	Cross Bed	Cross Bed
Bedrock Type	Bearing Elev.	(psi)	value	value	value	Angle	(psf)
Shale	30	4940	6	35	0.5	39.2	3212
Mudstone	40	280	3	30	0.5	12.0	718
Claystone	20	280	4	30	0.5	13.4	805
Sandstone	10	3500	13	55	0.5	50.5	5362

Weighted Cross Bed Friction Angle =	24.3 degrees
Weighted Cross Bed Cohesion =	1,948 psf

Recom. Prelim.Cross Bed Friction Angle =	24 degrees
Recom. Prelim. Cross Bed Cohesion =	1900 psi

References: Generalized Hoek-Brown Failure Criterion (2002).

Table 3 - Estimated Bearing Capacity of Intact Rock (with Cohesion) - Diversion Structures

	Percent		Estimated	Ultimate	Ultimate	Allowable	Allowable
	Bedrock Type		Basic	Bearing	Bearing	Bearing	Bearing
	Below	Cohesion	Friction	Capacity	Capacity	Capacity	Capacity
Bedrock Type	Bearing Elev.	(psf)	Angle	(psi)	(psf)	FS=3 <i>,</i> (psi)	FS=3, (psf)
Shale	30	4000	29	748	107,712	249	35,856
Mudstone	40	2000	24	363	52,272	121	17,424
Claystone	20	2000	24	363	52,272	121	17,424
Sandstone	10	6000	32	1172	168,768	391	56,304

Weighted Ultimate Bearing Capacity =80,554psfWeighted Allowable Bearing Capacity =26,842psf (FS = 3.0)

Recommend Use of "Without Cohesion" Value Below

References: USACE EM 1110-1-2908 (Nov 1994). Equations 6.1 to 6-3 and Figure 6-1

Table 4 - Estimated Bearing Capacity of Intact Rock (without Cohesion) - Diversion Structures

	Percent		Estimated	Ultimate	Ultimate	Allowable	Allowable
	Bedrock Type		Basic	Bearing	Bearing	Bearing	Bearing
	Below	Cohesion	Friction	Capacity	Capacity	Capacity	Capacity
Bedrock Type	Bearing Elev.	(psf)	Angle	(psi)	(psf)	FS=3 <i>,</i> (psi)	FS=3, (psf)
Shale	30	0	29	381	54,864	127	18,288
Mudstone	40	0	24	219	31,536	73	10,512
Claystone	20	0	24	219	31,536	73	10,512
Sandstone	10	0	32	532	76,608	177	25,488
<u></u>							
Weighted Ultimate Bea	ring Capacity =	43,042	psf				
Weighted Allowable Be	aring Capacity =	14,342	psf (FS = 3.0)				
Recommmended Ultim	40000	psf			1915	kPa	
Recommended Allowal	ble Bearing Capacity =	13000	psf (FS = 3.0)	(Normal Cas	es)	622	kPa
References: USACE EM 1110-1-2908 (Nov 1994). Equations 6.1 to 6-3 and Figure 6-1							

Attachment 10.2 Bedrock Design Parameters Memo

Preliminary Design Memo SR1 Diversion Structures

October 18, 2016

Calculated By: Vince Severance

Checked By: Dan Back

Internal Design Team Use Only

Alberta Transportation SR-1 Project

Diversion Structures

Top of Bedrock, Estimated Bearing Elevations and Bedrock Unit Weight

Rock testing results have been received and the Stantec Geotechnical Engineering Team has evaluated the information. The updated preliminary bedrock bearing elevations and unit weights are presented in Tables 1 and 2 below.

Seven boreholes (DS1 thru DS5, DS9 and, DS10) were advanced within the limits of Elbow River. The bedrock encountered within the Elbow River in the vicinity of the Diversion Structures consists of sedimentary sandstone, mudstone, shale, and claystone. The top of the bedrock surface typically consists of a layer of highly weathered, poor quality bedrock ranging in thickness from 0.88 m to 3.40 m.

Three boreholes (DS6, DS7A, and DS8) were drilled upon the river bluff approximately 23 m above the river bed. Top of bedrock was encountered approximately 14 m above the estimated bearing elevation in these borings.

Boring	Top of Bedrock Elevation (m)	Top of Estimated/Inferred Bearing Bedrock Elevation (m)	Bedrock Description at Estimated Bearing Elevation
DS1	1209.65	1208.77	Good Quality Gray Mudstone
DS2	1208.71	1207.71	Excellent Quality Gray Shale
DS3	1209.34	1207.24	Good Quality Gray Shale
DS4	1209.59	1207.19	Fair Quality Gray Shale
DS5	1210.00	1206.60	Excellent Quality Gray Mudstone
DS6	1219.20	1206.00	Fair Quality Mudstone
DS7A	1220.10	1208.05	Excellent Quality Sandstone
DS8	1221.01	1206.77	Fair Quality Gray Claystone
DS9	1208.21	1205.61	Fair Quality Gray Shale
DS10	1209.04	1207.04	Fair Quality Mudstone to Shale

Table 1 - SR1 Diversion Structure - Top of Bedrock and Estimated Bearing Elevations

Table 2 - SR1 Diversion Structure - Bedrock Unit Weight

Devine Core Dun		Sample	Unit Weight			Podrock Description
Boring	Boring Core Run		(kg/m ³)	(lb/ft ³)	(KN/m³)	Bedrock Description
FB6	RC10	1206.75	2562	159.9	25.12	Poor Quality Gray Sandstone
DC6	RC19	1207.93	2379	148.5	23.33	Fair Quality Gray Sandstone
DC6	RC20	1206.63	2428	151.6	23.81	Fair Quality Gray Sandstone
DC7A	RC6	1211.34	3059	191.0	30.00	Very Poor Quality Gray Siltstone
		Averages	2607	162.7	25.57	

Recommended Bedrock Unit Weight = 25 KN/m³

Attachment 10.3 Frost Depth Calculations

SR1 Stream Diversion and Embankment Dam Project **Project Frost Depth Determination**

November 23, 2016	Calculated By:	J. Curd
Proj No. 110773396	Checked By:	V. Severance
	Checked By:	J. Warners

Frost Depth Calculation Using Modified Berggren Equation

References: Canadian Foundation Engineering Manual, 4th Edition Canadian Climatic Normals 1981-2010 Springbank A Station Data

13.4.2 Simplified Solutions for Maximum Prost Penetration Neglecting Frost Heave

Frost penetration is proportional to the square root of time for a step change in ground surface temperature. The most useful form of the relationship is the modified Berggren equation as described by Aldrich (1956), Sanger (1963) and Johnston (1981), and shown as Equation 13.3:

$$X = \lambda \sqrt{\frac{2k_f I_s}{L_s}}$$
(13.3)

where.

- X = depth of frost penetration
- I, = surface freezing index which can be estimated from the air freezine index times a ground surface interface factor "n"
- k, Ĺ, Thermal conductivity of the frozen soil
- = Volumetric latent heat of the soil
- A dimensionless coefficient (Figure 13.8)

Average Dry Density and Water Content of Lean Clay Till Soils Encountered Between DC1 and DC12:

<u>Dry Density</u>	¥ d =	1491	kg/m ³	= _	1.491	metric ton/m ³	(93.1 pcf)
Gravimetric Water Content	w =	13.70	_Percent	=	0.137	(fraction)	
<u>Volumetric Latent Heat of</u> <u>Soil</u>	L	$\gamma_s = \gamma$	v _d wL		<u>Eqn. 13.6</u>		
<u>Latent Heat of Fusion of</u> <u>Water</u>	L = L _s =	334 (1491 kg/	_kJ/kg /m ³) x (0.13)	7) x (334 kJ	/kg)		
Latent Heat of Fusion of Water	L _s =	68,225	kJ/m ³				(1831 BTU/ft ³)
Thermal Conductivity of Frozen Fine Grained Soil	k _f =	1.10	(W/m K)	(Figu	re 13.7)	(1 W = 1 J/	sec)

k _f =	95.04	(KJ/day per m K)

<u>n-Factor</u>	n =	1.0	(From Table 13	.2)	
Mean Freezing Index	I _m =	1700	°C - Days	(Station Data)	
<u>Mean Annual Air Temp</u>	MAAT =	3.1	°C	(Station Data)	(37.58 °F)
Freezing Days	<i>t</i> =	64	days	(Station Data)	
Volumetric Heat Capacity of Frozen Soil	$C = \gamma$	$d(C_s + C_s)$	$C_i w$)	<u>Eqn. 13.7</u>	
Specific Heat of Dry Soil	C _s =	0.71	KJ/kg °C	<u>Eqn. 13.7</u>	
Specific Heat of Ice	C _i =	2.1	KJ/kg °C	<u>Eqn. 13.7</u>	
	C =	(1491 kg/	′m³) x [0.71KJ/k	g °C + (2.1KJ/kg °C) x	: (0.137)]
Volumetric Heat Capacity of Frozen Soil	C =	1487.6	KJ/kg °C		
Design Freezing Index	$I_{d} = 10$	00+1.29	I_m	<u>Eqn. 13.4</u>	
Mean Freezing Index	I _m =	n/a	°C - Days	(Station Data)	
Design Freezing Index	I _d =	1700	°C - Days	(50 yr return char	t)
	I _s =	n I _d	= 1.0 (1,700)		
Surface Freezing Index	I _s =	1700.0	Deg. Days		
	β =	0.12	$\beta = \frac{MAAT}{I_s}$	$\frac{(3.1 ^{\circ}\text{C}) \times (64)}{(1,700 \text{deg. C})}$	<u>days)</u> C days)
	μ=	0.58	$\mu = \frac{C*}{Ls}$	<u>I _s</u> (1,487.6 KJ/kg °C) (68,225 kJ/r	<u>C) x (1,700 Deg. Days)</u> n ³) x (64 days)
	λ =	0.90	(From Fig. 1	3.8)	
<u>Frost Depth:</u>	$x = \lambda $	$\frac{2k_f I_s}{L_s}$	<u>Eqn. 13.3</u> (0.90) x [(2 x 1.	10 W/m K * 3.6 x 24 x 1	450.5°C day) / 68225 kJį
	x =	1.96	meters		

CANADIAN FOUNDATION ENGINEERING MANUAL 4th EDITION

CANADIAN GEOTECHNICAL SOCIETY 2006

Frost Action

13 Frost Action

13.1 Introduction

The Canadian climate results in freezing of the near-surface ground for several months each winter almost everywhere in Canada. The depth of seasonal frost penetration ranges from minimal to several meters, depending upon local climate, soil conditions and snow cover. Ground freezing frequently results in volumetric expansion of the soil which causes heaving of structures located above or adjacent to the freezing soil. Thaw during the following spring will release the excess water, usually causing loss of strength or complete collapse of the soil structure. This natural seasonal process can be very damaging to infrastructure, such as roads and buried pipelines, and may also cause serious problems for buildings (Crawford, 1968; Penner and Crawford, 1983).

This chapter provides a description of the phenomenon of frost heave, its causes and a brief summary of current predictive capabilities. Guidance is provided for simplified prediction of frost penetration and selection of mitigative design measures. The comments are not intended to deal with structures on a permafrost foundation. A thorough understanding of the nature and distribution of frozen soil is required to predict soil behaviour in permafrost regions. The reader is referred to a comprehensive treatment of this more complex topic such as found in Brown (1970), Andersland and Anderson (1978), Johnston (1981) and Andersland and Ladanyi (2004).

13.2 Ice Segregation in Freezing Soil

Water in soil pores begins to freeze as the temperature is lowered through 0°C. Figure 13.1 illustrates the progressive reduction of unfrozen water content as the relative proportions of water and ice change at sub-zero temperatures for sand, silt and clay. Continued formation of ice in the soil pores at progressively decreasing temperatures confines the remaining water to progressively smaller pore spaces. A pressure differential between the ice and water phases draws water from the unfrozen soil into the freezing soil. Fine-grained soils, which freeze over a broader range of temperature, are particularly susceptible to moisture migration along a pressure gradient, resulting in growth of ice lenses. The resulting heave rate and magnitude depend upon soil type, overburden pressure, groundwater conditions, freezing rate, and other factors. The extent of ice lensing that can occur in a clay soil is illustrated in Figure 13.2.

Where restraint in the form of a building is present, heaving pressures develop that may or may not be able to overcome the restraint. Heaving pressures may be very high, depending upon the restraint offered by the surrounding structure and soil; values equivalent to 1800 kPa were measured on a 300 mm diameter plate (Penner and Gold, 1971).

FIGURE 13.1 Unfrozen water content for a range of frozen soils (after Williams and Smith, 1989)

FIGURE 13.2 Sample of frozen clay showing ice segregation

The rate of heaving in a frost susceptible soil is limited by the rate of heat extraction from the freezing fringe where water is migrating to feed growing ice lenses. This complex heat and moisture flow phenomenon is normally uncoupled to simplify engineering predictions. Penetration of the freezing isotherm with time and temperature is predicted first by ground thermal analyses without consideration to the impact of moisture redistribution and ice lensing. The predicted extent of frost penetration and knowledge of the thermal gradients that exist within the frozen soil are then used as inputs for prediction of heave magnitudes due to ice segregation.

Engineering methods for predicting ground thermal conditions and frost heave have evolved significantly in the past decade such that practical solution techniques are now available. The remainder of this chapter summarizes current practice in this evolving field together with some practical considerations for mitigating frost heave damage.

13.3 Prediction of Frost Heave Rate

13.3.1 Ice Segregation Models

Several hydrodynamic models have been developed to express the coupled heat and moisture flow that cause frost heave. These models have been reviewed by Nixon (1987, 1991) to evaluate their applicability for practical engineering predictions.

Ice lenses grow within the frozen fringe where the temperature is less than 0°C (Miller, 1978). The temperature of the growing ice lens is related to the overburden pressure (Konrad & Morgenstern, 1982). Ice also forms in the larger pores between the active ice lens and the 0°C isotherm, requiring water to flow through the fringe of partially frozen soil to feed the growing lens. The rate of lens growth is dependent upon the finite hydraulic conductivity of the partially frozen fringe and the rate of heat extraction at the ice lens. All hydrodynamic models therefore relate the velocity of water through the freezing fringe to the temperature gradient, and to the permeability of the partially frozen soil. The heave rate can be computed from the rate of change of the velocity of water in the frozen soil.

A practical method for predicting frost heave magnitude for geotechnical engineering applications was developed by Konrad and Morgenstern (1980). Their semi-empirical formulation does not rely on measurement of the permeability of frozen soils or other physical parameters that characterize the movement of water through the freezing fringe. They relate the water velocity directly to the thermal gradient in the frozen soil. The constant of proportionality is termed the segregation potential (SP). The SP parameter is dependent upon overburden pressure but is considered to be independent of the rate of cooling in the freezing fringe at low cooling rates. The SP parameter must be determined from a series of step temperature freezing tests carried out at various overburden pressures. The tests must reasonably simulate the freezing rates or thermal gradients expected in the field.

The heave rate (dh/dt) under field conditions can be predicted from:

$$dh/dt = SP G_t \div 0.09 \ n \ dX/dt \tag{13.1}$$

where

SP	is the segregation potential determined from freezing tests
G_{f}	is the thermal gradient in the frozen soil at the freezing fringe, determined from geothermal
1	simulations
dX/dt	is the rate of advance of the frost front determined from geothermal simulations,
n	is the soil porosity reduced to account for the percentage of in-situ porewater that remains frozen
	within the anticipated range of ground temperatures.

A summary of published data relating the SP parameter to overburden pressure for various soils was presented by Nixon (1987), and is shown in Figure 13.3.

FIGURE 13.3 Published segregation potential (SP) parameter data (after Nixon, 1987)

13.3.2 Frost Susceptibility

Frost susceptibility of soils refers to the propensity of the soil to grow ice lenses and heave during freezing. At present, there are no precise criteria for classifying soils according to their frost susceptibility. A common guideline, developed by Casagrande (1932) based on observation and experience, relates frost susceptibility of soils to the percentage of fine fraction less than 0.02 mm.

The Casagrande guide has been extended by the U.S. Corps of Engineers to a widely used classification system, shown in Table 13.1. Soils are listed in four categories, F1 to F4, in approximate increasing order of frost susceptibility and loss of strength during thaw.

Where frost susceptibility and heave are critical parameters in foundation design, laboratory frost heave testing should be carried out. There are no current standards for heave tests; thus, it is important to develop a test program that meets the requirements of the project. This may range from simple confirmation of frost susceptibility and heave rate to determination of specific parameters such as segregation potential (SP) that can be used in a frost heave prediction model.

Frost heave tests are carried out in an insulated freezing cell where precise control can be maintained over temperatures. A sub-zero temperature is applied to the upper or lower sample cap. The other end of the sample may be uncontrolled, insulated or maintained at some positive temperature. The end temperatures might be controlled either as a step temperature change or a time-dependant "ramped" temperature change. The ramped temperature change is chosen if a near-constant freezing rate is desired. The volume of free water drawn into the sample at the unfrozen end cap is measured with time and related to the volumetric increase or sample heave rate. An interpretation of frost heave test data in terms of segregation potential is described by Konrad and Morgenstern (1981).

Frost Group	Soil Type	Percentage finer than 0.02 mm, by weight	Typical soil types Under Unified Soil Classification System
F1	Gravelly soils	3 to 10	GW, GP, GW-GM, GP-GM
F2	a) Gravelly soils	10 to 20	GM, GW-GM, GP-GM
	b) Sands	3 to 15	SW, SP, SM, SW-SM, SP-SM
F3	a) Gravelly soils	>20	GM, GC
	b) Sands, except very fine silty sands	>15	SM, SC
<u>.</u>	c) Clays, PI>12	*-	CL, CH
F4	a) All silts	~~	ML, MH
	b) Very fine silty sands	>15	SM
• • • • • • • • • • • • • • • • •	c) Clays, PI <12		CL, CL-ML
	d) Varved clays and other fined- grained, banded sediments		CL and ML; CL, ML, and SM; Cl, CH, and ML; CL, CH, ML, and SM

TABLE 13.1 U.S. Corps of Engineers Frost Design Soil Classification

13.3.3 SP from Soil Index Properties

A comprehensive study conducted by Konrad (1999) established that the segregation potential parameter (SP) of saturated fine-grained soils can be adequately related to a few basic soil index properties. For a soil freezing under zero applied overburden pressure, a reference value of the segregation potential, SP₀, is best empirically related to the mean grain size of the fines fraction (<0.075 mm), d_{50} (FF), the specific surface area of the fines fraction, S_s, and the ratio of water content to the liquid limit, w/w_L as illustrated by Figure 13.4. For a ratio w/w_L close to 0.7, the empirical relationship for clayey silts is:

$$SP_{a}S_{a} = [116 - 75 \log d_{so}(FF)] \cdot 10^{3} \text{ mm}^{4} / (^{\circ}C.s.g)$$
(13.2)

where

 $d_{so}(FF)$ is expressed in μm .

In well-graded soils or gap-graded soils, SP is directly proportional to the relative fines content, i.e. the ratio of actual fines and the amount of fines needed to fill all the pore space between the coarser-grained particles. Details on a complete frost-susceptibility assessment methodology is given in Konrad (1999).

Frost susceptibility assessment was recently extended to non-clay soils such as tills and crushed rock by Konrad (2005).

FIGURE 13.4 Frost susceptibility assessment was recently extended to non-clay soils such as tills and crushed rock by Konrad (2005)

13.4 Frost Penetration Prediction

13.4.1 Ground Thermal Analyses

The dominant mechanism of heat transfer in soils is thermal conduction. Heat flow in the ground follows Fourier's Law of conduction with a term to account for the release or absorption of latent heat of water during phase change. Heat transfer by mechanisms other than conduction may only be a factor in porous soils where groundwater flow is occurring. Water velocities generally must exceed 10^{-4} cm/s before convective heat flow starts to become significant.

Analytical methods, or closed-form mathematical solutions of the well-known Laplace equation, can provide an approximation of seasonal frost penetration for simple conditions. Prediction of transient ground temperature changes for problems with complex stratigraphy and variable boundary conditions requires solution by numerical methods. Numerical models in common use are either finite difference or finite element solutions. A comprehensive review of numerical methods for ground thermal regime calculations has been provided by Goodrich (1982). Two numerical models in common use in Canada are described by Nixon (1983) and by Hwang (1976).

Numerical methods are required for geotechnical design calculations other than simple prediction of the maximum depth of frost penetration. The usual range of problems involves layered systems, temperature-dependent thermal properties, and time-dependent boundary conditions such as ground surface heat exchange. A realistic simulation of the temperature-dependent liberation or absorption of latent heat during freezing or thawing, associated with the changes in unfrozen water content shown in Figure 13.1, is also an essential feature in any numerical simulation.
Numerical methods are very flexible and can reasonably simulate geotechnical complexities in either one or two dimensions. However, they require familiarity with an appropriate computer program and experience deriving input parameters. The results are normally expressed as temperature isotherms on a two-dimensional plot for various times of interest to the designer. The results can also be expressed as a propagation of the freezing isotherm with time or as a transient thermal gradient which may be input to a subsequent prediction of frost heave in an uncoupled analysis of heat and moisture flow.

13.4.2 Simplified Solutions for Maximum Frost Penetration Neglecting Frost Heave

Frost penetration is proportional to the square root of time for a step change in ground surface temperature. The most useful form of the relationship is the modified Berggren equation as described by Aldrich (1956), Sanger (1963) and Johnston (1981), and shown as Equation 13.3:

$$X = \lambda \sqrt{\frac{2k_f I_s}{L_s}}$$
(13.3)

where

X = depth of frost penetration

 $I_s =$ surface freezing index which can be estimated from the air freezine index times a ground surface interface factor "n"

 k_r = Thermal conductivity of the frozen soil

= Volumetric latent heat of the soil

= A dimensionless coefficient (Figure 13.8)

The surface freezing index expresses the average negative surface temperature and the time over which it applies. The empirical n-factor can be used to determine surface freezing index from the air-freezing index. Published n-factors for various types of surfaces are shown in Table 13.2. The air-freezing index is a summation of the daily mean degree-days for the freezing period. A long-term mean (30 year) air freezing index can be estimated from monthly mean air temperature data published by Environment Canada. Typical variation in air freezing index within Canada is shown in Figure 13.5.

TABLE 13.2 Values of n-Factors for Different Surfaces (from Johnston, 1981)

Surface type	Freezing-n
Spruce trees, brush, moss over peat - soil surface	0.29 (under snow)
As above with trees cleared - soil surface	0.25 (under snow)
Turf	0.5 (under snow)
Snow	1.0
Gravel (most probable range)	$0.6 - 1.0 \\ (0.9 - 0.95)$
Asphalt pavement	0.29 - 1.0 or greater
(most probable range)	(0.9 – 0.95)
Concrete pavement	0.25 - 0.95
(most probable range)	(0.7 – 0.9)

Winter air temperatures vary substantially from year to year everywhere in Canada. Therefore, it is seldom appropriate to use the long-term mean air-freezing index for design purposes.

Common practice is to choose some return period or recurrence interval and to estimate the most severe winter likely to occur within that period. The US Corps of Engineers method, as described by Linell et al. (1963), is to use either the most severe winter of the previous ten years or the average of the three most severe winters in the previous 30 years.

A simple relationship between design freezing index, taken as the coldest winter over the last 10-year period, and mean freezing index was developed by Horn (1987) by curve fitting data for 20 cities across Canada. The relationship is given as:

$$I_{d} = 100 + 1.29 I_{m}$$
(13.4)

where

ľ

= Design Freezing Index (°C-days)

= Mean Freezing Index (°C-days)

FIGURE 13.6 Thermal conductivity of frozen coarse-grained soil (after Kersten, 1949)

This relationship is recommended for the design air freezing index in the absence of an in-depth evaluation of historical climate data. The surface freezing index for the modified Berggren equation then becomes:

$$I_{s} = n I_{d} \tag{13.5}$$

The thermal conductivity of soil can be estimated from relationships to soil index properties. The relationships developed by Kersten (1949) for frozen coarse and fine-grained soils are shown in Figures 13.6 and 13.7, respectively. Frost penetration depths based on Kersten's relationships for coarse-grained soils may under predict frost depth significantly for unsaturated soils.

The thermal conductivity of coarse-grained soils is also dependent on soil mineralogy. The thermal conductivity of quartz is about four times that of other common soil minerals. The Kersten correlation is only appropriate for sands that have neither a very low nor a very high fraction of quartz particles. A more thorough treatment of soil thermal properties and their variability with index properties and soil constituents has been provided by Farouki (1986). A generalized thermal conductivity model for soils and construction materials is also provided by Côté and Konrad (2005).

FIGURE 13.6 Thermal conductivity of frozen coarse-grained soil (after Kersten, 1949)

FIGURE 13.7 Thermal conductivity of frozen fine grained soil (after Kersten, 1949)

The volumetric latent heat term of the soil (L_5) can be estimated from the relationship:

$$L_s = \gamma_d w L \tag{13.6}$$

where

 $\gamma_{\rm d}$ ls the dry unit weight of the soil

w Is the gravimetric water content of the soil expressed as a fraction

L Is the latent heat of fusion of water to ice which can be taken as 334 kJ/kg.

The above relationship for latent heat of the soil, when used in the modified Berggren equation, assumes that all of the water in the soil freezes at 0°C. This will result in under prediction of the freezing depth in fine-grained soils which freeze over a range of temperature, as described in Section 13.2. Alternatively, the volumetric latent heat term can be corrected to account for unfrozen water using the relationships of Figure 13.1 if an average frozen soil temperature can be estimated.

Lambda (λ) is a dimensionless coefficient that is a function of the temperature gradient, the volumetric latent heat of the soil and the volumetric heat capacity of the soil. The coefficient can be determined from a relationship developed by Sanger (1963) shown in Figure 13.8. The dimensionless parameters thermal ratio (β) and fusion parameter (μ) can be determined from:

$$\beta = \frac{MAAT \quad t}{I_s} \quad \text{and} \quad \mu = \frac{CI_s}{Lt}$$

where

MAAT Is the mean annual air temperature (°C) for the site determined from Canadian Climate Normals
 t Is the duration of the freezing period (days)
 Is the ground surface freezing index (°C-days)
 C Is the volumetric heat capacity of the frozen soil

$$C = \gamma_d \left(C_s + C_j w \right) \tag{13.7}$$

where

 $C_{\rm s}$ Is the specific heat of dry soil which can be taken as 0.71 kJ/kg °C

 C_i Is the specific heat of ice which can be taken as 2.1 kJ/kg °C

w Is the gravimetric water content of the soil

For many practical field freezing situations, λ is close to unity. Omitting it from the freezing equation results in a slight over prediction of frost depth.

Carlor and

불

ş

FIGURE 13.8 Lambda (λ) coefficient for modified Berggren equation (after Sanger, 1963)

13.4.3 Frost Susceptible Soils

While frost depth in non-frost susceptible soils is readily estimated with the modified Berggren equation, the calculation of frost depth in frost susceptible soils must account for the release of latent heat associated with the formation of ice lenses.

An extension to Stefan's approach yields enough accuracy for practical considerations. Using the segregation potential to quantify the rate of ice formation with Stefan's assumptions gives the modified Stefan equation (Konrad, 2000):

$$X = \sqrt{\frac{2(k_f - SP.L)I_s}{L_s}}$$
(13.8)

where

- SP Is the value of the segregation potential in m²/s.°C
- L^{+} Is the volumetric latent heat of water, i.e. 334 MJ/m³
- L_s Is the latent heat of soil (Equation 13.6)
- k_f Is the thermal conductivity of the frozen soil from Kersten's relationship given in Figures 13.6 and 13.7
- $I_{\rm c}$ Is the ground surface freezing index (°C days)

13.5 Frost Action and Foundations

The conventional approach for protection of building foundations against frost action is to locate shallow foundations at a depth greater than the design depth of frost penetration. The modified Berggren equation, described in Section 13.4.2, may be used to determine the design depth of frost penetration. This procedure can be used to establish the minimum depth of soil cover over an exterior footing. The depth of perimeter foundation walls for heated structures may be reduced somewhat to account for heat loss from the building. Alternatively, foundation depth for protection against frost action may be specified in local building codes or is frequently determined by local

▼ Normals Data

a,

The minimum number of years used to calculate these Normals is indicated by a <u>code</u> for each element. A "+" beside an extreme date indicates that this date is the first occurrence of the extreme value. Values and dates in **bold** indicate all-time extremes for the location.

•

Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

SPRINGE ALBE	RTA	
Latitude:	51°06′11.000" N	
Longitude:	114°22'28.000" W	
Elevation:	1,200.90 m	
<u>Climate ID</u> :	303F0PP	
WMO ID:	71860	
TC ID:	YBW	

▼ Temperature

					1	femper	<u>ature</u>							
	Jan	Feb	Mar	Àpr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Daily Average (°C)	-8.2	-6.7	-2.7	3.4	8.1	12.1	14.8	13.7	9.5	3.9	-3.8	-7.0	3.1	<u>C</u>
Standard Deviation	4.2	3.5	3.7	1.5	1.5	1.0	1.6	1.4	1.5	1.6	3.7	4.0	1.0	<u>C</u>
Daily Maximum (°C)	-1.8	-0.0	3.9	10.5	15.3	18.8	22.2	21.2	17.0	11.0	2.3	-0.6	10.0	<u>C</u>
Daily Minimum (°C)	-14.5	-13.4	-9.2	-3.8	0.9	5.4	7.4	6.2	1.9	-3.3	-9.9	-13.3	-3.8	<u>C</u>
Extreme Maximum (°C)	16.5	22.1	23.8	26.5	33.0	31.0	33.8	32,1	30.6	27.1	20.4	17. 9		
Date (yyyy/dd)	2003/ 07	1992/ 27	2004/ 30	1987/ 28	1986/ 30	1986/ 01	2002/ 13	2003/ 01	1998/ 07	1991/ 11	1999/ 07	1988/ 01		

Days with Despinentarjemperature

	Jahan	Fellab	MMar	Filippi	Maloyp	n Julilay	املالا	Aildig		e p@@ c	Nelkow	Dillanc	Year	Code
Extreme Minimum (°C)	-42.8	-41.6	-36.3	-21.7	-14.1	-6.1	-0.1	-5.9	-9.8	-29.1	-36.5	-41.6		
Date (yyyy/dd)	1997/ 25	1989/ 03	1989/ 01	2002/ 02	2002/ 08	2000/ 19	2002/ 02	1992/ 25	2000/ 23	1991/ 28	1996/ 21	1996/ 29		

Precipitation

▼ Days with Maximum Temperature

			D	ays w	ith Ma	ximur	n Tem	peratu	ire						
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
t durition	<= 0 °C	14.5	12.3	8.5	2.2	0.33	0	0	0	0.05	1.9	9.8	14,4	64	<u>C</u>
of frighy	> 0 °C	16.5	15.9	22.6	27.8	30.7	30	31	31	30	29.1	20.2	16.6	301.3	c
Portour	> 10 °C	1.6	2.9	7.2	16.8	25.7	29.1	30.9	30	25.6	17.9	4.5	1.9	193.9	<u>C</u>
	> 20 °C	0	0.09	0.09	1.6	7	12	21.2	19	10.5	3	0.04	0	74.3	Ç
	> 30 °C	0	0	0	0	0	0.09	1.2	0.70	0.05	0	0	0	2.1	C
	> 35 °C	0	0	0	0	0	0	0	0	0	0	0	0	0	C

- ► Days with Minimum Temperature
- Days with Rainfall
- Days With Snowfall
- Days with Precipitation
- Days with Snow Depth
- ► Wind

▼ Degree Days

						Degree	Days							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Above 24 °C	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Above 18 °C	0	0	0	0	0	0.9	7.8	2.6	0	0	0	0	11.3	C
Above 15 °C	0	0	0	0	1.7	9.1	34.9	22.8	3.1	0.4	0	0	72,1	c

1. 6. - 1

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Code
Above 10 °C	• 0	0.1	0.2	2.9	25.7	75	151.1	121.5	41.9	7	0	0	425.4	c
Above 5 °C	8.0	2.8	6.6	31.4	112.6	212.8	303.9	268.7	142.4	46.9	5.3	1	1,135	<u>C</u>
Above 0 °C	13	18,3	47.6	119.6	251	362.8	458,8	423,1	284	145	33	14.5	2170.8	<u>C</u>
Below 0 °C	274.4	213.1	125.5	23.5	2.4	0	0	0	0.4	24.3	147.6	235.8	1046.9	<u>c</u>
Below 5 °C	417.1	338.6	239.4	85.3	19	0	0.1	0.6	8.8	81.2	269.9	377.3	1837.2	ç
Below 10 °C	571.3	477,1	388.1	206.9	87.1	12.2	2.3	8.4	58.3	196.3	414.6	531.3	2953.8	C
Below 15 °C	726,3	618,2	542.9	354	218.1	96.3	41,1	64.7	169.5	344.7	564.6	686.3	4426.5	C
Below 18 °C	819.3	702.8	635.9	444	309.4	178.1	106.9	137.4	256.4	437.3	654.6	779.3	5461.4	<u>C</u>

Degree Days

Humidex

- Wind Chill
- Humidity
- Frost-Free

Legend

- A = WMO "3 and 5 rule" (i.e. no more than 3 consecutive and no more than 5 total missing for either temperature or precipitation)
- B = At least 25 years
- C = At least 20 years
- D = At least 15 years

Station / Element Metadata

Statistics listed below are provided as a guide to determine the validity of Normals and Extremes calculations. For example, a station with 30 years of record between 1981 and 2010 with no missing years would be a more reliable normal than a station with 15 years of record and 2 missing years. Less than 100% possible observations indicates that out of the total number of observations used, some records were missing.

SPRINGBANK A

Province	AB	
Latitude (dd mm):	51 06 N	
Country	CAN	

Blank Page

, ;

- 65. Calculation models for settlement analyses are given in the CFEM.^[1] It is important to keep in mind that differential settlement of isolated footings will always occur because of the natural variability of soils.
- 66. In situations where calculation models are not available or are considered to be unnecessary, limit states may be avoided by the use of prescriptive measures. Prescriptive measures may be used, for example, to ensure durability against frost action and chemical or biological attack. These measures involve conventional and generally conservative details in the design, and attention to specification and control of materials, workmanship, protection and maintenance procedures.

Frost Penetration

67. The best assessment of frost penetration in a particular locality is local experience. In the absence of local experience, however, daily air temperature measurements can be used to estimate the combined effects of both depth and duration of freezing. The cumulative total of the difference between daily mean air temperatures and the freezing point is known as the "Freezing Index," which is expressed in Celsius degree-days. Freezing index values for a large number of weather stations in Canada are available from Environment Canada at www.climate.services@ec.gc.ca. Figure K-4 shows the average freezing index for regions of Canada for the period 1978-2007 and Figure K-5 shows the 50-year-return-period freezing index for regions of Canada for the period 1958-2007. The contour lines in Figure K-5 were estimated by fitting the 2-parameter Weibull distribution to the annual average freezing index values for each location (see the example in Reference [26]). Information on how the "Freezing Index" can be used to estimate depth of frost penetration is given in CFEM^[1] and References [27] to [30].

Figure K-4 Annual average freezing index (C degree-days) based on the period 1978-2007

Commentary K

Figure K-5 50-year-return-period freezing index (C degree-days) based on the period 1958-2007

Insulated Shallow Foundations

- **68.** Lightweight plastic insulation has been used to reduce the loss of ground heat and thereby reduce the depth of frost penetration. Insulation should be used for this purpose only after careful examination of the pertinent conditions and with a thorough understanding of its effect on the temperature at the soil-foundation interface.^[30] Insulation is of particular benefit in the design of unheated buildings such as warehouses, garages and refrigerated buildings. It is also used to restrict the depth of frost penetration beneath artificial ice surfaces.
- **69.** Insulation with relatively high compressive strengths can be obtained, so that slabs of these materials can be placed directly below the bearing surfaces of foundations. Substantial economic advantages may accrue where such designs are used, because foundations can be located closer to the ground surface, thereby reducing the costs of providing granular fill to replace frost-susceptible soil.^[30] Design guidance is also given in the CFEM.^[1]

Deep Foundations

General

70. A deep foundation is a foundation unit that provides support for a building by transferring loads either by end-bearing to a soil or rock at considerable depth below the building, or by adhesion or

Attachment 10.4 Debris Barrier Foundation Design Calculations

SPRINGBANK OFF-STREAM STORAGE PROJECT STRUCTURAL DESIGN REPORT

Appendix D, Attachment 1: SUPPORT A FOUNDATION CALCULATIONS November 27, 2019

ATTACHMENT 10.4.1: SUPPORT A FOUNDATION CALCULATIONS

Date: 10/28/2019 Date: 10/28/2019

Calculation: Debris Barrier Uplift Capacity - Section D - Support A - Case 1 - 24 inch - R6

2. FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018) 3. Stantec Geotechnical Interpretive Report (Stantec, 2017)

^{1.} Canadian Bridge Design Code (CHBDC, 2014)

C 2. FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)

^{1.} Canadian Bridge Design Code (CHBDC, 2014)

$\frac{1}{1} \frac{1}{1} \frac{1}$	
Vertical Load from Superstructure on Support A:	$H_{1_UN2} := 843 \ kN$
Horizontal Load from Superstructure on Support A:	$P_{1_UN2} := 111 \ kN$
Moment from Superstructure on Support A:	$M_{1_UN2} \coloneqq 0 \ kN \cdot m$
Axial (Vertical) Force At Bedrock for Support A:	
Bearing Capacity Analyses:	
Length of Pile below Bedrock:	$L_{Pile} \coloneqq \begin{bmatrix} 4 \\ 6 \\ 8 \\ 10 \end{bmatrix} m$
Pile Diameter	$B \coloneqq 24 \ in = 609.6 \ mm$
Area of Pile:	$A_p \coloneqq \frac{B^2 \cdot \boldsymbol{\pi}}{4} = 0.292 \ \boldsymbol{m}^2$
Perimeter of pile:	$p \coloneqq B \cdot \pi = 1.92 \ m$
Assumed depth of innefective bedrock:	$D_{ineffective} \coloneqq 1 \ B = 0.61 \ m$

References:

Canadian Bridge Design Code (CHBDC, 2014)
 FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)
 Stantec Geotechnical Interpretive Report (Stantec, 2017)

Limit state

Tension, Au

Assumed compression resistance factor for

Compression, du

Assumed pile head elevation:

Application

Deep foundations

ect - SR1 fection D - Support	Ca Ch A - Case 1 - 24 inch	lculated ecked b - R6	by: J. Keer y: H. Karim	ney Date: pour Date:	1 1
<u>Material/Subsu</u>	rface Parameter	<mark>s</mark> Pile	$e_{elv.} \coloneqq 120$	8.00 <i>m</i>	
Table 6.2 (Concluded)				
	Test	Degre	e of under	standing	
state	Method/Model	Low	Typical	High	
ession, Au	Static analysis	0.35	0.40	0.45	
	Static test	0.50	0.60	0.70	
	Dynamic analysis	0.35	0.40	0.45	
	Dynamic test	0.45	0.50	0.55	
, Au	Static analysis	0.20	0.30	0.40	
	Static test	0.40	0.50	0.60	
nce factor for be	drock from Table 6	5.2 (CH	BDC,	$\phi_{au} \coloneqq 0.4$	
version Structure – Cr	ross Bed Shear Strength	Parameter	15		
ypical Hoek-Bro	wn Coefficients				

20)14):											``			' 9	u	
	Í																

Table 2. SR1 Diversion Structure -

	Percent	Typical	Hoek-B	rown Coo	ficients		
Boring	Bedrock Type Below Bearing	Unconfined Compressive Strength MPa (psi)	Mi Value	GSI Value	D Value	Estimated Cross Bed Friction Angle	Estimated Cross Bed Cohesion kPa (psf)
Shale	30	20.7	6	35	0.5	35.1	124
Mudstone	40	5.5	4	30	0.5	19.8	59
Claystone	20	17.2	4	30	0.5	28.2	93
Sandstone	10	24.1	13	55	0.5	50.5	257

Geologic Strength Index for Top ~15 Meters of Mudstone: GSI = 30

Approximate RQD of Mudstone:

 $RQD \coloneqq 20\%$

Atmospheric Pressure:

 $p_a\!\coloneqq\!0.101325~\textit{MPa}$

Assumed Unconfined Compressive Strength of Mudstone: $q_{u_mudstone} \coloneqq 5.5 \ MPa$

Estimated Cross Bed Friction Angle (Weighted Average):

ф'	:=	35	.1	dec	• 3	0%	+	19.8	8 d	ea	• 4()%	+2	8.2	de	ea •	20°	%+	- 50	.5	de	.	10%	6=	29	.14	dec	7	
Ύ	p		-		Ŭ	0,0	/		-	-9	- `		. –			9						,	,	v				,	

1. Canadian Bridge Design Code (CHBDC, 2014)

2. FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)

3. Stantec Geotechnical Interpretive Report (Stantec, 2017) 4. Principles of Foundation Engineering, Braja Das, (Das, 2011)

Project: Springbank Off-Stream Storage Project - SR1 Project Number: 110773396 Calculation:

10/28/2019 10/28/2019

TABLE 10-3 SIDE RI	ESISTANCE REDUCTION Joint Modifica	fACTOR FOR CAVING ROCI	<u>د</u>
RQD (%)	Closed joints	Open or gauge-filled joints	
1(M)	100	A 85	
7()	0.85	0.55	
50	0.60	0.35	
30	0.50	0.50	
20	0.45	0.45	
Regression coefficient assumir (FHWA, 2018):	ng caving rock and open	or gouge-filled joints	$\alpha_E \coloneqq 0.45$
	Side Friction Ca	pacity	
Unit Side Friction Based on Ty Unconfined Compressive Strer	rpical $f_{SN_calcula}$ ngth:	$t_{ted} \coloneqq p_a \cdot \alpha_E \cdot \sqrt{rac{q_{u_mudstone}}{p_a}}$	=335.93 kPa
Limit Side Friction to Reasonal Meters	ble Values for Top 10	f_{SN_design} := 200 kPa	
			1.39
Length of Effective Bedrock:		$\Delta z\!\coloneqq\!L_{Pile}\!-\!D_{ineffective}\!=$	5.39 m
			7.39 9.39
Nominal Sida Pasistanca for P	odrocki	$D = - D \Lambda r f$	-1298.0
Norminal Side Resistance for B	eurock.	$R_{SN} \coloneqq \pi \cdot B \cdot \Delta z \cdot J_{SN_dest}$	$g_{gn} = 2004.05$
			$\begin{bmatrix} 2830.09\\ 3596.74 \end{bmatrix}$
		Γ.010	0.01
		213.	02
Factored Side Resistance for E	Bedrock:	$R_{\rm GF} := R_{\rm GN} \cdot \phi_{\rm eff} = 825.$	86 <i>kN</i>
		$103F 103N \varphi gu \qquad 1132.$	28
		1438.	7

Canadian Bridge Design Code (CHBDC, 2014)
 FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)
 Stantec Geotechnical Interpretive Report (Stantec, 2017)

kN

^{4.} Principles of Foundation Engineering, Braja Das, (Das, 2011)

alculation: Debris Barrier U	plift Capacity ·	- Section D - Support A	- Case 1 - 24 inch - R6

End Bearing	Capacity	(Goodman, 1	<u>.980)</u>	
Reduce design bearing capacity for end l due to <i>Scale Effect</i> (Das 2011, Eq. 11.65	bearing 5):	$q_{u_design} \coloneqq$	$rac{q_{u_mudstone}}{5} =$	1100 kPa
Bearing capacity factor, N_{ϕ} :		$N_{\phi} \coloneqq an\left($	$45 \operatorname{\boldsymbol{deg}} + \frac{\phi'_p}{2}$	$)^{2} = 2.9$
Base Resistance Capacity (Goodman, 19	80): q _{p_G}	$c_{oodman} := q_{u_desig}$	$_{m} \cdot \left(N_{\phi} + 1 \right) =$	4288.04 kP e
Nominal Base Resistance (Goodman, 198	80): Q _{p_1}	$N_{Goodman} := q_{p_Goodman}$	$Goodman \cdot A_p =$	1251.52 kN
Factored Base Resistance (Goodman, 19	980): <mark>Q_{p_1}</mark>	$F_{Goodman} \coloneqq Q_{p_{l}}$	N_Goodman • ϕ_g	$u = 500.61 \ kl$
Case 1 (Controlling) Bearing Canaci	ity Check:			

 $H_{1_UN1} = 1361 \ kN$ Estimated Downward Force on Support A (Not Including Foundation Weight):

Resistance vs load check for Case 1 and various shaft lengths **assuming no scour**:

2. FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)
 3. Stantec Geotechnical Interpretive Report (Stantec, 2017)

^{1.} Canadian Bridge Design Code (CHBDC, 2014)

95.0 KJ/day per m K

 $D_{frost} = 2.0 \ \boldsymbol{m}$

1.96 m

ber: 110773396 Debris Barrier Uplift Capacity - Section D - Support A - (Checked by: H. Karimpo Case 1 - 24 inch - R6
Check for Uplift Capacity Against Adfreeze	<u>e:</u>
foost Depth Parameter	Value
Mean Annual Air Temperature (MAAT)	3.1 °C
Average Annual Duration of Freezing Period	64 days
Average Ground Surface Seesing Index	
Printing a crowne period a riddening mores	1,046.9 °C days
50 Year Return Design Freezing Index ¹	1.046.9 °C days 1.700 °C days

Calculated frost depth (Stantec, 2017):

Calculated Frost Depth

Thermal Conductivity of Fine Grained Soils (kg)

13.5.1 Adfreezing

Soil in contact with shallow foundations can freeze to the foundation, developing a substantial adfreeze bond. Backfill soil that is frost susceptible can heave and transmit uplift forces to the foundation. Spread footings normally have sufficient uplift resistance from their expanded base to resist heave, but the structural design of the wallfooting connection must be sufficient to transmit any load applied through adfreeze. Average adfreeze bond stresses, determined from field experiments, typically range from 65 kPa for fine-grained soils frozen to wood or concrete to 100 kPa for fine-grained soils frozen to steel (Penner, 1974). Design adfreeze bonds for saturated gravel frozen to steel piles can be estimated at 150 kPa (Penner and Goodrich, 1983). The most severe uplift conditions can occur where frost penetrates through frost stable gravel fill into highly frost susceptible soils surrounding a foundation. These conditions result in a heaving situation with maximum adfreeze bond stress and have been known to jack Hpiles driven to depths in the order of 13 m (Hayley, 1988).

It is good practice to backfill against foundations with non-frost susceptible soil. Provision should be made for drainage around the foundation perimeter, below the maximum depth of frost penetration. The granular backfill should be capped with less permeable soil and a surface grade provided to shed runoff before it enters the backfill.

Assume adfreeze bond stress to be at lower bound of a 2006):	average (CFEM, $f_{n_adfreeze}$:= 65 kPa
Design Assumption: Ratcheting of the foundation due drilled shaft (Support A).	to adfreeze will only apply to the
Tributary Length of Web Walls Parallel to Stream:	$L_{WebWallParallel} \coloneqq 2.5 \ m$
ASSUMED Length of Web Walls Perpendicular to Stream that is tributary to Support A:	$L_{WebWallPerpendicular}$:= 2.0 m

^{1.} Canadian Bridge Design Code (CHBDC, 2014)

^{3.} Stantec Geotechnical Interpretive Report (Stantec, 2017) 4. Principles of Foundation Engineering, Braja Das, (Das, 2011)

Project: Springbank Off-Stream Storage Project - SR1 Calculate Project Number: 110773396 Checked Calculation: Debris Barrier Uplift Capacity - Section D - Support A - Case 1 - 24 inch - R6

Approximate area of pile and web wall tributary t	o Support A that is subject to adfreeze:
$A_{frost} \coloneqq \left(L_{WebWallParallel} \bullet 2 + L_{WebW} \right)$	$allPerpendicular \cdot 2) \cdot D_{frost} = 18 m^2$
Calculated uplift force from adfreeze:	$F_{y_A_adfreeze} \coloneqq f_{n_adfreeze} \cdot A_{frost} = 1170 \ \mathbf{kN}$
Service Dead Load on Support A:	$DL_A := 239.74 \ kN$
Service Dead Load on Support B:	$DL_B := 101.49 \ kN$

Table 6.2 (Concluded)

		Test	Degree of understanding				
Application	Limit state	Method/Model	Low	Typical	Righ		
Deep foundations	Compression, d _{pr}	Static analysis	0.35	0.40	0.45		
		Static test.	0.50	0.60	0.70		
		Dynamic analysis	0.35	0.40	0.45		
		Dynamic test.	0.45	0.50	0.55		
	Tension, da.	Static analysis	0.20	0.30	0.40		
		Static test	0.40	0.50	0.60		
	Lateral, styre	Static analysis	0.45	0.50	0.55		
		Static test	0.45	0.50	0.55		
	Settlement or lateral	Static analysis	0.7	0.8	0.9		
	deflection, 4	Static test	0.8	0.9	1.0		

Assumed uplift resistance factor for Adfreeze from Table 6.2 (CHBDC, 2014): ϕ_{gu} := 0.4

Resistance vs load check for adfreeze and various shaft lengths:

$$L_{Pile} = \begin{bmatrix} 2\\ 4\\ 6\\ 8\\ 10 \end{bmatrix} \qquad RvsL := \frac{R_{SN} \cdot \phi_{gu} + DL_A}{F_{y_A_adfreeze}} = \begin{bmatrix} 0.39\\ 0.65\\ 0.91\\ 1.17\\ 1.43 \end{bmatrix}$$

Based on the Above Calculations, the Bearing Capacity for Foundation Lengths at or Greater than **8 Meters** and a Diameter of B = 0.61 m are Sufficient.

References:

1. Canadian Bridge Design Code (CHBDC, 2014)

2. FHWA-HIF-18-024, Federal Highway Administration, Sections 8 and 10. (FHWA, 2018)
 3. Stantec Geotechnical Interpretive Report (Stantec, 2017)

4. Principles of Foundation Engineering, Braja Das, (Das, 2011)

SPRINGBANK OFF-STREAM STORAGE PROJECT STRUCTURAL DESIGN REPORT

Appendix D, Attachment 2: SUPPORT A LPILE PRINTOUT November 27, 2019

ATTACHMENT 10.4.2: SUPPORT A LPILE PRINTOUT

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt LPile for Windows, Version 2019-11.001 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2019 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Stantec Consulting Ltd. Stantec Consulting Ltd. Serial Number of Security Device: 253581973 This copy of LPile is licensed for exclusive use by: STANTEC, Global License, Global Use of this program by any entity other than STANTEC, Global License, Global is a violation of the software license agreement. Files Used for Analysis _____ Path to file locations: \110773396\component_work\dams_diversion\geotechnical\analysis\Debris Barrier Foundations\Support A\ Name of input data file: SR1 - Debris Barrier - Support A - Service - 20191028 Revision.lp11 Name of output report file: SR1 - Debris Barrier - Support A - Service - 20191028 Revision.lp11 Name of plot output file: SR1 - Debris Barrier - Support A - Service - 20191028 Revision.lp11 Name of runtime message file: SR1 - Debris Barrier - Support A - Service - 20191028 Revision.lp11

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt Date and Time of Analysis _____ Date: October 28, 2019 Time: 0:47:38 Problem Title _____ Project Name: Springbank Off-Stream Storage Project - SR1 Job Number: 110773396 Client: Alberta Transportation Engineer: Jordan Keeney Description: Debris Barrier Support A Lateral Analysis _____ Program Options and Settings _____ Computational Options: - Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations: - International System Units (kilonewtons, meters, millimeters) Analysis Control Options: - Maximum number of iterations allowed 1000 = - Deflection tolerance for convergence = 2.5400E-07 m - Maximum allowable deflection = 2.5400 m - Number of pile increments 100 =

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined	=	1
Total length of pile	=	4.000 m
Depth of ground surface below top of pile	=	0.6090 m

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

Depth Below	Pile
Pile Head	Diameter
meters	millimeters
0.000	762.00
4,000	762,00
	Depth Below Pile Head meters 0.000 4.000

Input Structural Properties for Pile Sections:

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt Pile Section No. 1: Section 1 is a round drilled shaft, bored pile, or CIDH pile Length of section 4.000000 m = Shaft Diameter = 0.762000 m Shear capacity of section = 0.0000 kN _____ Ground Slope and Pile Batter Angles _____ Ground Slope Angle = 0.000 degrees 0.000 radians = = 0.000 degrees Pile Batter Angle 0.000 radians = Soil and Rock Layering Information _____ The soil profile is modelled using 1 layers Layer 1 is weak rock, p-y criteria by Reese, 1997 Distance from top of pile to top of layer = 0.609000 m Effective unit weight at top of layer = 15.000000 m = 13.200000 kN/m3 Effective unit weight at bottom of layer=13.200000 kN/m3Uniaxial compressive strength at top of layer=13.200000 kN/m3Uniaxial compressive strength at bottom of layer=1500. kPa 1500. K. 758424. kPa 758424. kPa = Initial modulus of rock at top of layer Initial modulus of rock at bottom of layer = RQD of rock at top of layer = 20.000000 % RQD of rock at bottom of layer = 20.000000 % k rm of rock at top of layer = 0.0005000 = k rm of rock at bottom of layer 0.0005000

(Depth of the lowest soil layer extends 11.000 m below the pile tip)

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt _____ Summary of Input Soil Properties _____ Soil Type Layer Effective Uniaxial Layer Rock Mass E50 Name Unit Wt. Laver Depth qu ROD % Modulus or (p-y Curve Type) kPa Num. m kN/m3 kPa krm -----_ _ _ _ _ --------_ 1500. 1 Weak 0.6090 13.2000 20.0000 758424. 5.00E-04 15.0000 13.2000 1500. 20.0000 Rock 5.00E-04 758424. _____ Static Loading Type Static loading criteria were used when computing p-y curves for all analyses. _____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y No. Туре 1 2 Force, kN vs. Pile Length ---- -------------------_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 1 V = 45.000000 kN M = 0.0000 m-kN 945.000000000 No V = 73.000000 kN M = 0.0000 m-kN 603.00000000 2 1 No V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: Dimensions and Properties of Drilled Shaft (Bored Pile): Length of Section = 4.000000 m Shaft Diameter = 0.762000 m Concrete Cover Thickness (to edge of long. rebar) = 0.076200 m Number of Reinforcing Bars 12 bars = Yield Stress of Reinforcing Bars = 413685. kPa Modulus of Elasticity of Reinforcing Bars = 199947979. kPa Gross Area of Shaft 0.456037 sq. m = = Total Area of Reinforcing Steel 0.008400 sq. m Area Ratio of Steel Reinforcement = 1.84 percent Edge-to-Edge Bar Spacing 0.120137 m = Maximum Concrete Aggregate Size = 0.015000 m κatio of Bar Spacing to Aggregate Size=8.01Offset of Center of Rebar Cage from Center of Pile=0.0000 m Axial Structural Capacities: -----Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 13968.537 kN Tensile Load for Cracking of Concrete = -1477.413 kN Nominal Axial Tensile Capacity = -3474.958 kN

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar	Bar Diam.	Bar Area	Х	Y
Number	meters	sq. m.	meters	meters
1	0.029900	0.0007000	0.289850	0.00000

	SR1 - Debris Barrier	- Support A -	Service - 20191028	Revision.txt
2	0.029900	0.0007000	0.251017	0.144925
3	0.029900	0.0007000	0.144925	0.251017
4	0.029900	0.0007000	0.00000	0.289850
5	0.029900	0.0007000	-0.144925	0.251017
6	0.029900	0.0007000	-0.251017	0.144925
7	0.029900	0.0007000	-0.289850	0.00000
8	0.029900	0.0007000	-0.251017	-0.144925
9	0.029900	0.0007000	-0.144925	-0.251017
10	0.029900	0.0007000	0.00000	-0.289850
11	0.029900	0.0007000	0.144925	-0.251017
12	0.029900	0.0007000	0.251017	-0.144925

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 120.14 millimeters between bars 7 and 8.

Ratio of bar spacing to maximum aggregate size = 8.01

Concrete Properties:

Compressive Strength of Concrete	=	27579.	kPa
Modulus of Elasticity of Concrete	=	24855577.	kPa
Modulus of Rupture of Concrete	=	-3270.	kPa
Compression Strain at Peak Stress	=	0.001886	
Tensile Strain at Fracture of Concrete	=	-0.0001154	
Maximum Coarse Aggregate Size	=	0.015000	m

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 2

Number	Axial Thrust Force
	kN
1	603.000
2	945.000

Definitions of Run Messages and Notes:

C = concrete in section has cracked in tension.

Y = stress in reinforcing steel has reached yield stress.

T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt concrete more than 0.003. See ACI 318, Section 10.3.4. Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 603.000 kN

Bending Max Conc	Bending Max Steel	Bending Run	Depth to	Max Comp	Max Tens
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Msg			
rad/m	kN-m	kN-m2	m	m/m	m/m
kPa	kPa				
 0.00004921	26.2790878	533991.	1.2191626	0.00006000	0.00002250
1721.	11209.				
0.00009843	52.5554031	533963.	0.8007202	0.00007881	0.00000381
2246.	14184.				
0.0001476	78.8188402	533866.	0.6615107	0.00009766	-0.00001484
2766.	17166.				
0.0001969	104.9980551	533390.	0.5920313	0.0001165	-0.00003346
3282.	20153.				
0.0002461	131.0455462	532569.	0.5503932	0.0001354	-0.00005207
3793.	23143.				
0.0002953	156.9460450	531524.	0.5226578	0.0001543	-0.00007067
4298.	26134.				
0.0003445	182.6940966	530335.	0.5028600	0.0001732	-0.00008927
4798.	29126.				
0.0003937	208.2873817	529050.	0.4880203	0.0001921	-0.0001079
5293.	32118.				
0.0004429	208.2873817	470267.	0.4208115	0.0001864	-0.0001511
5136.	30181.	С			
0.0004921	208.2873817	423240.	0.4054581	0.0001995	-0.0001755
5477.	32024.	C			
0.0005413	208.2873817	384764.	0.3924601	0.0002125	-0.0002000
5809.	33819.	С			
0.0005906	208.2873817	352700.	0.3812692	0.0002252	-0.0002248
6133.	35573.	C			
0.0006398	208.2873817	325569.	0.3715782	0.0002377	-0.0002498
6451.	-39708.	С			
0.0006890	208.2873817	302314.	0.3630819	0.0002502	-0.0002748
6763.	-43933.	C			

SR1 -	Debris Barrier -	Support A -	Service - 2019	1028 Revision.	txt
0.0007382	208.2873817	282160.	0.3555532	0.0002625	-0.0003000
7070.	-48182. C				
0.0007874	208.2873817	264525.	0.3488310	0.0002747	-0.0003253
7372.	-52452. C				
0.0008366	215.3610256	257420.	0.3427956	0.0002868	-0.0003507
7670.	-56740. C				
0.0008858	222.9500719	251686.	0.3373562	0.0002988	-0.0003762
7963.	-61041. C				
0.0009350	230.4786509	246491.	0.3324192	0.0003108	-0.0004017
8253.	-65355. C				
0.0009843	237.9449492	241752.	0.3278990	0.0003227	-0.0004273
8539.	-69685. C				
0.0010335	245.3869152	237441.	0.3237964	0.0003346	-0.0004529
8822.	-74017. C				
0.0010827	252.7626889	233461.	0.3199815	0.0003464	-0.0004786
9102.	-78367. C				
0.0011319	260.1285637	229818.	0.3165075	0.0003583	-0.0005042
9379.	-82716. C				
0.0011811	267.4398685	226432.	0.3132549	0.0003700	-0.0005300
9652.	-87080. C				
0.0012303	274.7373944	223307.	0.3102641	0.0003817	-0.0005558
9923.	-91444. C	2233071	010101011	01000002/	0.000000000
0.0012795	282.0083895	220400.	0.3074816	0.0003934	-0.0005816
10192.	-95814. (2201001	01007 1020	010000000	0.00000010
0.0013287	289, 2455279	217684	0.3048714	0.0004051	-0.0006074
10457	-100192. (21/0011	0.5010711	010001091	0.0000071
0.0013780	296.4731539	215155.	0.3024550	0.0004168	-0.0006332
10721	-104569. (2292991	01002.000	010001200	0.00000000
0.0014272	303.6792094	212785.	0.3001909	0.0004284	-0.0006591
10982	-108950. (222/051	010002000	010001201	0.00000002
0.0014764	310.8540280	210552.	0.2980465	0.0004400	-0.0006850
11240	-113340 (2203321	012000100		0.00000000
0.0015256	318,0194908	208457.	0.2960472	0.0004516	-0.0007109
11496.	-117728. (2001071	012000172	010001920	01000/200
0.0015748	325,1755592	206486	0.2941795	0.0004633	-0.0007367
11751	-122113 (2001001	012512755	010001000	0.000,50,
0.0016240	332, 3074757	204621	0.2924043	0.0004749	-0.0007626
12002	-126506. (2010211	0.2321013	010001715	0.0007020
0.0016732	339,4178350	202852	0.2907179	0.0004864	-0.0007886
12252	-130903 (202052.	0.2307.273	0.0001001	0.000,000
0 0017224	346 5189412	201179	0 2891340	0 0001980	-0 0008145
12/99	-135299 C	2011/9.	0.2001040	0.0004000	0.0000149
0 0017717	353 6107562	199594	0 2876440	0 0005096	-0 0008404
12744	-139693 (±>>>>>++	0.20/0440	0.00000000	0.0000-04
0 0012200	360 6932413	198089	0 2862403	0 0005212	-0 0008663
12988	-14/08/ C	1,000,	0,2002403	0.0005212	0.0000000
0.0018701	367,7532274	196651	0.2848914	0,0005328	-0.0008977
13229	-148487 C	1,0021.	0,20,0014	0.000000000	0.00000022
±J22J•	170702. C				

SR1 -	Debris Barrier -	Support A -	Service - 20192	1028 Revision.	txt
0.0019193	374.7965004	195279.	0.2836034	0.0005443	-0.0009182
13468.	-152884. C				
0.0020177	388.8553822	192721.	0.2812319	0.0005674	-0.0009701
13940.	-161681. C				
0.0021161	402.8771203	190383.	0.2791014	0.0005906	-0.0010219
14404.	-170470. C				
0.0022146	416.8464842	188229.	0.2771507	0.0006138	-0.0010737
14861.	-179262. C				
0.0023130	430.7642246	186237.	0.2753578	0.0006369	-0.0011256
15309.	-188058. C				
0.0024114	444.6447260	184391.	0.2737299	0.0006601	-0.0011774
15749.	-196846. C				
0.0025098	458.4876652	182676.	0.2722475	0.0006833	-0.0012292
16183.	-205624. C				
0.0026083	472.2927130	181075.	0.2708945	0.0007066	-0.0012809
16609.	-214394. C				
0.0027067	486.0465834	179572.	0.2696294	0.0007298	-0.0013327
17027.	-223169. (2,33,21	012030231	01000/200	0.0013327
0.0028051	499.7569355	178159.	0.2684585	0.0007531	-0.0013844
17436	-231941 (1,0100	012001909	010007552	0.0013011
0.0029035	513, 4291198	176828	0.2673832	0.0007764	-0.0014361
17839	-240703 (1,0020.	0.2075052	0.000//04	0.0014901
0,0030020	527,0627880	175572	0.2663944	0.0007997	-0.0014878
18234	-249456 (1,33,21	0.2005511	0.0007337	0.00110/0
0 0031004	540 6575853	174384	0 2654840	0 0008231	-0 0015394
18622	-258199 (1/4504.	0.2054040	0.0000251	0.0015554
0 0031988	554 2131502	173256	0 2646449	0 0008466	-0 0015909
19002	-266933 (175250.	0.2040445	0.0000+00	0.0015505
0 0032072	567 7291152	172183	0 2638709	0 0008700	-0 0016125
19375	-275656 (1/2105.	0.2050/05	0.0000700	-0.0010425
0 0033957	581 2051064	171161	0 2631564	0 0008936	-0 0016939
107/0	_28/370 C	1/1101.	0.2051504	0.00000000	-0.0010555
0 003/0/1	591 6351883	170183	0 262/833	0 0000171	-0 0017151
20002	-293083 (1/0105.	0.2024033	0.00001/1	-0.001/404
0 0035925	608 0221675	169247	0 2618531	0 0009107	-0 0017968
20117	-301791 C	105247.	0.2010551	0.0000407	0.001/900
0 0036000	621 368278 <i>/</i>	1683/19	0 2612708	0 0009613	-0 0018/82
20788	-310/89 C	100040.	0.2012/00	0.0000045	-0.0010402
20700. 0 003789/	63/ 673/157	167/88	0 2607328	0 0009880	-0 0018995
21122	_319177 C	107400.	0.2007520	0.00000000	-0.0010555
0 0038878	-JIJI//. C	166650	0 2602350	0 0010117	-0 0010508
21//2	-327853 (100055.	0.2002555	0.0010117	-0.0019508
0 0030862	-527855. C	165861	0 2507772	0 0010355	-0 0020020
21767	-336210 C	T0001.	0.233///2	0.0010010	-0.0020020
21/0/.	674 2200101	165001	0 2502511	0 0010501	-0 0000501
010040040	0/4.3300121 _2/517/ C	TEACOT.	0.2333341	0.0010394	-0.0020331
220/0. 0 00/1021	-3431/4. L	161217	0 2500612	0 0010022	-0 0001040
0.0041031 33201	00/.4/J0J70 _222017 (104347.	0.2303042	0.00100.0	-0.0021042
22301.	-22201/. C				

SR1 -	Debris Barrier -	Support A -	Service - 2019	1028 Revision.	txt
0.0042815	700.5697444	163627.	0.2586055	0.0011072	-0.0021553
22676.	-362450. C				
0.0043799	713.6200696	162930.	0.2582759	0.0011312	-0.0022063
22963.	-371070. C				
0.0044783	726.6263500	162253.	0.2579737	0.0011553	-0.0022572
23242.	-379680. C				
0.0045768	739.5881106	161596.	0.2576974	0.0011794	-0.0023081
23513.	-388277. C				
0.0046752	752.5048664	160957.	0.2574453	0.0012036	-0.0023589
23776.	-396863. C				
0.0047736	765.3761220	160334.	0.2572163	0.0012279	-0.0024096
24031.	-405436. C				
0.0048720	778.1822805	159724.	0.2570069	0.0012521	-0.0024604
24277.	-413685. CY				
0.0049705	790.3121364	159001.	0.2567531	0.0012762	-0.0025113
24512.	-413685. CY				
0.0050689	801.5268743	158126.	0.2564304	0.0012998	-0.0025627
24735.	-413685. CY				
0.0051673	811.9784612	157137.	0.2560559	0.0013231	-0.0026144
24946.	-413685. CY				
0.0052657	822.0962990	156121.	0.2556750	0.0013463	-0.0026662
25148.	-413685. CY				
0.0053642	831.8693195	155079.	0.2552857	0.0013694	-0.0027181
25341.	-413685. CY				
0.0054626	840.5873609	153880.	0.2547949	0.0013918	-0.0027707
25521.	-413685. CY				
0.0055610	847.8959092	152471.	0.2541780	0.0014135	-0.0028240
25688.	-413685. CY				
0.0056594	853.9420635	150888.	0.2534539	0.0014344	-0.0028781
25842.	-413685. CY				
0.0057579	859.2763859	149235.	0.2526856	0.0014549	-0.0029326
25986.	-413685. CY				
0.0058563	864.5866194	147634.	0.2519500	0.0014755	-0.0029870
26125.	-413685. CY				
0.0062500	885.6049011	141697.	0.2493073	0.0015582	-0.0032043
26619.	-413685. CY				
0.0066437	906.2358710	136405.	0.2470590	0.0016414	-0.0034211
27013.	-413685. CY				
0.0070374	926.4373714	131645.	0.2451051	0.0017249	-0.0036376
27305.	-413685. CY				
0.0074311	942.4217698	126821.	0.2429891	0.0018057	-0.0038568
27487.	-413685. CY				
0.0078248	951.2350309	121567.	0.2403363	0.0018806	-0.0040819
27569.	-413685. CY				
0.0082185	958.7943040	116663.	0.2378013	0.0019544	-0.0043081
27574.	-413685. CY				
0.0086122	966.0961858	112178.	0.2355603	0.0020287	-0.0045338
27575.	-413685. CY				

SR1 -	Debris Barrie	r -	Support A -	Service - 2019	1028	Revision.t	xt
0.0090059	973.1606726		108058.	0.2335884	0.	0021037	-0.0047588
27575.	-413685.	CY					
0.0093996	979.9679938		104256.	0.2318203	0.	0021790	-0.0049835
27572.	-413685.	CY					
0.0097933	986.5096274		100733.	0.2302011	0.	0022544	-0.0052081
27565.	-413685.	CY					
0.0101870	992.8680818		97464.	0.2287656	0.	0023304	-0.0054321
27551.	-413685.	CY					
0.0105807	999.0580668		94423.	0.2274908	0.	0024070	-0.0056555
27579.	-413685.	CY					
0.0109744	1005.		91584.	0.2263608	0.	0024842	-0.0058783
27572.	-413685.	CY					
0.0113681	1011.		88929.	0.2253541	0.	0025619	-0.0061006
27550.	-413685.	CY					
0.0117618	1017.		86440.	0.2244351	0.	0026398	-0.0063227
27578.	-413685.	CY					
0.0121555	1022.		84099.	0.2235869	0.	0027178	-0.0065447
27561.	-413685.	CY					
0.0125492	1027.		81849.	0.2227115	0.	0027949	-0.0067676
27579.	-413685.	CY					
0.0129429	1031.		79661.	0.2217711	0.	0028704	-0.0069921
27558.	-413685.	CY			_		
0.0133366	1034.		77533.	0.2207459	0.	0029440	-0.0072185
27578.	-413685.	CY			_		
0.0137303	1036.		75451.	0.2196244	0.	0030155	-0.0074470
27537.	-413685.	CYT		0 0404575	•		
0.0141240	1037.		/343/.	0.21845/5	0.	0030855	-0.00/6//0
27568.	-413685.	CYT		0 04 70 470	•		
0.01451//	1038.	0.7	/1524.	0.21/34/8	0.	0031554	-0.00/90/1
2/5/9.	-413685.	CYI	607 00	0.0460400	•		
0.0149114	1039.	0.7	69703.	0.2162422	0.	0032245	-0.0081380
2/52/.	-413685.	CYI	(=) = (0.0454005	•		
0.0153051	1040.	0.7	6/9/4.	0.215189/	0.	0032935	-0.0083690
27559.	-413685.	CYI	66225	0 04 40 400	•	0000600	0 0005000
0.0156988	1041.	0.7	66325.	0.2142400	0.	0033633	-0.0085992
2/5/6.	413685.	CYI	64754	0 0400540	•	0004004	0 0000004
0.0160925	1042.	C) (T	64/54.	0.2133512	0.	0034334	-0.0088291
2/548.	413685.	CYI	62257	0 0405400	•	0005006	
0.0164862	1043.	C) (T	63257.	0.2125188	0.	0035036	-0.0090589
2/531.	413685.	CYI	64.000	0 0447750	•	0005747	
0.0168/99	1044.	с) (т	61822.	0.211//50	0.	0035747	-0.00928/8
2/561.	413685.	CYI	60450	0.0110000	•	0006460	0 0005460
0.01/2/36	1044.	0.7	60450.	0.2110899	0.	0036463	-0.0095162
2/5//.	413685.	CYI	F0420	0 0404400	~	0007404	0.0007444
0.01/06/3	1045.	0.7	59138.	0.2104483	0.	181/181	-0.009/444
2/548.	413685.	CYI	F7000	0 2000402	~	0007001	0 0000704
0.0190010	1045.	C)/7	5/882.	0.2098482	0.	TOGIES	-0.0099/24
27514.	413685.	CYI					

SR1 -	Debris Barrier -	Support A -	Service - 2019	1028 Revision.	txt
0.0184547	1045.	56647.	0.2099757	0.0038750	-0.0101875
27559.	413685. CYT				

Axial Thrust Force = 945.000 kN

Bending Max Conc	Bending Max Steel	Bending Run	Depth to	Max Comp	Max Tens
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Msg	11 7 6 2 5	5014211	5014211
rad/m	kN-m	kN-m2	m	m/m	m/m
kPa	kPa			,	,
0.00004921	25.9863048	528042.	1.7017409	0.00008375	0.00004625
2389.	15958.				
0.00009843	51.9691142	528006.	1.0420167	0.0001026	0.00002756
2907.	18932.				
0.0001476	77.9487786	527973.	0.8223964	0.0001214	0.00000892
3421.	21915.				
0.0001969	103.9222040	527925.	0.7128006	0.0001403	-0.00000968
3930.	24907.				
0.0002461	129.8501442	527711.	0.6471828	0.0001592	-0.00002825
4435.	27905.				
0.0002953	155.6767224	527225.	0.6035108	0.0001782	-0.00004680
4935.	30907.				
0.0003445	181.3748149	526505.	0.5723574	0.0001972	-0.00006533
5430.	33913.			0 0000161	
0.0003937	206.9312854	525605.	0.54901/2	0.0002161	-0.00008385
5920.	36920.	534571	0 5200000	0 0000051	0 0001004
0.0004429	232.3394775	524571.	0.5308800	0.0002351	-0.0001024
6404.	39929.	470114	0 4010050	0 0000000	0 0001202
6441	232.3394775	4/2114.	0.4810856	0.0002368	-0.0001382
0441.	29400. 222 2201775	420104	0 1629266	0 0002511	0 0001611
6901	232.3394773 /15//	429194.	0.4038200	0.0002311	-0.0001014
0001.	41044. 222 220/775	393428	0 1189389	0 0002651	-0 0001819
7151	43563	(0.4405505	0.0002031	-0.0001045
0.0006398	232, 3394775	363164	0.4359474	0,0002789	-0.0002086
7492.	45531.	(0.1999171	0.0002/05	0.0002000
0.0006890	232.7290389	337790.	0.4244951	0.0002925	-0.0002325
7824.	47456.	С	001211352	0.0002525	0.0001313
0.0007382	241.5472922	327216.	0.4143142	0.0003058	-0.0002567
8149.	49343.	С			
0.0007874	250.1201235	317653.	0.4051836	0.0003190	-0.0002810
8467.	51195.	C			
0.0008366	258.5031925	308987.	0.3969591	0.0003321	-0.0003054
8779.	53019.	С			

SR1 -	Debris Barrier -	Support A -	Service - 2019	1028 Revision.	txt
0.0008858	266.7255212	301103.	0.3895083	0.0003450	-0.0003300
9086.	54818. C				
0.0009350	274.8166345	293909.	0.3827308	0.0003579	-0.0003546
9388.	56596. C				
0.0009843	282.8009704	287326.	0.3765448	0.0003706	-0.0003794
9685.	-60111. C				
0.0010335	290.6748851	281263.	0.3708556	0.0003833	-0.0004042
9977.	-64293. C				
0.0010827	298.4583113	275667.	0.3656099	0.0003958	-0.0004292
10265.	-68490. C				
0.0011319	306.1807753	270504.	0.3607783	0.0004084	-0.0004541
10550.	-72696. C				
0.0011811	313.8178119	265699.	0.3562804	0.0004208	-0.0004792
10830.	-76919. C				
0.0012303	321.3958036	261231.	0.3520992	0.0004332	-0.0005043
11107.	-81153. C				
0.0012795	328,9216389	257065.	0.3482054	0.0004455	-0.0005295
11381.	-85395. C				
0.0013287	336.3895054	253164.	0.3445567	0.0004578	-0.0005547
11651.	-89649. (
0.0013780	343,8142358	249511.	0.3411426	0.0004701	-0.0005799
11918.	-93910. (2.3912.	010111110	010001/01	010003733
0.0014272	351,2026997	246084	0.3379436	0.0004823	-0.0006052
12182.	-98177. (2100011	0.00/0/00	010001025	0.0000002
0.0014764	358,5359881	242848	0.3349170	0.0004945	-0.0006305
12442.	-102456. (2120101	010010270	010001313	0.00000000
0.0015256	365.8580684	239814.	0.3320931	0.0005066	-0.0006559
12701	-106732	2550211	013320332	0.00000000	0.0000000000000000000000000000000000000
0.0015748	373, 1228929	236933	0.3294002	0,0005187	-0.0006813
12956.	-111023. (230333.	0.525 1002	0.000310/	0.0000019
0.0016240	380.3629795	234211.	0.3268622	0.0005308	-0.0007067
13208	-115317. (019200022	010003300	0.000,007
0.0016732	387,5920594	231643.	0.3244803	0.0005429	-0.0007321
13458.	-119608. (2520151	015211005	0100003125	01000/922
0.0017224	394.7729724	229194.	0.3221979	0.0005550	-0.0007575
13705.	-123912. C		••••		
0.0017717	401.9289777	226867.	0.3200326	0.0005670	-0.0007830
13950.	-128219. C			•••••••••	
0.0018209	409.0741727	224659.	0.3179907	0.0005790	-0.0008085
14192.	-132524. C		••••		
0.0018701	416.2046588	222560.	0.3160577	0.0005911	-0.0008339
14432.	-136829. C				
0.0019193	423,2851190	220542	0.3141836	0.0006030	-0.0008595
14669	-141149. (
0.0020177	437.4141214	216787.	0.3107266	0.0006270	-0.0009105
15136	-149782. (0.020,200	0.00002/0	0.000200
0.0021161	451.4768646	213349.	0.3075844	0.0006509	-0.0009616
15594.	-158418. C				
SR1 -	Debris Barrier -	Support A -	Service - 2019:	1028 Revision.	txt
-----------	------------------	-------------	-----------------	----------------	-------------
0.0022146	465.4500359	210177.	0.3046875	0.0006748	-0.0010127
16043.	-167069. C				
0.0023130	479.3808349	207256.	0.3020570	0.0006987	-0.0010638
16484.	-175711. C				
0.0024114	493.2374005	204543.	0.2996214	0.0007225	-0.0011150
16915.	-184362. C				
0.0025098	507.0276316	202016.	0.2973666	0.0007463	-0.0011662
17337.	-193019. C				
0.0026083	520.7755375	199663.	0.2953002	0.0007702	-0.0012173
17752.	-201666. C				
0.0027067	534.4807337	197466.	0.2934016	0.0007941	-0.0012684
18158.	-210303. C				
0.0028051	548.1021436	195394.	0.2916009	0.0008180	-0.0013195
18555.	-218961. C				
0.0029035	561.6804446	193447.	0.2899381	0.0008418	-0.0013707
18944.	-227609. C				
0.0030020	5/5.2159616	191613.	0.2884008	0.0008658	-0.001421/
19325.	-236247. C	100000	0 2060771	0 000007	0 0014700
0.0031004	588./0829/2	189882.	0.2869771	0.0008897	-0.0014/28
19698.	-2448/5.	100242	0 2056527	0 0000130	0 0015337
20062	002.1549404	188243.	0.2850537	0.0009138	-0.0015237
20005.	-200490. C	196691	0 2012002	0 0000277	0 0015749
20110	_262130 C	100001.	0.2043003	0.0009377	-0.0013748
20419.	-202130. C	185106	0 2832115	0 0000617	-0 0016258
20766	-270754 C	185190.	0.2052115	0.0009017	-0.0010238
0 0034941	642 1540741	183783	0 2821159	0 0009857	-0 0016768
21106	-279367 C	109709.	0.2021199	0.0009097	0.0010/00
0.0035925	655,3991347	182434.	0.2810951	0.0010098	-0.0017277
21438.	-287970. C	2021011	012020352	010020000	0.001/1/2//
0.0036909	668.5994808	181146.	0.2801431	0.0010340	-0.0017785
21761.	-296562. C				
0.0037894	681.7546664	179912.	0.2792549	0.0010582	-0.0018293
22077.	-305143. C				
0.0038878	694.8642374	178730.	0.2784256	0.0010825	-0.0018800
22385.	-313714. C				
0.0039862	707.9177935	177591.	0.2776350	0.0011067	-0.0019308
22683.	-322286. C				
0.0040846	720.9195569	176495.	0.2768870	0.0011310	-0.0019815
22973.	-330854. C				
0.0041831	733.8751317	175439.	0.2761878	0.0011553	-0.0020322
23255.	-339412. C				
0.0042815	746.7840285	174421.	0.2755344	0.0011797	-0.0020828
23529.	-347957. C				
0.0043799	759.6457479	173438.	0.2749237	0.0012041	-0.0021334
23794.	-356491. C				
0.0044783	772.4597799	172488.	0.2743532	0.0012286	-0.0021839
24051.	-365013. C				

SR1 -	Debris Barrier -	Support A -	Service - 2019	1028 Revision.	txt
0.0045768	785.2256044	171568.	0.2738204	0.0012532	-0.0022343
24299.	-373523. C				
0.0046752	797.9426902	170676.	0.2733230	0.0012778	-0.0022847
24539.	-382020. C				
0.0047736	810.6104948	169810.	0.2728591	0.0013025	-0.0023350
24771.	-390506. C				
0.0048720	823.2284644	168970.	0.2724268	0.0013273	-0.0023852
24993.	-398978. C				
0.0049705	835.7960331	168152.	0.2720243	0.0013521	-0.0024354
25208.	-407439. C				
0.0050689	848.1799603	167330.	0.2716370	0.0013769	-0.0024856
25413.	-413685. CY		0 0740400		
0.00516/3	859.8/383/4	166406.	0.2/12139	0.0014014	-0.0025361
25606.	-413685. CY	465354	0 0707005	0 001 4256	0 0005060
0.0052657	8/0./112151	165354.	0.2/0/385	0.0014256	-0.0025869
25/88.	-413685. CY	1 (1) 1 1	0 1701100	0 0014405	0 0006000
0.0053642	880.8588/30	164211.	0.2/02180	0.0014495	-0.0026380
25959.	-413083. UI	162056	0 2606022	0 0011777	0 0026902
26120	090./00104/ /12695 CV	102020.	0.2090955	0.0014/32	-0.0020895
20120.	-415065. CT	161881	0 2601671	0 001/068	-0 0027107
26272	-/13685 CV	101801.	0.2091074	0.0014908	-0.002/40/
0 0056594	908 8049878	160582	0 2685758	0 0015200	-0 0027925
26413	-413685 CV	100502.	0.2005/50	0.0015200	0.002/929
0.0057579	916,0977531	159103	0.2678828	0,0015424	-0.0028451
26542	-413685, CY	199109.	0.20,0020	0.0013121	0.0020191
0.0058563	922.1626635	157465.	0.2670955	0.0015642	-0.0028983
26660.	-413685. CY				
0.0062500	942.8232885	150852.	0.2639324	0.0016496	-0.0031129
27053.	-413685. CY				
0.0066437	962.9800556	144946.	0.2611863	0.0017352	-0.0033273
27338.	-413685. CY				
0.0070374	982.6638741	139634.	0.2588209	0.0018214	-0.0035411
27514.	-413685. CY				
0.0074311	1002.	134792.	0.2567882	0.0019082	-0.0037543
27579.	-413685. CY				
0.0078248	1015.	129758.	0.2544681	0.0019912	-0.0039713
27564.	-413685. CY				
0.0082185	1023.	124499.	0.2517383	0.0020689	-0.0041936
27569.	-413685. CY				
0.0086122	1030.	119621.	0.2492699	0.0021468	-0.0044157
27570.	-413685. CY				
0.0090059	1037.	115138.	0.2470627	0.0022250	-0.0046375
27567.	-413685. CY				
0.0093996	1043.	110996.	0.2450300	0.0023032	-0.0048593
2/561.	-413685. CY	107100	0.0400000	0.0000000	0 0050005
0.009/933	1050.	10/168.	0.2432236	0.0023820	-0.0050805
2/556.	-413685. CY				

SR1 -	Debris Barrier -	Support A -	- Service - 201	91028 Revision.	txt
0.0101870	1056.	103617.	0.2416150	0.0024613	-0.0053012
27579.	-413685. CY				
0.0105807	1061.	100314.	0.2401813	0.0025413	-0.0055212
27572.	-413685. CY				
0.0109744	1067.	97229.	0.2388306	0.0026210	-0.0057415
27551.	-413685. CY				
0.0113681	1073.	94346.	0.2376087	0.0027012	-0.0059613
27579.	-413685. CY				
0.0117618	1078.	91644.	0.2365132	0.0027818	-0.0061807
27563.	-413685. CY				
0.0121555	1083.	89110.	0.2355222	0.0028629	-0.0063996
27570.	-413685. CY				
0.0125492	1088.	86725.	0.2346327	0.0029445	-0.0066180
27566.	-413685. CY				
0.0129429	1093.	84480.	0.2338250	0.0030264	-0.0068361
27566.	-413685. CYT	-			
0.0133366	1098.	82318.	0.2330000	0.0031074	-0.0070551
27560.	-413685. CYT	-			
0.0137303	1102.	80227.	0.2321385	0.0031873	-0.0072752
27579.	413685. CYT	-			
0.0141240	1104.	78188.	0.2312033	0.0032655	-0.0074970
27537.	413685. CYT	-			
0.0145177	1106.	76187.	0.2301312	0.0033410	-0.0077215
27567.	413685. CYT	-			
0.0149114	1107.	74254.	0.2291227	0.0034165	-0.0079460
27579.	413685. CYT	-			
0.0153051	1108.	72389.	0.2280984	0.0034911	-0.0081714
27521.	413685. CYT	-			
0.0156988	1109.	70617.	0.2271395	0.0035658	-0.0083967
27556.	413685. CYT	-			
0.0160925	1109.	68921.	0.2262959	0.0036417	-0.0086208
27575.	413685. CYT	-			
0.0164862	1110.	67304.	0.2255068	0.0037178	-0.0088447
27558.	413685. CYT	-			
0.0168799	1110.	65761.	0.2247691	0.0037941	-0.0090684
27522.	413685. CYT	-			
0.0172736	1110.	64262.	0.2247562	0.0038824	-0.0092801
27564.	413685. CYT	-	-		

Summary of Results for Nominal (Unfactored) Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load	Axial Thrust	Nominal Mom. Cap.	Max. Comp.

```
Page 17
```

	SR1 - Debris Barrier -	Support A - Service -	20191028 Revision.txt
No.	kN	kN-m	Strain
1	603.000	1035.549	0.00300000
2	945.000	1091.781	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.70).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, Section 9.3.2.2 or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Load No.	Resist. Factor for Moment	Nominal Moment Cap kN-m	Ult. (Fac) Ax. Thrust kN	Ult. (Fac) Moment Cap kN-m	Bend. Stiff. at Ult Mom kN-m^2
1	0.65	1036.	391.950000	673.106875	165163.
2	0.65	1092.	614.250000	709.657598	177445.
1	0.75	1036.	422.100000	776.661779	159796.
2	0.75	1092.	661.500000	818.835690	169262.
1	0.90	1036.	452.250000	931.994134	129968.
2	0.90	1092.	708.750000	982.602828	139651.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head			=	45.000	kN	
Applied moment at pile head			=	0.000	kN-m	
Axial thrust load on pile head			=	945.000	kN	
Depth Deflect. Bending Res. Soil Spr. Distrib.	Shear	Slope	Tota	al Be	ending	Soil

SF	R1 - Debris	Barrier - Su	pport A - S	Service - 20	191028 Revi	sion.txt
Х	У	Moment	Force	S	Stress	Stiffness
Es*	h Lat.	Load				
meters	meters	kN-m	kN	radians	kPa*	kN-m^2
kN/m	kN/m	kN/m				
0.00	4.05E-05	2.46E-11	45.0000	-5.27E-05	0.00	528042.
0.00	0.00	0.00				
0.04000	3.84E-05	1.8020	45.0000	-5.26E-05	0.00	528042.
0.00	0.00	0.00				
0.08000	3.63E-05	3.6040	45.0000	-5.24E-05	0.00	528042.
0.00	0.00	0.00				
0.1200	3.42E-05	5.4060	45.0000	-5.21E-05	0.00	528042.
0.00	0.00	0.00				
0.1600	3.22E-05	7.2079	45.0000	-5.16E-05	0.00	528042.
0.00	0.00	0.00	45 0000	- 40- 0-		
0.2000	3.01E-05	9.0099	45.0000	-5.10E-05	0.00	528042.
0.00	0.00	0.00	45 0000		0.00	520042
0.2400	2.81E-05	10.8118	45.0000	-5.03E-05	0.00	528042.
0.00	0.00	0.00	45 0000	4 045 05	0.00	520042
0.2800	2.61E-05	12.6137	45.0000	-4.94E-05	0.00	528042.
0.00	0.00 2 41E 0E	0.00 14 41EE	15 0000	1 92E 0E	0 00	E20042
0.5200	2.410-05	14.4155	45.0000	-4.032-05	0.00	520042.
0.00	2 225 05	16 2172	15 0000	1 725 05	0 00	520012
0.5000	2.220-05	0.2175	43.0000	-4.722-05	0.00	520042.
0.00 0 1000	2 0/F-05	18 0101	15 0000	-1 59F-05	0 00	528012
a aa	0 00	0 00	+5.0000	4.552 05	0.00	520042.
0.00 0 4400	1 85F-05	19 8208	45 0000	-4 44F-05	9 99	528042
0.00	0.00	0.00	1310000	1.112 05	0.00	5200121
0.4800	1.68E-05	21.6224	45,0000	-4.29E-05	0.00	528042.
0.00	0.00	0.00				
0.5200	1.51E-05	23.4240	45.0000	-4.12E-05	0.00	528042.
0.00	0.00	0.00				
0.5600	1.35E-05	25.2255	45.0000	-3.93E-05	0.00	528042.
0.00	0.00	0.00				
0.6000	1.20E-05	27.0270	45.0000	-3.74E-05	0.00	528039.
0.00	0.00	0.00				
0.6400	1.05E-05	28.8284	40.7129	-3.52E-05	0.00	528035.
-214.3574	815436.	0.00				
0.6800	9.15E-06	30.2867	31.9958	-3.30E-05	0.00	528032.
-221.4935	968361.	0.00				
0.7200	7.88E-06	31.3905	23.0201	-3.07E-05	0.00	528029.
-227.2955	1154484.	0.00				
0.7600	6.70E-06	32.1306	13.8404	-2.83E-05	0.00	528028.
-231.6855	1383952.	0.00				
0.8000	5.61E-06	32.4999	4.5152	-2.58E-05	0.00	528028.
-234.5740	1671102.	0.00				

р

SR1 - Debris	Barrier - Su	pport A - S	Service - 201	91028 Revis	ion.txt
0.8400 4.63E-06	32.4938	-4.8933	-2.33E-05	0.00	528028.
-235.8541 2036826.	0.00				
0.8800 3.75E-06	32.1102	-14.3182	-2.09E-05	0.00	528028.
-235.3921 2512711.	0.00				
0.9200 2.96E-06	31.3499	-23.6863	-1.85E-05	0.00	528030.
-233.0113 3148861.	0.00				
0.9600 2.27E-06	30.2167	-32.9158	-1.62E-05	0.00	528032.
-228.4616 4029907.	0.00				
1.0000 1.67E-06	28.7179	-41.7434	-1.39E-05	0.00	528035.
-212.9198 5109240.	0.00				
1.0400 1.15E-06	26.8783	-49.0703	-1.18E-05	0.00	528040.
-153.4255 5321572.	0.00				
1.0800 7.21E-07	24.7931	-54.1337	-9.87E-06	0.00	528042.
-99.7449 5533905.	0.00		0 075 07		
1.1200 3.64E-07	22.5483	-57.1740	-8.0/E-06	0.00	528042.
-52.26/3 5/4623/.	0.00	50 4400		0.00	520042
1.1600 /.50E-08	20.2198	-58.4428	-6.45E-06	0.00	528042.
-11.1/5/ 5958569.	0.00	F0 10F7		0 00	520042
1.2000 -1.53E-07	1/.8/34	-28.192/	-2.01E-00	0.00	528042.
1 2400 2 265 07	0.00 15 5645	EC 6940	2 755 06	0 00	E 2 9 9 4 2
1.2400 -3.200-07	15.5045	- 30.0649	-3.752-00	0.00	526042.
1 2800 -1 52F-07	13 3389	-5/ 1537	-2 65E-06	0 00	528012
74 5529 6595565	0 00	-)4,1))/	-2.052-00	0.00	520042.
1 3200 -5 38F-07	11 2324	-50 8315	-1 72F-06	9 99	528042
91,5575 6807897	0.00	50.0515	1.722 00	0.00	520042.
1.3600 -5.90E-07	9,2725	-46,9303	-9.43F-07	0.00	528042.
103.4998 7020229.	0.00	1012202	51152 07	0.00	5200 121
1.4000 -6.13E-07	7,4781	-42.6421	-3.09E-07	0.00	528042.
110.9117 7232561.	0.00				
1.4400 -6.14E-07	5.8611	-38.1367	1.97E-07	0.00	528042.
114.3575 7444893.	0.00				
1.4800 -5.98E-07	4.4271	-33.5613	5.86E-07	0.00	528042.
114.4144 7657225.	0.00				
1.5200 -5.68E-07	3.1762	-29.0399	8.74E-07	0.00	528042.
111.6544 7869557.	0.00				
1.5600 -5.28E-07	2.1039	-24.6742	1.07E-06	0.00	528042.
106.6298 8081889.	0.00				
1.6000 -4.82E-07	1.2022	-20.5444	1.20E-06	0.00	528042.
99.8610 8294221.	0.00				
1.6400 -4.32E-07	0.4602	-16.7106	1.26E-06	0.00	528042.
91.8275 8506553.	0.00				
1.6800 -3.81E-07	-0.1348	-13.2149	1.27E-06	0.00	528042.
82.9614 8718886.	0.00				
1.7200 -3.30E-07	-0.5971	-10.0828	1.25E-06	0.00	528042.
73.6430 8931218.	0.00				
1./600 -2.81E-07	-0.9415	-7.3259	1.19E-06	0.00	528042.
64.1990 9143550.	0.00				

SR1 - Debris	Barrier - Sup	port A - S	Service - 201	.91028 Revisi	lon.txt
1.8000 -2.35E-07	-1.1832	-4.9439	1.11E-06	0.00	528042.
54.9024 9355882.	0.00				
1.8400 -1.92E-07	-1.3371	-2.9264	1.01E-06	0.00	528042.
45.9736 9568214.	0.00				
1.8800 -1.54E-07	-1.4174	-1.2552	9.08E-07	0.00	528042.
37.5840 9780546.	0.00				
1.9200 -1.20E-07	-1.4376	0.09362	8.00E-07	0.00	528042.
29.8587 9992878.	0.00				
1.9600 -8.97E-08	-1.4100	1.1484	6.92E-07	0.00	528042.
22.8818 1.02E+07	0.00				
2.0000 -6.41E-08	-1.3458	1.9401	5.88E-07	0.00	528042.
16.7008 1.04E+07	0.00				
2.0400 -4.26E-08	-1.2548	2.5007	4.90E-07	0.00	528042.
11.3321 1.06E+07	0.00				
2.0800 -2.50E-08	-1.1457	2.8627	3.99E-07	0.00	528042.
6.7659 1.08E+07	0.00				
2.1200 -1.08E-08	-1.0258	3.0574	3.16E-07	0.00	528042.
2.9714 1.11E+07	0.00				
2.1600 3.49E-10	-0.9012	3.1149	2.43E-07	0.00	528042.
-0.09834 1.13E+07	0.00				
2.2000 8.72E-09	-0.7767	3.0629	1.80E-07	0.00	528042.
-2.5024 1.15E+07	0.00				
2.2400 1.4/E-08	-0.6561	2.9267	1.26E-07	0.00	528042.
-4.30/4 1.1/E+0/	0.00	2 7200	0 005 00		500040
2.2800 1.88E-08	-0.5425	2./289	8.02E-08	0.00	528042.
-5.584/ 1.19E+0/	0.00	2 4000	4 205 00	0.00	F20042
2.3200 2.12E-08	-0.4378	2.4890	4.302-08	0.00	528042.
-6.4068 1.21E+0/	0.00	2 2240	1 255 00	0.00	520012
2.3000 2.22E-08	-0.3434	2.2240	1.356-08	0.00	528042.
-0.8455 I.25E+0/	0.00	1 0477	0 405 00	0 00	520012
	-0.2599	1.94//	-9.402-09	0.00	520042.
-0.9088 I.23E+0/	0.00	1 6715	2 625 00	0 00	520012
2.4400 2.13E-00 6 9414 1 29E+07	-0.10/0	1.0/15	-2.032-00	0.00	520042.
2 /800 2 01F-08	-0 1262	1 1012	-3 87F-08	0 00	528012
-6 5215 1 30E±07	-0.1202	1.4042	-3.821-08	0.00	JZ0042.
2 5200 1 84E-08	-0.07525	1 1526	-1 50E-08	0 00	528012
-6 0615 1 32E+07	-0.07525	1.1520	-4.592-00	0.00	520042.
2 5600 1 65E-08	-0.00	Q 9212	-5 00E-08	0 00	528012
-5 5069 1 34F+07	0.05555	0.7212	-3.001-00	0.00	520042.
2 6000 1 44F-08	-0.00	0 7131	-5 13F-08	9 99	528042
-4 8966 1 36F+07	0.00155	0.7151	J.IJL 00	0.00	520042.
2.6400 1.23E-08	0.02306	0.5299	-5.05E-08	0.00	528042
-4,2629 1,38F+07	0.02500	0.9299	5.052 00	0.00	5200 12.
2.6800 1.04F-08	0.04085	0.3721	-4.81F-08	0.00	528042
-3.6318 1.40E+07	0.00			0.00	2200121
2.7200 8.49E-09	0.05283	0.2389	-4.46E-08	0.00	528042.
-3.0238 1.42E+07	0.00		• •		

SR1 - Debris	Barrier - Su	upport A - S	Service - 20	191028 Revis:	ion.txt
2.7600 6.79E-09	0.05997	0.1294	-4.03E-08	0.00	528042.
-2.4537 1.45E+07	0.00				
2.8000 5.27E-09	0.06318	0.04167	-3.56E-08	0.00	528042.
-1.9323 1.47E+07	0.00				
2.8400 3.94E-09	0.06331	-0.02629	-3.08E-08	0.00	528042.
-1.4659 1.49E+07	0.00				
2.8800 2.80F-09	0.06108	-0.07676	-2.61E-08	0.00	528042.
-1.0577 1.51F+07	0.00	010/0/0	20022 00	0.00	5200.21
2,9200 1,85F-09	0.05717	-0.1120	-2.16E-08	0,00	528042
-0 7021 1 52F+07	0.03/1/	0.1120	2.102 00	0.00	5200121
2 9600 1 07E-09	0.00	-0 13/1	_1 75F_08	0 00	528012
0 4066 1 525+07	0.05215	-0.1341	-1./JL-00	0.00	528042.
	0.00	0 1457	1 205 00	0 00	E20042
	0.04044	-0.1457	-1.305-00	0.00	520042.
	0.00	0 1400	1 055 00	0 00	520042
3.0400 -2.96E-11	0.04047	-0.1489	-1.05E-08	0.00	528042.
0.01121 1.52E+0/	0.00				
3.0800 -3.8/E-10	0.03453	-0.145/	-/.64E-09	0.00	528042.
0.1469 1.52E+07	0.00				
3.1200 -6.41E-10	0.02882	-0.1379	-5.24E-09	0.00	528042.
0.2430 1.52E+07	0.00				
3.1600 -8.07E-10	0.02349	-0.1269	-3.26E-09	0.00	528042.
0.3059 1.52E+07	0.00				
3.2000 -9.02E-10	0.01866	-0.1140	-1.66E-09	0.00	528042.
0.3419 1.52E+07	0.00				
3.2400 -9.40E-10	0.01438	-0.1000	-4.11E-10	0.00	528042.
0.3564 1.52E+07	0.00				
3.2800 -9.34E-10	0.01066	-0.08581	5.37E-10	0.00	528042.
0.3543 1.52E+07	0.00				
3.3200 -8.97E-10	0.00751	-0.07192	1.23E-09	0.00	528042.
0.3401 1.52E+07	0.00				
3.3600 -8.36E-10	0.00491	-0.05877	1.70E-09	0.00	528042.
0.3172 1.52E+07	0.00				
3,4000 -7,61F-10	0.00281	-0.04666	1.99F-09	0,00	528042
0 2886 1 52F+07	0.00201	0.010000	1.552 05	0.00	5200121
3 4400 -6 77E-10	0.00 0 00117	-0 03575	2 14F-09	0 00	528042
$0.2560 + 5.25\pm07$	0.00117	-0.05575	2.14L-0J	0.00	520042.
2 1900 5 00E 10	5 01E 0E	0 02612	2 19E 00	0 00	520012
5.4000 -5.90E-10 0.2220 1 E2E+07	-5.04E-05	-0.02013	2.102-09	0.00	520042.
	0.00	0 01704	2 145 00	0 00	520042
3.5200 -5.03E-10	-9.1/E-04	-0.01/84	2.14E-09	0.00	528042.
0.190/ 1.52E+0/	0.00				
3.5600 -4.19E-10	-0.00148	-0.01086	2.05E-09	0.00	528042.
0.1587 1.52E+07	0.00				
3.6000 -3.39E-10	-0.00179	-0.00511	1.93E-09	0.00	528042.
0.1284 1.52E+07	0.00				
3.6400 -2.64E-10	-0.00189	-5.42E-04	1.79E-09	0.00	528042.
0.1002 1.52E+07	0.00				
3.6800 -1.95E-10	-0.00183	0.00294	1.65E-09	0.00	528042.
0.07407 1.52E+07	0.00				

SR	1 - Debris	Barrier - Supp	ort A - Se	rvice - 2019102	8 Revisi	on.txt
3.7200	-1.32E-10	-0.00165	0.00543	1.52E-09	0.00	528042.
0.05009 1	52E+07	0.00				
3.7600	-7.38E-11	-0.00139	0.00699	1.40E-09	0.00	528042.
0.02800 1	52E+07	0.00				
3.8000	-1.98E-11	-0.00109	0.00770	1.31E-09	0.00	528042.
0.00752 1	52E+07	0.00				
3.8400	3.09E-11	-7.79E-04	0.00761	1.24E-09	0.00	528042.
-0.01170	1.52E+07	0.00				
3.8800	7.92E-11	-4.84E-04	0.00678	1.19E-09	0.00	528042.
-0.03003	1.52E+07	0.00				
3.9200	1.26E-10	-2.37E-04	0.00522	1.16E-09	0.00	528042.
-0.04781	1.52E+07	0.00				
3.9600	1.72E-10	-6.61E-05	0.00296	1.15E-09	0.00	528042.
-0.06531	1.52E+07	0.00				
4.0000	2.18E-10	0.00	0.00	1.15E-09	0.00	528042.
-0.08274	7584236.	0.00				

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	0.00004054	meters			
Computed slope at pile head	=	-0.00005271	radians	5		
Maximum bending moment	=	32.49990045	kN-m			
Maximum shear force	=	-58.44281877	kN			
Depth of maximum bending moment	=	0.8000000	meters	below	pile	head
Depth of maximum shear force	=	1.16000000	meters	below	pile	head
Number of iterations	=	7				
Number of zero deflection points	=	4				

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	73.000 kN
Applied moment at pile head	=	0.000 kN-m
Axial thrust load on pile head	=	603.000 kN

SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt

Depth Res Soil	Deflect.	Bending	Shear	Slope	Total	Bending	Soil
X Fs*h	y Juliat	Moment	Force	S	Stress	Stiffness	р
meters kN/m	meters kN/m	kN-m kN/m	kN	radians	kPa*	kN-m^2	
, 	, 	, 					
0.00	7.95E-05	-2.71E-11	73.0000	-9.62E-05	0.00	533991.	
0.00 0.04000 0.00	7.57E-05 0.00	2.9223 0.00	73.0000	-9.61E-05	0.00	533991.	
0.08000 0.00	7.19E-05 0.00	5.8446 0.00	73.0000	-9.58E-05	0.00	533991.	
0.1200 0.00	6.80E-05 0.00	8.7669 0.00	73.0000	-9.52E-05	0.00	533991.	
0.1600 0.00	6.42E-05 0.00	11.6892 0.00	73.0000	-9.45E-05	0.00	533991.	
0.2000 0.00	6.05E-05 0.00	14.6115 0.00	73.0000	-9.35E-05	0.00	533991.	
0.2400 0.00	5.68E-05 0.00	17.5337 0.00	73.0000	-9.23E-05	0.00	533991.	
0.2800 0.00	5.31E-05 0.00	20.4559 0.00	73.0000	-9.08E-05	0.00	533991.	
0.3200 0.00	4.95E-05 0.00	23.3781 0.00	73.0000	-8.92E-05	0.00	533991.	
0.3600	4.60E-05 0.00	26.3003 0.00	73.0000	-8.73E-05	0.00	533991.	
0.4000	4.25E-05 0.00	29.2223 0.00	73.0000	-8.53E-05	0.00	533985.	
0.4400	3.91E-05 0.00	32.1444 0.00	73.0000	-8.30E-05	0.00	533981.	
0.4800	3.59E-05 0.00	35.0663	73.0000	-8.04E-05	0.00	533977.	
0.5200	3.27E-05 0.00	37.9882 0.00	73.0000	-7.77E-05	0.00	533974.	
0.5600	2.96E-05 0.00	40.9101	73.0000	-7.48E-05	0.00	533971.	
0.00	2.67E-05 0.00	43.8319	/3.0000	-7.16E-05	0.00	533969.	
0.6400 -262.8454	2.39E-05 439530.	46.7535	67.7431	-6.82E-05	0.00	533966.	
0.6800 -273.0135	2.13E-05 513591.	49.2546	57.0259	-6.46E-05	0.00	533965.	
0.7200 -281.8300	1.88E-05 601134.	51.3187 0.00	45.9290	-6.08E-05	0.00	533964.	
0.7600	1.64E-05	52.9318	34.5079	-5.69E-05	0.00	533961.	

SR1	l - Debris	Barrier - S	upport A -	Service - 20	191028 Revis	ion.txt
-289.2289	705560.	0.00				
0.8000	1.42E-05	54.0821	22.8205	-5.29E-05	0.00	533955.
-295.1382	831398.	0.00				
0.8400	1.22E-05	54.7600	10.9282	-4.88E-05	0.00	533951.
-299.4772	984785.	0.00				
0.8800	1.03E-05	54.9587	-1.1044	-4.47E-05	0.00	533950.
-302.1538	1174232.	0.00				
0.9200	8.59E-06	54.6738	-13.2087	-4.06E-05	0.00	533952.
-303.0588	1411851.	0.00				
0.9600	7.04E-06	53.9040	-25.3110	-3.66E-05	0.00	533956.
-302.0582	1715435.	0.00				
1.0000	5.66E-06	52.6507	-37.3317	-3.26E-05	0.00	533963.
-298.9796	2112188.	0.00				
1.0400	4.44E-06	50.9190	-49.1831	-2.87E-05	0.00	533964.
-293.5885	2645872.	0.00				
1.0800	3.37E-06	48.7175	-60.7658	-2.49E-05	0.00	533965.
-285.5451	3391810.	0.00				
1.1200	2.44E-06	46.0590	-71.9630	-2.14E-05	0.00	533967.
-274.3145	4492406.	0.00				
1.1600	1.66E-06	42.9615	-82.3814	-1.81E-05	0.00	533969.
-246.6091	5958569.	0.00				
1.2000	9.97E-07	39.4693	-90.3906	-1.50E-05	0.00	533972.
-153.8471	6170901.	0.00				
1.2400	4.57E-07	35.7309	-94.9269	-1.22E-05	0.00	533976.
-72.9698	6383233.	0.00				
1.2800	2.43E-08	31.8757	-96.4666	-9.63E-06	0.00	533981.
-4.0134 6	595565.	0.00				
1.3200	-3.13E-07	28.0141	-95.4812	-7.39E-06	0.00	533988.
53.2835 6	807897.	0.00				
1.3600	-5.67E-07	24.2376	-92.4269	-5.43E-06	0.00	533991.
99.4306 7	020229.	0.00				
1.4000	-7.47E-07	20.6202	-87.7355	-3.75E-06	0.00	533991.
135.1375	7232561.	0.00				
1.4400	-8.66E-07	17.2189	-81.8075	-2.33E-06	0.00	533991.
161.2649	7444893.	0.00				
1.4800	-9.34E-07	14.0757	-75.0066	-1.16E-06	0.00	533991.
178.7797	7657225.	0.00				
1.5200	-9.59E-07	11.2185	-67.6567	-2.12E-07	0.00	533991.
188.7134	7869557.	0.00				
1.5600	-9.51E-07	8.6632	-60.0400	5.32E-07	0.00	533991.
192.1240	8081889.	0.00				
1.6000	-9.17E-07	6.4153	-52.3962	1.10E-06	0.00	533991.
190.0638	8294221.	0.00				
1.6400	-8.63E-07	4.4714	-44.9239	1.50E-06	0.00	533991.
183.5519	8506553.	0.00				
1.6800	-7.96E-07	2.8213	-37.7818	1.78E-06	0.00	533991.
173.5516	8718886.	0.00				
1.7200	-7.21E-07	1.4488	-31.0917	1.94E-06	0.00	533991.

SR1 - Debris	Barrier - Su	ipport A - S	Service - 201	.91028 Revisi	ion.txt
160.9537 8931218.	0.00				
1.7600 -6.41E-07	0.3338	-24.9414	2.00E-06	0.00	533991.
146.5635 9143550.	0.00				
1.8000 -5.60E-07	-0.5466	-19.3883	2.00E-06	0.00	533991.
131.0932 9355882.	0.00				
1.8400 -4.81E-07	-1.2173	-14.4632	1.93E-06	0.00	533991.
115.1581 9568214.	0.00				
1.8800 -4.06E-07	-1.7038	-10.1746	1.82E-06	0.00	533991.
99.2755 9780546.	0.00				
1.9200 -3.36E-07	-2.0314	-6.5117	1.68E-06	0.00	533991.
83.8677 9992878.	0.00				
1.9600 -2.71E-07	-2.2248	-3.4490	1.52E-06	0.00	533991.
69.2664 1.02E+07	0.00				
2.0000 -2.14E-07	-2.3074	-0.9493	1.35E-06	0.00	533991.
55.7194 1.04E+07	0.00				
2.0400 -1.63E-07	-2.3008	1.0331	1.18E-06	0.00	533991.
43.3988 1.06E+07	0.00				
2.0800 -1.20E-07	-2.2248	2.5492	1.01E-06	0.00	533991.
32.4092 1.08E+07	0.00				
2.1200 -8.25E-08	-2.0969	3,6534	8.48E-07	0.00	533991.
22.7975 1.11F+07	0.00				
2.1600 -5.17E-08	-1.9326	4,4005	6.97F-07	0.00	533991
14 5619 1 13F+07	9 99	1. 1005	0.972 07	0.00	
2 2000 _2 67E-08	-1 7//9	1 8150	5 60E-07	0 00	533001
7 6611 1 155+07	0 00	4.0400	J.00L-07	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2 2/00 _6 925-09	-1 5/50	5 0387	1 36E-07	0 00	533001
2.2400 -0.92L-09	0 00	5.0507	4.502-07	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2 2800 8 225-00	-1 3/18	5 0302	3 285-07	0 00	533001
2.2000 0.222-09	-1.5410	5.0502	5.202-07	0.00	222221.
-2.44/5 1.192+0/	1 1426	1 9610	2 255 07	0 00	E 2 2 0 0 1
	-1.1420	4.8040	2.35E-07	0.00	.166555
-5.8000 1.212+0/	0.00	4 5001	1 575 07	0.00	F22001
2.3600 2.70E-08	-0.9527	4.5801	1.5/E-0/	0.00	233991.
-8.3368 1.23E+07	0.00	4 2124	0 015 00	0.00	F22001
2.4000 3.19E-08	-0.7762	4.2134	9.21E-08	0.00	233991.
-9.9998 1.25E+07	0.00	2 7020	4 005 00	0.00	533004
2.4400 3.44E-08	-0.6156	3./939	4.00E-08	0.00	533991.
-10.9727 1.28E+07	0.00				
2.4800 3.51E-08	-0.4727	3.3470	-8.06E-10	0.00	533991.
-11.3745 1.30E+07	0.00				
2.5200 3.44E-08	-0.3479	2.8932	-3.15E-08	0.00	533991.
-11.3168 1.32E+07	0.00				
2.5600 3.26E-08	-0.2412	2.4488	-5.36E-08	0.00	533991.
-10.9024 1.34E+07	0.00				
2.6000 3.01E-08	-0.1520	2.0263	-6.83E-08	0.00	533991.
-10.2233 1.36E+07	0.00				
2.6400 2.71E-08	-0.07911	1.6346	-7.70E-08	0.00	533991.
-9.3602 1.38E+07	0.00				
2.6800 2.39E-08	-0.02121	1.2797	-8.07E-08	0.00	533991.

SR1 - De	ebris Barrie	r - Support	A - Serv	ice - 2019102	8 Revisio	on.txt
-8.3827 1.40E+	07 0.	90				
2.7200 2.0	6E-08 0.	92327 0	.9651 -8	.07E-08	0.00	533991.
-7.3485 1.42E+	07 0.	90				
2.7600 1.7	5E-08 0.	95600 0	.6920 -7	.77E-08	0.00	533991.
-6.3049 1.45E+	07 0.	90				
2.8000 1.4	4E-08 0.	07864 0	.4602 -7	.27E-08	0.00	533991.
-5.2889 1.47E+	07 0.	90				
2.8400 1.1	6E-08 0.	09281 0	.2678 -6	.62E-08	0.00	533991.
-4.3285 1.49E+	07 0.	90				
2.8800 9.1	3E-09 0	.1001 0	.1124 -5	.90E-08	0.00	533991.
-3.4433 1.51E+	07 0.	90				
2.9200 6.92	2E-09 0	.1018 -0.	00896 -5	.14E-08	0.00	533991.
-2.6233 1.52E+	07 0.	90				
2.9600 5.0	1E-09 0.	99935 -0 .	99944 -4	.39E-08	0.00	533991.
-1.9007 1.52E+	07 0.	90				
3.0000 3.4	0E-09 0.	99385 -0	.1633 -3	.67E-08	0.00	533991.
-1.2910 1.52E+	07 0.	90				
3.0400 2.0	8E-09 0.	98629 -0	.2049 -2	.99E-08	0.00	533991.
-0.7880 1.52E+	07 0.	90				
3.0800 1.03	1E-09 0.	97747 -0	.2283 -2	.38E-08	0.00	533991.
-0.3830 1.52E+	07 0.	90				
3.1200 1.74	4E-10 0.	96803 -0	.2373 -1	.83E-08	0.00	533991.
-0.06606 1.52E	+07 0	.00				
3.1600 -4.5	8E-10 0.	95849 -0	.2351 -1	.36E-08	0.00	533991.
0.1736 1.52E+0	7 0.0	3				
3.2000 -9.1	5E-10 0.	94922 -0	.2247 -9	.58E-09	0.00	533991.
0.3468 1.52E+0	7 0.0	3				
3.2400 -1.2	2E-09 0.	94051 -0	.2085 -6	.21E-09	0.00	533991.
0.4641 1.52E+0	7 0.0	9				
3.2800 -1.4	1E-09 0.	03254 -0	.1885 -3	.48E-09	0.00	533991.
0.5353 1.52E+0	7 0.0	2				
3.3200 -1.5	0E-09 0.	02543 -0	.1664 -1	.31E-09	0.00	533991.
0.5696 1.52E+0	7 0.0))				
3.3600 -1.5	2F-09 0.	- 31923 -0	.1435 3	.66F-10	0.00	533991.
0.5750 1.52F+0	7 0.0))			0.00	5555521
3.4000 -1.4	7F-09 0.0	- 91395 -0	.1208 1	.61F-09	0.00	533991.
0.5585 1.52E+0	7 0.0) 1		.012 05	0.00	
3.4400 -1.3	9F-09 0.	- 20957 -0.1	29913 2	49F-09	0.00	533991
0.5262 1.52E+0	7 9.9))	2222		0.00	
3 4800 -1 2	7F-09 0	- 20602 -0	7895 3	07F-09	9 99	533991
0 4830 1 52F+0	7 9 9	a a	5,655 5	.0/2 05	0.00	555551.
3 5200 -1 1	1F-09 0	, 20325 -0	26063 3	12F-09	a aa	533991
0 4329 1 52F+0	7 00	л Лариан	50005 5	.422 00	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3 5600 _1 0	0.00 0E-09 0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21129 3	59F-09	0 00	533001
0 3792 1 52540) 2011) -01			0.00	• • • • • • • • •
3 6000 0 0	5E_10 2 0	2 2 E - 01 0	י רבמבג	62E-00	0 00	532001
0 30/1 1 505.0	7 - 3.0	SE-04 -0.1 A		• UZL-UJ	0.00	• דבפררר
2 6/00 7 1	7 0.0	2 20125 0	21845 2	56E-00	0 00	522001
5.0400 -7.10	0C-T0 -0.	-0-	01040 3	. JUE-UU	0.00	TERCCC

SR1 - Debris E	Barrier - Sup	oport A - Se	ervice - 20191	028 Revis	ion.txt
0.2694 1.52E+07	0.00				
3.6800 -5.70E-10	-0.00178	-0.00874	3.45E-09	0.00	533991.
0.2161 1.52E+07	0.00				
3.7200 -4.35E-10	-0.00195	-0.00112	3.31E-09	0.00	533991.
0.1648 1.52E+07	0.00				
3.7600 -3.05E-10	-0.00187	0.00449	3.17E-09	0.00	533991.
0.1157 1.52E+07	0.00				
3.8000 -1.81E-10	-0.00159	0.00818	3.04E-09	0.00	533991.
0.06876 1.52E+07	0.00				
3.8400 -6.23E-11	-0.00121	0.01002	2.93E-09	0.00	533991.
0.02362 1.52E+07	0.00				
3.8800 5.31E-11	-7.92E-04	0.01009	2.86E-09	0.00	533991.
-0.02014 1.52E+07	0.00				
3.9200 1.66E-10	-4.05E-04	0.00843	2.81E-09	0.00	533991.
-0.06301 1.52E+07	0.00				
3.9600 2.78E-10	-1.18E-04	0.00506	2.79E-09	0.00	533991.
-0.1054 1.52E+07	0.00				
4.0000 3.89E-10	0.00	0.00	2.79E-09	0.00	533991.
-0.1477 7584236.	0.00				

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 2:

Pile-head deflection	=	0.00007954 meters	
Computed slope at pile head	=	-0.00009621 radians	
Maximum bending moment	=	54.95871581 kN-m	
Maximum shear force	=	-96.46657553 kN	
Depth of maximum bending moment	=	0.88000000 meters below pile head	
Depth of maximum shear force	=	1.28000000 meters below pile head	
Number of iterations	=	9	
Number of zero deflection points	=	4	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, kN, and Load 2 = Moment, M, kN-m Load Type 2: Load 1 = Shear, V, kN, and Load 2 = Slope, S, radians SR1 - Debris Barrier - Support A - Service - 20191028 Revision.txt Load Type 3: Load 1 = Shear, V, kN, and Load 2 = Rot. Stiffness, R, kN-m/rad. Load Type 4: Load 1 = Top Deflection, y, m, and Load 2 = Moment, M, kN-m Load Type 5: Load 1 = Top Deflection, y, m, and Load 2 = Slope, S, radians

Load Load Axial Pile-head Pile-head Max Load Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile Load 1 2 Load 2 kN meters radians No. 1 kΝ kN-m ------1 V, kN 45.0000 M, kN-m 0.00 945.0000 4.05E-05 -5.27E-05 -58.4428 32.4999 2 V, kN 73.0000 M, kN-m 0.00 603.0000 7.95E-05 -9.62E-05 -96.4666 54.9587

Maximum pile-head deflection = 0.0000795392 meters Maximum pile-head rotation = -0.0000962073 radians = -0.005512 deg.

The analysis ended normally.

SPRINGBANK OFF-STREAM STORAGE PROJECT STRUCTURAL DESIGN REPORT

Appendix D, Attachment 3: SUPPORT B FOUNDATION CALCULATIONS November 27, 2019

ATTACHMENT 3: SUPPORT B FOUNDATION CALCULATIONS

oting and Be	drock P	arameters				
dth of Strip Fo	oting:					$B_{strip} \coloneqq 1 \ m$
angth between	Supports					$L_{strip} \coloneqq 2.5 \ m$
epth of Strip Fo	oting:					$D_f \coloneqq 1 m$
Table 1.	Allowable B	earing Capacil	y of Intact R	tock (withou	t Cohesion) - I	Diversion Structures
Table 1. / Bedrock Type	Allowable B Percent Bedrock Type Below Bearing	earing Capacit Typical Unconfined Compressive Strength MPa	y of Intact R Cohesion MRR	Estimated Basic Friction Angle (phi)	t Cohesion) - I Ultimate Bearing Capacity ¹ kPa	Allowable Bearing Capacity FOS = 3.0 kPa
Bedrock Type Shale	Allowable B Percent Bedrock Type Below Bearing 30	earing Capacit Typical Unconfined Compressive Strength MPa 20.7	y of Intact R Cohesion MRR 0	Estimated Basic Friction Angle (phi) 29	t Cohesion) - I Ultimate Bearing Capacity 1 kPa 2.627	Allowable Bearing Capacity FOS = 3.0 kPa 876
Bedrock Type Shale Mudstone	Allowable B Percent Bedrock Type Below Bearing 30 40	earing Capacit Typical Unconfined Compressive Strength MPa 20.7 5.5	y of Intact R Cohesion MRR 0 0	Estimated Basic Friction Angle (phi) 29 24	t Cohesion) - I Ultimate Bearing Capacity 1 kPa 2.627 1.510	Allowable Bearing Capacity FOS = 3.0 kPa 876 503
Table 1. A Bedrock Type Shale Mudstone Claystone	Allowable B Percent Bedrock Type Below Bearing 30 40 20	earing Capacit Typical Unconfined Compressive Strength MPa 20.7 5.5 17.2	y of Intact R Cohesion MRR 0 0	Estimated Basic Friction Angle (phi) 29 24 24	t Cohesion) - I Uttimate Bearing Capacity ¹ kPa 2.627 1.510 1.510	Allowable Bearing Capacity FOS = 3.0 kPa 876 503 503

1 Derived from USACE EM 1110-1-2908, Rock Foundations, Equation 6-1, 1994.

Assume weighted average of bedrock parameters for design:

Ultimate Bearing Capacity (Weighted Average):

 $q_{ult_avg} \coloneqq 2627 \ \textbf{kPa} \cdot 30\% + 1510 \ \textbf{kPa} \cdot 40\% + 1510 \ \textbf{kPa} \cdot 20\% + 3668 \ \textbf{kPa} \cdot 10\% = 2060.9 \ \frac{\textbf{kN}}{m^2}$

Allowable Bearing Capacity (Weighted Average):

$$q_{all_avg} := \frac{q_{ult_avg}}{3} = 686.97 \ \frac{kN}{m^2}$$

Table 2. SR1 Diversion Structure – Cross Bed Shear Strength Parameters

	Percent	Typical	Hoek-8	rown Coe	fficients		
Boring	Bedrock Type Below Bearing	Unconfined Compressive Strength MPa (psi)	Mi Value	GSI Value	D Value	Estimated Cross Bed Friction Angle	Estimated Cross Bed Cohesion kPa (pst)
Shale	30	20.7	6	35	0.5	35.1	124
Mudstone	40	5.5	4	30	0.5	19.8	59
Claystone	20	17.2	4	30	0.5	28.2	93
Sandstone	10	24.1	13	55	0.5	50.5	257

Estimated Cross Bed Friction Angle (Weighted Average):

 $\phi'_{p} \coloneqq 35.1 \ deg \cdot 30\% + 19.8 \ deg \cdot 40\% + 28.2 \ deg \cdot 20\% + 50.5 \ deg \cdot 10\% = 29.14 \ deg$

Project:Springbank Off-Stream Storage Project - SR1CompositionProject Number:110773396CompositionCalculation:Debris Barrier Foundation Design - Section D - Support B - Case 1 - R6

Bearing Capacity Check:		
Resultant Vertical Force:		$Q := H_{2_UN1} = 865 \ kN$
Weight of Foundation:	$W_{foundation} \coloneqq (W$	$(T_c - W_w) \cdot D_f \cdot B_{strip} \cdot L_{strip} = 34.32 \ kN$
Total Vertical Force:		$Q_{total} \coloneqq Q + W_{foundation} = 899.32$ kM
Resultant Horizontal Force:		$H_B := P_{2_UN1} = 70 \ kN$
Tributary Area of Strip Footing:		$A_{strip} \coloneqq B_{strip} \cdot L_{strip} = 2.5 \ \boldsymbol{m}^2$
Eccentricity about the Base of the	Footing:	$e_B \coloneqq rac{M_{2_UN1}}{Q_{total}} = 0.02~m{m}$
Check e <b 6:<="" td=""><td>$e_B = 0.02 \ m$</td><td>$rac{B_{strip}}{6}$=0.17 $m{m}$</td>	$e_B = 0.02 \ m$	$rac{B_{strip}}{6}$ =0.17 $m{m}$
Is e <b 6?="" assessed="" fo<="" for="" td="" the="" yes,=""><td>poting widths (B_{st}</td><td>$r_{ip}=1 m$)</td>	poting widths (B_{st}	$r_{ip}=1 m$)
	P M	
		224
	For <i>e</i> < <i>B</i> /6	
	For e > B/6	
	Avoid This	fmax.

Project: Springbank Off-Stream Storage Project - SR1 Project Number: 110773396

Calculation: Debris Barrier Foundation Design - Section D - Support B - Case 1 - R6

Max Pressure Beneath Footing:	$q_{max} \coloneqq \frac{Q_{total}}{B_{strip} \cdot L_{strip}} \left(1 + \frac{6 \ e_B}{B_{strip}}\right) = 398.13 \ \frac{kN}{m^2}$
Min Pressure Beneath Footing:	$q_{min} \coloneqq \frac{Q_{total}}{B_{strip} \cdot L_{strip}} \left(1 - \frac{6 \ e_B}{B_{strip}}\right) = 321.33 \ \frac{kN}{m^2}$
Effective Footing Width:	$B' := B_{strip} - 2 \ e_B = 0.96 \ m$
Effective Footing Length:	$L':=L_{strip}=2.5~m$
Design Vertical Pressure:	$q_u \coloneqq \frac{Q_{total}}{B' \cdot L'} = 373 \frac{kN}{m^2}$
Factor of Safety of Average Stress w	with Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_u} = 5.53$
Factor of Safety of Max Pressure wit	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (B_{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure = 1 m, L_{strip} = 2.5 m, D_f = 1 m) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (B_{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure $= 1 m$, $L_{strip} = 2.5 m$, $D_f = 1 m$) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (B_{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure = 1 m, L_{strip} = 2.5 m, D_f = 1 m) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (B_{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure = 1 m, L_{strip} = 2.5 m, D_f = 1 m) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (<i>B</i> _{strip} :	th Respect to Allowable: FOS := $\frac{q_{ult_avg}}{q_{max}}$ = 5.18 e Factors of Safety Against Bearing Capacity Failure = 1 m, L _{strip} = 2.5 m, D _f = 1 m) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (<i>B</i> _{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure $= 1 m, L_{strip} = 2.5 m, D_f = 1 m$) are Sufficient.
Factor of Safety of Max Pressure wit Based on the Above Calculations, the for the Assessed Foundation (<i>B</i> _{strip} :	th Respect to Allowable: $FOS := \frac{q_{ult_avg}}{q_{max}} = 5.18$ e Factors of Safety Against Bearing Capacity Failure = 1 m, L _{strip} = 2.5 m, D _f = 1 m) are Sufficient.

Lateral Resistance Check:							
Recommended Coefficient of Sliding Resistance:		μ :	=0.4	5			
Assumed Submerged Unit Weight of Mudstone from sample EP-1:	n	γ' :	=22	$rac{kN}{m^3}$	$-W_w$ =	= 12.1	$9 \frac{kN}{m^3}$
Height of Soil Resistance:		H_{o}	= D	$_{f} = 1$	m		
Earth Pressure Coefficients:					2		
Active Earth Pressure Coefficient:	K_a :=	= tan	$\left(45\right)$	deg -	$-\frac{\phi'_p}{2}$	=0.3	345
At Rest Earth Pressure Coefficient:	K_o :=	=1 —	$\sin($	$\phi'_p) =$	=0.513		
Passive Earth Pressure Coefficient:	K_p :=	= tan	$\left(45\right)$	deg -	$+\frac{\phi'_p}{2}\Big)^2$	=2.8	898
Passive Lateral Force per Length of Strip Footing :	P_p :=	$=\frac{1}{2}I$	$K_p \cdot \gamma$	'• <i>H</i> _o	$^2 ullet L_{strip}$	₀ =44	l.17 k i
FOS Against Sliding Assuming no Scour and Ignorin	ig Foui	ndat	ion V	Veigh	t:		
$FOS_{sliding_1} \coloneqq \frac{\mu \cdot (H_{2_UN1}) + P_{2_UN1}}{P_{2_UN1}}$	$\frac{P_p}{P_p} = 0$	6.19					
FOS Against Sliding Assuming no Scour, but Includi	ng Foi	unda	tion	Weig	ht:		
$FOS_{sliding_2} \coloneqq \frac{\mu \cdot (H_{2_UN1} + \mu)}{P_2}$	W _{foune} 2_UN1	lation)+P	$\frac{p}{p} = 6$.41		

ATTACHMENT 11 DIVERSION CHANNEL

Attachment 11.1 Diversion Channel Slope Stability Results

The results of the analysis shown here are based on available subsurface

	Unit Weight (kN/m³)	Strength Function	Cohesion' (kPa)	Phi' (°)
Granular Till	22		0	35
u Formation	21	Brazeau Formation		
Till	18		0	27
Lacustrine	18		0	23

The results of the analysis shown here are based on available subsurface

	Unit Weight (kN/m³)	Strength Function	Cohesion' (kPa)	Phi' (°)
Granular Till	22		0	35
u Formation	21	Brazeau Formation		
Till	18		0	27
Lacustrine	18		0	23

No warranties can be made regarding the continuity of subsurface

	Unit Weight (kN/m ³)	Strength Function	Cohesion' (kPa)	Phi' (°)
Granular Till	22		0	35
u Formation	21	Brazeau Formation		
Till	18		0	27
Lacustrine	18		0	23

No warranties can be made regarding the continuity of subsurface

	Unit Weight (kN/m ³)	Strength Function	Cohesion' (kPa)	Phi' (°)
Granular Till	22		0	35
u Formation	21	Brazeau Formation		
Till	18		0	27
Lacustrine	18		0	23

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
rmation	21			Brazeau Formation
	18	0	27	
Istrine	18	0	23	

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
rmation	21			Brazeau Formation
	18	0	27	
Istrine	18	0	23	

The results of the analysis shown here are based on available subsurface drawing depicts approximate subsurface conditions based on specific

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
nation	21			Brazeau Formation
	18	0	27	
rine	18	0	23	

The results of the analysis shown here are based on available subsurface drawing depicts approximate subsurface conditions based on specific

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
nation	21			Brazeau Formation
	18	0	27	
rine	18	0	23	

No warranties can be made regarding the continuity of subsurface

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
۱	21			Brazeau Formation
	18	0	27	
	18	0	23	

No warranties can be made regarding the continuity of subsurface

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
۱	21			Brazeau Formation
	18	0	27	
	18	0	23	

t ³)	Cohesion' (kPa)	Phi' (°)	Strength Function
			Brazeau Formation
	0	27	
	0	23	

t ³)	Cohesion' (kPa)	Phi' (°)	Strength Function
			Brazeau Formation
	0	27	
	0	23	

The results of the analysis shown here are based on available subsurface information, laboratory results, and approximate soil properties. The drawing depicts approximate subsurface conditions based on specific

t ³)	Cohesion' (kPa)	Phi' (°)	Strength Function
			Brazeau Formation
	0	27	
	0	23	

The results of the analysis shown here are based on available subsurface drawing depicts approximate subsurface conditions based on specific

Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
21			Coalspur Formation
18	0	27	

The results of the analysis shown here are based on available subsurface drawing depicts approximate subsurface conditions based on specific

Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Strength Function
21			Coalspur Formation
18	0	27	

Attachment 11.2 Emergency Spillway Soil Parameters

Internal Geotechnical Design Recommendations

Recommended Geotechnical Parameters SR-1 Emergency Spillway Structures Revised 12-September-2018

Geotechnical Information required for the Emergency Spillway structural design (Article references below refer to Chapter 5 – Project Data in the Emergency Spillway Structural Design Report)

5.3 <u>Foundation Parameters</u>

- Soil Classifications
 - Soil Layer 1 Lean to Fat Clay (CL to CH) Lacustrine Layer thickness ranges from 1.8 m to 2.7 m from existing surface. (Based on Borings DC23 and DC24)
 - Soil Layer 2 Lean Clay Glacial Till with Sand and Gravel (CL) Layer thickness ranges from 3.9 m to 4.6 m from base of lacustrine. (Based on Borings DC23 and DC24)
 - Depths to bedrock range from 6.4 m to 6.6 m (Based on Borings DC23 and DC24)
- Allowable bedrock bearing capacity (qa)
 - 622 kPa (13,000 psf) (Derived from Brazeau Formation data)
- Effective soil angle of repose (Effective Friction Angle)(φ)
 - Lean Clay Glacial Till with Sand: $\Phi = 27$ degrees
 - Fat Clay (Lacustrine): Φ = 23 degrees
- Effective Friction Angle of Bedrock (φ)
 - Weathered Sandstone and Mudstone Bedrock: $\Phi = 24$ degrees (Derived from Brazeau Formation data)
- Effective cohesion (c)
 - \circ c = 0 kPa (all layers)
- Coefficient of sliding friction (μ)
 - Lean Clay Glacial Till with Sand: $\mu = 0.51$
 - Fat Clay (Lacustrine): $\mu = 0.42$
 - Bedrock: $\mu = 0.45$
- Settlement
 - Settlement of rock bearing structural elements should be negligible.
- Subgrade Modulus
 - Lean to Fat Clay (Lacustrine): 27 MN/m³ (99.4 lb/in³)
 - Lean Clay Glacial Till with Sand: 34 MN/m³ (125.2 lb/in³)
 - Weathered Bedrock/Crushed Rock: 81.5 MN/m³ (300.1 lb/in³)
 - o Bedrock: 136 MN/m³ (500.8 lb/in³)

Due to potential settlement problems associated with partial soil and partial rock bearing structural elements, all individual structural elements should be supported entirely by either rock or soil bearing foundations. Soil and highly weathered bedrock should be excavated to competent rock and backfilled with durable crushed stone or flowable fill if possible. If two adjacent structural elements must be supported as one rock bearing and the other soil bearing, then a structural joint shall be provided between these elements to provide independent movement and rotation between them.

5.4 Level Bedding, Backfill and Embankment Fill Parameters

Lacustrine soils are not recommended for use as backfill material.

- Ysat
 - Embankment Soils: 2040 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Ymoist
 - Embankment Soils: 2040 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Φ_{eff}
 - Embankment Shell: Φ = 27 degrees
- K_o
- \circ Embankment Shell: K_o = 0.55
- Ka
 - \circ Embankment Shell: K_a = 0.38
- Kp
 - \circ Embankment Shell: K_p = 2.66
- Permeability
 - \circ Embankment Shell: k_v = 3.00 E -08 cm/sec
 - Lean Clay Till Foundation Soils: $k_v = 3.00 \text{ E} 08 \text{ cm/sec}$

5.5 Sandy Gravel (Floodplain Berm Fluvial Soils) 3:1 Downward Backfill Parameters

- Ysat
 - o Fluvial Soil Backfill: 2040 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Y_{moist}
 - o Fluvial Soil Backfill: 2040 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Φ_{eff}
 - Fluvial Soil Backfill: $\Phi = 38$ degrees
- Ka
 - \circ Fluvial Soil Backfill: K_a = 0.21
- Kp
 - \circ Fluvial Soil Backfill: K_p = 2.2

5.6 <u>Seepage Parameters and Uplift Assumptions</u>

 Assume full uplift between the headwater and tailwater condition. Uplift should be modified to account for any cutoff or drains as appropriate. Uplift pressures may be affected by different bearing materials and/or by specific requirements of the design criteria used.

5.7 <u>Frost Considerations</u>

- Frost depth
 - Recommended design frost depth = 2.0 meters
- Non-frost susceptible backfill
 - o Gravel and clean sands

Should there be any questions contact:

Vince Severance	859 422-3031
Dan Back	859 422-3034

ATTACHMENT 12 OFF-STREAM STORAGE DAM

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.1 Slope Stability Analyses Sta. 20+000

Section 20+000 Load Case: End of Construction, Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained)	18	0	23	0.15	No
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 20+000 Load Case: End of Construction, Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained)	18	0	23	0.15	No
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 20+000 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 20+000 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 20+000 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 20+000 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 20+000 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 20+000 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 20+000 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 20+000 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 20+000 Load Case: Rapid Drawdown Effective and Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0	33	0	0
	Embankment Core (RDD)	20	0	28	80	19
	Embankment Shell (RDD)	20	0	24	25	15
	Glacial Till (RDD)	18	0	27	60	19
	Glacio-Lacustrine (RDD)	18	0	23	15	20
	Rock Toe	20	0	33	0	0
	Sandstone					
	Weathered Bedrock	21	0	35	0	0

Section 20+000 Load Case: USBR Flood Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 20+000 Load Case: USACE Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.2 Slope Stability Analyses Sta. 21+050

Section 21+050 Load Case: End of Construction, Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	30	0	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained)	18	0	23	0.15	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 21+050 Load Case: End of Construction, Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	30	0	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained)	18	0	23	0.15	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 21+050 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				30
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+050 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				30
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+050 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	30
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+050 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	30
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+050 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				30
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+050 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				30
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				30	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+050 Load Case: Rapid Drawdown Effective and Total Stress Parameters Incipient Motion in the Upstream Direction

					1	1				1
Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				30	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+050 Load Case: Rapid Drawdown Effective and Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)	Piezometric Line After Drawdown
	Drain	21	0	30	0	0	1
	Embankment Core (RDD)	20	0	28	80	19	1
	Embankment Shell (RDD)	20	0	24	25	15	1
	Glacial Till (RDD)	18	0	27	60	19	1
	Glacio-Lacustrine (RDD)	18	0	23	15	20	1
	Sandstone						1
	Weathered Bedrock	21	0	35	0	0	1

Section 21+050 Load Case: USBR Flood Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	30
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+050 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				30
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.2 Slope Stability Analyses Sta. 21+750

Section 21+750 Load Case: End of Construction, Year 2

1,230

1,220

1,210

1,200

1,190 1,180 1,170 -150

-130

-110

Elevation

Distance

Section 21+750 Load Case: End of Construction, Year 2

1,230

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	
	Drain	21		0				33	
	Embankment Core (Undrained)	20		0	28	19	427		
	Embankment Shell (Undrained)	20		0	24	15	141		Water Pressure -20 - 0 kPa
	Glacial Till (Undrained)	18		0	27	19	363.2		0 - 20 kPa 20 - 40 kPa
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0	60 - 80 kPa
	Sandstone								100 - 120 kPc
	Weathered Bedrock	21		0				35	120 - 140 kPc
				<u>.</u>		•			 160 - 180 kPG 180 - 200 kPG 200 - 220 kPG 220 - 240 kPG 240 - 260 kPG 260 - 280 kPG

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Alberta Transportati

Section 21+750

1,230 1,220

1,210

1,180

1,170 **-**-150

-130

Elevation 1,200 1,190

Load Case: End of Co

a	nt	ec		Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	
					Drain	21		0				33	
tion	SR1 St	orage [Dam		Embankment Core (Undrained)	20		0	28	19	427		
					Embankment Shell (Undrained)	20		0	24	15	141		Cohesion 0 - 5 kPa
Const	truction,	, Flood, `	Year 2		Glacial Till (Undrained)	18		0	27	19	363.2		5 - 10 kPa
					Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0	20 - 25 kPc
					Sandstone								30 - 35 kPc
					Weathered Bedrock	21		0				35	35 - 40 kPc
													 33 - 80 K1 60 - 65 KP 65 - 70 KP 70 - 75 KP 75 - 80 KP 80 - 85 KP 85 - 90 KP 90 - 95 KP 95 - 100 ki 100 - 105 105 - 110
										- COLORIDA			

Distance

Section 21+750

1,230

Load Case: End of Construction, Flood, Year 2

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	
	Drain	21		0				33	
	Embankment Core (Undrained)	20		0	28	19	427		[
	Embankment Shell (Undrained)	20		0	24	15	141		Water Pressure -20 - 0 kPa
	Glacial Till (Undrained)	18		0	27	19	363.2		0 - 20 kPa 20 - 40 kPa
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0	60 - 80 kPa
	Sandstone								100 - 120 kPc
	Weathered Bedrock	21		0				35	120 - 140 kPc
		<u>.</u>	<u>.</u>	·		·	<u>.</u>		☐ 160 - 180 kPG ☐ 180 - 200 kPG ☐ 200 - 220 kPG ☐ 220 - 240 kPG ☐ 240 - 260 kPG ☐ 260 - 280 kPG

Section 21+750

Color	Name	Unit Weight	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1	Phi 2	Bilinear Normal	Phi' (°)
		(kN/m³)			(°)	(°)	(kPa)	
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1	Phi 2	Bilinear Normal	Phi' (°)
		(kN/m³)			(°)	(°)	(kPa)	
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750 Load Case: End of Construction, Year 3

1,230

1,220

1,210

1,200

1,190 1,180 1,170 -150

-130

-110

Elevation

Distance

Section 21+750 Load Case: End of Construction, Year 3

1,230

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	
	Drain	21		0				33	
	Embankment Core (Undrained)	20		0	28	19	427		[
	Embankment Shell (Undrained)	20		0	24	15	141		Water Pressure -20 - 0 kPa
	Glacial Till (Undrained)	18		0	27	19	363.2		0 - 20 kPa 20 - 40 kPa
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0	 40 - 80 kPa 60 - 80 kPa 80 - 100 kPa
	Sandstone								100 - 120 kPa
	Weathered Bedrock	21		0				35	120 - 140 kPa
									 160 - 180 kPa 180 - 200 kPa 200 - 220 kPa 220 - 240 kPa 240 - 260 kPa 260 - 280 kPa

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

1,230

1,220

1,21

1,200

1,180 1,170 -150

-130

-110

Elevation

Load Case: End of Construction, Flood, Year 3

Section 21+750

1,230

Load Case: End of Construction, Flood, Year 3

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	
	Drain	21		0				33	
	Embankment Core (Undrained)	20		0	28	19	427	Г	
	Embankment Shell (Undrained)	20		0	24	15	141		Water Pressure -20 - 0 kPa
	Glacial Till (Undrained)	18		0	27	19	363.2		0 - 20 kPa 20 - 40 kPa
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0	60 - 80 kPa 80 - 100 kPa
	Sandstone								100 - 120 kPa
	Weathered Bedrock	21		0				35	120 - 140 kPa
									 160 - 180 kPa 180 - 200 kPa 200 - 220 kPa 220 - 240 kPa 240 - 260 kPa 260 - 280 kPa

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Glacio-Lacustrine (Undrained)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750 Load Case: End of Construction Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest/Slope)	18	0	27	0.15	No
	Glacial Till (Drained, Slope/Toe)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained, Crest/Slope)	18	0	23	0.3	No
	Glacio-Lacustrine (Drained, Slope/Toe)	18	0	23	0.25	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

1,230

1,220

1,210

1,200

1,190

1,180

1,170

Alberta Transportation SR1 Storage Dam Color Name Cohesion' Phi' B-bar Add Unit Weight (kPa) Weight (°) Section 21+750 (kN/m³) Drain 21 0 33 0 Yes Load Case: End of Construction Year 3 Embankment Core (Drained, Year 2) 20 0 28 0.4 Yes **B-bar Analysis** Embankment Core (Drained, Year 3) 20 0 28 0 Yes 20 24 Embankment Shell (Drained, Year 2) 0 0.18 Yes **Effective Stress Parameters** Embankment Shell (Drained, Year 3) 20 0 24 0 Yes Glacial Till (Drained, Crest/Slope) 18 0 27 0.15 No Glacial Till (Drained, Slope/Toe) 18 0 27 0.1 No Glacio-Lacustrine (Drained, Crest/Slope) 18 0 23 0.3 No Glacio-Lacustrine (Drained, Slope/Toe) 18 0 23 0.25 No Sandstone 0 No Weathered Bedrock 21 0 35 0 No -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 Distance

17

Section 21+750 Load Case: End of Construction Year 3 B-bar Analysis Effective Stress Parameters

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest/Slope)	18	0	27	0.15	No
	Glacial Till (Drained, Slope/Toe)	18	0	27	0.1	No
	Glacio-Lacustrine (Drained, Crest/Slope)	18	0	23	0.3	No
	Glacio-Lacustrine (Drained, Slope/Toe)	18	0	23	0.25	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Alberta Transportation SR1 Storage Dam Color Name Cohesion' Phi' B-bar Add Unit Weight (kPa) Weight (°) Section 21+750 (kN/m³) Drain 21 0 33 0 Yes Load Case: End of Construction Year 3 Embankment Core (Drained, Year 2) 20 0 28 0.4 Yes **B-bar Analysis** Embankment Core (Drained, Year 3) 20 0 28 0 Yes 20 24 Embankment Shell (Drained, Year 2) 0 0.18 Yes **Effective Stress Parameters** Embankment Shell (Drained, Year 3) 20 0 24 0 Yes Glacial Till (Drained, Crest/Slope) 18 0 27 0.15 No Glacial Till (Drained, Slope/Toe) 18 0 27 0.1 No Glacio-Lacustrine (Drained, Crest/Slope) 18 0 23 0.3 No Glacio-Lacustrine (Drained, Slope/Toe) 18 0 23 0.25 No Sandstone 0 No Weathered Bedrock 21 0 35 0 No 1,230 1,220 1,210 1,200 1,190 1,180 1,170 -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 17 Distance

Section 21+750 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 21+750 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 21+750 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+750 Load Case: Long Term Effective and Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+750 Load Case: Long Term Effective and Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)	Piezometric Line After Drawdown
	Drain	21	0	33	0	0	1
	Embankment Core (RDD)	20	0	28	80	19	1
	Embankment Shell (RDD)	20	0	24	25	15	1
	Glacial Till (RDD)	18	0	27	60	19	1
	Glacio-Lacustrine (RDD)	18	0	23	15	20	1
	Sandstone						1
	Weathered Bedrock	21	0	35	0	0	1

Section 21+750 Load Case: USBR Flood Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.4 Slope Stability Analyses Sta. 22+500

1,235

1,225

1,215

Alberta Transportation SR1 Storage Dam

	Drain Embankment Core (Undrained)	21 20		0					
	Embankment Core (Undrained)	20		l C				33	
				0	28	19	427		
	Embankment Shell (Undrained)	20		0	24	15	141		Cohesion
_	Glacial Till (Undrained)	18		0	27	19	363.2		0 - 5 kPc
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0	□ 10 - 15 k □ 15 - 20 k
	Granular Zone	21		0				33	20 - 25 k
	Rock Toe	20		0				33	30 - 35 k
	Sandstone								1 35 - 40 k 40 - 45 k
	Weathered Bedrock	21		0				35	45 - 50 k
									60 - 65 k 65 - 70 k 70 - 75 k 80 - 85 k 80 - 85 k 90 - 95 k 95 - 100 100 - 10

Section 22+500 Load Case: End Construction, Year 2

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

240 - 260 kPa 260 - 280 kPa

Section 22+500 Load Case: End Construction, Year 2 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 2 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 2 Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 2 Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 2 Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2 Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2 Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2 Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	GL Undrained					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Distance

Name

Drain

Embankment Core

(Undrained)

Color

Phi Phi Bilinear Phi

(kPa)

Normal (°)

33

2

1

(°) (°)

28 19 427

Cohesion

Spatial Fn (kPa)

0

0

Unit

21

20

Weight

(kN/m³)

Cohesion'

Section 22+500 Load Case: End Construction, Year 3

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

260 - 280 kPa
280 - 300 kPa
300 - 320 kPa

Distance

Section 22+500 Load Case: End Construction, Year 3 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 3 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 3 Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 3 Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: End Construction, Year 3 Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 3 Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 3 Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 3 Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 3, Flood

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Cohesion 🔲 0 - 5 kPa 🔲 5 - 10 kPa 📘 10 - 15 kPa 📘 15 - 20 kPa 🔲 20 - 25 kPa 🔲 25 - 30 kPa 🔲 30 - 35 kPa 📕 35 - 40 kPa 🔲 40 - 45 kPa 🔲 45 - 50 kPa 🔲 50 - 55 kPa 🔲 55 - 60 kPa 🔲 60 - 65 kPa 🔲 65 - 70 kPa 🔲 70 - 75 kPa 🗖 75 - 80 kPa 🔲 80 - 85 kPa 🔲 85 - 90 kPa 📕 90 - 95 kPa 📕 95 - 100 kPa 📕 100 - 105 kPa 📕 105 - 110 kPa

Section 22+500 Load Case: End Construction, Year 3, Flood

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Water Pressure
🔲 0 - 20 kPa
🔲 20 - 40 kPa
🔲 40 - 60 kPa
🔲 60 - 80 kPa
🔲 80 - 100 kPa
🔲 100 - 120 kPa
🔲 120 - 140 kPa
🔲 140 - 160 kPa
🔲 160 - 180 kPa
🔲 180 - 200 kPa
🗖 200 - 220 kPa
220 - 240 kPa
– 240 - 260 kPa
260 - 280 kPa
280 - 300 kPa
300 - 320 kPa
📕 320 - 340 kPa

Section 22+500 Load Case: End Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: End Construction, Year 2, B-Bar Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.25	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.65	No
	Glacial Till (Drained, Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.85	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.6	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.35	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 2, B-Bar Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.25	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.65	No
	Glacial Till (Drained, Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.85	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.6	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.35	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 2, B-Bar Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.25	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.65	No
	Glacial Till (Drained, Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.85	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.6	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.35	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 2, B-Bar Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.25	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.65	No
	Glacial Till (Drained, Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.85	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.6	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.35	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 3, B-Bar Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.45	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.15	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.8	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.45	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.3	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 3, B-Bar Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.45	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.15	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.8	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.45	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.3	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 22+500 Load Case: End Construction, Year 3, B-Bar Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest)	18	0	27	0.45	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.15	No
	Glacio-Lacustrine (Drained, Crest)	18	0	23	0.8	No
	Glacio-Lacustrine (Drained, Slope)	18	0	23	0.45	No
	Glacio-Lacustrine (Drained, Toe)	18	0	23	0.3	No
	Granular Zone	21	0	33	0	Yes
	Rock Toe	20	0	33	0	Yes
	Sandstone				0	No

Section 22+500 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+500 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (EQ/Pseudo)	20		0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86	
	Glacial Till (EQ/Pseudo)	18		0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0
	Granular Zone	21		0				33
	Rock Toe	20		0				33
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+500 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Granular Zone	21		0				33	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 22+500 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Granular Zone	21		0				33	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 22+500 Load Case: Rapid Drawdown Effective and Total Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0	33	0	0
	Embankment Core (RDD)	20	0	28	80	19
	Embankment Shell (RDD)	20	0	24	25	15
	Glacial Till (RDD)	18	0	27	60	19
	Glacio-Lacustrine (RDD)	18	0	23	15	20
	Granular Zone	21	0	33	0	0
	Rock Toe	20	0	33	0	0
	Sandstone					
	Weathered Bedrock	21	0	35	0	0

Section 22+500 Load Case: USBR Flood Effective Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Granular Zone	21	0	33
	Rock Toe	20	0	33
	Sandstone			
	Weathered Bedrock	21	0	35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.5 Slope Stability Analyses Sta. 22+990 - Original Lacustrine Foundation

Section 22+990 Load Case: End of Construction, Year 2 Total Stress Parameters Incipient Motion in the Upstream Direction

1,235

1,225

1,215

1,205

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	Cohesion	
	Embankment Shell (Undrained)	20		0	24	15	0 - 5 kP 5 - 10 k	a Pa
	Glacial Till (Undrained)	18		0	27	19	10 - 13 15 - 20 20 - 25	kPa kPa kPa
	Glacio-Lacustrine (Undrained)	18	Undrained GL				 25 - 30 30 - 35 35 - 40 	kPa kPa kPa
	Sandstone						40 - 45	kPa
	Weathered Bedrock	21		0			■ 45 - 50 ■ 50 - 55	kPa kPa
		L	L				55 - 60 60 - 65 65 - 70 70 - 75 75 - 80	kPa kPa kPa kPa kPa

Section 22+990 Load Case: End of Construction, Year 2 Total Stress Parameters Incipient Motion in the Upstream Directio

1,235

1,225

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+990 Load Case: End of Construction, Year 2 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+990 Load Case: End of Construction, Year 2 Effective Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+990 Load Case: End of Construction, Year 2 Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+990 Load Case: End Construction, Year 2, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

1,235

1,225

1,215

1,205

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	Cohesion	
	Embankment Shell (Undrained)	20		0	24	15	0 - 5 kP 5 - 10 k	a Pa kPa
	Glacial Till (Undrained)	18		0	27	19	10 - 13 15 - 20 20 - 25	kPa kPa
	Glacio-Lacustrine (Undrained)	18	Undrained GL				 25 - 30 30 - 35 35 - 40 	kPa kPa kPa
	Sandstone						40 - 45	kPa
	Weathered Bedrock	21		0			■ 45 - 50 ■ 50 - 55	kPa kPa
				-			55 - 60 60 - 65 65 - 70	kPa kPa kPa

Color

Name

Drain

Cohesion

0

Weight Spatial Fn (kPa)

Unit

21

(kN/m³)

Cohesion' Phi Phi Bilinear

1 2

(°) (°)

Phi'

(°)

33

17

Normal

(kPa)

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Section 22+990 Load Case: End of Construction, Year 3 Total Stress Parameters Incipient Motion in the Upstream Direction

1,235

1,225

1,215

1,205

1,195

1,185

Drain 21 0 33 Embankment Core 20 0 28 19 Cohesion Cohesion Embankment Shell 20 0 24 15 5-10 kPa Glacial Till 18 0 27 19 15-20 kPa 25-30 kPa Glacio-Lacustrine 18 Undrained 25-30 kPa 30-35 kPa 30-35 kPa Sandstone 19 25-30 kPa 30-35 kPa 30-35 kPa 30-35 kPa Weathered Bedrock 21 0 16 5-5 kPa 55-60 kPa 50-70 kPa 0 16 5-70 kPa 55-60 kPa 55-70 kPa Weathered Bedrock 21 0 16 55-70 kPa 55-70 kPa 50-70 kPa 75-75 kPa 75-760 kPa 55-70 kPa 55-70 kPa 75-80 kPa 85-70 kPa 75-80 kPa 85-70 kPa 75-80 kPa 85-90 kPa 90-75 kPa 75-80 kPa 85-90 kPa 85-90 kPa 90-75 kPa 75-100 kPa 105-110 kPa 105-110 kPa		Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
Embankment Core (Undrained) 20 0 28 19 Cohesion Embankment Shell (Undrained) 20 0 24 15 Cohesion Glacial Till (Undrained) 18 0 27 19 15 - 20 kPa Glacio-Lacustrine (Undrained) 18 Undrained GL 10 - 15 kPa 20 - 25 kPa 20 - 25 kPa Sandstone GL 10 14 30 - 35 kPa 30 - 35 kPa 30 - 35 kPa Weathered Bedrock 21 0 16 55 - 60 kPa 55 - 60 kPa 55 - 60 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 10 - 105 kPa 10 - 105 kPa 10 - 10 - 10 kPa 10 - 10 kPa 10 - 10 kPa	Dam		Drain	21		0				33
Embankment Shell (Undrained) 20 0 24 15 0 - 5 kPa 5 - 10 kPa Glacial Till (Undrained) 18 0 27 19 15 - 20 kPa 20 - 25 kPa Glacio-Lacustrine (Undrained) 18 Undrained GL 1 25 - 30 kPa 30 - 35 kPa Sandstone 18 Undrained GL 1 40 - 45 kPa 30 - 35 kPa Weathered Bedrock 21 0 1 55 - 60 kPa 60 - 65 kPa 55 - 60 kPa 55 - 60 kPa 60 - 65 kPa 55 - 60 kPa 60 - 65 kPa 66 - 65 kPa 65 - 70 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 10 - 105 kPa			Embankment Core (Undrained)	20		0	28	19	Cohesion	
Glacial Till (Undrained) 18 0 27 19 Glacio-Lacustrine (Undrained) 18 Undrained GL 20 - 25 kPa Sandstone 0 16 30 - 35 kPa Weathered Bedrock 21 0 16 50 - 55 kPa 50 - 55 kPa 50 - 65 kPa 50 - 55 kPa 50 - 57 kPa 50 - 55 kPa 50 - 50 kPa 50 - 55 kPa 50 - 57 kPa 50 - 55 kPa 50 - 57 kPa 50 - 55 kPa 50 - 57 kPa 50 - 55 kPa 50 - 50 kPa 50 - 55 kPa 50 - 50 kPa 50 - 55 kPa 50 - 50 kPa 50 - 50 kPa 50 -			Embankment Shell (Undrained)	20		0	24	15	0 - 5 kP 5 - 10 k	a Pa kPa
Glacio-Lacustrine (Undrained) 18 Undrained GL 25 - 30 kPa Sandstone 30 - 35 kPa Weathered Bedrock 21 0 55 - 60 kPa 55 - 60 kPa 60 - 65 kPa 55 - 60 kPa 70 - 75 kPa 70 - 75 kPa 70 - 75 kPa 75 - 80 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 90 - 95 kPa 91 - 105 kPa 100 - 105 kPa			Glacial Till (Undrained)	18		0	27	19	10 - 13 15 - 20 20 - 25	kPa kPa
Sandstone 40 - 45 kPa Weathered Bedrock 21 0 55 - 60 kPa 55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa 75 - 80 kPa 80 - 85 kPa 80 - 85 kPa 90 - 95 kPa 95 - 100 kPa 100 - 105 kPa 105 - 110 kPa			Glacio-Lacustrine (Undrained)	18	Undrained GL				 25 - 30 30 - 35 35 - 40 	kPa kPa kPa
Weathered Bedrock 21 0 43 - 30 kPd 50 - 55 kPa 55 - 60 kPa 60 - 65 kPa 60 - 65 kPa 60 - 65 kPa 70 - 75 kPa 70 - 75 kPa 70 - 75 kPa 90 - 95 kPa 80 - 85 kPa 90 - 95 kPa 90 - 95 kPa 91 - 100 kPa 100 - 105 kPa 105 - 110 kPa 105 - 110 kPa			Sandstone						40 - 45	kPa
55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa 75 - 80 kPa 80 - 85 kPa 80 - 85 kPa 80 - 85 kPa 90 - 95 kPa 90 - 95 kPa 100 - 105 kPa 100 - 105 kPa			Weathered Bedrock	21		0			■ 45 - 50 ■ 50 - 55	kPa kPa
									60 - 65 65 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100 100 - 10 105 - 11	kPa kPa kPa kPa kPa kPa) kPa) kPa) 5 kPa
		PJ M. A		(= (- 2					ser a serie	

Distance

Section 22+990 Load Case: End of Construction, Year 3 Total Stress Parameters Incipient Motion in the Upstream Direction

1,235

1,225

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	Water Pre	ssure
	Embankment Shell (Undrained)	20		0	24	15	 -20 - 0 k 0 - 20 k 20 - 40 	(Pa Pa KPa
	Glacial Till (Undrained)	18		0	27	19	■ 20 - 40 ■ 40 - 60 ■ 60 - 80	kPa kPa
	Glacio-Lacustrine (Undrained)	18	Undrained GL				■ 80 - 100 ■ 100 - 12 ■ 120 - 14) kPa 20 kPa 10 kPa
	Sandstone						140 - 16	50 kPc
	Weathered Bedrock	21		0			180 - 18 180 - 20 200 - 22	30 KPG 30 kPG 20 kPG
							 220 - 24 240 - 26 260 - 28 280 - 30 300 - 32 	10 kPc 50 kPc 30 kPc 30 kPc 20 kPc

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

(Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
		Drain	21	0	33
		Embankment Core (Drained)	20	0	28
		Embankment Shell (Drained)	20	0	24
		Glacial Till (Drained)	18	0	27
		Glacio-Lacustrine (Drained)	18	0	23
		Sandstone			
		Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

1,235

1,225

1,215

1,205

1,195

1,185

1,175

1,165

1,155 -150

-130

-110

-90

-70

-50

-30

-10

Alberta Transportation SR1 Storage Dam

Section 22+990 Load Case: End of Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

	Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
e Dam		Drain	21		0				33
		Embankment Core (Undrained)	20		0	28	19	Cohesion	
lood		Embankment Shell (Undrained)	20		0	24	15	0 - 5 kP	a Pa
		Glacial Till (Undrained)	18		0	27	19	15 - 20 20 - 25	kPa kPa
on		Glacio-Lacustrine (Undrained)	18	Undrained GL				 25 - 30 30 - 35 35 - 40 	kPa kPa kPa
		Sandstone						40 - 45	kPa
		Weathered Bedrock	21		0			45 - 50 50 - 55	kPa kPa
								 85 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100 100 - 10 105 - 11 	kPa kPa kPa kPa kPa kPa kPa kPa 0 kPa
							10 15		

30

50

70

90

110

130

150

17

1,235

Alberta Transportation SR1 Storage Dam

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	Water Pre	ssure
	Embankment Shell (Undrained)	20		0	24	15	0 - 20 k 20 - 40	Pa kPa kPa
	Glacial Till (Undrained)	18		0	27	19	60 - 80 80 - 100	kPa) kPa
	Glacio-Lacustrine (Undrained)	18	Undrained GL				■ 100 - 12 ■ 120 - 14 ■ 140 - 16	20 kPc 40 kPc 60 kPc
	Sandstone						160 - 18	30 kPc
	Weathered Bedrock	21		0			200 - 22 220 - 22 240 - 26	50 kPc 20 kPc 40 kPc 50 kPc
							 260 - 28 280 - 30 300 - 32 320 - 34 	30 kPc)0 kPc 20 kPc 40 kPc

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21		0				33
	Embankment Core (Undrained)	20		0	28	19	427	
	Embankment Shell (Undrained)	20		0	24	15	141	
	Glacial Till (Undrained)	18		0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	Undrained GL					0
	Sandstone							
	Weathered Bedrock	21		0				35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.6 Slope Stability Analyses Sta. 22+990 - Replaced Lacustrine Foundation

Section 22+990 Load Case: End of Construction, Year 2

1,235 1,225

1,215

1,205

1,185

1,175 1,165

1,155 -150

-130

-110

-90

-70

-50

Elevation 1,195

Dam	Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	
Jam		Compacted Till (Undrained)	20		0		28	19	427	
		Drain	21		0	33				
		Embankment Core (Undrained)	20		0		28	19	427	
		Embankment Shell (Undrained)	20		0		24	15	141	
		Glacial Till (Undrained)	18		0		27	19	363.2	
		Glacio-Lacustrine (Undrained)	18	Undrained GL		0				Cohesion
		Sandstone								🔲 0 - 5 kPa
		Weathered Bedrock	21		0	35				5 - 10 kPa
										 35 - 40 kPa 40 - 45 kPa 45 - 50 kPa 50 - 55 kPa
										55 - 60 kPa 55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa
										 55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa 75 - 80 kPa 80 - 85 kPa
										 55 - 60 kPa 55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa 75 - 80 kPa 80 - 85 kPa 85 - 90 kPa 90 - 95 kPa
									370 1	 50 60 kPa 55 - 60 kPa 60 - 65 kPa 65 - 70 kPa 70 - 75 kPa 75 - 80 kPa 80 - 85 kPa 85 - 90 kPa 90 - 95 kPa 90 - 105 kPa 100 - 105 kI 105 - 110 kPa

Distance

Section 22+990 Load Case: End of Construction, Year 2

1,235 1,225

1,215

1,205

1,185

1,175 1,165

1,155 -150

-130

-110

-90

-70

-50

Elevation 1,195

Dam	Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
		Compacted Till (Undrained)	20		0		28	19	427
		Drain	21		0	33			
		Embankment Core (Undrained)	20		0		28	19	427
		Embankment Shell (Undrained)	20		0		24	15	141
		Glacial Till (Undrained)	18		0		27	19	363.2
		Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
		Sandstone							
		Weathered Bedrock	21		0	35			
									-

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Section 22+990 Load Case: End Construction, Year 2, Flood

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinea Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Cohesion

🔲 0 - 5 kPa

5 - 10 kPa
10 - 15 kPa
15 - 20 kPa
20 - 25 kPa
20 - 35 kPa
30 - 35 kPa
35 - 40 kPa
40 - 45 kPa
45 - 50 kPa
50 - 55 kPa

🔲 55 - 60 kPa 🔲 60 - 65 kPa 🔲 65 - 70 kPa 1,235 🔲 70 - 75 kPa 🗖 75 - 80 kPa 1,225 🔲 80 - 85 kPa 🔲 85 - 90 kPa 1,215 🔲 90 - 95 kPa 📕 95 - 100 kPa 1,205 📕 100 - 105 kPa Elevation ملسولان المراجع 📕 105 - 110 kPa 1,195 1,185 1,175 1,165 1,155 -50 -30 110 130 -150 -130 -110 -90 -70 -10 10 30 50 70 90 150 170 Distance

Section 22+990 Load Case: End Construction, Year 2, Flood

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinea Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Water Pressure 🔲 0 - 20 kPa 🔲 20 - 40 kPa 🔲 40 - 60 kPa 🔲 60 - 80 kPa 📕 80 - 100 kPa 🔲 100 - 120 kPa 📕 120 - 140 kPa 🔲 140 - 160 kPa 🔲 160 - 180 kPa 🔲 180 - 200 kPa 🔲 200 - 220 kPa 🔲 220 - 240 kPa 🔲 240 - 260 kPa 🔲 260 - 280 kPa 📕 280 - 300 kPa 📕 300 - 320 kPa

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Load Case: End of Construction, Year 3

Section 22+990

Alberta Transportation SR1 Storage Dam

Section 22+990 Load Case: End of Construction, Year 3

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Water Pressure 🔲 -20 - 0 kPa 🔲 0 - 20 kPa 📘 20 - 40 kPa 🔲 40 - 60 kPa 🔲 60 - 80 kPa 📕 80 - 100 kPa 🔲 100 - 120 kPa 🔲 120 - 140 kPa 🔲 140 - 160 kPa 🔲 160 - 180 kPa 🔲 180 - 200 kPa 🔲 200 - 220 kPa 🔲 220 - 240 kPa 🔲 240 - 260 kPa 📕 260 - 280 kPa 📕 280 - 300 kPa 📕 300 - 320 kPa

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till (Drained)	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Section 22+990 Load Case: End of Construction, Year 3, Flood

Total Stress Parameters

Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinea Norma (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Cohesion 🔲 0 - 5 kPa 🔲 5 - 10 kPa 🔲 10 - 15 kPa 🔲 15 - 20 kPa 🔲 20 - 25 kPa 🔲 25 - 30 kPa 🔲 30 - 35 kPa 🔲 35 - 40 kPa 🔲 40 - 45 kPa 📕 45 - 50 kPa 🔲 50 - 55 kPa 🔲 55 - 60 kPa 🔲 60 - 65 kPa 🔲 65 - 70 kPa 🔲 70 - 75 kPa 🔲 75 - 80 kPa 🔲 80 - 85 kPa 🔲 85 - 90 kPa 🔲 90 - 95 kPa 📕 95 - 100 kPa 📕 100 - 105 kPa 📕 105 - 110 kPa

Section 22+990

Load Case: End of Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinea Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Water Pressure

🔲 -20 - 0 kPa 🔲 0 - 20 kPa 🔲 20 - 40 kPa 🔲 40 - 60 kPa 🔲 60 - 80 kPa 🔲 80 - 100 kPa 🔲 100 - 120 kPa 🔲 120 - 140 kPa 📕 140 - 160 kPa 🔲 160 - 180 kPa 🔲 180 - 200 kPa 🗖 200 - 220 kPa 🔁 220 - 240 kPa 🔲 240 - 260 kPa 🔲 260 - 280 kPa 📕 280 - 300 kPa 📕 300 - 320 kPa 📕 320 - 340 kPa

Section 22+990 Load Case: End of Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Section 22+990 Load Case: End of Construction, Year 3, Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi' (°)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)
	Compacted Till (Undrained)	20		0		28	19	427
	Drain	21		0	33			
	Embankment Core (Undrained)	20		0		28	19	427
	Embankment Shell (Undrained)	20		0		24	15	141
	Glacial Till (Undrained)	18		0		27	19	363.2
	Glacio-Lacustrine (Undrained)	18	Undrained GL		0			
	Sandstone							
	Weathered Bedrock	21		0	35			

Section 22+990 Load Case: Long Term Effective Stress Parameters Incipient Motion in the Downstream Direction

1,235

1,225

1,215

1,205

1,195

1,185

1,175

1,165

1,155

-150

-130

-110

-90

-70

-50

Distance

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Compacted Till (Drained, Crest/Slope)	20	0	28	0.4	Yes
	Compacted Till (Drained, Slope/Toe)	20	0	28	0.3	Yes
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.55	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest/Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Slope/Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained)	18	0	23	0	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Compacted Till (Drained, Crest/Slope)	20	0	28	0.4	Yes
	Compacted Till (Drained, Slope/Toe)	20	0	28	0.3	Yes
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.55	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest/Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Slope/Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained)	18	0	23	0	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Compacted Till (Drained, Crest/Slope)	20	0	28	0.4	Yes
	Compacted Till (Drained, Slope/Toe)	20	0	28	0.3	Yes
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.55	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Glacial Till (Drained, Crest/Slope)	18	0	27	0.4	No
	Glacial Till (Drained, Slope/Toe)	18	0	27	0.25	No
	Glacio-Lacustrine (Drained)	18	0	23	0	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+990 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Compacted Till	20			0				28
	Drain	21			0				33
	Embankment Core (EQ/Pseudo)	20			0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86	
	Glacial Till (EQ/Pseudo)	18			0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212					
	Sandstone								
	Weathered Bedrock	21			0				35

Section 22+990 Load Case: Post Earthquake Post Earthquake Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Compacted Till	20			0				28
	Drain	21			0				33
	Embankment Core (EQ/Pseudo)	20			0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86	
	Glacial Till (EQ/Pseudo)	18			0	27	15	199	
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212					
	Sandstone								
	Weathered Bedrock	21			0				35

Section 22+990 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Col R (I
	Compacted Till	20			0				28	0
	Drain	21			0				33	0
	Embankment Core (EQ/Pseudo)	20			0	28	15	243		
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86		
	Glacial Till (EQ/Pseudo)	18			0	27	15	199		
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212						
	Sandstone									
	Weathered Bedrock	21			0				35	0

Section 22+990 Load Case: Pseudostatic Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Col R (I
	Compacted Till	20			0				28	0
	Drain	21			0				33	0
	Embankment Core (EQ/Pseudo)	20			0	28	15	243		
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86		
	Glacial Till (EQ/Pseudo)	18			0	27	15	199		
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212						
	Sandstone									
	Weathered Bedrock	21			0				35	0

Section 22+990 Load Case: Rapid Drawdown Effective and Total Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)	Piezometric Line After Drawdown
	Compacted Till	20	0	28	0	0	1
	Drain	21	0	33	0	0	1
	Embankment Core (RDD)	20	0	28	80	19	1
	Embankment Shell (RDD)	20	0	24	25	15	1
	Glacial Till (RDD)	18	0	27	60	19	1
	Glacio-Lacustrine (RDD)	18	0	23	15	20	1
	Sandstone						1
	Weathered Bedrock	21	0	35	0	0	1

Section 22+990 Load Case: USBR Flood Effective Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Compacted Till	20	0	28
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
	Embankment Shell (Drained)	20	0	24
	Glacial Till (Drained)	18	0	27
	Glacio-Lacustrine (Drained)	18	0	23
	Sandstone			
	Weathered Bedrock	21	0	35

Section 22+990 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Compacted Till	20	0				28
	Drain	21	0				33
	Embankment Core (Undrained)	20	0	28	19	427	
	Embankment Shell (Undrained)	20	0	24	15	141	
	Glacial Till (Undrained)	18	0	27	19	363.2	
	Glacio-Lacustrine (Undrained)	18	0				23
	Sandstone						
	Weathered Bedrock	21	0				35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.7 Slope Stability Analyses Sta. 23+175

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Fluvial (Unnamed Creek)	22	0	35	0	No
	Glacial Till (Drained, Crest)	18	0	27	0.4	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.2	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Fluvial (Unnamed Creek)	22	0	35	0	No
	Glacial Till (Drained, Crest)	18	0	27	0.4	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.2	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Fluvial (Unnamed Creek)	22	0	35	0	No
	Glacial Till (Drained, Crest)	18	0	27	0.4	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.2	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	B-bar	Add Weight
	Drain	21	0	33	0	Yes
	Embankment Core (Drained, Year 1)	20	0	28	0.5	Yes
	Embankment Core (Drained, Year 2)	20	0	28	0.4	Yes
	Embankment Core (Drained, Year 3)	20	0	28	0	Yes
	Embankment Shell (Drained, Year 1)	20	0	24	0.18	Yes
	Embankment Shell (Drained, Year 2)	20	0	24	0.15	Yes
	Embankment Shell (Drained, Year 3)	20	0	24	0	Yes
	Fluvial (Unnamed Creek)	22	0	35	0	No
	Glacial Till (Drained, Crest)	18	0	27	0.4	No
	Glacial Till (Drained, Slope)	18	0	27	0.3	No
	Glacial Till (Drained, Toe)	18	0	27	0.2	No
	Sandstone				0	No
	Weathered Bedrock	21	0	35	0	No

Section 23+175 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Downstream Direction

						Dilineer	DI: 1
Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21	0				33
	Embankment Core (Undrained)	20	0	28	19	427	
	Embankment Shell (Undrained)	20	0	24	15	141	
	Fluvial (Unnamed Creek)	22	0				35
	Glacial Till (Undrained)	18	0	27	19	363.2	
	Sandstone						
	Weathered Bedrock	21	0				35

Section 23+175 Load Case: End of Construction Total Stress Parameters Incipient Motion in the Upstream Direction

	Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
		Drain	21	0				33
-		Embankment Core (Undrained)	20	0	28	19	427	
		Embankment Shell (Undrained)	20	0	24	15	141	
		Fluvial (Unnamed Creek)	22	0				35
		Glacial Till (Undrained)	18	0	27	19	363.2	
		Sandstone						
		Weathered Bedrock	21	0				35

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
Drain		21	0	33
Embankment Core (Drained)		20	0	28
	Embankment Shell (Drained)	20	0	24
	Fluvial (Unnamed Creek)	22	0	35
	Glacial Till (Drained)	18	0	27
	Sandstone			
	Weathered Bedrock	21	0	35

	Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
		Drain		0	33
	Embankment Core (Drained) Embankment Shell (Drained)		20	0	28
			20	0	24
		Fluvial (Unnamed Creek)	22	0	35
		Glacial Till (Drained)	18	0	27
	Sandstone				
		Weathered Bedrock	21	0	35

Section 23+175 Load Case: Post Earthquake Pseudostatic Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21	0				33
	Embankment Core (EQ/Pseudo)	20	0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86	
	Fluvial (Unnamed Creek)	22	0				35
	Glacial Till (EQ/Pseudo)	18	0	27	15	199	
	Sandstone						
	Weathered Bedrock	21	0				35

Section 23+175 Load Case: Post Earthquake Pseudostatic Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21	0				33
	Embankment Core (EQ/Pseudo)	20	0	28	15	243	
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86	
	Fluvial (Unnamed Creek)	22	0				35
	Glacial Till (EQ/Pseudo)	18	0	27	15	199	
	Sandstone						
	Weathered Bedrock	21	0				35

Section 23+175 Load Case: Pseudostatic Pseudostatic Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0				33	0	0
	Embankment Core (EQ/Pseudo)	20	0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86			
	Fluvial (Unnamed Creek)	22	0				35	0	0
	Glacial Till (EQ/Pseudo)	18	0	27	15	199			
	Sandstone								
	Weathered Bedrock	21	0				35	0	0

Section 23+175 Load Case: Pseudostatic Pseudostatic Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0				33	0	0
	Embankment Core (EQ/Pseudo)	20	0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86			
	Fluvial (Unnamed Creek)	22	0				35	0	0
	Glacial Till (EQ/Pseudo)	18	0	27	15	199			
	Sandstone								
	Weathered Bedrock	21	0				35	0	0

Section 23+175 Load Case: Rapid Drawdown Effective and Total Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0	33	0	0
	Embankment Core (RDD)	20	0	28	80	19
	Embankment Shell (RDD)	20	0	24	25	15
	Fluvial (Unnamed Creek)	22	0	35	0	0
	Glacial Till (RDD)	18	0	27	60	19
	Sandstone					
	Weathered Bedrock	21	0	35	0	0

Section 23+175 Load Case: USBR Flood Effective Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	Drain	21	0	33
	Embankment Core (Drained)	20	0	28
Embankment Shell (Drained)		20	0	24
	Fluvial (Unnamed Creek)	22	0	35
	Glacial Till (Drained)	18	0	27
	Sandstone			
	Weathered Bedrock	21	0	35

Section 23+175 Load Case: USACE Flood Total Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)
	Drain	21	0				33
	Embankment Core (Undrained)	20	0	28	19	427	
	Embankment Shell (Undrained)	20	0	24	15	141	
	Fluvial (Unnamed Creek)	22	0				35
	Glacial Till (Undrained)	18	0	27	19	363.2	
	Sandstone						
	Weathered Bedrock	21	0				35

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.8 Seepage Analyses Seepage Results and Exit Gradient Calculations

Section 20+000 Load Case: Seepage Steady-State

Color	Name	Sat Kx (m/sec)	Vol. WC. Function	K-Function	Ky'/Kx' Ratio
	Drain		Drain	Drain	1
	Embankment Core		Embankment Core	Embankment Core	0.2
	Embankment Shell		Embankment Shell	Embankment Shell	0.2
	Glacial Till		Glacial Till	Glacial Till	0.33
	Glacio-Lacustrine		Glacial Lucastrine	Glacial Lucastrine	0.2
	Rock Toe		Rock Toe	Rock Toe	1
	Sandstone	3e-08			1
	Weathered Bedrock	3e-08			1

Color Name

Drain

Embankment Core

Sat Kx

(m/sec)

Vol. WC.

Function

Embankment

Drain

K-Function

Embankment 0.2

Drain

Ky'/Kx'

Ratio

1

Section 22+500 Load Case: Seepage Steady-State

Color	Name	Sat Kx (m/sec)	Vol. WC. Function	K-Function	Ky'/Kx' Ratio
	Drain		Drain	Drain	1
	Embankment Core		Embankment Core	Embankment Core	0.2
	Embankment Shell		Embankment Shell	Embankment Shell	0.2
	Glacial Till		Glacial Till	Glacial Till	0.33
	Glacio-Lacustrine		Glacial Lucastrine	Glacial Lucastrine	0.2
	Granular Zone		Granular Material	Granular Material	1
	Rock Toe		Rock Toe	Rock Toe	1
	Sandstone	3e-08			1
	Weathered Bedrock	3e-08			1

Water Total Head
 1,190 - 1,192 m 1,192 - 1,194 m 1,194 - 1,196 m 1,196 - 1,198 m 1,198 - 1,200 m 1,200 - 1,202 m
☐ 1,202 - 1,204 m ☐ 1,204 - 1,206 m ☐ 1,206 - 1,208 m ☐ 1,208 - 1,210 m ☐ 1,210 - 1,212 m

Section 22+990 Load Case: Seepage Steady-State

Color	Name	Sat Kx (m/sec)	Vol. WC. Function	K-Function	K R	y'/Kx' atio	
	Compacted Till		Embankment Core	Embankment Core	0.	2	
	Drain		Drain	Drain	1		
	Embankment Core		Embankment Core	Embankment Core	0.	Wate	er Total Head 90 - 1,192 m
	Embankment Shell		Embankment Shell	Embankment Shell	0.	1,1	92 - 1,194 m 94 - 1,196 m
	Glacial Till		Glacial Till	Glacial Till	0.	1,1	98 - 1,200 m
	Glacio-Lacustrine		Glacial Lucastrine	Glacial Lucastrine	0.	1,2	200 - 1,202 m 202 - 1,204 m 204 - 1,206 m
	Sandstone	3e-08			1	1,2	206 - 1,208 m
	Weathered Bedrock	3e-08			1	1,2	210 - 1,210 m 210 - 1,212 m

Section 23+175 Load Case: Seepage, without seepage control Steady-State

Color	Name	Sat Kx (m/sec)	Vol. WC. Function	K-Function	Ky'/Kx' Ratio
	Drain		Drain	Drain	1
	Embankment Core		Embankment Core	Embankment Core	0.2
	Embankment Shell		Embankment Shell	Embankment Shell	0.2
	Fluvial (Unnamed Creek)		Fluvial	Fluvial	1
	Glacial Till		Glacial Till	Glacial Till	0.33
	Sandstone	8e-08			1
	Weathered Bedrock	8e-08			1

Section 23+175 Load Case: Seepage, with seepage control Steady-State

Color	Name	Sat Kx (m/sec)	Vol. WC. Function	K-Function	Ky'/Kx' Ratio
	Drain		Drain	Drain	1
	Embankment Core		Embankment Core	Embankment Core	0.2
	Embankment Shell		Embankment Shell	Embankment Shell	0.2
	Fluvial (Unnamed Creek)		Fluvial	Fluvial	1
	Glacial Till		Glacial Till	Glacial Till	0.33
	Sandstone	8e-08			1
	Weathered Bedrock	8e-08			1

<u>Project Name:</u> Task Name:

SR1 Exit Gradient Analyses

Soil Name	Gs	е	i-crit
Glacial Till	2.69	0.49	1.13
Glacio-Lacustrine	2.7	0.62	1.05
			<i>i-crit</i> = (Gs-1)/(e+1)

Elevation at Top **Critical Gradient** Location (x,y) Total Head (ft) of Ground (ft) Seepage Gradient (i) Elevation (ft) (i_{crit}) 1.049 Section Surficial Material **FS**_{exit} 103.8, 1201.0 1202.1 20+000 1202.4 1201.0 Glacio-Lacustrine 0.273 3.8 21+050 Glacio-Lacustrine 35.0, 1204.7 1206.0 1204.7 1205.7 1.049 0.300 3.5 21+750 Glacio-Lacustrine 65.9, 1198.4 1200.3 1198.4 1199.8 0.347 1.049 3.0 22+500 0.333 102.3, 1189.5 1191.5 1189.5 1191.0 1.049 3.1 Glacio-Lacustrine 22+990 Glacio-Lacustrine 104.0, 1190.2 1192.2 1190.2 1191.7 0.333 1.049 3.1 23+175 (no treatment) Glacial Till 132.3, 1181.8 1188.4 1181.8 1183.2 3.714 1.134 0.3 1183.4 1181.8 1183.2 1.134 7.9 132.3, 1181.8 23+175 (with treatment) Glacial Till 0.143

FS-exit = i-crit / i

Attachment 12.1 Slope Stability and Seepage Analyses

12.1.9 Transient Analysis Results Sta. 22+990

Trilinear GT, 180 day hold, 40 day drawdown

Attachment 12.2 Settlement Analysis

SR1 Storage Dam Centerline Profile Settlement Calculations Summary

2/9/2017 Calculated by: J. Curd Checked by: V. Severance

Station	G	Glacial Lacustrine (GL)				Glacial Till (GT)			Gravel				Total Settlement			
	in	ft	m	mm	in	ft	m	mm	in	ft	m	mm	in	ft	m	mm
20+600	3.85	0.32	0.10	98	1.96	0.16	0.05	50	0.00	0.00	0.00	0	5.81	0.48	0.15	148
21+050	5.50	0.46	0.14	140	0.19	0.02	0.00	5	0.00	0.00	0.00	0	5.69	0.47	0.14	144
21+350	4.39	0.37	0.11	112	0.97	0.08	0.02	25	0.00	0.00	0.00	0	5.36	0.45	0.14	136
21+650	6.27	0.52	0.16	159	2.07	0.17	0.05	53	0.00	0.00	0.00	0	8.34	0.69	0.21	212
21+975	21.41	1.78	0.54	544	3.06	0.25	0.08	78	0.00	0.00	0.00	0	24.47	2.04	0.62	621
22+290	18.77	1.56	0.48	477	9.35	0.78	0.24	237	0.00	0.00	0.00	0	28.12	2.34	0.71	714
22+600	14.60	1.22	0.37	371	26.13	2.18	0.66	664	0.00	0.00	0.00	0	40.74	3.39	1.03	1035
22+925	9.53	0.79	0.24	242	22.54	1.88	0.57	572	0.00	0.00	0.00	0	32.07	2.67	0.81	815
23+175	0.00	0.00	0.00	0	16.71	1.39	0.42	424	0.61	0.05	0.02	15	17.31	1.44	0.44	440
23+440	3.75	0.31	0.10	95	25.87	2.16	0.66	657	0.28	0.02	0.01	7	29.90	2.49	0.76	759

Station (m)

SR1 Storage Dam Settlement Calculations for Dam Centerline Sta. 20+600

Nearest Consolidation Test Samples: D2 - ST4 (1.50 m - 1.95 m) Fat Clay (Lacustrine) D8 - ST4 (1.80 m - 2.30 m) Lean Clay with Sand (Till)

D2 - ST4 (1.50 m - 1.95 m) Fat Clay (Lacustrine) Pc = 205 kPa (4,282 psf), OCR = 6.6, Cc = 0.21, Cr = 0.09

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 7.4 m (24.4 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

24.4 ft (7.4 m) Embankment	
6.2 ft (1.9 m) Fat Clay (Lacustrine)	
36.1 ft (11.0 m) Lean Clay with Sand (Till)	

Boring D2		_
Embankment Crest Elev.	1213.50	m
Surface Elev.	1206.57	m
Top Lacust/Bottom Strip	1206.07	m
Top Till Elev.	1204.17	m
Top of Rock Elev.	1193.17	m

Stantec

New embankment loading does not exceed preconsolidation pressure, therefore only use Cr value.

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

Fat Clay (Lacustrine) One Layer 1.90 m (6.2 ft)

Lacustrine Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	3.1	6.2	0.09	0	0.8	394.63	4282.00	24.40	3106.12	3500.75	0.32
							SUM =	0.32	feet		
								3.85	inches		

Fat Clay (Lacustrine) Two Layers - 3 Feet Thick

Lacustrine Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	3	3	0.09	0	0.8	381.90	4282.00	24.40	3106.12	3488.02	0.16
0+000 (Crest)	3.2	3.2	0.09	0	0.8	407.36	4282.00	24.40	3106.12	3513.48	0.16
		6.2									
							SUM =	0.32	feet		
								3.85	inches		

Settlement Calculations for Centerline Dam Sta. 20+600 D8 - ST4 (1.80-2.30 m) - Lean Clay with Sand (CL) Till Pc = 310 kPa (6,474 psf), OCR = 8.4, Cr = 0.012, Cc = 0.15

New embankment loading + existing overburden does not exceed preconsolidation pressure, therefore only use Cr value.

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

Lean Clay with Sand (Till) One Layer

Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	18.05	36.1	0.012	0	0.624	2857.79	6474.00	24.40	3106.12	5963.91	0.09
							SUM =	0.09	feet		
								1.14	inches		

Lean Clay with Sand (Till) 12 Layers

Unit Weight = 18 kN/m³ (114.6 lb/ft³)

New embankment loading + existing overburden does not exceed preconsolidation pressure until a depth of 29.4 feet

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.012	0	0.624	882.42	6474.00	24.40	3106.12	3988.54	0.02
0+000 (Crest)	4.5	3	0.012	0	0.624	1226.22	6474.00	24.40	3106.12	4332.34	0.02
0+000 (Crest)	7.5	3	0.012	0	0.624	1570.02	6474.00	24.40	3106.12	4676.14	0.01
0+000 (Crest)	10.5	3	0.012	0	0.624	1913.82	6474.00	24.40	3106.12	5019.94	0.01
0+000 (Crest)	13.5	3	0.012	0	0.624	2257.62	6474.00	24.40	3106.12	5363.74	0.01
0+000 (Crest)	16.5	3	0.012	0	0.624	2601.42	6474.00	24.40	3106.12	5707.54	0.01
0+000 (Crest)	19.5	3	0.012	0	0.624	2945.22	6474.00	24.40	3106.12	6051.34	0.01
0+000 (Crest)	22.5	3	0.012	0	0.624	3289.02	6474.00	24.40	3106.12	6395.14	0.01
0+000 (Crest)	25.5	3	0.012	0.15	0.624	3632.82	6474.00	24.40	3106.12	6738.94	0.01
0+000 (Crest)	28.5	3	0.012	0.15	0.624	3976.62	6474.00	24.40	3106.12	7082.74	0.02
0+000 (Crest)	31.5	3	0.012	0.15	0.624	4320.42	6474.00	24.40	3106.12	7426.54	0.02
0+000 (Crest)	33.05	3.1	0.012	0.15	0.624	4498.05	6474.00	24.40	3106.12	7604.17	0.02
		36.1									
							SUM =	0.16	feet		

1.96 inches

Total Settlement at Centerline Sta. 21+050 =

3.85 inchesWithin 9.2 feet Thick Lacustrine Layer1.96 inchesWithin 3.2 feet Thick Till Layer

= 5.81 inches Total Settlement

Storage Dam Settlement Calculations

Nearest Consolidation Test Samples: D2 - ST4 (1.50 m - 1.95 m) Fat Clay (Lacustrine) D8 - ST4 (1.80 m - 2.30 m) Lean Clay with Sand (Till)

D2 - ST4 (1.50 m - 1.95 m) Fat Clay (Lacustrine) Pc = 205 kPa (4,282 psf), OCR = 6.6, Cc = 0.21, Cr = 0.09

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 6.58 m (21.6 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

New embankment loading does not exceed preconsolidation pressure, therefore only use Cr value.

Fat Clay (Lacustrine) Layer 2.80 m (9.2 ft)

Lacustrine Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	4.6	9.2	0.09	0	0.8	527.16	4282.00	21.60	2749.68	3276.84	0.42
							SUM =	0.42	feet		
								5.02	inches		
Fat Clay (Lacus	strine) Five Mid Pt. (ft)	Layers H (ft)	- 3 Feet T Cr	<u>hick</u> Cc	e	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	1.5	3	0.09	0	0.8	171.90	4282.00	21.60	2749.68	2921.58	0.21
0+000 (Crest)	4.5	3	0.09	0	0.8	515.70	4282.00	21.60	2749.68	3265.38	0.14
0+000 (Crest)	7.6	3.2	0.09	0	0.8	870.96	4282.00	21.60	2749.68	3620.64	0.11
		92									

SUM =

0.46 feet 5.50 inches

21.6 ft (6.6 m) Embankment

9.2 ft (2.8 m) Fat Clay (Lacustrine) 3.2 ft (1.0 m) Lean Clay with Sand (Till)

Settlement Calculations for Centerline Dam Sta. 21+050 D8 - ST4 (1.80-2.30 m) - Lean Clay with Sand (CL) Till Pc = 310 kPa (6,474 psf), OCR = 8.4, Cr = 0.012, Cc = 0.15

New embankment loading + existing overburden does not exceed preconsolidation pressure, therefore only use Cr value.

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

=

Lean Clay with Sand (Till) - One Layer

Till Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Locatio	on	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔH
0+000 (C	rest)	1.6	3.2	0.012	0	0.624	1354.52	6474.00	21.60	2749.68	4104.20	0.02
								SUM =	0.02 0.19	feet <mark>inches</mark>		

Total Settlement at Centerline Sta. 21+050 =

 5.50 inches
 Within 9.2 feet Thick Lacustrine Layer

 0.2 inches
 Within 3.2 feet Thick Till Layer

 5.69 inches
 Total Settlement

SR1 Storage Dam

Settlement Calculations for Dam Centerline Sta. 21+350

10 ft Thick Lacustrine Layer Settlement Calculations

Nearest Consolidation Test Samples:

D12 (Lacustrine) Pc = 400 kPa (8,354 psf), OCR = 7.6, Cc = 0.24, Cr = 0.06 D20 (Lacustrine) Pc = 160 kPa (3,342 psf), OCR = 3.0, Cc = 0.16, Cr = 0.05

Average D12 and D20 Consolidation Parameters: Pc = 280 kPa (5848 psf), OCR = 5.3, Cc = 0.20, Cr = 0.06

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 7.0 m (23.0 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

New embankment loading + existing overburden does not exceed preconsolidation pressure, therefore only use Cr value.

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One 10 Foot Thick Layer - Overconsolidated Lacustrine

Lacustrine Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔΗ
0+000 (Crest)	5	10	0.06	0	0.8	573.00	5848.00	23.00	2927.90	3500.90	0.34
							SUM =	0.34	feet		
								4.04	inches		

Four Layers Approximately 3 feet Thick - Overconsolidated Lacustine

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+ΔP	ΔН
0+000 (Crest)	1.5	3	0.06	0	0.8056	171.90	5848.00	23.00	2927.90	3099.80	0.15
0+000 (Crest)	4.5	3	0.06	0	0.8000	515.70	5848.00	23.00	2927.90	3443.60	0.11
0+000 (Crest)	7.5	3	0.06	0	0.7951	859.50	5848.00	23.00	2927.90	3787.40	0.08
0+000 (Crest)	9.5	1	0.06	0	0.7951	1088.70	5848.00	23.00	2927.90	4016.60	0.02
		10									
							SUM =	0.37	feet		
								4 39	inches		

SR1 Storage Dam Centerline Sta. 21+350 Settlement Calculations for Centerline Dam Sta. 21+350

5 ft Thick Lean Clay with Sand (Till) Layer Settlement Calculations

Nearest Consolidation Test Samples:

D8 (Till) Pc = 310 kPa (6,474 psf), OCR = 8.4, Cc = 0.15, Cr = 0.03 D11 (Till) Pc = 245 kPa (5,117 psf), OCR = 7.8, Cc = 0.18, Cr = 0.06

Average D8 and D11 Consolidation Parameters: Pc = 278 kPa (5806 psf), OCR = 58.1, Cc = 0.165, Cr = 0.045

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

New embankment loading + existing overburden does not exceed preconsolidation pressure, therefore only use Cr value.

One Layer 5 ft thickness

Till Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Total Settlement at Centerline Sta. 21+350

Lacustrine Layer		4.39 inches	
Till Layer	+	0.97 inches	
	=	5.36 inches	Total Settlement

SR1 Storage Dam

Settlement Calculations for Dam Centerline Sta. 21+650

14 ft Thick Lacustrine Layer Settlement Calculations

Nearest Consolidation Test Samples:

D12 (Lacustrine) Pc = 400 kPa (8,354 psf), OCR = 7.6, Cc = 0.24, Cr = 0.06 D20 (Lacustrine) Pc = 160 kPa (3,342 psf), OCR = 3.0, Cc = 0.16, Cr = 0.05

Average D12 and D20 Consolidation Parameters: Pc = 280 kPa (5848 psf), OCR = 5.3, Cc = 0.20, Cr = 0.06

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 13.7 m (45.0 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One Layer 14 ft thickness

Lacustrine Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔΗ
0+000 (Crest)	7	14	0.06	0.20	0.7867	802.20	5848.00	45.00	5728.50	6530.70	0.48
							SUM =	0.48	feet		
								5.77	inches		

Five Layers Approximately 3 feet thick

New embankment loading + existing overburden does not exceed preconsolidation pressure in first layer, therefore only use Cr value.

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔΗ
0+000 (Crest)	1.5	3	0.06	0.00	0.8056	171.90	5848.00	45.00	5728.50	5900.40	0.15
0+000 (Crest)	4.5	3	0.06	0.20	0.800	515.70	5848.00	45.00	5728.50	6244.20	0.11
0+000 (Crest)	7.5	3	0.06	0.20	0.795	859.50	5848.00	45.00	5728.50	6588.00	0.10
0+000 (Crest)	10.5	3	0.06	0.20	0.795	1203.30	5848.00	45.00	5728.50	6931.80	0.09
0+000 (Crest)	13	2	0.06	0.20	0.790	1489.80	5848.00	45.00	5728.50	7218.30	0.06
	-	14									
							SUM =	0.52	feet		

6.27 inches

14 ft (4.3 m) Fat Clay (Lacustrine)

7 ft (2.1 m) Lean Clay with Sand (Till)

SR1 Storage Dam Centerline Sta. 21+350 Settlement Calculations for Centerline Dam Sta. 21+350

5 ft Thick Lean Clay with Sand (Till) Layer Settlement Calculations

Nearest Consolidation Test Samples:

D8 (Till) Pc = 310 kPa (6,474 psf), OCR = 8.4, Cc = 0.15, Cr = 0.03 D11 (Till) Pc = 245 kPa (5,117 psf), OCR = 7.8, Cc = 0.18, Cr = 0.06

Average D8 and D11 Consolidation Parameters: Pc = 278 kPa (5806 psf), OCR = 8.1, Cc = 0.165, Cr = 0.045

 $\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$

7 ft Thick Lean Clay with Sand (Till) Layer Settlement Calculations

Till Unit Weight = 18 kN/m³ (114.6 lb/ft³)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔΗ
0+000 (Crest)	3.5	7	0.045	0.165	0.6814	2005.50	5806.00	45.00	5728.50	7734.00	0.17
							SUM =	0.17	feet		
								2.06	inches		

Three Layers Approximately 3 feet thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+ΔP	ΔΗ
0+000 (Crest)	1.5	3	0.045	0.165	0.6814	1776.30	5806.00	45.00	5728.50	7504.80	0.07
0+000 (Crest)	4.5	3	0.045	0.165	0.6814	2120.10	5806.00	45.00	5728.50	7848.60	0.07
0+000 (Crest)	6.5	1	0.045	0.165	0.6814	2349.30	5806.00	45.00	5728.50	8077.80	0.02
		7									
							SUM =	0.17	feet		
								2.07	inches		

Total Settlement at Centerline Sta. 21+650

Lacustrine Layer		6.27 inches	
Till Layer	+	2.07 inches	
	=	8.34 inches	Total Settlement

Storage Dam Settlement Calculations

SR1 Storage Dam

Settlement Calculations for Dam Centerline Sta. 21+975

37 ft Thick Lacustrine Layer Settlement Calculations

Nearest Consolidation Test Samples:

D14 (Lacustrine) Pc = 265 kPa (5,535 psf), OCR = 3.0, Cc = 0.20, Cr = 0.05 D20 (Lacustrine) Pc = 285 kPa (5,952 psf), OCR = 2.8, Cc = 0.24, Cr = 0.08

Average D14 and D20 Consolidation Parameters: Pc = 275 kPa (5,743 psf), OCR = 2.9, Cc = 0.22, Cr = 0.065

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 18.3 m (60.0 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

 $\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$

One Layer 37 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	18.5	37	0.065	0.22	0.7867	2120.10	5743.00	60.00	7638.00	9758.10	1.63
							SUM =	1.63	feet		
								19.58	inches		

Thirteen Layers Approximately 3 feet thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.065	0.22	0.8056	171.90	5743.00	60.00	7638.00	7809.90	0.21
0+000 (Crest)	4.5	3	0.065	0.22	0.8000	515.70	5743.00	60.00	7638.00	8153.70	0.17
0+000 (Crest)	7.5	3	0.065	0.22	0.7951	859.50	5743.00	60.00	7638.00	8497.50	0.15
0+000 (Crest)	10.5	3	0.065	0.22	0.7951	1203.30	5743.00	60.00	7638.00	8841.30	0.14
0+000 (Crest)	13.5	3	0.065	0.22	0.7900	1547.10	5743.00	60.00	7638.00	9185.10	0.14
0+000 (Crest)	16.5	3	0.065	0.22	0.7867	1890.90	5743.00	60.00	7638.00	9528.90	0.13
0+000 (Crest)	19.5	3	0.065	0.22	0.7867	2234.70	5743.00	60.00	7638.00	9872.70	0.13
0+000 (Crest)	22.5	3	0.065	0.22	0.7867	2578.50	5743.00	60.00	7638.00	10216.50	0.13
0+000 (Crest)	25.5	3	0.065	0.22	0.7700	2922.30	5743.00	60.00	7638.00	10560.30	0.13
0+000 (Crest)	28.5	3	0.065	0.22	0.7700	3266.10	5743.00	60.00	7638.00	10904.10	0.13
0+000 (Crest)	31.5	3	0.065	0.22	0.7700	3609.90	5743.00	60.00	7638.00	11247.90	0.13
0+000 (Crest)	34.5	3	0.065	0.22	0.7183	3953.70	5743.00	60.00	7638.00	11591.70	0.14
0+000 (Crest)	36.5	1	0.065	0.22	0.7183	4182.90	5743.00	60.00	7638.00	11820.90	0.05
		37									1.78
							SUM =	1.78	feet		
								21/1	inches		

60 ft (18.3 m) Embankment

37 ft (11.3 m) Fat Clay (Lacustrine)

6 ft (1.8 m) Lean Clay with Sand (Till)

SR1 Storage Dam

Settlement Calculations for Dam Centerline Sta. 21+975

6 ft Thick Lean Clay with Sand (Till) Layer Settlement Calculations

Nearest Consolidation Test Sample:

D11 (Till) Pc = 245 kPa (5,117 psf), OCR = 7.8, Cc = 0.18, Cr = 0.06

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One Layer 6 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔΗ
0+000 (Crest)	3	6	0.06	0.18	0.6713	4584.00	5117.00	60.00	7638.00	12222.00	0.25
							SUM =	0.25	feet		
								3.06	inches		
Two Layers 3 f	eet thick										
Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+ΔP	ΔН
Location 0+000 (Crest)	Mid Pt. (ft) 1.5	H (ft) 3	Cr 0.06	Сс 0.18	e 0.6713	Po (psf) 4412.10	Pc (psf) 5117.00	W(ft.) 60.00	ΔP(psf) 7638.00	Pf = Po+ΔP 12050.10	ΔΗ 0.13
Location 0+000 (Crest) 0+000 (Crest)	Mid Pt. (ft) 1.5 4.5	H (ft) 3 3	Cr 0.06 0.06	Cc 0.18 0.18	e 0.6713 0.6713	Po (psf) 4412.10 4755.90	Pc (psf) 5117.00 5117.00	W(ft.) 60.00 60.00	ΔP(psf) 7638.00 7638.00	Pf = Po+ΔP 12050.10 12393.90	ΔΗ 0.13 0.13

Total Settlement at Centerline Sta. 21+975 =		21.41 inches	
	+	3.1 inches	
	=	24.47 inches	Total Settlement

SR1 Storage Dam

Settlement Calculations for Dam Centerline Sta. 21+290

33 ft Thick Lacustrine Layer Settlement Calculations

Nearest Consolidation Test Samples:

D14 (Lacustrine) Pc = 265 kPa (5,535 psf), OCR = 3.0, Cc = 0.20, Cr = 0.05 D28 (Lacustrine) Pc = 275 kPa (5,743 psf), OCR = 4.1, Cc = 0.21, Cr = 0.04

Average D14 and D28 Consolidation Parameters: Pc = 270 kPa (5,639 psf), OCR = 3.6, Cc = 0.205, Cr = 0.045

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 20.4 m (67.0 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One Layer 33 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	16.5	33	0.045	0.205	0.7122	1890.90	5639.00	67.00	8529.10	10420.00	1.47
							SUM =	1.47	feet		
								17.58	inches		

Eleven Layers Approximately 3 feet thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.045	0.205	0.7108	171.90	5639.00	67.00	8529.10	8701.00	0.19
0+000 (Crest)	4.5	3	0.045	0.205	0.7108	515.70	5639.00	67.00	8529.10	9044.80	0.16
0+000 (Crest)	7.5	3	0.045	0.205	0.7108	859.50	5639.00	67.00	8529.10	9388.60	0.14
0+000 (Crest)	10.5	3	0.045	0.205	0.7108	1203.30	5639.00	67.00	8529.10	9732.40	0.14
0+000 (Crest)	13.5	3	0.045	0.205	0.7111	1547.10	5639.00	67.00	8529.10	10076.20	0.13
0+000 (Crest)	16.5	3	0.045	0.205	0.7122	1890.90	5639.00	67.00	8529.10	10420.00	0.13
0+000 (Crest)	19.5	3	0.045	0.205	0.7122	2234.70	5639.00	67.00	8529.10	10763.80	0.13
0+000 (Crest)	22.5	3	0.045	0.205	0.7000	2578.50	5639.00	67.00	8529.10	11107.60	0.13
0+000 (Crest)	25.5	3	0.045	0.205	0.7000	2922.30	5639.00	67.00	8529.10	11451.40	0.13
0+000 (Crest)	28.5	3	0.045	0.205	0.7000	3266.10	5639.00	67.00	8529.10	11795.20	0.13
0+000 (Crest)	31.5	3	0.045	0.205	0.6994	3609.90	5639.00	67.00	8529.10	12139.00	0.14
		33									
							SUM =	1.56	feet		

18.77 inches

17 ft (5.2 m) Lean Clay with Sand (Till)

Settlement Calculations for Centerline Dam Sta. 22+290 17 ft Thick Lean Clay with Sand (Till) Layer Settlement Calculations

Nearest Consolidation Test Sample:

D11 (Till) Pc = 245 kPa (5,117 psf), OCR = 7.8, Cc = 0.18, Cr = 0.06

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One Layer 17 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	8.5	17	0.06	0.18	0.6713	4755.90	5117.00	67.00	8529.10	13285.00	0.78
							SUM =	0.78 9.34	feet inches		

Six Layers Approximately 3 feet thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.06	0.18	0.6713	3953.70	5117.00	67.00	8529.10	12482.80	0.14
0+000 (Crest)	4.5	3	0.06	0.18	0.6713	4297.50	5117.00	67.00	8529.10	12826.60	0.14
0+000 (Crest)	7.5	3	0.06	0.18	0.6713	4641.30	5117.00	67.00	8529.10	13170.40	0.14
0+000 (Crest)	10.5	3	0.06	0.18	0.6713	4985.10	5117.00	67.00	8529.10	13514.20	0.14
0+000 (Crest)	13.5	3	0.06	0.18	0.6713	5328.90	5117.00	67.00	8529.10	13858.00	0.14
0+000 (Crest)	16	2	0.06	0.18	0.6713	5615.40	5117.00	67.00	8529.10	14144.50	0.09
		17									

Total Settlement at Centerline Sta. 22+290 =

18.77 inches 9.35 inches =

28.12 inches Total Settlement

SR1 Storage Dam Centerline Sta. 22+600 Settlement Calculations

Nearest Lacaustine Consolidation Test Results:

D-30, 1.70 m - 2.15 m (5.6 ft - 7.1 ft) Pc = 100 kPa (2089 psf), OCR = 2.9, Cc = 0.13, Cr = 0.03

D-30, 4.40 m - 4.85 m (14.4 ft - 15.9 ft) Pc = 120 kPa (2506 psf), OCR = 1.4, Cc = 0.12, Cr = 0.03

Average Values:

Pc = 110 kPa (2298 psf), OCR = 2.2, Cc = 0.125, Cr = 0.03

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 21.5 m (70.5 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

Seven Layers Approximately 3 feet thick

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

One Layer 20 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	10	20	0.03	0.125	0.5151	1146.00	2298.00	70.50	8974.65	10120.65	1.18
							SLIM -	1 10	foot		
							50W -	1.10	ieel		
								14.18	inches		

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	e	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+ΔP	ΔН
0+000 (Crest)	1.5	3	0.03	0.125	0.5408	171.90	2298.00	70.50	8974.65	9146.55	0.21
0+000 (Crest)	4.5	3	0.03	0.125	0.5392	515.70	2298.00	70.50	8974.65	9490.35	0.19
0+000 (Crest)	7.5	3	0.03	0.125	0.5332	859.50	2298.00	70.50	8974.65	9834.15	0.18
0+000 (Crest)	10.5	3	0.03	0.125	0.5151	1203.30	2298.00	70.50	8974.65	10177.95	0.18
0+000 (Crest)	13.5	3	0.03	0.125	0.5151	1547.10	2298.00	70.50	8974.65	10521.75	0.17
0+000 (Crest)	16.5	3	0.03	0.125	0.5151	1890.90	2298.00	70.50	8974.65	10865.55	0.17
0+000 (Crest)	19	2	0.03	0.125	0.5000	2177.40	2298.00	70.50	8974.65	11152.05	0.12
		20									
							SUM =	1.22	feet		
								14.60	inches		

Settlement Calculations for Centerline Dam Sta. 22+600

D11 (Till) Pc = 245 kPa (5,117 psf), OCR = 7.8, Cc = 0.18, Cr = 0.06

 $\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$

One Layer 44.9 ft thickness

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	22.45	44.9	0.06	0.18	0.6713	4865.92	5117.00	70.50	8974.65	13840.57	2.12
							SUM =	2.12	feet		
								25.50	inches		

Fifteen Layers Approximately 3 feet thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.06	0.18	0.6713	2463.90	5117.00	70.50	8974.65	11438.55	0.15
0+000 (Crest)	4.5	3	0.06	0.18	0.6713	2807.70	5117.00	70.50	8974.65	11782.35	0.15
0+000 (Crest)	7.5	3	0.06	0.18	0.6713	3151.50	5117.00	70.50	8974.65	12126.15	0.14
0+000 (Crest)	10.5	3	0.06	0.18	0.6713	3495.30	5117.00	70.50	8974.65	12469.95	0.14
0+000 (Crest)	13.5	3	0.06	0.18	0.6713	3839.10	5117.00	70.50	8974.65	12813.75	0.14
0+000 (Crest)	16.5	3	0.06	0.18	0.6713	4182.90	5117.00	70.50	8974.65	13157.55	0.14
0+000 (Crest)	19.5	3	0.06	0.18	0.6713	4526.70	5117.00	70.50	8974.65	13501.35	0.14
0+000 (Crest)	22.5	3	0.06	0.18	0.6374	4870.50	5117.00	70.50	8974.65	13845.15	0.14
0+000 (Crest)	25.5	3	0.06	0.18	0.6374	5214.30	5117.00	70.50	8974.65	14188.95	0.15
0+000 (Crest)	28.5	3	0.06	0.18	0.6374	5558.10	5117.00	70.50	8974.65	14532.75	0.15
0+000 (Crest)	31.5	3	0.06	0.18	0.6374	5901.90	5117.00	70.50	8974.65	14876.55	0.15
0+000 (Crest)	34.5	3	0.06	0.18	0.6374	6245.70	5117.00	70.50	8974.65	15220.35	0.15
0+000 (Crest)	37.5	3	0.06	0.18	0.6374	6589.50	5117.00	70.50	8974.65	15564.15	0.15
0+000 (Crest)	40.5	3	0.06	0.18	0.6033	6933.30	5117.00	70.50	8974.65	15907.95	0.15
0+000 (Crest)	41.95	2.9	0.06	0.18	0.6033	7099.47	5117.00	70.50	8974.65	16074.12	0.15
		44.9									
							SUM =	2.18	feet		

SUM = 2.18 feet 26.13 inches

Total Settlement at Centerline Sta. 22+600 =		14.60 inches	
	+	26.13 inches	

= 40.74 inches Total Settlement

Storage Dam Settlement Calculations

SR1 Storage Dam Centerline Station 22+925 Settlement Calculations

Nearest Consolidation Test Samples: D36 - ST10 (4.50 m to 4.95 m) Fat Clay (Lucustrine) D62 - ST6 (4.60 m to 5.05 m) Lean Clay with Sand (Till)

Settlement Calculations for Centerline Dam Sta. 22+950 D36 - ST10 (4.50-4.95m) - Lacustrine (CL) Pc = 280 kPa (5,848 psf), OCR = 3.3, Cc = 0.23, Cr = 0.03

77 ft (23.5 m) Embankment
14.6 ft (4.5 m) Fat Clay (Lacustine)
30 ft (9.1 m) Lean Clay with Sand (Till)

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 23.5 m (77.0 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

 $\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$

Fat Clay (Lacustrine) Layer 4.45 m (14.6 ft)

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	7.3	14.6	0.03	0.23	0.619	836.58	5848.00	77.00	9802.10	10638.68	0.77
							SUM =	0.77	feet		
								9.21	inches		

Fat Clay (Lacustrine) Five Layers - 3 Feet Thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	1.5	3	0.03	0.23	0.619	171.90	5848.00	77.00	9802.10	9974.00	0.18
0+000 (Crest)	4.5	3	0.03	0.23	0.619	515.70	5848.00	77.00	9802.10	10317.80	0.16
0+000 (Crest)	7.5	3	0.03	0.23	0.619	859.50	5848.00	77.00	9802.10	10661.60	0.16
0+000 (Crest)	10.5	3	0.03	0.23	0.619	1203.30	5848.00	77.00	9802.10	11005.40	0.16
0+000 (Crest)	13.3	2.6	0.03	0.23	0.619	1524.18	5848.00	77.00	9802.10	11326.28	0.13
		14.6									
							SUM =	0.79	feet		

9.53 inches

Settlement Calculations for Centerline Dam Sta. 22+925 D62 - ST6 (4.60-5.05 m) - Lean Clay with Sand (CL) Till Pc = 87 kPa (1,808 psf), OCR = 1.0, Cc = 0.15, Cr = 0.02

$$\Delta H = H \left(\frac{C_{o}}{1 + e_{o}} \right) \log \frac{p_{o} + \Delta p}{p_{o}}$$

Lean Clay with Sand (Till) - One Layer 30 feet thick

Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	15	30	0.15	0.44	3392.16	77	9802.10	13194.26	1.84
							SUM =	1.84 fe	et
								22.1 in	iches

Lean Clay with Sand (Till) Ten Layers, 3 Feet Thick

Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.15	0.4900	1845.06	77	9802.10	11647.16	0.24
0+000 (Crest)	4.5	3	0.15	0.4822	2188.86	77	9802.10	11990.96	0.22
0+000 (Crest)	7.5	3	0.15	0.4744	2532.66	77	9802.10	12334.76	0.21
0+000 (Crest)	10.5	3	0.15	0.4667	2876.46	77	9802.10	12678.56	0.20
0+000 (Crest)	13.5	3	0.15	0.4589	3220.26	77	9802.10	13022.36	0.19
0+000 (Crest)	16.5	3	0.15	0.4511	3564.06	77	9802.10	13366.16	0.18
0+000 (Crest)	19.5	3	0.15	0.4433	3907.86	77	9802.10	13709.96	0.17
0+000 (Crest)	22.5	3	0.15	0.4356	4251.66	77	9802.10	14053.76	0.16
0+000 (Crest)	25.5	3	0.15	0.4278	4595.46	77	9802.10	14397.56	0.16
0+000 (Crest)	28.5	3	0.15	0.4200	4939.26	77	9802.10	14741.36	0.15
		30							
							SUM =	1.88 fe	et
								22.5 in	iches

Total Settlement at Centerline Sta. 22+925 =		9.53 inches	
	+	22.54 inches	
	=	32.07 inches	Total Settlement

SR1 Storage Dam Centerline Sta. 23+175 Low Level Outlet Settlement Calculations

Nearest Consolidation Test Samples: D62 - ST6, (4.60 m to 5.05 m)

Top of Embankment Elevation = 1213.5 m Embankment Thickness = 29.2 m (95.7 ft)

Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)

	95.7 ft (29	9.2 m)	Embankment	:
9.5	ft (2.9 m)	Lean C	Clay with Sand	l (Till)
	11.8 ft (3	.6 m)	Gravel Layer	

Settlement Calculations for Centerline Dam, Gravel Layer (GW) - Non-Cohesive

$$\Delta H = H\left(\frac{1}{c'}\right)\log \frac{p_o + \Delta p}{p_o}$$

Location	Mid Pt. (ft)	H (ft)	W(ft.)	Po(psf)	Po+∆P(psf)	ΔP(psf)	c'	H(ft.)	ΔH(ft.)	ΔH(in.)
0+000 (Crest)	5.9	11.8	95.7	1764.84	13947.45	12182.61	210	11.8	0.0504	0.61
								SUM =	0.050	feet

0.61 inches

Settlement Calculations for Centerline Dam D62 - ST6 (4.60-5.05 m) - Lean Clay with Sand (CL) Till Pc = 88 kPa (1,838 psf), OCR = 1.0, Cc = 0.15

$$\Delta H = H \left(\frac{C_{c}}{1 + e_{o}} \right) \log \frac{p_{o} + \Delta p}{p_{o}}$$

=

One Layer 9.512 feet thick

Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	4.756	9.5	0.15	0.49	545.04	95.7	12182.61	12727.65	1.31
							SUM =	1.31 f	eet
								15.7 i	nches
Three Layers A	pproximate	ly 3 fee	et thick						
Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	∆P(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	1.5	3	0.15	0.49	171.90	95.7	12182.61	12354.51	0.56
0+000 (Crest)	4.5	3	0.15	0.49	515.70	95.7	12182.61	12698.31	0.42
0+000 (Crest)	7.756	3.5	0.15	0.49	888.84	95.7	12182.61	13071.45	0.41
		9.5							
							SUM =	1.39 f	eet
								16.7 i	nches
			_						
I otal Settlement a	t Centerline Si	ta.23+17	5 =	0.6	1 inches				
				+ 16.7	1 inches				

17.31 inches Total Settlement

 SR1 Storage Dam

 Centerline Station 23+440

 Settlement Calculations

 Nearest Consolidation Test Samples:

 64.3 ft (19.6 m)

 Embankment Calculations for Centerline Dam Sta. 23+440

 D51 - ST6 (2.70 m - 3.15 m) Lean Clay with Sand (Till)

 Pc = 270 kPa (5639 psf), OCR = 5.1, Cc = 0.21, Cr = 0.06

 Top of Embankment Elevation = 1213.5 m

 Embankment Thickness = 19.6 m (64.3 ft)

 5.6 ft (1.7 m)

 Gravel Layer

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

Silt (Till) Layer 1.30 m (4.3 ft)

	Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔΗ
0+	000 (Crest)	2.15	4.3	0.06	0.21	0.6	246.39	5639.00	64.30	8185.39	8431.78	0.32
								SUM =	0.32	feet		
									3.81	inches		

Silt (Till) Two Layers - 3 Feet Thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔH
0+000 (Crest)	2	2	0.0627	0.21	0.6	229.20	5639.00	64.30	8185.39	8414.59	0.15
0+000 (Crest)	3.15	2.3	0.06	0.21	0.6	360.99	5639.00	64.30	8185.39	8546.38	0.16
		4.3									
							SUM =	0.31	feet		
								3.75	inches		

Settlement Calculations for Centerline Dam Sta. 23+440 D51 - ST6 (2.70 m - 3.15 m) Lean Clay with Sand (Till) Pc = 230 kPa (4804 psf), OCR = 4.4, Cc = 0.21, Cr = 0.06

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

Lean Clay with Sand (Till) One Layer 37.1 ft. thick

Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	18.55	37.1	0.06	0.21	0.624	2618.61	4804.00	64.30	8185.39	10804.00	2.05
							SUM =	2.05	feet		
								24.60	inches		
Lean Clay with	Sand (Till)	Twelve	Eayers 3	ft. thick							
Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН
0+000 (Crest)	1.5	3	0.0627	0.21	0.6	664.68	4804.00	64.30	8185.39	8850.07	0.21
0+000 (Crest)	4.5	3	0.06	0.21	0.6	1008.48	4804.00	64.30	8185.39	9193.87	0.19
0+000 (Crest)	7.5	3	0.06	0.21	0.6	1352.28	4804.00	64.30	8185.39	9537.67	0.18
0+000 (Crest)	10.5	3	0.06	0.21	0.6	1696.08	4804.00	64.30	8185.39	9881.47	0.17
0+000 (Crest)	13.5	3	0.06	0.21	0.6	2039.88	4804.00	64.30	8185.39	10225.27	0.17
0+000 (Crest)	16.5	3	0.06	0.21	0.6	2383.68	4804.00	64.30	8185.39	10569.07	0.17
0+000 (Crest)	19.5	3	0.06	0.21	0.6	2727.48	4804.00	64.30	8185.39	10912.87	0.17
0+000 (Crest)	22.5	3	0.06	0.21	0.6	3071.28	4804.00	64.30	8185.39	11256.67	0.17
0+000 (Crest)	25.5	3	0.06	0.21	0.6	3415.08	4804.00	64.30	8185.39	11600.47	0.17
0+000 (Crest)	28.5	3	0.06	0.21	0.6	3758.88	4804.00	64.30	8185.39	11944.27	0.17
0+000 (Crest)	31.5	3	0.06	0.21	0.6	4102.68	4804.00	64.30	8185.39	12288.07	0.17
0+000 (Crest)	33.55	4.1	0.06	0.21	0.6	4337.61	4804.00	64.30	8185.39	12523.00	0.23
		37.1									
							SUM =	2.16	feet		
								25.87	inches		

Settlement Calculations for Centerline Dam Sta. 23+440 Sand/Gavel Layer - Non Cohesive 5.6 ft Thick Gravel/Sand Layer

	$\Delta H = H$	$I\left(\frac{1}{c'}\right)$	$- \log \frac{p_a}{p_a}$	$\frac{1}{p_o} + \Delta p$						
Location	Mid Pt. (ft)	H (ft)	W(ft.)	Po(psf)	Po+∆P(psf)	ΔP(psf)	c'	H(ft.)	ΔH(ft.)	ΔH(in.)
0+000 (Crest)	44.1	5.6	64.3	5053.86	13239.25	8185.39	210	11.8	0.0235	0.28
								SUM =	0.024	feet inches

Total Settlement at Centerline LLO Profile =

3.75 inchesWithin 4.3 feet Thick Silt Till Layer25.87 inchesWithin 37.1 feet Thick Till Layer

25.87 inchesWithin 37.1 feet Thick Till Layer0.28 inchesWithin 5.6 feet Thick Gravel/Sand Layer

29.90 inches Total Settlement

Attachment 12.3 Seismic Analyses

12.3.1 Newmark Displacement Plots

Newmark Displacement Plot: SR1-22+500-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-22+990-Design Event-Design Source-nor-dm

Newmark Displacement Plot: SR1-22+990-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-23+175-Design Event-Design Source-nor-dm

Newmark Displacement Plot: SR1-23+175-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-20+000-Design Event-Design Source-nor-dm

Newmark Displacement Plot: SR1-20+000-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-21+750-Design Event-Design Source-nor-dm

Newmark Displacement Plot: SR1-21+750-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-21+050-Design Event-Design Source-nor-dm

Newmark Displacement Plot: SR1-21+050-Design Event-Design Source-nor-um

Newmark Displacement Plot: SR1-22+500-Design Event-Design Source-nor-dm

Attachment 12.3 Seismic Analyses

12.3.2 Time Histories

ANIN	Man Marine	
	My Many man	
	My	
	My	

A.A.	
and the Astron Astronomy	
M. M. A.	
25	20
25	30
25	30
25	30

Attachment 12.3 Seismic Analyses

12.3.3 Yield Acceleration Analysis

Section 20+000 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Yield Acceleration = 0.14 g

Section 20+000 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Yield Acceleration = 0.17 g

Section 21+050 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				30	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+050 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m ³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				30	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+750 Load Case: Yield Acceleration Pseudostatic Parameters Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 21+750 Load Case: Yield Acceleration Pseudostatic Parameters Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 22+500 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Granular Zone	21		0				33	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 22+500 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion Spatial Fn	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21		0				33	0	0
	Embankment Core (EQ/Pseudo)	20		0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20		0	24	12	86			
	Glacial Till (EQ/Pseudo)	18		0	27	15	199			
	Glacio-Lacustrine (EQ/Pseudo)	18	Glacio-Lacustrine (Seismic)					0	0	0
	Granular Zone	21		0				33	0	0
	Rock Toe	20		0				33	0	0
	Sandstone									
	Weathered Bedrock	21		0				35	0	0

Section 22+990 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Col R (I
	Compacted Till	20			0				28	0
	Drain	21			0				33	0
	Embankment Core (EQ/Pseudo)	20			0	28	15	243		
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86		
	Glacial Till (EQ/Pseudo)	18			0	27	15	199		
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212						
	Sandstone									
	Weathered Bedrock	21			0				35	0

Section 22+990 Load Case: Yield Acceleration Pseudostatic Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Minimum Strength (kPa)	Tau/Sigma Ratio	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Col R (I
	Compacted Till	20			0				28	0
	Drain	21			0				33	0
	Embankment Core (EQ/Pseudo)	20			0	28	15	243		
	Embankment Shell (EQ/Pseudo)	20			0	24	12	86		
	Glacial Till (EQ/Pseudo)	18			0	27	15	199		
	Glacio-Lacustrine (EQ/Pseudo)	18	0	0.212						
	Sandstone									
	Weathered Bedrock	21			0				35	0

Section 23+175 Load Case: Yield Acceleration Pseudostatic Stress Parameters Incipient Motion in the Downstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0				33	0	0
	Embankment Core (EQ/Pseudo)	20	0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86			
	Fluvial (Unnamed Creek)	22	0				35	0	0
	Glacial Till (EQ/Pseudo)	18	0	27	15	199			
	Sandstone								
	Weathered Bedrock	21	0				35	0	0

Section 23+175 Load Case: Yield Acceleration Pseudostatic Stress Parameters Incipient Motion in the Upstream Direction

Color	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi 1 (°)	Phi 2 (°)	Bilinear Normal (kPa)	Phi' (°)	Cohesion R (kPa)	Phi R (°)
	Drain	21	0				33	0	0
	Embankment Core (EQ/Pseudo)	20	0	28	15	243			
	Embankment Shell (EQ/Pseudo)	20	0	24	12	86			
	Fluvial (Unnamed Creek)	22	0				35	0	0
	Glacial Till (EQ/Pseudo)	18	0	27	15	199			
	Sandstone								
	Weathered Bedrock	21	0				35	0	0

Attachment 12.3 Seismic Analyses

12.3.4 Liquefaction Screening Analysis

Liquefaction Susceptibility of Fine-Grained Soils

Lab ID

 GL-1

 GT-2

 GL-1

 GT-3

 GL-2

 GL-1

 GT-1

 GL-1

 GL-1

 GL-1

 GT-1

 GL-1

 GL-1

 GL-1

 GL-1

 GL-1

 GT-1

 GT-1

 GT-1

 GT-1

 GT-1

 GT-1

 GT-1

GL-2 GR-1

> GT --

Stantec Project Number:	110773396
Project Name:	SR1
Site/Structure Name:	Diversion Channel, Storage Dam

			-					Sand-like versus Clay-like Behavior (-1 indicates result does not meet criteria, green shading indic							dicate	es result	dc			
											Using Crite	eria publishe	d by Seed e	et al (2003)				р	Using ublished t Boulang	Cr yy
					Note: NP =	= Non-Pl	astic	Meets crite like be	ria for sand- ehavior	1	n Zone B	in B with	w >= .85LL	Meet	ts criteria for	clay-like be	havior	C 5 1	Meets riteria for sand-like behavior	c
Boring	Depth (m)	Soil Classification	NMC (w _c) (%)	% Passing #200	% Passing #40	LL	PI	LL in Zone A (see plot)	PI in Zone A (see plot)	LL	PI	LL	PI	LL in Zone B (see plot)	PI in Zone B (see plot)	LL in Zone C (see plot)	PI in Zone C (see plot)		PI < 7	
D2 ST4	1.50	СН	28.8	99.7	100	66	45	-1	-1	-1	-1	-1	-1	-1	-1	66	45	+	-1	
D2 BS15	7.00	CL	14.6	70.8	86.2	31	16	-1	-1	31	16	-1	-1	31	16	-1	-1		-1	-
D5 BS2	0.60	СН	28.3	99.4	100	54	34	-1	-1	-1	-1	-1	-1	-1	-1	54	34		-1	
D5 BS9	4.20	CL	16.5	64.4	77.8	36	21	-1	-1	-1	-1	-1	-1	-1	-1	36	21		-1	
D3 ST2	0.90	CL	19.3	99.5	100	43	24	-1	-1	-1	-1	-1	-1	-1	-1	43	24		-1	
D11 ST8	4.25	CL	30.5	99.3	100	43	25	-1	-1	-1	-1	-1	-1	-1	-1	43	25		-1	
D 11 ST 11	6.10	CL	15.8	68.3	87.3	30	15	-1	-1	30	15	-1	-1	30	15	-1	-1		-1	
D12 ST6	2.25	СН	28.1	98.2	100	59	39	-1	-1	-1	-1	-1	-1	-1	-1	59	39		-1	
D19 ST21	9.90	CL	11.8	69.4	89.3	30	16	-1	-1	30	16	-1	-1	30	16	-1	-1		-1	
D20 ST6	2.70	CL	28.6	88.4	100	41	24	-1	-1	-1	-1	-1	-1	-1	-1	41	24		-1	
D20 BS D	10.30	CL	15	68.7	89.8	34	19	-1	-1	34	19	-1	-1	34	19	-1	-1		-1	
D27 ST4	1.70	СН	22.1	96.2	99.8	55	38	-1	-1	-1	-1	-1	-1	-1	-1	55	38		-1	
D28 ST4	1.70	СН	27.1	92	98.2	46	30	-1	-1	-1	-1	-1	-1	-1	-1	46	30		-1	
D28 BS21	13.30	CL	14.3	60.8	79.2	28	14	-1	-1	28	14	-1	-1	28	14	-1	-1		-1	
D58 SS15	9.10	CL	10.5	63.7	82.7	29	15	-1	-1	29	15	-1	-1	29	15	-1	-1		-1	
D58 ST21	13.70	CL	22.2	79	98.3	29	15	-1	-1	29	15	-1	-1	29	15	-1	-1		-1	
D59 SS21	10.70	CL	21.8	81.6	89.7	41	25	-1	-1	-1	-1	-1	-1	-1	-1	41	25		-1	
D45 SS13	7.60	SC	12.9	48.6	76.5	31	15	-1	-1	31	15	-1	-1	31	15	-1	-1		-1	
D45 SS7	2.70	CL	14	74.4	96.6	40	26	-1	-1	-1	-1	-1	-1	-1	-1	40	26		-1	
D45 ST2	0.90	CL	29.3	70.1	94.2	43	24	-1	-1	-1	-1	-1	-1	-1	-1	43	24		-1	
D46 ST4	1.80	CL	12.1	51.1	79	30	15	-1	-1	30	15	-1	-1	30	15	-1	-1		-1	
D48 ST11	7.70	CL	11.3	70.1	90.6	31	17	-1	-1	31	17	-1	-1	31	17	-1	-1		-1	
D51 ST8	3.60	CL	18.5	75.9	90.7	39	23	-1	-1	-1	-1	-1	-1	-1	-1	39	23		-1	

bes meet criteria, no results shown for non-plastic material)										
riteria Idriss and r (2008)		Using criter	ia published by	9 MSHA (2010)		Overall Judgement based on 3 methods (sand-like or clay- like)				
Masta		Marata								
criteria for clay-like behavior		criteria for sand-like behavior	Meets criteria for clay-like behavior	Borderline soils (treat as sand-like)						
PI >= 7		PI <= 7	P40>=35%, P200>=20%, and PI>=10	7 < PI < 10, or does not meet P40 or P200						
45		-1	45	-1		Clay-like				
16		-1	16	-1		Clay-like				
34		-1	34	-1		Clay-like				
21		-1	21	-1		Clay-like				
24		-1	24	-1		Clay-like				
25		-1	25	-1		Clay-like				
15		-1	15	-1		Clay-like				
39		-1	39	-1		Clay-like				
16		-1	16	-1		Clay-like				
24		-1	24	-1		Clay-like				
19		-1	19	-1		Clay-like				
38		-1	38	-1		Clay-like				
30		-1	30	-1		Clay-like				
14		-1	14	-1		Clay-like				
15		-1	15	-1		Clay-like				
15		-1	15	-1		Clay-like				
25		-1	25	-1		Clay-like				
15		-1	15	-1		Clay-like				
26		-1	26	-1		Clay-like				
24		-1	24	-1		Clay-like				
15		-1	15	-1		Clay-like				
17		-1	17	-1		Clay-like				
23		-1	23	-1		Clay-like				

Liquefaction Susceptibility of Fine-Grained Soils

Stantec Project Number:	110773396
Project Name:	SR1
Site/Structure Name:	Diversion Channel, Storage Dam

										of Clay-like Soils resul	; to it de	Cyclic So oes meet	oftening criteria,	(-1 indic no resul	ates ts s
									Using Criteria p et al	ublished by Seed (2003)		Usin	g Criteria	a publishe	ed b
		-				Note: NP =	= Non-Pl	astic	Meets all criteri and potentiall indicates susceptible, - applicable due	a for B (clay-like y liquefiable, -2 zone A but 3 indicates not to fines content		Clay-like susceptib meet t	soil is le (must ooth)	Clay-like not susc (must one or	e so cepti mee bot
Lab ID	Boring	Depth (m)	Soil Classification	NMC (w _c) (%)	% Passing #200	% Passing #40	LL	PI	LL	PI		w _c /LL >= 0.85	PI <= 12	w _c /LL < 0.80	PI 1
GL_1	D2 ST4	1 50	СН	28.8	00 7	100	66	45	1	_1	-+	_1.00		0 44	4
GT-2	D2 8515	7.00	CI	14.6	70.8	86.2	31	16	-1	-1	\neg	_1.00		0.44	
GI -1	D5 BS2	0.60	CH	28.3	99.4	100	54	34	-1	-1	\rightarrow	-1.00		0.52	3
GT-3	D5 BS9	4 20	CI	16.5	64.4	77.8	36	21	-1	-1	\neg	-1.00	-1	0.46	2
GI -2	D3 ST2	0.90	CI	19.3	99.5	100	43	24	-1	-1	-	-1.00	-1	0.45	2
GL-2	D11 ST8	4.25	CL	30.5	99.3	100	43	25	-1	-1		-1.00	-1	0.71	2
GT-1	D 11 ST 11	6.10	CL	15.8	68.3	87.3	30	15	-1	-1		-1.00	-1	0.53	1
GL-1	D12 ST6	2.25	СН	28.1	98.2	100	59	39	-1	-1		-1.00	-1	0.48	3
GT-1	D19 ST21	9.90	CL	11.8	69.4	89.3	30	16	-1	-1		-1.00	-1	0.39	1
GL-2	D20 ST6	2.70	CL	28.6	88.4	100	41	24	-1	-1		-1.00	-1	0.70	2
GT-1	D20 BS D	10.30	CL	15	68.7	89.8	34	19	-1	-1		-1.00	-1	0.44	1
GL-1	D27 ST4	1.70	СН	22.1	96.2	99.8	55	38	-1	-1		-1.00	-1	0.40	3
GL-1	D28 ST4	1.70	СН	27.1	92	98.2	46	30	-1	-1		-1.00	-1	0.59	3
GT	D28 BS21	13.30	CL	14.3	60.8	79.2	28	14	-1	-1		-1.00	-1	0.51	1
GT-1	D58 SS15	9.10	CL	10.5	63.7	82.7	29	15	-1	-1		-1.00	-1	0.36	1
GT-1	D58 ST21	13.70	CL	22.2	79	98.3	29	15	-1	-1		-1.00	-1	0.77	1
GL-2	D59 SS21	10.70	CL	21.8	81.6	89.7	41	25	-1	-1		-1.00	-1	0.53	2
GR-1	D45 SS13	7.60	SC	12.9	48.6	76.5	31	15	-1	-1		-1.00	-1	0.42	1
	D45 SS7	2.70	CL	14	74.4	96.6	40	26	-1	-1		-1.00	-1	0.35	2
	D45 ST2	0.90	CL	29.3	70.1	94.2	43	24	-1	-1		-1.00	-1	0.68	2
	D46 ST4	1.80	CL	12.1	51.1	79	30	15	-1	-1	\square	-1.00	-1	0.40	1
GT	D48 ST11	7.70	CL	11.3	70.1	90.6	31	17	-1	-1	\square	-1.00	-1	0.36	1
	D51 ST8	3.60	CL	18.5	75.9	90.7	39	23	-1	-1		-1.00	-1	0.47	2

es res shov	es result does not meet criteria, green shading indicates shown for Sand-like materials)											
by Br	ray and Sanci	o (2006)		Overall Judgement based on 2 methods (susceptibility)								
soil is ptible ieet oth)	Clay-lik moderately	e soil is susceptible										
PI > 18	Intermediate w _c /LL (see plot)	Intermediate PI (see plot)										
45	-1.00	-1		Not Susceptible								
16	-1.00	-1		Not Susceptible								
34	-1.00	-1		Not Susceptible								
21	-1.00	-1		Not Susceptible								
24	-1.00	-1		Not Susceptible								
25	-1.00	-1		Not Susceptible								
15	-1.00	-1		Not Susceptible								
39	-1.00	-1		Not Susceptible								
16	-1.00	-1		Not Susceptible								
24	-1.00	-1		Not Susceptible								
19	-1.00	-1		Not Susceptible								
38	-1.00	-1		Not Susceptible								
30	-1.00	-1		Not Susceptible								
14	-1.00	-1		Not Susceptible								
15	-1.00	-1		Not Susceptible								
15	-1.00	-1		Not Susceptible								
25	-1.00	-1		Not Susceptible								
15	-1.00	-1		Not Susceptible								
26	-1.00	-1		Not Susceptible								
24	-1.00	-1		Not Susceptible								
15	-1.00	-1		Not Susceptible								
17	-1.00	-1		Not Susceptible								
23	-1.00	-1		Not Susceptible								

Attachment 12.4 Filter Design

Filter Design – Embankment Core Soil and Fine Filter 3A

Core – The embankment core will be constructed of glacial till (GT) material obtained from the borrow areas. Filter design was performed in accordance with USACE publication EM 1110-2-2300. Thirteen gradation/hydrometer tests were used to characterize the GT lean clay borrow soils. Fine and coarse gradations were developed to define a gradation envelope of the GT borrow soil.

The core soil upper and lower (coarse and fine) gradation limits of the thirteen GT borrow soil gradations are presented in Table 1 and plotted on the attached grainsize log chart.

Shell Soil Gradation										
Opening (mm)	Sieve No.	Upper (Coarser) Limit (%)	Lower (Finer) Limit (%)							
25	-	100.00								
12.5	-	93.9	100.00							
9.5	-	91.9	100.00							
4.75	4	88.6	99.50							
2.36	8	86.0	98.4							
2	10	85.4	98.2							
1.18	16	83.6	97.8							
0.6	30	81.6	97.2							
0.3	50	79.4	96.2							
0.15	100	74.4	95.9							
0.075	200	64.0	91.6							
0.053	270	63.0	86.0							
0.02	-	45.0	76.0							
0.006	-	30.0	63.0							
0.0005	_	15.00	57.00							
0.00007	_	12.00	30.00							
0.000002	-	5.00	15.00							

Table 1.	Embankment	Core Soi	I Gradation
		0010 001	oraaanon

The following values were obtained from the attached borrow soil gradation envelope plot:

d₈₅ (max.) = 0.020 mm d₈₅ (min.) = 0.053 mm d₁₅ (max.) = 0.0012 mm

d15 (min.) = 0.00005 mm

Fine Filter 3A Sand – The filter will be constructed of Fine Filter 3A sand material. The upper and lower (coarse and fine) gradation limits of the Fine Filter 3A sand are presented in Table 2 and plotted on the attached grainsize log chart.

	Fine Filter 3A										
Opening	Sieve	Upper	Lower								
(mm)	No.	Limit (%)	Limit (%)								
10		100	-								
5		90	100								
2.5		70	95								
1.25		50	80								
0.630		25	55								
0.315		10	25								
0.160		0	10								
0.080	#200	0	3								

 Table 2.
 Fine Filter 3A - Chimney and Blanket Drain/Filter

The following values were obtained from the attached Fine Filter 3A gradation envelope plot:

D₁₅ (max.) = 0.40 mm D₁₅ (min.) = 0.18 mm

From EM 1110-2-2300, Table B-1 the GT core soil is classified best as USACE soil category 2. The soil 2 category, consisting of clays with 40 to 85 percent passing a #200 sieve, requires a filter material D_{15} size of ≤ 0.7 mm. The Fine Filter 3A material D_{15} size ranges from 0.18 mm to 0.40 mm and passes the required stability filter criteria.

Filter criteria was also performed for an USACE category 1 soil consisting of clays with 85 percent passing a #200 sieve. This criteria requires a D₁₅ (filter) size \leq 9 x d₈₅ (core soil). The Fine Filter 3A material D₁₅ size of 0.40 mm is less than the required 1.8 mm and 0.48 mm values and passes soil 1 category stability filter criteria.

USACE permeability criteria requires a D_{15} (filter) / d_{15} (soil) value ≥ 3 to 5. This value for the Fine Filter 3A and core soil is 150 or greater and passes the permeability criteria.

Based on this evaluation, the defined Fine Filter 3A sand material passed both stability and permeability filter criteria to provide a suitable filter for the GT embankment core material.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with an without the knowledge of Stantec.

ERMEABILITY (RITERIA DIS (FILTER) 23TO5 → 0.18 mm = 150 2 3TO 5 (PASS) dis (SOIL) 0.0012mm

]		ЗА	Earthwork Materials Page 7
	Sieve Size	Percent Passing	g by Mass
	[10 mm	100%	
	5 mm	90% - 100%	
	2.5 mm	70% - 95%	
	1.25 mm	50% - 80%	VOK
	630µm	25% - 55%	
	315µm	10% 25%	$D_{15} = 0.315 \text{ mm} < 0.10 \text{ mm}$
	160µm	0% 10%	
	80µm	0% 3%]	

C-+++++ 0000000

- .2 Less than 12% loss of weight after 5 cycles in accordance with the requirements of CAN/CSA-A23.2–9A.
- .3 Natural sand with no crushed or otherwise manufactured component.
- .3 Coarse Filter Zone 3B:
 - .1 Well graded gravel with sand with a gradation that falls completely within the upper and lower bounds of the envelope defined by straight lines drawn directly between the following points plotted on a standard semi-log soil grain size distribution plot:

Sieve Size	Percent Passing by Mass
[40 mm	100%
20 mm	80% – 100%
10 mm	40% - 80%
5 mm	5% 40%
2.5 mm	0% – 3%
80µm	0% – 2%]

OR

Sieve Size	Percent Passing by Mass
[28 mm	100%
20 mm	75% – 100%
10 mm	40% 85%
5 mm	5% – 50%
2.5 mm	0% 3%
80µm	0% – 2%]

- .2 Less than 12% loss of weight after 5 cycles in accordance with the requirements of CAN/CSA-A23.2–9A.
- .3 At least [40%] by mass of the particles retained on the 10 mm and larger sieves to have 2 or more fractured faces.
- .4 Base Gravel Zone 4A:
 - .1 Reasonably well graded crushed gravel and sand with a gradation that falls completely within the upper and lower bounds of the envelope defined by straight lines drawn directly between the following points plotted on a standard semi-log soil grain size distribution plot:

EM 1110-2-2300 30 Jul 04

(2) Multiply the percentage passing each sieve size of the base soil smaller than No. 4 (4.75 mm) by the correction factor from step c(1).

(3) Plot these adjusted percentages to obtain a new gradation curve.

(4) Use the adjusted curve to determine the percent passing the No. 200 (0.075 mm) sieve in step d.

d. Place the base soil in a category based on the percent passing the No. 200 (0.075 mm) sieve in accordance with Table B-1.

Callegories of Day		Percent finer than the No. 200
Category	1.	(0.075 mini) sieve
1		85
3		40-85 -
3		15-39
4		15

e. Determine the maximum D₁₅ size for the filter in accordance with Table B-2. Note that the maximum D15 is not required to be smaller than 0.20 mm.

Table B-2 Criteria for Filters			
Base soll category	Base soil description, and percent finer than No. 200 (0.075 mm) sievo ¹	Filter criteria in terms of maximum D ₁₅ size ²	Note
1	Fine silts and clays; more than 85% finer	$D_{15} \leq 9 \times d_{e5}$	(1)
2	Sands, silts, clays, and silty and clayey sands; 40 to 85% liner.	D ₁₅ ≤ 0.7 mm	
3	Silty and clayey	$D_{15} \le \frac{40 - A}{40 - 15}$	(2),(3)
	15 to 39% finer	{(4 x d _{a5})- 0.7 mm} + 0.7 mm	
4	Sands and gravels; less than 15% finer.	$D_{rs} \leq 4$ to 5 x d _{es}	(4)

¹ Category designation for soil containing particles larger than 4.75 mm is determined from a gradation curve of the base soil which has been

adjusted to 100% passing the No. 4 (4.75 mm) sieve. ² Filters are to have a maximum particle size of 3 ln. (75 mm) and a maximum of 5% passing the No. 200 (0.075 mm) sieve with the plasticity index (Pi) of the fines equal to zero. Pl is determined on the material passing the No. 40 (0.425 mm) sieve in accordance with EM 1110-2-1906. To ensure sufficient permeability, filters are to have a D₁₅ size equal to or greater than 4 x d₁₅ but no smaller than 0.1 mm.

NOTES: (1) When 9 x d_{is} is less than 0.2 mm, use 0.2 mm.

- A = percent passing the No. 200 (0.075 mm) sieve after any regrading. (2)
- When 4 x das is less than 0.7 mm, use 0.7 mm. (3)
- In category 4, the d₄₅ can be based on the total base soil before regrading. In category 4, the $D_{15} \le 4 \times d_{85}$ oriterion (4) should be used in the case of filters beneath riprap subject to wave action and drains which may be subject to violent surging and/or vibration.

ATTACHMENT 14 LOW LEVEL OUTLET

Attachment 14.1 Settlement Analyses

SR1 Storage Da Settlement Calc	am culations						D58				D58 Top of Embankment El. 1	195.70 m
106 m Left West Low Level Outlet Alignment @ Sta. 23+022 Nearest Consolidation Test Samples: D62 - ST6, (4.60 m to 5.05 m) LLOW08 - ST7 (4.60 m to 5.05 m)								19.7 ft (6.0				
Top of Embankm	nent Elevatio	on = 119	95.7 m								Original Ground (stripped) El. 1189.70 m
Embankment Th Embankment U	ickness = 6 nit Weight :	.0 m (19 = 20 kN /	9.7 ft) /m ³ (127.3 II	o/ft³)			Lean Clay (Till)	12.7 ft (3 Excav Lean C	8.89 m) rated ay Till	12.7 ft (3.89 m) Lean Clay (Till)	Bottom of LLOW Footing	El. = 1185.83 m
								33.9 ft (10.33	m) Lean (Clay (Till)	Top of Rock El. = 1175.5	m
Till Excavation =	12.7	ft	(Excavated	Overburde	en)				Rock			
LLO08 - ST7 (4. Pc = 115 kPa (2,4	60-5.05 m) 02 psf), OCF	- Lean (R = 1.3, (Clay with Sa Cc = 0.15, Cr	and (CL)] = 0.04, e =	Fill = 0.5757, deptf	n = 4.83 m	D58 Embankment C Surface	rest	1195.70 1190.20	m m	_	
							Top Till / Botton	n Strip	1189.70	m 6.0	0 m Embankment	19.7 ft
	$\Delta H =$	$H\left(\frac{1}{1+1}\right)$	$\left(\frac{C_{c}}{e_{o}}\right)\log\left(\frac{1}{e_{o}}\right)$	$\frac{p_{o} + p_{o}}{p_{o}}$	<u>A p</u>		LLOW Flowline Bottom LLOW S Top of Rock	Slab	1186.73 1185.83 1175.50	m 3.8 m 10.3	7 m Till Excavation 3 m Till Below LLOW	12.7 ft 33.9 ft
One Layer 33.9	feet thick											
Location 0+000 (Crest)	Mid Pt. (ft) 16.95	H (ft) 33.9	Сс 0.15	e 0.5757	Po (psf) 3397.89	W(ft.) 19.7	ΔP(psf) 2507.81	Pf = Po+ΔP 5905.70	ΔH 0.77			
Note Po = (12.7 ft +	16.95 ft) x 114	l.6 pcf = 3	3397.89 psf				SUM =	0.77 f 9.3 i	eet nches			
11 Layers Appr	oximately 3	feet th	ick									
Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН			
0+000 (Crest)	1.5	3	0.15	0.5757	1627.32	19.7 19.7	2507.81	4135.13	0.12			
0+000 (Crest)	7.5	3	0.15	0.5757	2314.92	19.7	2507.81	4822.73	0.09			
0+000 (Crest)	10.5	3	0.15	0.5757	2658.72	19.7	2507.81	5166.53	0.08			
0+000 (Crest)	13.5	3	0.15	0.5757	3002.52	19.7	2507.81	5510.33	0.08			
0+000 (Crest)	19.5	3	0.15	0.5757	3690.12	19.7	2507.81	6197.93	0.06			
0+000 (Crest)	22.5	3	0.15	0.5757	4033.92	19.7	2507.81	6541.73	0.06			
0+000 (Crest)	25.5	3	0.15	0.5757	4377.72	19.7	2507.81	6885.53	0.06			
0+000 (Crest)	31.95	3.9	0.15	0.5757	5116.89	19.7	2507.81	7624.70	0.06			
(,		33.9										
							SUM =	0.83 f 10.00 i	eet nches			
Total Settlement at	Sta. 23+022,	106 m Lt	=	10.00	inches							
				254	mm							
											_	
Consider soil re	ecompressi	on bacl	k to 3,398 p	sf after e	cavation usi	ng Cr and C	c values					

$$\Delta H = \frac{H}{1 + e_0} \left(C_r \log \frac{p_c}{p_o} + C_c \log \frac{p_f}{p_c} \right)$$

<u>One Layer 33.9 ft</u>

Lacustrine Unit Weight = 18 kN/m ³ (114.6 lb/ft ³)											
Location	Mid Pt. (ft)	H (ft)	Cr	Cc	е	Po (psf)	Pc (psf)	W(ft.)	ΔP(psf)	Pf = Po+ΔP	ΔН
0+000 (Crest)	16.95	33.9	0.04	0.15	0.5757	1942.47	3397.89	19.70	2507.81	4450.28	0.59
							SUM = 0.		feet inches	(Less than abo	ve)

7/19/2019 Determine additional load required to result in additional 0.75 inch settlement

11 Layers Appr	oximately 3	feet thi	ck									
Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	ΔP(psf)	Pf = Po+∆P	ΔН			
0+000 (Crest)	1.5	3	0.15	0.5757	1627.32	21.70	2762.41	4389.73	0.12			
0+000 (Crest)	4.5	3	0.15	0.5757	1971.12	21.70	2762.41	4733.53	0.11			
0+000 (Crest)	7.5	3	0.15	0.5757	2314.92	21.70	2762.41	5077.33	0.10			
0+000 (Crest)	10.5	3	0.15	0.5757	2658.72	21.70	2762.41	5421.13	0.09			
0+000 (Crest)	13.5	3	0.15	0.5757	3002.52	21.70	2762.41	5764.93	0.08			
0+000 (Crest)	16.5	3	0.15	0.5757	3346.32	21.70	2762.41	6108.73	0.07			
0+000 (Crest)	19.5	3	0.15	0.5757	3690.12	21.70	2762.41	6452.53	0.07			
0+000 (Crest)	22.5	3	0.15	0.5757	4033.92	21.70	2762.41	6796.33	0.06			
0+000 (Crest)	25.5	3	0.15	0.5757	4377.72	21.70	2762.41	7140.13	0.06			
0+000 (Crest)	28.5	3	0.15	0.5757	4721.52	21.70	2762.41	7483.93	0.06			
0+000 (Crest)	31.95	3.9	0.15	0.5757	5116.89	21.70	2762.41	7879.30	0.07			
		33.9										
							SUM =	0.89 fe	et			
							10.73 inches					

Original	W(ft.) 19.70	ΔP(psf) 2507.81	Settle (in) 10.0	Target (in)
New Load	21.70	2762.41	10.7	10.7
New Load	21.70	2762.41	10.7	10.7

SR1 Storage Dam	D62			D62			
Settlement Calculations				Top of Embankment	El. 1203.5 m		
45 m Left West Low Level Outlet Alignment @ Sta. 23+022 Nearest Consolidation Test Samples: D62 - ST6, (4.60 m to 5.05 m) LLOW08 - ST7 (4.60 m to 5.05 m)	4	13.7 ft (13.33 m) Em					
Top of Embankment Elevation = 1203.0 m				Original Ground (stri	pped) El. 119).17 m	
Embankment Thickness = 23.2 m (76.5 ft)	Lean Clay	21.4 ft (6.51 m)	21.4 ft (6.51 m)				
Embankment Unit Weight = 20 kN/m° (127.3 lb/ft°)	(Till)	Lean Clay Till	Lean Clay (Till)	Bottom of Tower Foo	otina El. = 118	3.66 m	
	2	0.6 ft (6.29 m) Lear	n Clay (Till)				
				Top of Rock EL = 11	77.37 m		
Till Excavation = 21.35 ft (Excavated Overburden)		Rock					
LLOW08 - ST7 (4.60-5.05 m) - Lean Clay with Sand (CL) Till	D62 Embankment Cre Surface	est 1203.50 1190.67	m m				
Pc = 115 kPa (2,402 psf), OCR = 1.3, Cc = 0.15, e = 0.5757, depth = 4.83 m							
	Top Till / Bottom	Strip 1190.17	m 13.33	3 m Embankment	43.7 ft		
$\Delta H = H \left(\frac{C_{c}}{1 + e_{o}} \right) \log \frac{p_{o} + \Delta p}{p_{o}}$	LLOW Flowline Bottom Tower Sla Top of Rock	ab 1183.66 1177.37	m 6.51 m 6.29	I m Till Excavation 9 m Till Below LLOW	21.4 ft 20.6 ft		
One Layer 20.6 feet thick			7				
Location Mid Pt. (ft) H (ft) Cc e Po (psf) W(ft.)	ΔP(psf)	Pf=Po+ΔP ΔH					
0+000 (Crest) 10.3156 20.6 0.15 0.5757 3629.20 43.7	5563.01	9192.21 0.79					
Note Po = (16.24 ft + 12.85 ft) x 114.6 pcf = 3,333.26 ps	SUM =	0.79 feet					
		9.5 Inches					
Nine Layers Approximately 3 feet thick							
Location Mid Pt. (ft) H (ft) Cc e Po (psf) W(ft.)	∆P(psf)	Pf = Po+ΔP ΔH					
0+000 (Crest) 1.5 3 0.15 0.5757 2618.93 43.7 0+000 (Crest) 4.5 3 0.15 0.5757 2962.73 43.7	5565.86 5565.86	8184.79 0.14 8528.59 0.13					
0+000 (Crest) 7.5 3 0.15 0.5757 3306.53 43.7	5565.86	8872.39 0.12					
0+000 (Crest) 10.5 3 0.15 0.5757 3650.33 43.7	5565.86	9216.19 0.11					
0+000 (Crest) 13.5 3 0.15 0.5757 3994.13 43.7 0+000 (Crest) 16.5 3 0.15 0.5757 4337.93 43.7	5565.86	9559.99 0.11 9903.79 0.10					
0+000 (Crest) 19.3 <u>2.6</u> 0.15 0.5757 4658.81 43.7	5565.86	10224.67 0.08					
20.6	SUM =	0.80 feet					
		9.7 inches					
Total Settlement at Sta.23+022, 45 m Lt = 9.66 inches							
245 mm							
7/19/2019			Г				
Determine additional settlement from estimated LLOW Tower load of load required to result i	n additional 0.75 i	inch settlemen					
Five Layers Approximately 3 feet thick							
Location Mid Pt. (ft) H (ft) Cc e Po (psf) W(ft.)	ΔP(psf)	Pf = Po+ΔP ΔH		W(ft.)	ΔP(psf)	Settle (in)	Target (in)
0+000 (Crest) 1.5 3 0.15 0.5757 2618.93 49.20	6263.16	8882.09 0.15	Original	43.72	5565.86	9.7	
0+000 (Crest) 4.5 3 0.15 0.5757 2962.73 49.20 0+000 (Crest) 7.5 3 0.15 0.5757 3306.53 40.20	6263.16	9225.89 0.14					
0+000 (Crest) 10.5 3 0.15 0.5757 3650.33 49.20	6263.16	9913.49 0.12					
0+000 (Crest) 13.5 3 0.15 0.5757 3994.13 49.20	6263.16	10257.29 0.12					
0+000 (Crest) 16.5 3 0.15 0.5757 4337.93 49.20	6263.16	10601.09 0.11				10.	10.11
0+000 (Crest) 19.3 <u>2.6</u> 0.15 0.5757 4658.81 49.20 20.6	6263.16	10921.97 0.09	New Load	49.20	6263.16	10.4	10.41
	CUM -	0.07 ()	Difference	5.48	697.30	0.75	
	30M =	U.87 TEET 10.4 inches					

SR1 Storage Dam							D62					D62				
Settlement Calcu	liations											Top of Embankment	El. 1213.50	n		
Centerline West Low Level Outlet Alignment @ Sta. 23+022 Nearest Consolidation Test Samples: D62 - ST6, (4.60 m to 5.05 m) LLOW08 - ST7 (4.60 m to 5.05 m)						76.5 ft (23.3 m) Embankment										
Top of Embankment Elevation = 1213.5 m Embankment Thickness = 23.2 m (76.5 ft) Embankment Unit Weight = 20 kN/m³ (127.3 lb/ft³)							Lean Clay 18.9 ft (5.77 m) (Till) Excavated Lean Clay (Till)			Original Ground (stripped) El. 1190.17 m						
								23.1 ft (7.0 m	n) Lean	Clay (Till)						
Till Execution = 18.0 ft (Executed Overburden)												77.37 m				
	10.9	n (Excavaleu	Overbuiu	en)				Rock							
LLOW08 - ST7 (4.60-5.05 m) - Lean Clay with Sand (CL) Till Pc = 115 kPa (2,402 psf), OCR = 1.3, Cc = 0.15, e = 0.5757, depth = 4.83 m							D62 Embankment C Surface	rest	1213.50 1190.67	m m						
					Top Till / Botton	n Strip	1190.17	m	23.33	m Embankment	76.5 ft					
	$\Delta H =$	$H\left(\frac{c}{1+c}\right)$	$\left[\frac{c}{e_o}\right] \log$	$\frac{p_o + p_o}{p_o}$			LLOW Flowline Bottom LLOW S Top of Rock	Slab	1185.5 1184.4 1177.37	m m m	5.77 7.03	m Till Excavation m Till Below LLOW	18.9 ft 23.1 ft			
One Layer 23.1 fe	eet thick] [
Location 0+000 (Crest)	Mid Pt. (ft) 11.55	H (ft) 23.1	Cc 0.15	e 0.5757	Po (psf) 3489.57	W(ft.) 76.5	ΔP(psf) 9738.45	Pf = Po+ΔP 13228.02	ΔH 1.27							
							SUM =	1.27 1	feet							
Eight Layers App	proximately	3 feet t	hick							, 1						
Location	Mid Pt. (ft)	H (ft)	Cc	е	Po (psf)	W(ft.)	∆P(psf)	Pf = Po+ΔP	ΔН							
0+000 (Crest) 0+000 (Crest)	1.5 4.5	3 3	0.15 0.15	0.5757 0.5757	2337.84 2681.64	76.5 76.5	9738.45 9738.45	12076.29 12420.09	0.20 0.19							
0+000 (Crest) 0+000 (Crest)	7.5 10.5	3	0.15 0.15	0.5757 0.5757	3025.44 3369.24	76.5 76.5	9738.45 9738.45	12763.89 13107.69	0.18 0.17							
0+000 (Crest) 0+000 (Crest)	13.5 16.5	3	0.15	0.5757	3713.04 4056.84	76.5 76.5	9738.45 9738.45	13451.49 13795.29	0.16							
0+000 (Crest) 0+000 (Crest)	22.05	2.1 23.1	0.15	0.5757	4692.87	76.5	9738.45 9738.45	14139.09	0.14							
		23.1					SUM =	1.29 i 15.5 i	feet nches							
										-		1				
Consider soil rec	compressio	n back 1	to 3,489 ps	sf after ex	cavation usi	ng Cr and C	c values									
$\Delta H = \frac{H}{1 + e_n} \left(C_r \log \frac{p_c}{p_c} + C_c \log^2 \frac{p_c}{p_c} \right)$						$\left(\frac{p_f}{p_c}\right)$										
One Layer 16.5 f	<u>t</u>															
Lacustrine Unit Weig	ght = 18 kN/m	³ (114.6 lb	o/ft³)													
Location 0+000 (Crest)	Mid Pt. (ft) 11.55	H (ft) 23.1	Cr 0.04	Cc 0.15	e 0.5757	Po (psf) 1323.63	Pc (psf) 3489.57	W(ft.) 76.50	ΔP(psf) 9738.45	Pf = Po+ΔP 11062.08	ΔH 1.35					
							SUM =	1.35 1	feet	MORE THAN A	BOVE					
Total Settlement at 0	Centerline Sta	<mark>.23+022 =</mark>		16.18	inches											
				411	mm											
Consider soil rec	compressio	n back 1	to 3,489 ps	sf after ex	cavation usi	ng Cr and C	C values									
H(n, n)						$(\mathbf{P}_{\mathbf{c}})$					Original	W(ft.) 76.50	ΔP(psf) S 9738.45	ettle (in) Ta 16.18		
				$\Delta H = \frac{1}{1}$	$\frac{1}{1+e_0} \Big(C_r \log \Big)$	$\frac{P_c}{p_o} + C_c \log \frac{1}{p_o}$	$\left(\frac{p_{f}}{p_{c}}\right)$					New Load	82.40	10489.52	16.94	
One Layer 16.5 ft	<u>t</u>											Difference	5.90	751.07	0.75	
Lacustrine Unit Weig	ght = 18 kN/m	³ (114.6 lb	o/ft ³)													
Location 0+000 (Crest)	Mid Pt. (ft) 11.55	H (ft) 23.1	Cr 0.04	Cc 0.15	e 0.5757	Po (psf) 1323.63	Pc (psf) 3489.57	W(ft.) 82.40	ΔP(psf) 10489.52	Pf = Po+ΔP 11813.15	ΔH 1.41					
()					-		SUM = 1.41 feet									
1							16.94 inches									

get (in) 16.93

4

Attachment 14.2 Lateral Earth Movement **LLO Conduit Movement Calculations**

Lateral Bulging of Earth Dams													
Delta-x	F	С	e50	Gamma	Height	S	m	Ks	Km				
feet	Factor of Safety	Su in psf (UU)	Strain at 50% strength	lb/ft^3	feet	Degree of saturation	slope	factor	factor				
2.4	1.3	2500	0.01	127	96	100	3.5	0.95	0.9				
2.0	1.3	2500	0.01	127	96	95	3.5	0.82	0.9				
1.7	1.3	2500	0.01	127	96	90	3.5	0.7	0.9				
1.5	1.3	2500	0.01	127	96	85	3.5	0.59	0.9				
1.2	1.3	2500	0.01	127	96	80	3.5	0.47	0.9				
2.5	1.3	1500	0.01	127	96	85	3.5	0.59	0.9				
1.8	1.3	2000	0.01	127	96	85	3.5	0.59	0.9				
1.5	1.3	2500	0.01	127	96	85	3.5	0.59	0.9				
1.2	1.3	3000	0.01	127	96	85	3.5	0.59	0.9				
1.1	1.3	3500	0.01	127	96	85	3.5	0.59	0.9				
0.7	1.3	2500	0.005	127	96	85	3.5	0.59	0.9				
1.2	1.3	2500	0.008	127	96	85	3.5	0.59	0.9				
1.8	1.3	2500	0.012	127	96	85	3.5	0.59	0.9				
2.2	1.3	2500	0.015	127	96	85	3.5	0.59	0.9				
2.6	1.3	2500	0.018	127	96	85	3.5	0.59	0.9				
1.7	1.2	2500	0.01	127	96	85	3.5	0.59	0.9				
1.5	1.3	2500	0.01	127	96	85	3.5	0.59	0.9				
1.3	1.4	2500	0.01	127	96	85	3.5	0.59	0.9				
1.1	1.5	2500	0.01	127	96	85	3.5	0.59	0.9				
1.0	1.6	2500	0.01	127	96	85	3.5	0.59	0.9				

Walker and Duncan, (1984). Lateral bulging of earth dams, ASCE Journal of Geotechnical Engineering

Delta-x

Mid-height horizontal movement (feet)

Sensitivity variable

C (UU-TXC) Sigma3 = 0.25(gamma)H Ks and Km from Tables 4 and 5

1.5 to 1.8 Best Estimate

🕥 Stantec

Springbank Offstream Reservoir (SR1) 110773396 San Diego, California 2/13/17

1045

Low Level Outlet - Joint Extensibility Reference: USDA Technical Release No. 18 (Rev.) Purpose: Estimate LLO extension due to lateral deformation of dam and foundation Parameters in Procedure: 6 = Foundation settlement = 1.4 (1/20/17 Memo) B = Dam Width = 748' (120/17 Memo) Do = 0.D. Conduit = 14.9' (1/20/17 Memo) D = I.D. Conduit = 9.2' (1/20/17 Memo) H= Dam height = 96' (1/20/17 Memo) Tm = Dom unit weight = 127.3 16/F+3 d = Compressible Foundation depth = 21 (1/20/17 Memo) s = Undrained foundation shear strength = 2,088 pst" (prelim. report) L= Monolithic conduit length = 29.5 (Sketch from V.S. 2/13/17). P= Vertical pressure at base of dam = Hx 5m = 12,221 pst R. = Strain ratio = 0.082 (from chart in procedure) R2 = Stress ratio gs = Joint opening due to strain gr = Joint opening due to votation S = Safety margin J = Required joint extensibility B/d = 747.8'/21.5' = 34.8 B/H = 747.8'/96' = 7.8 R1 = 0.082 for B/d and B/H from chart in procedure R2 = 2. p.d = 2.12,221 pcf - 1.4/2,088 psf. 748' = 0.44

() Stantec

Springbank Offstream Reservoir (SR1) 110773396

San Diego, California

2/13/17 2 of 5

Low Level Dutlet - Joint Extensibility (cont'd) Ehm = R, - R2 · % = 0.082 · 0.44 · 1.4/21' = 0.0023 gs = Ehm · L · 12 = 0.0023 · 29.5 · 12 = 0.83" g= 2.5. D. 6/B = 2.5. (14.9'x12).1.4'/748'= 0.84" $S = \frac{1}{2} \cdot \frac{2 \cdot p \cdot d}{(s \cdot B)} + C_{H} + C_{D} (C_{H} = 0 (H < 100'))$ S = 0.5.2.12,221pst.21'/(2,088pst.748')(CD=D(H>30')) S= 0.17 -> Smin = 0.5 $3 = g_s + g_r + S = 0.83'' + 0.84'' + 0.5'' = 2.16''$ * Checked Exel spreadsheet with example in procedure.

Stantec

Springbank Offstream Reservoir (SR1) 110773396

San Diego, California

3.F5

Low Level Outlet - Joint Extensibility Reference: Lateral Bulging of Earth Dams, Walker & Buncan, 1984 Purpose : Estimate LLO extension due to lateral deformation of dam Simplified procedure to estimate amount of lateral bulging at midpoint height of dam. Since we are interested in deformation at lower 15' of dam where 40 is located, we will need to take a percentage of the estimated amount. $\Delta_{\mathbf{Z}} = K_{S} \cdot K_{M} \cdot \mathcal{E}_{50} \cdot \frac{\mathcal{K} \cdot \mathcal{H}^{2}}{\mathcal{C} \cdot \mathcal{F}^{2}} \quad (feet)$ Ks = function of saturation (from 75% to 100%) of embankment material Km = Function of embankment side-slope = 0.9 For 3.5H: IV. Eso = Strain level at 50% strength from UU-TX test of embankment material with 53 = 0.25.8m.H H= Dam height, Im = Dam Unit Weight H = 96', 8m = 127.3 pet Based on UV Tests completed on foundation materials, Eso varied from 0.5% to 3.0%. Compacted foundation materials are assummed to have similar strength/stram characteristics.

Designed by: Maurice Amendolagine Checked by:

Springbank Offstream Reservoir (SR1) 110773396 San Diego, California

4 of 5

Low Level Outlet - Joint Extensibility (Contrd) C= Undrained shear strength (UU-TX) of compacted clay Foundation material, with 03=0.25.8m.H = 3.048 pst Su from UU-TX Tests on undisturbed day foundation material varies from: 2,700 pst to 13,580 psf. Most below 5,000 psf. D3 varies from 1,566 pst to 13,575 pst, most above 6,000 pst. . I selected an average S, = 2,500 pst, and varied from 1,500 pst to 3,500 pst. F = Factor of safety for ombankment stability at the end of construction. F=1.3 For Base Case conditions, I selected the following: F=1.3, Su= 2,500 pst, E50 = 100, S= 8500 △Z Base Case = Ks·Km·Eso XH² CF² = 0.59.0.9.0.01. 127.3.96² 2.500 · 1.3² 1.5 Each of the variable parameters were varied individually, and the resulting deformation varied between 1.0' and 2.6'. (see spreadsheet for calculations).

🕥 Stantec

Springbank Offstream Reservoir (SR1) 110773396 San Diego, California

5 8 5

Low Level Outlet - Joint Extensibility (Cont'd) The estimated deformation is at the dam. mid-height, which is where the maximum deformation is estimated. We are interested in the lower 15'. The USBR/0513-9) states the lateral deformation is maximum at mid-height, and decreases to plat thes base of the Idam. Therefore, we consider a relatively conservative estimate at the base of the dam would be ~ 1/3 of the predicted mid-height lateral deformation. Therefore: $A_{\chi} = \frac{1}{3} \cdot 1.5' = 0.5' (6'')$ at the WO.

United States Department of Agriculture Soil Conservation Service Engineering Division Design Branch Technical Release No. 18 (Rev.) August 27, 1969

COMPUTATION OF JOINT EXTENSIBILITY REQUIREMENTS

This technical release presents the procedure and working tools required for the computation of the joint extensibility that may be required in a drop inlet barrel constructed of articulated segments which are essentially free to move with the adjacent parts of the embankment or earth foundation. The discussion and procedures that are established for determining the depth "d" in which foundation compression occurs, the average foundation shear strength "s" as used to compute foundation stress ratio, and the corresponding foundation settlement " δ " relate only to the computation of the required joint extensibility of conduits on yielding foundations. The foundation is considered as a body and conduit cuts or pads are not considered as influencing the total foundation deformations. These procedures do not necessarily apply to situations involving a determination of total foundation settlement.

An explanation of the strains produced at or near the interface of an earth dam embankment and its compressible foundation is contained in two reports. They are (1) "Report on Investigation of Deformations in Foundations of Earth Embankments Containing Concrete Pressure Pipe Conduits" by Moran, Proctor, Mueser and Rutledge, Consulting Engineers, dated September 1960 and (2) "Report on Study of Movements of Articulated Conduits Under Earth Dams on Compressible Foundations" by Mueser, Rutledge, Wentworth and Johnston, Consulting Engineers, dated June 1968. These reports provide the basic data and procedure which are used herein to estimate joint extensibility requirements.

The depth of the compressible foundation, d, will be obvious in some cases but in others it may be obscure until consolidation computations based on proper evaluation of foundation conditions and laboratory tests indicate the depth below which consolidation may be neglected. When the compressive unit strain in feet per foot in any stratum under the center of the embankment and at a depth of about 0.25H or more becomes less than 10 percent of the compressive unit strain of the strata above, and strata with a higher compressive unit strain do not exist below the stratum in question, it may be assumed that the depth of the compressible foundation has been attained. Obviously judgment is required in estimating d and the consolidation potential of the foundation. Relatively large consolidation can be expected on loessial soils which have not been preloaded, medium stiff residual soils or special fine grained material such as glacial lake deposits whereas relatively low or insignificant consolidation should be anticipated from ordinary SCS dams on glacial till, stream terraces, or alluvial coarse sands and gravels.

It is important that the maximum settlement, δ , be estimated with reasonable accuracy. A quotation from page 39 of the 1968 report reads as follows, "It is recommended that the settlement analysis concentrate attention on the evaluation of the probable preconsolidation condition determined from consolidation tests, but also utilizing geological evidence and data from undrained shear tests. If it can be estimated that the foundation is overconsolidated, a nominal value of recompression index should be used in computing settlements, rather than to estimate Δe directly from the e - log p curve." The straight-line semi-log recompression index ordinarily may be estimated within the range from 0.04 for lightly overconsolidated plastic clays to 0.015 for heavily over-consolidated hard or dense mixtures of silt and clay with sand or gravel. The recompression index is a dimensionless parameter which equals the void-ratio decrement for one cycle of increase of effective stress.

The shear strength of the foundation, s, must be estimated as realistically as possible. The shear strength in question is an average strength of the weakest stratum in the foundation at or near the interface with the embankment. Mr. Homer Cappleman estimated in a paper titled "Movements in Pipe Conduits Under Earth Dams" published in Journal, Soil Mechanics and Foundations Division, ASCE, November 1967, that foundation strata at a depth of more than 0.1B could be ignored in this determination.

If the size of the earth dam justifies fairly extensive testing of undisturbed samples of foundation soils, the shear strength may be estimated as follows. The probable average shear strength at the end of construction under a small earth dam is obtained from a consolidated-undrained triaxial test in which the chamber pressure is set equal to about two-thirds the average effective stress, \overline{p} , at the depth in question.

The average effective stress, \overline{p} , at the completion of the embankment is

Where

 \vec{p} = average effective stress on stratum in lb./ft.²

y = depth into the foundation from the embankment-foundation interface to the stratum in question in feet.

 γ_t^1 = submerged weight of foundation material in 1b./ft.³

If detailed strength testing is not justified, the shear strengths may be estimated from preconsolidation data in the following manner. The

2

preconsolidation stress, P, has a very significant effect on shear strength and may be used to determine the average shear strength for silts, clays and other fine grained soils with a high percentage of silt or clay or both. For soils in which the preconsolidation stress exceeds the load to be applied by the embankment, the shear strength, s, should be taken as 0.3P. For underconsolidated soils where the preconsolidated stress is less than applied load, the shear strength should be taken as 0.3 of the effective stress at the stratum in question and under the midheight of the earth dam embankment (the average effective stress) multiplied by a factor C which ranges between 0.75 and 0.9.

The factor C is estimated between 0.75 and 0.9 from a consideration of the depth of the stratum and the strength of the material between it and the interface. If the stratum under consideration is just below the interface the factor C should be taken as 0.75 where as if it is a depth y which approaches 0.1B and the strength of foundation strata above are significantly greater, then C should be taken as 0.9.

Consolidation tests of undisturbed samples from the various foundation strata will indicate the preconsolidation stress. Geologic history of the site is valuable in predicting the possibility of preconsolidation and its order of magnitude as a check against the consolidation test data. Recent alluviums may indicate moderate preconsolidation to a depth of several feet due to dessication, having strata below with little preconsolidation and low shear strength that were deposited in water and have had little opportunity to dry out.

Compute joint extensibility requirements in conformance with the following procedure.

<u>Step 1</u>. Compute the following ratios, $B \div d$, $B \div H$, $\delta \div d$, (2pd) $\div sB$ and $p = H_{Y_m}$

<u>Step 2</u>. From ES-146 read, R_1 , the theoretical ratio of maximum unit horizontal strain to average unit vertical strain, $\delta \div d$.

<u>Step 3</u>. Compute R_2 , a factor which corrects for the effect of the foundation stress ratio, $\frac{2pd}{sB}$, on the theoretical ratio R_1 .

Step 4. Compute en , the maximum unit horizontal strain.

<u>Step 5</u>. Compute g_s , the maximum probable joint opening due to foundation and embankment strain

where L is the length of a section of conduit in feet. It is assumed that the articulated conduit under the major part of embankment is made up of sections of equal length, L.

Fig. 1 Definition sketch

Available evidence indicates that, as the conduit (barrel) settles, the induced rotation in the joints is not consistent but rather is quite irregular to the extent that in some cases the rotation is opposite to the anticipated direction. This situation probably is due to localized irregularities in the foundation, its consolidation potential, and the effect of anti-seep collars on differential settlement of the conduit.

<u>Step 6.</u> The probable joint opening due to joint rotation, g_r , in inches may be computed from the following equation which was derived from experimental data

where $D_o = outside$ diameter or vertical height of conduit in inches.

<u>Step 7</u>. The required joint extensibility, J, in inches is given by the following equation

$$J = g_s + g_r + S$$
 (7)

· - •

4

where S is the safety margin in inches. The safety margin, S, is the larger value given by equation (8) or the requirements of Engineering Memorandum-27.

$$S = \frac{1}{2} \cdot \frac{2pd}{sB} + C_{H} + C_{D}$$
 (8)

where

The required joint length (EM-27) is equal to the required joint extensibility plus the maximum joint gap permitted when the pipe is installed.

Nomenclature Summary:

- B = equivalent base width of embankment in feet.
- C = coefficient (see equation 2)
- $C_{\rm H}$ = a part of the safety margin in inches (see equation 9)

 C_D = a part of the safety margin in inches (see equation 10)

- d = depth of the compressible foundation, i.e. that depth in the foundation below the interface, below which additional significant settlement does not occur, in feet.
- D = internal diameter or inside vertical height of conduit in inches
- D_o = maximum outside diameter or vertical height of conduit in inches
- g_s = maximum probable joint opening due to foundation and embankment strain in inches (see equation 5)
- g_r = probable joint opening due to joint rotation in inches (see equation 6)
- H = height of earth embankment in feet
- J = required joint extensibility in inches (see equation 7)

- L = length of a monolithic section of conduit in feet
- P = preconsolidation stress in pounds per square foot
- p = $H_{Y_{I\!I\!I}}$ = maximum vertical pressure at the interface in pounds per square foot

ž

τ.,

- p = average effective stress on stratum at depth y in pounds per square foot
- R_1 = theoretical ratio of maximum unit horizontal strain to average unit vertical strain, $\delta \div d$
- R_2 = a correction factor for the effect of the foundation stress ratio on R_1 (see equation 3)
 - s = average consolidated undrained foundation shear strength at the condition of completion of the embankment in pounds per square foot
 - S = safety margin in inches (see equation 8)
 - y = depth into the foundation from the embankment-foundation interface to the stratum in question in feet

 e_{hm} = maximum unit horizontal strain

- δ = maximum anticipated settlement of the foundation surface in the vicinity of the conduit in feet
- $\gamma_{\!\scriptscriptstyle B}$ = moist weight of the embankment as built in pounds per cubic foot
- γ_r' = average submerged weight of foundation material above depth y in pounds per cubic foot

Example No. 1

<u>Given</u>: B = 280. ft.; H = 44. ft.; d = 12. ft.; $\delta = 0.85$ ft.

$$\gamma_m = 115. \ 1b./ft.^3$$
; s = 1800. lb./ft.²; L = 16. ft.; D = 48. in.
D_o = 54. in.; class (a) dam;

Find: Required joint extensibility

Procedure:

Step 1. Compute
$$\frac{B}{d} = \frac{280}{12} = 23.3$$
; $\frac{B}{H} = \frac{280}{44} = 6.4$; $\frac{\delta}{d} = \frac{0.85}{12} = 0.071$;
 $p = H_{Y_{B}} = (44)(115) = 5060. \ 1b./ft.^{2}$;
 $\frac{2pd}{sB} = \frac{(2)(5060)(12)}{(1800)(280)} = 0.24$

Step 2. From ES-146 for $\frac{B}{d}$ = 23.3 and $\frac{B}{H}$ = 6.4 read R₁ = 0.123

Step 3.
$$R_p = 0.24 + 0.10 = 0.34$$

Step 4. $\epsilon_{hm} = (0.123)(0.34)(0.071) = 0.00297$
Step 5. $g_s = (0.00297)(12)(16) = 0.57$ inch
Step 6. $g_r = \frac{(2.5)(54)(0.85)}{280} = 0.41$
Step 7. $S = (\frac{1}{2})(0.24) + 0 + 0 = 0.12 < 0.5$ hence use $S = 0.5$
 $J = 0.57 + 0.41 + 0.50 = 1.48$ inches

Step 8. $J = g_s + g_r + S = 2.40 + 0.72 + 0.52 = 3.64$ inches

Attachment 14.3 LLOW Soil Parameters

Recommended Geotechnical Soil Parameters SR-1 Low Level Outlet Works (LLOW) Structures 25-September-2019

Geotechnical information required for the LLO structural design.

- 1. <u>Foundation Parameters</u>
 - Soil Classifications
 - Soil Layer 1 Glacial Lacustrine Clay(CH/CL) Layer thickness ranges approximately from 3 m to 5 m
 - Soil Layer 2 Lean Clay Glacial Till with Sand and Gravel (CL) Layer thickness ranges approximately from 8 m to 10 m
 - Depths to bedrock range from 11 m to 15 m
 - Effective soil angle of repose (Effective Friction Angle)(φ)
 - Lean Clay Glacial Till with Sand: $\Phi = 27$ degrees
 - Lean/Fat Lacustrine Clay: $\Phi = 23$ degrees
 - Effective cohesion (c)
 - o c = 0 kPa (both soil layers)
 - Coefficient of sliding friction (µ)
 - Lean Clay Glacial Till with Sand: $\mu = 0.51$
 - o Lean/Fat Lacustrine Clay: $\mu = 0.42$
 - Settlement
 - o See attachment LLOW settlement profile
 - Subgrade Modulus
 - Lean Clay Glacial Till with Sand: 125 lb/in³
 - o Lean/Fat Lacustrine Clay: 100 lb/in³

2. <u>Bedding, Backfill and Embankment Fill Parameters</u>

- Y_{sat}
 - o Embankment Soils: 2039 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Y_{moist}
 - o Embankment Soils: 2039 kg/m³ or 20.0 kN/m³ (127.3 lb/ft³)
- Φ_{eff}
 - Embankment Shell: $\Phi = 24$ degrees
 - Embankment Core: $\Phi = 28$ degrees
- K_o
 - \circ Embankment Shell: K_o = 0.59
 - Embankment Core: $K_0 = 0.53$
- Ka
- \circ Embankment Shell: K_a = 0.42
- o Embankment Core: $K_a = 0.36$
- Kp
 - o Embankment Shell: $K_p = 2.37$
 - o Embankment Core: $K_p = 2.77$

- Permeability
 - Embankment Shell: $k_v = 1.0 \text{ E} 07 \text{ cm/sec}$
 - Embankment Core: $k_v = 5.0 \text{ E} 08 \text{ cm/sec}$
 - Lean Clay Till Foundation Soils: $k_v = 5.0 \text{ E} 08 \text{ cm/sec}$
 - o Lean/Fat Lacustrine Foundation Soils: $k_v = 5.0 \text{ E} 08 \text{ cm/sec}$
- 3. <u>Seepage Parameters and Uplift Assumptions</u>
 - Relatively minor but unknown uplift due to non-steady state conditions upon first filling/short-term pool

4. <u>Frost Considerations</u>

- Frost depth
 - Recommended design frost depth = 2.0 meters
- Non-frost susceptible backfill
 - o Gravel and clean sands

5. <u>Soil Moduli Parameters</u>

- Glacial Till Foundation ($\Phi = 27$ degrees)
- Glacial Till Embankment Core (Φ = 28 degrees)
 - Young's Modulus (E) = 30 MPa
 - Shear Modulus (G) = 10 Mpa
 - Bulk Modulus (K') = 100 Mpa
 - Poisson's Ratio (v') = 0.45
 - Lacustrine Foundation (Φ = 23 degrees)
- Lacustrine Embankment Shell (Φ = 24 degrees)
 - Young's Modulus (E) = 20 MPa
 - Shear Modulus (G) = 7 MPa
 - Bulk Modulus (K') = 65 MPa
 - Poisson's Ratio (v') = 0.45
- Weathered Bedrock
 - Young's Modulus (E) = 600 MPa
 - o Shear Modulus (G) = 300 MPa
 - Bulk Modulus (K') = 200 MPa
 - Poisson's Ratio (v') = 0.10

6a. <u>Allowable Bearing Capacity - Shallow Continuous Footings</u>

q_{allowable} = 150 kPa (3,133 psf) Long Term (SF = 3.0)

q_{allowable} = 200 kPa (4,177 psf) Short Term (Wind and Seismic Loading)

6b. <u>Allowable Bearing Capacity – LLOW Tower Footing on Stiff Glacial Till</u>

q_{allowable} = 250 kPa (5,221 psf) (Structure Loads Only, No Backfill) (SF = 3.0)

NOTE: Foundation bearing pressures for adjacent spillway conduit and spillway tower structures are recommended to vary no more than 30 kPa (627 psf) within 10 m horizontally to limit potential differential settlement to 1: 480.

