September 2020

ALBERTA ENVIRONMENT AND PARKS

Bow, Elbow, Highwood, and Sheep River Hydrology Assessment

Submitted to:

Alberta Environment and Parks (AEP) River Engineering and Technical Services 11th floor, Oxbridge Place 9820 – 106th Street. Edmonton, AB Canada T5K 2J6

REPORT

Report Number: 1532956 Distribution: 5 Copies - Alberta Environment and Parks 1 Copy - Golder Associates Ltd.

EXECUTIVE SUMMARY

In July 2015, Alberta Environment and Parks (AEP) commissioned Golder Associates (Golder) to conduct an assessment of the flood hydrology for the Bow River basin, including the Bow, Elbow, Highwood, and Sheep Rivers, as well as their major tributaries. The study scope is summarized below:

- Generation of naturalized daily flow series at the locations of all major storage facilities on the rivers.
- Generation of regulated daily flow series by routing the naturalized daily flows at all major storage facilities and considering water supply diversions.
- Frequency analyses of the flood flow series using the available data up to 2015.
- Commentary on the effects of climate change on the flood frequency estimates and on the seasonality of flood peak occurrences.

The flood frequency estimates obtained in this study are the most up-to-date for various locations along the Bow, Elbow, Highwood and Sheep Rivers and their tributaries. These estimates provide updated flood hydrology information as input to river hazard studies completed under the provincial Flood Hazard Identification Program.

This study includes use of the June 2013 flood flow data for the Bow River Basin and other river basins along the eastern mountain slopes in southern Alberta, and the preliminary estimates of the annual maximum flows in 2013, 2014 and 2015. Inclusion of the additional flow information, particularly for the large 2013 floods, increases the sample sizes for the flood frequency analyses and reliability of the resulting flood frequency estimates.

Consideration of historic flood information (i.e., 1879, 1897 and 1902 floods) in the Bow River, Elbow River, and anecdotal evidence of flooding on the Highwood River in the 1880's for updating the flood frequency estimates for the Bow, Elbow and Highwood Rivers increases the reliability of the flood frequency estimated for these rivers.

Application of the River Basin Assessment Tools (RBAT) and Water Resources Management Model (WRMM) models, including use of Streamflow Synthesis and Reservoir Regulation (SSARR) channel routing parameters, provides an accurate basis to simulate and account for the storage effects of the various reservoirs on the flood flows downstream of these reservoirs. The resulting natural/naturalized and regulated flood flow series provide good data sets for the flood frequency analyses.

Table E1 summarizes the final estimates of the instantaneous flood peak discharges of the various return periods for natural/naturalized flow conditions. The 95% upper and lower confidence intervals are provided in the table where applicable. The final flood frequency estimates for the gauged locations are based on the best fitting distribution. The maximum recorded length available and used in the analyses are less than 100 years, except for two locations on Bow River (Bow at Banff and Bow at Calgary). Hence, there are large uncertainties (i.e., the confidence intervals are very large) with flood frequency estimates for return periods greater than 100 years.

Although a similar analysis was completed for regulated flow conditions, it is important to note that limitations of the regulated analysis methodology do not support the use of regulated flood frequency estimates for flows higher than experienced in the historical record. While reported, regulated flood frequency estimates above the 75-year flood are not recommended for use for design purposes, as they do not consider the capacity of existing reservoirs and over-estimate the ability of regulation to reduce flood peaks.

WSC Station ID	WSC Station Name / Location of	Effective Drainage	Distribution										Compu	uted Insta	antaneous F	lood Flo (m³/	ows with 95% /s)	6 Confide	ence Bound	s									
/ Node ID	Interest	Area (km²)	/ Method	1	000-yr	7	50-yr	5	00-yr	3	50-yr	20	00-yr	1	00-yr		75-yr	5	50-yr	:	35-yr	2	20-yr		l0-yr	ę	5-yr	2	2-yr
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
BOW RIVER			_																					_					
05BA001	Bow River at Lake Louise	422	EV2	182	304 95.8	172	279 94.2	159	247 92.3	149	222 90.1	135	191 86.7	118	156 81.9	111	145 80	102	129 77	95.1	117 74.3	84.6	101 70	72.7	83.3 63.9	61.9	68.7 56.7	48.2	51.9 45.4
05BB001	Bow River at Banff	2210	EV2	554	754 425	538	715 418	517	667 410	498	630 401	468	576 389	431	509 369	416	483 360	394	450 346	375	422 333	346	380 313	308	333 285	269	288 253	211	225 200
Node 105	Bow River below Spray River	2993	3P(MLH)	844	1230 593	811	1160 578	769	1070 560	729	997 542	670	883 514	602	763 479	574	716 464	537	653 443	505	598 425	456	524 395	398	440 358	341	368 315	264	283 248
Node 107	Bow River below Cascade River	3727	3P(MLH)	1050	1590 725	1010	1490 707	956	1380 682	905	1270 659	829	1130 621	742	966 577	707	902 559	659	821 533	618	752 509	556	652 474	481	542 426	409	445 374	311	331 291
Node 108	Bow River at Canmore	3870	Prorated ¹	1090	1650 753	1050	1550 734	993	1430 708	940	1320 684	861	1170 645	770	1000 599	734	937 580	684	852 553	642	781 529	577	677 492	499	563 442	425	462 388	323	344 302
Node 109	Bow River above Kananaskis	4199	Interpolated ²	1270	2220 773	1210	2040 755	1130	1810 731	1060	1640 708	957	1400 670	843	1140 624	798	1060 605	738	942 578	689	853 554	614	726 515	527	595 464	446	485 407	338	360 317
Node 110	Bow River below Kananaskis	5139	EV2	1770	3850 831	1660	3430 817	1510	2910 795	1400	2540 776	1230	2050 742	1050	1550 694	983	1400 678	894	1200 649	822	1060 624	719	868 582	606	687 526	505	551 462	380	407 358
05BE004 / Node 111	Bow River near Seebe	5170	EV2	1760	3520 903	1650	3160 883	1510	2720 858	1400	2390 837	1240	1940 794	1060	1510 743	994	1370 718	906	1190 687	834	1050 657	731	878 607	616	703 541	513	562 470	384	414 360
Node 318	Bow River above Ghost Reservoir	5473	Prorated ¹	1860	3730 956	1750	3340 935	1600	2880 908	1480	2530 886	1310	2050 840	1120	1600 786	1050	1450 760	959	1260 727	883	1110 695	774	929 643	652	744 573	543	595 498	406	438 381
05BE006 / Node 58	Bow River below Ghost Dam (Ghost Reservoir Outflow), historic	6550	Historical adjustment ratio applied to LP3(MLH)³	2390	4730 1450	2230	4280 1380	2030	3690 1300	1850	3210 1220	1610	2590 1120	1350	1980 994	1260	1770 945	1130	1530 875	1030	1330 817	878	1080 728	718	830 624	577	640 521	408	437 379
05BH005 / Node 114	Bow River near Cochrane, historic	7383	Interpolated ²	3270	6650 1890	3020	5890 1780	2690	5000 1650	2420	4300 1540	2060	3410 1370	1680	2540 1190	1540	2240 1120	1360	1890 1030	1220	1930 946	1010	1280 822	800	955 683	619	696 554	413	445 383
Node 302	Bearspaw Reservoir Inflow, historic	7672	Assigned the same flows as Bow River at Calgary	3580	7320 2040	3290	6450 1920	2920	5460 1770	2620	4680 1650	2220	3700 1460	1790	2730 1260	1630	2400 1180	1440	2020 1080	1280	1730 991	1060	1350 854	829	998 703	634	716 566	415	448 385
05BH004 / Node 59	Bow River at Calgary, historic	7736	Historical assessment using Bulletin 17C methodology LP3(MLH)⁴	4880	9970 2780	4400	8630 2570	3790	7080 2300	3330	5940 2100	2710	4510 1790	2090	3190 1480	1880	2770 1360	1610	2260 1210	1400	1890 1080	1120	1430 902	845	1020 717	627	708 560	401	433 372
Node 176	Bow River below Elbow River	8995	Concurrent [®]	5310	7930 4230	4820	7080 3840	4190	6040 3350	3710	5240 2990	3050	4180 2470	2390	3140 1970	2150	2780 1780	1860	2340 1560	1630	2010 1390	1310	1560 1130	996	1150 882	739	816 675	464	497 434
Node 158	Bow River below Nose Creek	9656	Concurrent ⁸	5370	10500 3270	4880	9110 3050	4240	7530 2750	3760	6370 2530	3090	4890 2170	2420	3520 1810	2180	3070 1660	1890	2540 1490	1650	2140 1330	1330	1640 1110	1010	1180 882	746	827 679	465	497 436
Node 164	Bow River below Fish Creek	10182	Concurrent ⁸	6100	8720 5020	5480	7740 4500	4700	6550 3860	4120	5650 3400	3340	4470 2760	2580	3330 2160	2310	2940 1940	1980	2460 1680	1730	2110 1490	1380	1630 1200	1040	1190 926	762	839 698	469	502 439
Node 177	Bow River below Pine Creek	10397	Concurrent ⁸	6180	11300 4080	5560	9790 3730	4770	80 60 3280	4180	6790 2950	3390	5190 2470	2620	3720 2010	2350	3240 1830	2020	2670 1620	1760	2250 1440	1400	1710 1180	1050	1220 922	770	851 703	472	504 443
Node 331	Bow River above Highwood River	10532	Prorated ¹	6260	8880 5180	5630	7890 4650	4830	6680 3990	4240	5770 3520	3440	4570 2860	2660	3410 2240	2380	3010 2010	2040	2520 1740	1780	2160 1540	1420	1670 1240	1070	1220 956	780	857 716	478	511 448
Node 165	Bow River below Highwood River	14497	EV2	7180	16300 2250	6390	13800 2150	5420	11000 2000	4690	8980 1900	3750	6620 1740	2840	4520 1530	2530	3860 1450	2150	3100 1330	1870	2590 1240	1500	1950 1100	1140	1380 931	867	1000 762	582	644 538
05BM002 / Node 178	Bow River below Carseland Dam	14696	EV2	6770	15100 2380	6080	12900 2280	5240	10500 2130	4590	8670 2010	3730	6500 1830	2880	4580 1620	2590	3960 1540	2230	3220 1420	1950	2690 1320	1580	2020 1170	1210	1460 983	917	1050 797	604	677 550
Node 180	Bow River at Hwy. 547	15920	Interpolated ²	7090	13000 2860	6370	11300 2720	5480	9480 2510	4790	8010 2340	3890	6460 2070	2990	4580 1800	2690	3970 1700	2310	3240 1540	2010	2720 1420	1620	2060 1230	1230	1480 1010	923	1060 805	599	669 548
Node 181	Bow River at Hwy. 842	16344	Interpolated ²	7210	12300 3030	6470	10800 2870	5560	9120 2650	4870	7770 2450	3950	6450 2160	3030	4580 1860	2720	3970 1750	2330	3250 1580	2030	2730 1450	1630	2070 1250	1240	1490 1020	925	1070 807	597	667 547
Node 189	Bow River below Crowfoot Creek	17672	Interpolated ²	7560	10000 3550	6790	9130 3340	5820	8020 3070	5090	7050 2810	4120	6400 2420	3150	4580 2060	2820	3980 1920	2420	3280 1710	2100	2770 1550	1680	2120 1320	1260	1520 1050	932	1080 816	591	658 545
05BM004 / Node 182	Bow River below Bassano Dam, extended	17751	LP3(MLH)	7580	9900 3580	6810	9030 3370	5840	7950 3090	5100	7010 2830	4130	6400 2440	3160	4580 2070	2830	3980 1930	2420	3280 1720	2100	2770 1560	1680	2120 1320	1260	1520 1050	932	1080 816	591	658 545
Node 184	Bow River at Hwy. 539	18186	Interpolated ²	6660	9490 3270	6030	8660 3090	5240	7640 2840	4620	6740 2610	3790	5960 2280	2950	4350 1940	2660	3810 1820	2300	3170 1630	2010	2690 1480	1620	2070 1260	1230	1490 1020	913	1060 795	581	645 533

Table E.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows

WSC Station ID	WSC Station Name / Location of	Effective Drainage	Distribution										Compu	ted Insta	antaneous F	lood Flo /m³/	ws with 95% s)	o Confide	ence Bounds	6									
/ Node ID	Interest	Area (km²)	/ Method	1	000-yr	7	50-yr	5	00-yr	3	50-yr	2	00-yr	1	00-yr		75-yr	5	50-yr	3	5-yr	2	20-yr	1	0-yr	5	-yr	2	2-yr
				Flood Est.	Upper	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper
Node 185	Bow River at Hwy. 36	18544	Interpolated ²	5910	Lower 9160 3020	5390	8360 2850	4740	7390 2640	4220	6510 2430	3510	5590 2140	2780	4160 1840	2520	3680 1720	2190	3080 1560	1930	Lower 2630 1420	1570	2040 1220	1200	1470 989	898	1050 778	573	Lower 635 524
Node 186	Bow River at Hwy. 875	18878	Interpolated ²	5200	8840 2780	4790	8080 2630	4280	7150 2450	3850	6300 2260	3250	5260 2020	2620	3990 1740	2390	3550 1630	2100	3000 1490	1860	2570 1360	1530	2000	1180	1450 964	884	1030 762	565	625 515
05BN012 / Node 187	Bow River near the Mouth	19160	3P(MLH)	4610	8580 2580	4290	7840 2450	3890	6950 2290	3540	6120 2120	3030	4970 1910	2490	3840 1660	2280	3440 1560	2020	2930 1430	1800	2520 1310	1490	1970 1140	1160	1430 942	872	1020 749	559	617 507
Node 188	Bow River at the Mouth	19306	Assigned the same flows as 05BN012 ⁶	4610	8580 2580	4290	7840 2450	3890	6950 2290	3540	6120 2120	3030	4970 1910	2490	3840 1660	2280	3440 1560	2020	2930 1430	1800	2520 1310	1490	1970 1140	1160	1430 942	872	1020 749	559	617 507
BOW RIVER 1	RIBUTARIES			<u> </u>																									
05BB003 / Node 305	Forty Mile Creek near Banff	133	Transferred using Redearth Creek based on ratio of drainage area	57.3	n/a n/a	55.9	n/a n/a	53.8	n/a n/a	51.9	n/a n/a	49	n/a n/a	45.2	n/a n/a	43.7	n/a n/a	41.4	n/a n/a	39.4	n/a n/a	36.2	n/a n/a	32.1	n/a n/a	27.6	n/a n/a	20.8	n/a n/a
Node 306	Forty Mile Creek at the Mouth	148	Transferred using Redearth Creek based on ratio of drainage area	57.3	n/a n/a	55.9	n/a n/a	53.8	n/a n/a	51.9	n/a n/a	49	n/a n/a	45.2	n/a n/a	43.7	n/a n/a	41.4	n/a n/a	39.4	n/a n/a	36.2	n/a n/a	32.1	n/a n/a	27.6	n/a n/a	20.8	n/a n/a
05BC001 / Node 106	Spray River at Banff	751	EV2	432	802 218	402	720 210	363	613 200	332	536 191	287	434 179	240	336 163	222	303 156	199	262 145	180	229 137	154	187 123	125	145 106	99.2	111 88.1	68.2	75.1 62.8
05BD002 / Node 154	Cascade River near Banff	664	EV2	423	938 187	390	824 181	348	686 172	314	583 165	268	453 154	219	336 140	201	296 133	178	248 124	159	214 116	134	169 104	106	125 88.2	82.7	94.4 72.6	54.9	61.6 49.9
Node 307	Cougar Creek at the Mouth	43	Regionalization⁵	89	n/a n/a	81.4	n/a n/a	71.9	n/a n/a	64.0	n/a n/a	53.0	n/a n/a	41.5	n/a n/a	37.4	n/a n/a	32.0	n/a n/a	27.7	n/a n/a	21.8	n/a n/a	15.6	n/a n/a	10.5	n/a n/a	4.88	n/a n/a
Node 308	Policeman's Creek at Canmore	10	Regionalization⁵	22.4	n/a n/a	20.5	n/a n/a	18.2	n/a n/a	16.3	n/a n/a	13.6	n/a n/a	10.8	n/a n/a	9.80	n/a n/a	8.47	n/a n/a	7.41	n/a n/a	5.92	n/a n/a	4.32	n/a n/a	2.96	n/a n/a	1.4	n/a n/a
Node 309	Stoneworks Creek at Hwy. 1	6	Regionalization⁵	13.5	n/a n/a	12.4	n/a n/a	11.0	n/a n/a	9.9	n/a n/a	8.3	n/a n/a	6.6	n/a n/a	5.99	n/a n/a	5.2	n/a n/a	4.56	n/a n/a	3.66	n/a n/a	2.7	n/a n/a	1.86	n/a n/a	0.886	n/a n/a
Node 310	Exshaw Creek at Exshaw	32	Regionalization⁵	67.9	n/a n/a	62.1	n/a n/a	54.9	n/a n/a	48.9	n/a n/a	40.6	n/a n/a	31.9	n/a n/a	28.7	n/a n/a	24.7	n/a n/a	21.4	n/a n/a	16.9	n/a n/a	12.1	n/a n/a	8.18	n/a n/a	3.82	n/a n/a
05BF025 / Node 56	Kananaskis River below Barrier Dam	899	EV2	691	1510 231	623	1290 222	537	1040 210	472	865 200	386	648 184	300	457 166	270	396 159	234	326 148	205	275 139	168	213 125	130	157 106	100	114 88.3	68	74.8 62.8
05BG010	Ghost River above Waiparous Creek, extended with diversion added	485	EV2	1160	1930 450	990	1610 404	790	1250 343	648	1010 297	474	718 238	320	474 179	272	398 157	216	311 131	175	250 111	126	177 85.2	82.2	114 60	51.7	70.1 40.2	24	30.5 20
05BG006	Waiparous Creek near the Mouth, extended	333	3P(MLH)	692	1200 410	630	1080 378	553	925 339	487	794 303	395	623 253	301	455 200	267	397 181	224	325 155	190	268 135	144	196 105	97.9	127 74.3	61.6	76.4 48.8	26.3	32 21.3
05BG001 / Node 316	Ghost River near Cochrane, extended with diversion added	911	LP3(MLH)	1960	8410 741	1710	6670 680	1420	4860 596	1190	3670 536	909	2420 451	642	1440 352	553	1150 317	446	843 271	367	639 234	267	410 184	174	239 129	108	137 85.3	48.6	59 39.4
Node 317	Ghost River at the Mouth	940	Assigned the same flows as 05BG001	1960	8410 741	1710	6670 680	1420	4860 596	1190	3670 536	909	2420 451	642	1440 352	553	1150 317	446	843 271	367	639 234	267	410 184	174	239 129	108	137 85.3	48.6	59 39.4
05BH015	Jumpingpound Creek at Township Road No. 252, extended	474	Transferred using Jumpingpound Creek near the Mouth - Foothills Region Power	866	n/a n/a	785	n/a n/a	686	n/a n/a	600	n/a n/a	482	n/a n/a	363	n/a n/a	321	n/a n/a	267	n/a n/a	225	n/a n/a	168	n/a n/a	112	n/a n/a	68.4	n/a n/a	27.3	n/a n/a
05BH009	Jumpingpound Creek near the Mouth, extended	571	3P(MLH)	1030	2250 488	936	2000 448	815	1670 404	711	1410 363	568	1070 306	425	747 241	374	638 217	310	505 186	260	407 160	193	287 125	127	177 87.5	76.8	102 56.5	30	39.7 22.3
Node 174	Jumpingpound Creek at the Mouth	601	Transferred using Jumpingpound Creek near the Mouth - Foothills Region Power	1087	n/a n/a	982	n/a n/a	855	n/a n/a	744	n/a n/a	594	n/a n/a	444	n/a n/a	390	n/a n/a	323	n/a n/a	270	n/a n/a	200	n/a n/a	132	n/a n/a	79.3	n/a n/a	30.8	n/a n/a
Node 322	Bighill Creek at the Mouth	99	Regionalization ⁵	48.4	n/a n/a	45.6	n/a n/a	41.8	n/a n/a	38.4	n/a n/a	33.3	n/a n/a	27.4	n/a n/a	25	n/a n/a	21.8	n/a n/a	19.1	n/a n/a	15.1	n/a n/a	10.5	n/a n/a	6.55	n/a n/a	2.29	n/a n/a

Table E.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows

wsc	WSC Station Name	Effective Drainage	Distribution					-					Compu	ted Insta	antaneous F	lood Flo (m³/s		6 Confide	nce Bounds	S									
Station ID / Node ID	/ Location of Interest	Area (km²)	/ Method	1	000-yr	7	50-yr	50	00-yr	3	50-yr	2	00-yr	1	00-yr	7	75-yr	5	0-yr	3	35-yr	2	20-yr	1	0-yr	5	i-yr	2	-yr
			•	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
05BH016	West Nose Creek at the Mouth	212	Transferred using Nose Creek at Calgary - Foothills Region Power	104.5	n/a n/a	92.4	n/a n/a	77.7	n/a n/a	66.6	n/a n/a	52.4	n/a n/a	39	n/a n/a	34.3	n/a n/a	28.7	n/a n/a	24.5	n/a n/a	19	n/a n/a	13.6	n/a n/a	9.37	n/a n/a	4.76	n/a n/a
05BH014	Nose Creek above Airdrie	178	Transferred using Nose Creek at Calgary - Foothills Region Power	88.4	n/a n/a	78.3	n/a n/a	66.2	n/a n/a	56.8	n/a n/a	44.9	n/a n/a	33.6	n/a n/a	29.7	n/a n/a	24.9	n/a n/a	21.4	n/a n/a	16.6	n/a n/a	12	n/a n/a	8.41	n/a n/a	4.36	n/a n/a
05BH003 / Node 175	Nose Creek at Calgary, extended	746	EV2	348	495 101	303	426 91.9	249	347 80.9	209	288 72.2	159	219 58.8	113	158 46.5	97.3	138 42.2	79	115 36.2	65.5	98.1 31.3	48.3	75.4 24.5	32.3	53.3 17.7	20.5	35.6 12	8.92	15.6 5.71
05BH901	Nose Creek at the Mouth	878	Transferred using Nose Creek at Calgary - Foothills Region Power	407	n/a n/a	353	n/a n/a	289	n/a n/a	242	n/a n/a	184	n/a n/a	130	n/a n/a	111	n/a n/a	90.1	n/a n/a	74.4	n/a n/a	54.5	n/a n/a	36.1	n/a n/a	22.7	n/a n/a	9.68	n/a n/a
05BK001	Fish Creek near Priddis	261	3P(MLH)	926	3500 465	829	3010 422	713	2440 373	614	1990 328	481	1430 264	350	921 203	305	761 182	248	574 152	204	445 128	148	290 95.5	93.3	160 63.8	53.7	83.9 38.7	19.1	25.7 13.9
Node 163	Fish Creek at the Mouth	440	Based on Threepoint Creek near Millarville and Fish Creek near Priddis	1041	n/a n/a	943	n/a n/a	823	n/a n/a	719	n/a n/a	577	n/a n/a	434	n/a n/a	383	n/a n/a	318	n/a n/a	267	n/a n/a	199	n/a n/a	132	n/a n/a	80.4	n/a n/a	31.7	n/a n/a
Node 330	Pine Creek at the Mouth	212	Regionalization ⁵	99.7	n/a n/a	93.1	n/a n/a	84.2	n/a n/a	76.4	n/a n/a	65	n/a n/a	51.9	n/a n/a	46.9	n/a n/a	40.1	n/a n/a	34.5	n/a n/a	26.5	n/a n/a	17.7	n/a n/a	10.5	n/a n/a	3.34	n/a n/a
05BM008	Crowfoot Creek near Cluny	950	3P(MLH)	797	1980 193	701	1700 182	589	1380 170	495	1120 159	373	794 141	259	514 117	220	428 108	174	323 93.8	139	249 79.5	95.5	160 58	56.6	87.7 36.3	30.4	45.1 20.3	10.1	16.3 7.34
05BN006	New West Coulee near the Mouth	102	EV3	11.7	16.8 7.88	11.4	16.1 7.82	11.1	15.2 7.75	10.7	14.4 7.65	10.2	13.2 7.48	9.49	11.8 7.23	9.18	11.2 7.11	8.73	10.4 6.93	8.32	9.79 6.77	7.65	8.8 6.45	6.76	7.58	5.78	6.36 5.18	4.17	4.61 3.73
05BN002	Twelve Mile Creek near Cecil	124	3P(MLH)	26.9	48.9 16.8	25.5	44.9 16.3	23.6	40 15.7	22	35.7 15.1	19.5	29.8 14.2	16.7	23.7 12.8	15.6	21.5 12.3	14.2	18.6 11.5	12.9	16.3 10.7	11.1	13.1 9.53	9.05	9.99 7.88	7.11	7.93 6.16	4.68	5.54 3.94
Node 179	Arrowwood Creek above Hwy. 547	718	LP3(moment)	298	977	273	824	239	677	212	552	172	398	129	263	113	217	93	165	76.9	128	55	86.5	33.4	50.6	17.4	27.1	4.4	7.9
ELBOW RIVE	R AND TRIBUTARIES																												
05BJ004	Elbow River at Bragg Creek, extended using relationship established with Elbow at Sarcee Bridge based on Instantaneous floods, historic	791	Historical adjustment ratio applied to 3P(MLH) ³	2150	4000	1930	3520 1150	1660	2980 1010	1440	2520 891	1140	1930 727	840	1340 557	736	1150 497	607	916 420	508	745 359	377	527 277	250	331 191	155	195 125	67.5	79.6 57.4
05BJ010	Elbow River at Sarcee Bridge, combined data from 05BJ001, 05BJ005, 05BJ010 with estimated instantaneous flows from the 1983 AENV floodplain study, historic	1189	Historical adjustment ratio applied to 3P(MLH)³	2150	4000	1930	3520 1070	1660	2950 941	1440	2500 834	1140	1900 685	841	1340 531	738	1150 474	610	918	509	749 347	379	535 271	253	335 191	157	199	70.4	83.1 60.3
Node 161	Elbow River below Glenmore Dam, historic	1236	Assigned the same flows as 05BJ010	2150	4000 1170	1930	3520 1070	1660	2950 941	1440	2500 834	1140	1900 685	841	1340 531	738	1150 474	610	918 404	509	749 347	379	535 271	253	335 191	157	199 128	70.4	83.1 60.3
Node 340	Bragg Creek at the Mouth	50	Regionalization ⁵	103	n/a n/a	94.6	n/a n/a	83.5	n/a n/a	74.3	n/a n/a	61.4	n/a n/a	48.1	n/a n/a	43.2	n/a n/a	37	n/a n/a	32	n/a n/a	25.2	n/a n/a	18	n/a n/a	12	n/a n/a	5.59	n/a n/a
Node 335	Lott Creek at the Mouth	114	Regionalization ⁵	55.2	n/a n/a	52	n/a n/a	47.5	n/a n/a	43.6	n/a n/a	37.7	n/a n/a	30.8	n/a n/a	28.1	n/a n/a	24.4	n/a n/a	21.3	n/a n/a	16.7	n/a n/a	11.6	n/a n/a	7.14	n/a n/a	2.45	n/a n/a
SHEEP RIVER	R AND TRIBUTARIES																												
05BL014	Sheep River at Black Diamond	592	3P(MLH)	1900	5010 910	1720	4390 837	1500	3680 751	1310	3100 672	1050	2310 561	787	1600 445	693	1360 401	576	1080 345	484	872 301	361	601 235	240	360 165	148	206 107	61.5	79.6 47.1
05BL012	Sheep River at Okotoks, extended	1494	3P(MLH)	2620	4650 1520	2420	4220 1430	2180	3670 1310	1950	3210 1190	1640	2580 1030	1300	1950 852	1180	1730 784	1020	1460 694	886	1240 616	701	939 507	504	646 377	338	417 261	158	196 127

Table E.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows

wsc	WSC Station Name	Effective Drainage	Distribution					-					Compu	ited Insta	intaneous F	lood Flov (m³/s	ws with 95% s)	Confide	nce Bounds	5									
Station ID / Node ID	/ Location of Interest	Area (km²)	/ Method	1	1000-yr	7	50-yr	50	00-yr	3	50-yr	2	00-yr	1	00-yr	7	/5-yr	5	0-yr	3	5-yr	2	20-yr	1	0-yr	5	-yr	2-у	r
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower		Upper Lower
Node 344	Sheep River at the Mouth, extended	1570	Prorated ¹	2750	4890 1600	2540	4440 1500	2290	3860 1380	2050	3370 1250	1720	2710 1080	1370	2050 896	1240	1820 824	1070	1530 730	931	1300 648	737	987 533	530	679 396	355	438 274	166	206 134
Node 338	Ware Creek at the Mouth	129	Regionalization ⁵	265	n/a n/a	242	n/a n/a	213	n/a n/a	188	n/a n/a	155	n/a n/a	120	n/a n/a	108	n/a n/a	91.5	n/a n/a	78.7	n/a n/a	61.2	n/a n/a	43.1	n/a n/a	28.4	n/a n/a	13.1	n/a n/a
Node 339	Threepoint Creek above Ware Creek	136	Regionalization ⁵	278	n/a n/a	254	n/a n/a	223	n/a n/a	198	n/a n/a	162	n/a n/a	126	n/a n/a	113	n/a n/a	95.9	n/a n/a	82.5	n/a n/a	64.1	n/a n/a	45.1	n/a n/a	29.7	n/a n/a	13.7	n/a n/a
05BL013	Threepoint Creek near Millarville	507	3P(MLH)	1140	2690 542	1040	2380 501	914	2010 455	803	1710 410	650	1310 345	495	941 275	439	806 249	368	648 216	312	521 187	235	371 149	158	232 106	98.2	134 69.8	39.8	52 29.4
	Threepoint Creek at		Transferred using Threepoint Creek		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a		n/a
Node 341	the Mouth	638	near Millarville (Mountain Region Power)	1430	n/a	1300	n/a	1140	n/a	1000	n/a	810	n/a	616	n/a	545	n/a	457	n/a	387	n/a	290	n/a	192	n/a	118	n/a	48.7	n/a
HIGHWOOD F	RIVER AND TRIBUTARI	ES	· · · · · ·																										
05BL019	Highwood River at Diebel's Ranch	774	LP3(MLH)	1390	7030 469	1250	5750 446	1080	4370 417	945	3400 390	765	2290 350	583	1430 300	519	1170 282	439	887 254	378	693 231	295	477 195	212	301 155	146	186 115	78.8	92.8 66.6
05BL004	Highwood River below Little Bow Canal, extended, historic	1953	Historical adjustment ratio applied to EV2 ⁷	2830	4100 1560	2490	3570 1410	2090	2950 1240	1790	2490 1090	1400	1900 889	1030	1360 692	905	1180 624	752	972 535	637	814 463	486	611 369	342	426 268	231	286 188	118	142 101
05BL024	Highwood River near the Mouth, extended, historic	3941	Historical adjustment ratio applied to EV2 ⁷	5200	8190 2820	4580	7050 2560	3830	5720 2230	3270	4760 1970	2 550	3600 1630	1870	2530 1270	1630	2180 1130	1350	1780 961	1140	1480 829	872	1100 656	612	761 479	413	510 334	213	255 181
Node 172	Highwood River at the Mouth, historic	3964	Prorated ¹	5230	8240 2840	4600	7090 2570	3850	5750 2240	3290	4790 1980	2560	362 0 1640	1880	2540 1280	1640	2190 1140	1360	1790 967	1150	1490 834	877	1110 660	615	765 482	415	513 336	214	256 182
05BL022	Cataract Creek near Forestry Road	166	EV2	1280	2770 128	1070	2280 122	834	1730 114	670	1350 106	475	934 96.6	309	581 83.6	259	478 78.5	201	363 71.7	161	284 65.2	113	193 55.9	72.4	117 45.4	45.4	67.9 33.9	22.2	29.2 18.4
05BL023	Pekisko Creek near Longview	232	3P(MLH)	680	1770 284	608	1540 262	522	1260 233	449	1040 207	350	76 4 172	254	511 134	221	428 119	180	332 100	148	262 85.5	106	176 63.9	66.9	102 43.7	38.4	55.5 26.7	13.7	19.9 9.65
05BL007	Stimson Creek near Pekisko	236	3P(MLH)	456	943 227	413	835 209	360	708 188	314	600 169	252	458 141	189	322 112	167	277 102	138	221 86.9	116	179 74.9	86.2	127 58.8	56.6	77.5 40.9	34	44 25.9	12.7	16.6 9.58
05BL027	Trapp Creek near Longview	137	3P(MLH)	819	2020 82.4	719	1740 79.5	602	1410 75.4	505	1150 71.6	379	822 65.5	261	532 57.9	222	438 55.1	175	331 50.3	139	257 46.6	95.8	178 40.7	56.9	119 31.2	31	72.7 20.2	11.3	18.3 7.99

v

Table E.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows

1. Prorated: Instantaneous flood flows were estimated by applying ratio between effective drainage areas at the node in interest and node upstream or downstream of the node in interest using an exponent of 1

2. Interpolated: Instantaneous flood flows were estimated based on interpolation between frequency analysis for upstream and downstream stations

3. Historical Adjustment Ratio Applied: Instantaneous flood flows including historical floods were derived by applying a percentage multiplier to each return period based on ratios of Bow River at Calgary results with and without historic floods

4. Historical Assessment using Bulletin 17C Methodology: Instantaneous flood frequency flow estimates for Bow River at Calgary were derived using the updated Bulletin 17C methodology to incorporate historical floods

5. Regionalization: Instantaneous flood flows were derived based on regional analysis

6. Instantaneous flood flows at Node 188 (Bow River at the Mouth) were assigned the same as 05BN012 (Bow River near the Mouth)

7. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling the frequency analysis for Highwood River below Little Bow with and without historic floods (by applying a percentage multiplier to each return period)

8. Concurrent: Instantaneous flood flows were generated based on an examination of the concurrent data records

ACKNOWLEDGEMENTS

Golder's project team thanks Mr. Adam Minke and Mr. Peter Onyshko of Alberta Environment and Parks (AEP) for their detailed review of all the submissions from Golder including draft version of the report, providing thoughtful comments and suggestions.

As Project Contracting Manager, Mr. Minke provided overall direction to the study, supplied the relevant information from AEP, coordinated the inputs and participation from AEP, provided AEP's review comments on the various draft technical memoranda submitted by Golder during the study, coordinated the review of the draft report and facilitated the discussion with and inputs of the various AEP team members.

Golder project team thanks Marcena Croizier, Jerry Wagner-Watchel and Dennis Lazowski of Environment Canada for supplying the hydrometric data collected by Water Survey of Canada for use in this study.

Golder project team thanks Deighen Blakely of the City of Calgary for supplying additional data on operational rules for Glenmore Reservoir.

Golder project team thanks German Mojica of TransAlta Corporation, Ryan Summach and Ivan Friesen of Eastern Irrigation District, and Satvinder Mangat Carseland- Bow Operation for supplying additional data on reservoir operation rules for hydro and irrigation structures.

Golder's project team acknowledge the participation of Dr. Nesa Ilich of Optimal Solutions Ltd. in this study, who provided inputs for the flow naturalization and regulation analyses.

The contribution of the following staff from Golder team members to this study are acknowledged:

- Ms. Nancy Guo;
- Mr. Apurva Gollamudi;
- Dr. Shouhong Wu;
- Dr. Dejiang Long; and
- Dr. Getu Biftu.

Table of Contents

EXE	CUTIVE	SUMMARY	i
ACK	NOWLE	DGEMENTS	vi
1.0	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Study Area	1
	1.3	Major Floods	
	1.4	Study Objectives	
	1.5	Study Scope	5
2.0	DATA	SOURCES AND PAST STUDIES	6
	2.1	Data and Information Sources	6
	2.2	Previous Studies	6
3.0	FLOOD	D FLOW SERIES	11
	3.1	Flow Naturalization	11
	3.1.1	Methodology	11
	3.1.2	Upper Reach of Bow River and Its Tributaries	11
	3.1.3	Lower Reach of Bow River – Below Bearspaw Reservoir	14
	3.1.4	Lower Reach of Elbow River	15
	3.1.5	Lower Reach of Highwood River	15
	3.2	Flow Regulation	15
	3.2.1	Bow River and Its Tributaries	15
	3.2.2	Elbow River at Glenmore Dam	17
	3.3	Annual Maximum Instantaneous Flow Series	18
4.0	FLOOD) FREQUENCY ANALYSIS	21
	4.1	Statistical Tests	21
	4.1.1	Methods	21
	4.1.2	Results	21
	4.1.3	Discussion of the Results	22
	4.2	Analysis of the Natural and Naturalized Flood Flow Series	23

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

	4.2.1	Bow River	23
	4.2.2	Major Bow River Tributaries	
	4.2.3	Ungauged Tributaries	37
	4.3	Consideration of Historic Flood Information	43
	4.4	Analysis of the Regulated Flood Flow Series	45
5.0	сомм	ENTARY ON THE EFFECTS OF CLIMATE CHANGE	53
6.0	CONCI	LUSIONS	56
7.0	CLOSI	JRE	61
IMP	ORTANI	INFORMATION AND LIMITATION OF THIS REPORT	65
REF	ERENC	ES	66
ТАВ	LES		

TABLES

Table E.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows	ii
Table 2.1: Summary of Data Used for Estimating Flood Frequency	7
Table 3.1: Irrigated Area and Water Diverted for Irrigation (EID 1995)	.14
Table 4.1: Flood Frequency Flow Estimates Calculated Using Various Methods - Natural and Naturalized Flows	.25
Table 4.2: Derivation of Naturalized Flows for the Ghost River near the Mouth	.32
Table 4.3: Comparison of Flood Frequency Estimates for Pine Creek	.35
Table 4.4: WSC Stations Used for Regional Analysis	.37
Table 4.5: Results of Regional Flood Frequency and Single Station Transfer Analysis	.42
Table 4.6: Historical Flood Adjustment Ratios Used for Flood Frequency Estimates	.44
Table 4.7: Flood Frequency Flow Estimates Calculated Using Various Methods - Recorded and Regulated Flows	.47
Table 5.1: Timings of Annual Maximum Daily Flows in the Bow and Elbow Rivers	.54
Table 6.1: Final Flood Frequency Flow Estimates – Natural and Naturalized Flows	.57

FIGURES

Figure 1.1: Upper Bow, Elbow, Highwood, and Sheep River Basins	2
Figure 1.2: Lower Bow River Basin	3
Figure 3.1: Typical Shape of Operating Zones for TransAlta's Reservoirs	.16
Figure 3.2: Relationship between Annual Maximum Daily and Instantaneous Flows for the Bow River at Calgary	.20
Figure 3.3: Relationship between Annual Maximum Daily and Instantaneous Flows for the Elbow River at Sarcee Bridge	
Figure 4.1: Locations of the Water Survey of Canada Stations used for the Regional Analysis	39

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

Figure 4.2: Empirical Relationships – Mountains Region in the Bow River Basin	40
Figure 4.3: Empirical Relationships – Foothills Region in the Bow River Basin	41
Figure 5.1: Annual Flood Peak Flows in the Bow and Elbow Rivers in Calgary	54
Figure 5.2: Timings of Past Annual Peak Flows in the Bow and Elbow Rivers	55

APPENDICES

APPENDIX A Data Used in this Study

APPENDIX B Naturalized Daily Flows and Flood Routing at Key Locations

APPENDIX C

Frequency Analysis - Graphs and Tables

1.0 INTRODUCTION

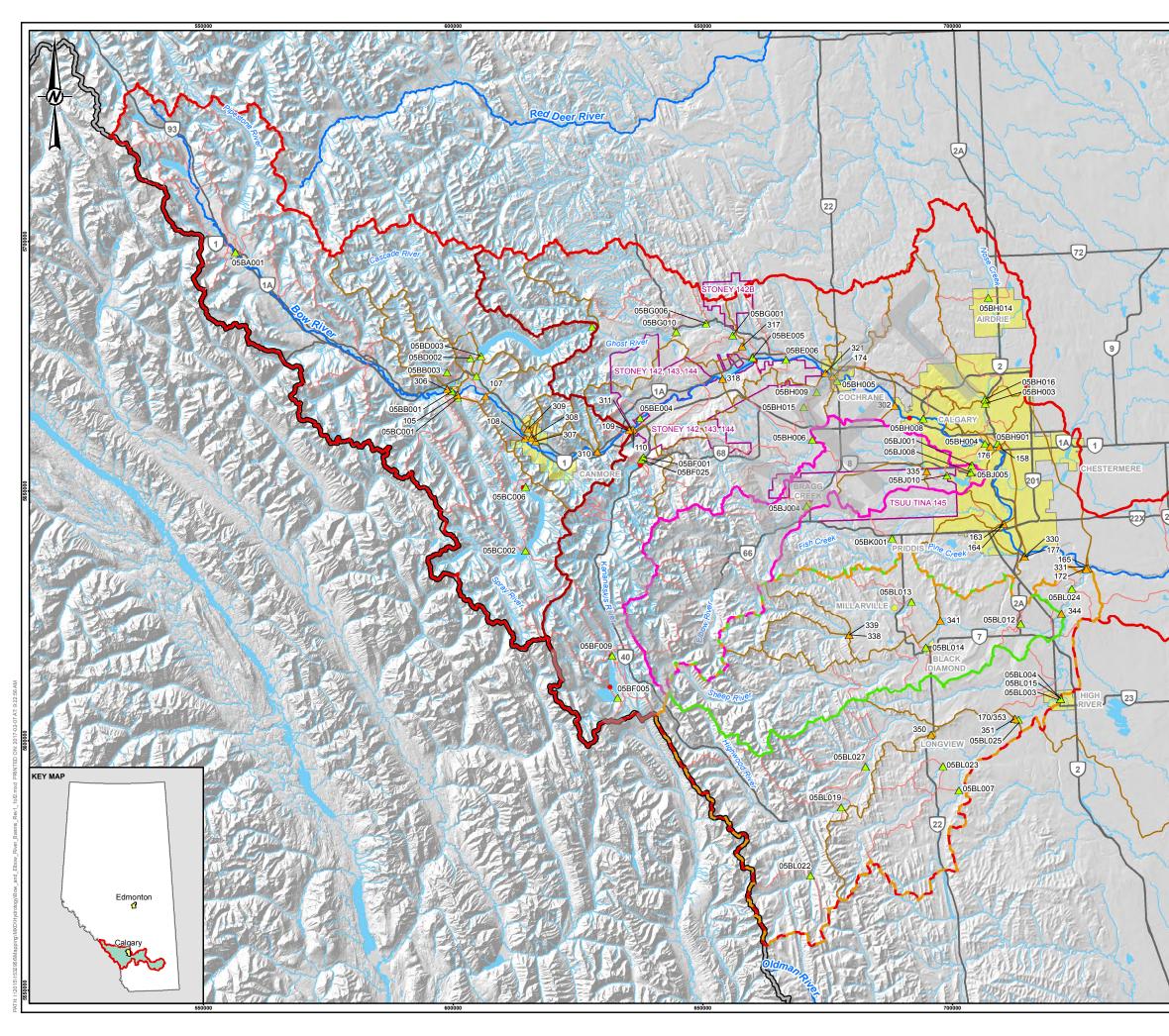
1.1 Background

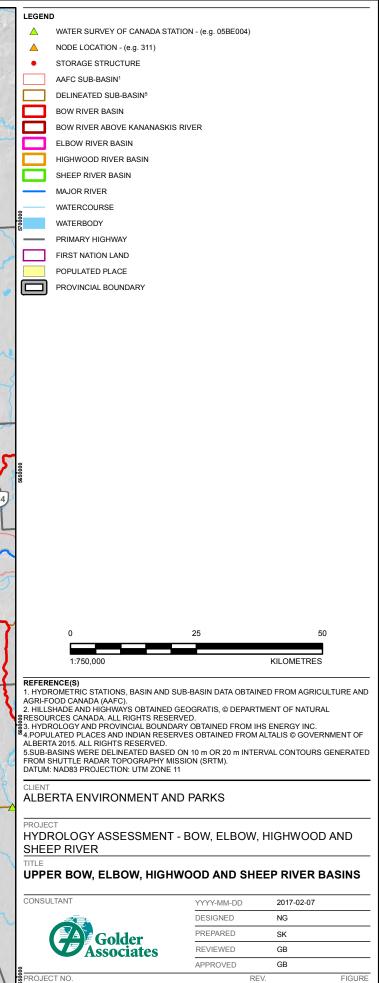
Severe flooding occurred in Alberta in June 2013. The floods in some of the tributary watersheds of the Bow, Elbow, Highwood and Sheep Rivers have estimated return periods of more than 100 years.

Following the June 2013 floods, Alberta Environment and Parks (AEP) commissioned a number of flood peak documentation and frequency analysis studies for the river basins in Southern Alberta. The studies included documentation and determination of the 2013 flood peak discharges using preliminary flow data or analytical methods when the peak flow data were not available. In particular, Golder Associates Ltd. (Golder) completed the Basin-Wide Hydrology Assessment and 2013 Flood Documentation for the Bow and Elbow Rivers for the City of Calgary and AEP (Golder 2014a), and the 2013 Highwood River Flood Hydrology Study for AEP (Golder 2014b).

The most recent basin-wide flood hydrology study (Golder, 2014a) for the Bow and Elbow Rivers was conducted for the City of Calgary and AEP as part of the Bow and Elbow River Hydraulic Model and Flood Inundation Mapping Project. Previous flood hydrology studies for the Bow and Elbow Rivers include those by Golder (2010) and Alberta Environment (AENV 1983).

In July 2015, AEP commissioned Golder to conduct an update and assessment of the flood hydrology for the Bow, Elbow, Highwood, and Sheep Rivers. The purpose of this study is to support river and flood hazard studies completed under the provincial Flood Hazard Identification Program, which are used to help mitigate flood impacts, reduce potential future flood damages, and reduce disaster assistance costs. The outcome of this study will be used to support a variety of other projects, objectives, and stakeholders needs.

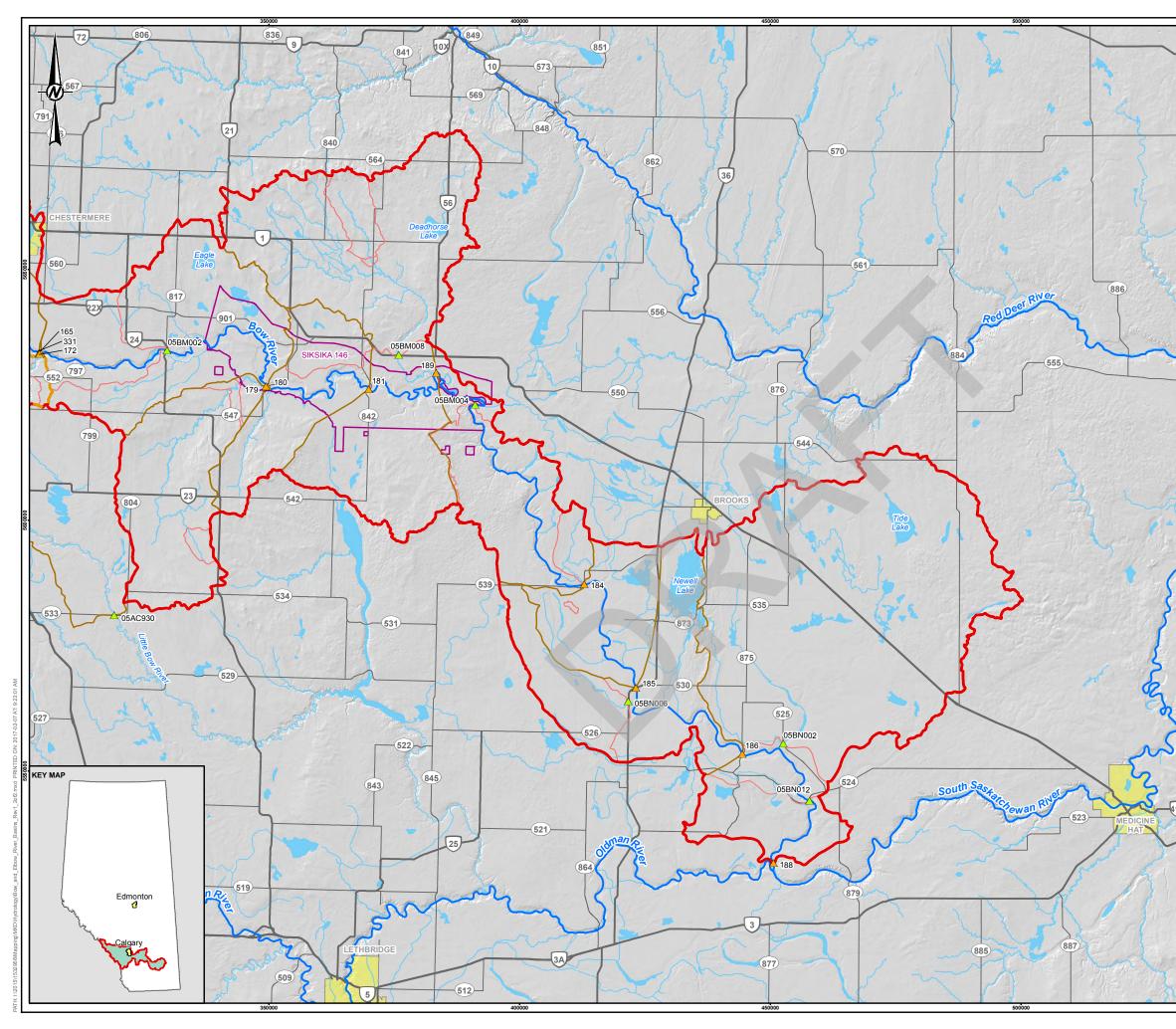

1.2 Study Area


The study area (Figures 1.1 and 1.2) includes the Bow River and its tributaries upstream of its mouth. The major tributaries include the Elbow and Highwood Rivers. The flows along the upstream reach of the Bow River and its tributaries are regulated by several hydropower structures (see Figure B-2 in Appendix B for locations of hydropower structures).

The Bow River within Calgary is joined by several tributaries, including the Elbow River, Nose Creek, Fish Creek and Pine Creek. The Highwood River is a major tributary to the Bow River downstream of Calgary. The Elbow River is the largest tributary to the Bow River within Calgary, and flows into the Glenmore Reservoir before entering the Bow River, just downstream of downtown Calgary.

The Bow River and some of its tributaries (including the Elbow River) originate in the Rocky Mountains and traverse the foothills before reaching Calgary on the edge of the Prairies. The streams flow through a mix of Alpine, Subalpine, Boreal Foothill and Aspen Parkland eco-regions. Land use in the river basin ranges from urban Calgary, to agricultural lands in parts of the foothills, and to forest in the remainder of the foothills and in the mountains.

The Highwood River watershed extends from the eastern slopes of the Rocky Mountains below Peter Lougheed Provincial Park, eastward to the Town of High River, and then north to where the Highwood River joins the Bow River, just southeast of Calgary. The Highwood River flows through the towns of Longview and High River before joining the Bow River. It has no major impoundments, and water use primarily consists of diversions to the Little Bow, and licensed withdrawals for irrigation, livestock watering, and municipal purposes.



25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIF

1532956

1.1

1

	LEGEND)				
1	\land	WATER SURVEY O	F CANADA ST	TATION - (e.g. 05BE004)		
E.		NODE LOCATION -	(e.g. 311)			
9		AAFC SUB-BASIN ¹				
2		DELINEATED SUB-	BASIN⁵			
		BOW RIVER BASIN	1			
		HIGHWOOD RIVER				
		MAJOR RIVER				
		WATERCOURSE				
3		WATERBODY				
2		PRIMARY HIGHWA	Y			
		SECONDARY HIGH	IWAY			
-		FIRST NATION LAN	ID			
1		POPULATED PLAC	E			
		PROVINCIAL BOUN	IDARY			
65 000						
ú	Ď					
4						
5						
in a						
-						
1						
3						
-20						
1						
*						
SAUDUD	8					
	2					
5A	5					
AR A	5					
er.	5					
en al analasia a a a a a a a a a a a a a a a a a a	ő					
68	5					
RA	5					
RA	5					
RA	5					
89	5	0		25	50	
194 194	5	0		25	50	
en al an	5	0 1:750,000		25	50 KILOMETRES	1
and a second sec		1:750,000		25		1
Part of the second s	REFERE 1. HYDR	1:750,000 ENCE(S)		25 SUB-BASIN DATA OBTA	KILOMETRES	
	REFERE 1. HYDR AGRI-FC	1:750,000 ENCE(S) DOMETRIC STATIONS DOD CANADA (AAFC	;).	SUB-BASIN DATA OBT/	KILOMETRES	ILTURE AND
	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUD	1:750,000 ENCE(S) COMETRIC STATIONS COD CANADA (AAFC HADE AND HIGHWA RCES CANADA, ALL	:). NS OBTAINEE RIGHTS RESI	SUB-BASIN DATA OBT/) GEOGRATIS, © DEPAI ERVED.	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI	ILTURE AND
	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUR 3. HYDR 4.POPU	1:750,000 ENCE(S) COMETRIC STATIONS DOD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL COLOGY AND PROVI LATED PLACES AND	:). YS OBTAINEE RIGHTS RESI NCIAL BOUNE INDIAN RESE	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC.	ILTURE AND
	REFERE AGRI-FC 2. HILLS RESOUD 3. HYDR 4.POPUJ ALBERT	1:750,000 ENCE(S) COMETRIC STATIONS COD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL COLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS	:). YS OBTAINEE RIGHTS RESI NCIAL BOUNE INDIAN RESI RESERVED.	SUB-BASIN DATA OBT/) GEOGRATIS, © DEPAI ERVED. JARY OBTAINED FROM	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI	ULTURE AND L
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4.POPU 4.POPU 4.POPU 5.SUB-B 5.SUB-B	1:750,000 ENCE(S) COMETRIC STATIONS ODD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL COLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TOI	:). YS OBTAINEE RIGHTS RESI NCIAL BOUNI INDIAN RESI RESERVED. IEATED BASE POGRAPHY M	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO ERVES OBTAINED FRO D ON 10 m OR 20 m INT /ISSION (SRTM).	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI	ULTURE AND L
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4.POPUI ALBERT 5. SUB-B FROM S DATUM:	1:750,000 ENCE(S) COMETRIC STATIONS DOD CANADA (AAFC HADE AND HIGHWA RCES CANADA . ALL COLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN	:). YS OBTAINEE RIGHTS RESI NCIAL BOUNI INDIAN RESI RESERVED. IEATED BASE POGRAPHY M	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO ERVES OBTAINED FRO D ON 10 m OR 20 m INT /ISSION (SRTM).	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI	ULTURE AND L
uon	REFERE AGRI-FC 2. HILLS RESOUD 4.POPUJ 4.POPUJ 4.POPUJ 5.SUB-B FROM S DATUM: CLIENT	1:750,000 ENCE(S) COMETRIC STATIONS ODD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL COLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TOI	:). YS OBTAINED RIGHTS RESI NCIAL BOUNE INDIAN RESI RESERVED. IEATED BASE POGRAPHY M N: UTM ZONE	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. JARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT ISSION (SRTM).	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI	ULTURE AND L
uon	REFERE AGRI-FC 2. HILLS RESOUD 4.POPUJ 4.POPUJ 4.POPUJ 5.SUB-B FROM S DATUM: CLIENT	1:750,000 ENCE(S) OOMETRIC STATIONS DOD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL COLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TOO NAD83 PROJECTIO	:). YS OBTAINED RIGHTS RESI NCIAL BOUNE INDIAN RESI RESERVED. IEATED BASE POGRAPHY M N: UTM ZONE	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. JARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT ISSION (SRTM).	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI	ULTURE AND L
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4.DEPT 5.SUB-B FROM S DATUM: CLIENT ALBEE PROJEC	1:750,000 I:750,000 INCE(S) IOD CANADA (AAFC HADE AND HIGHWA RCES CANADA, ALL IOLOGY AND PROVIL LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON)) YS OBTAINEL RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE	SUB-BASIN DATA OBT/ O GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT AISSION (SRTM). 12 ND PARKS	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4.DEPT 5. SUB-B FROM S DATUM: CLIENT ALBEE PROJEC HYDF	1:750,000 INCE(S) OOMETRIC STATIONS OOD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL IOLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON CT RTA ENVIRON)) YS OBTAINEL RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. JARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT ISSION (SRTM).	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUD 3. HYDR 4.POPUJ 3. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE	1:750,000 I:750,000 INCE(S) IOD CANADA (AAFC HADE AND HIGHWA RCES CANADA, ALL IOLOGY AND PROVIL LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON)) YS OBTAINEL RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE	SUB-BASIN DATA OBT/ O GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT AISSION (SRTM). 12 ND PARKS	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUJ 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE	1:750,000 INCE(S) OOMETRIC STATIONS OOD CANADA (AAFC HADE AND HIGHWA RCES CANADA. ALL IOLOGY AND PROVI LATED PLACES AND A 2015. ALL RIGHTS ASINS WERE DELIN HUTTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON CT RTA ENVIRON)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT AISSION (SRTM). :12 ND PARKS T - BOW, ELBOV	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (ULTURE AND L NMENT OF GENERATED
mon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUJ 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE	1:750,000 I:750,000 I:00METRIC STATIONS 00D CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HUTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON RTA ENVIRON IT ROLOGY ASSE P RIVER ER BOW RIVE)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FRO D ON 10 m OR 20 m INT AISSION (SRTM). :12 ND PARKS T - BOW, ELBOV	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (ULTURE AND L NMENT OF GENERATED
mon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUI 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE LOWI	1:750,000 I:750,000 I:00METRIC STATIONS 00D CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HUTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON RTA ENVIRON IT ROLOGY ASSE P RIVER ER BOW RIVE)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT,) GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FROM DON 10 m OR 20 m INT IISSION (SRTM). 12 ND PARKS T - BOW, ELBOV	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS (V, HIGHWOOD	ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUI 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE LOWI	1:750,000 I:750,000 I:00METRIC STATIONS 00D CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HUTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON RTA ENVIRON IT ROLOGY ASSE P RIVER ER BOW RIVE)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT/ D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FROM D ON 10 m OR 20 m INT IND PARKS T - BOW, ELBOV	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERI TERVAL CONTOURS O V, HIGHWOOD	ULTURE AND L NMENT OF GENERATED
mon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUI 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE LOWI	1:750,000 I:750,000 I:00METRIC STATIONS 00D CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HUTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON RTA ENVIRON IT ROLOGY ASSE P RIVER ER BOW RIVE)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FROM D ON 10 m OR 20 m INT ISSION (SRTM). 12 ND PARKS T - BOW, ELBOV DESIGNED PREPARED	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERN TERVAL CONTOURS O V, HIGHWOOD 2017-02-07 NG SK	ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUI 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE LOWI	1:750,000 I:750,000 I:00METRIC STATIONS 00D CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HADE AND HIGHWA RCES CANADA (AAFC HUTLE RADAR TO NAD83 PROJECTIO RTA ENVIRON RTA ENVIRON IT ROLOGY ASSE P RIVER ER BOW RIVE)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. JARY OBTAINED FROM ERVES OBTAINED FROM D ON 10 m OR 20 m INT IISSION (SRTM). : 12 ND PARKS T - BOW, ELBOV DESIGNED PREPARED REVIEWED	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERN TERVAL CONTOURS O V, HIGHWOOD 2017-02-07 NG SK GB	ULTURE AND L NMENT OF GENERATED
uon	REFERE 1. HYDR AGRI-FC 2. HILLS RESOUF 3. HYDR 4. POPUI 5. SUB-B FROM S DATUM: CLIENT ALBET PROJEC HYDF SHEE TITLE LOWI	1:750,000 I:750,000 II:750,0)) YS OBTAINEE RIGHTS RESI NCIAL BOUND INDIAN RESI RESERVED. IEATED BASE POGRAPHY N N: UTM ZONE NMENT AI	SUB-BASIN DATA OBT, D GEOGRATIS, © DEPAI ERVED. DARY OBTAINED FROM ERVES OBTAINED FROM D ON 10 m OR 20 m INT ISSION (SRTM). 12 ND PARKS T - BOW, ELBOV DESIGNED PREPARED REVIEWED APPROVED	KILOMETRES AINED FROM AGRICU RTMENT OF NATURAI I IHS ENERGY INC. M ALTALIS © GOVERN TERVAL CONTOURS O V, HIGHWOOD 2017-02-07 NG SK	ULTURE AND L NMENT OF GENERATED

1.2

The Sheep River is a tributary sub-basin of the Highwood River watershed that originates in the mountain valleys of Elbow-Sheep Wildland Provincial Park in the Highwood Mountain Range of Kananaskis Country. The river flows east through Sheep River Provincial Park, connecting with the Highwood River about 8 km east of Okotoks. The Sheep River flows through the towns of Turner Valley, Black Diamond, and Okotoks before joining the Highwood River.

The main weather systems in southern Alberta are cyclonic, traveling from the Pacific Ocean over the cordillera of British Columbia before reaching Alberta. The cordillera is effective at removing moisture from the Pacific air mass, leaving it relatively dry by the time it reaches the leeward side of the mountain ranges. In addition, Alberta receives cold, dry air masses from the Arctic and warm, moist air masses from the Gulf of Mexico. The systems that commonly produce extreme rainfall events in Alberta have a number of key features (AMEC 2014):

- The mid-level cold low and the coupled, long-lived circulation of the surface low and high pressure ridges located east and north of the region.
- Strong, sustained southerly flow from the great plains low level jet stream and the Prairie easterly low level jet stream, which are able to funnel large amounts of moisture from the Gulf of Mexico and Pacific Ocean into Southern Alberta, which is then pushed up against the Rocky Mountains, creating upslope precipitation along the mountains and foot hills and enhanced Meso-scale convective system rainfall across Southern Alberta.
- The upper level ridge of high pressure to the east that prevents the low pressure precipitation system from moving quickly towards the east thereby further increasing the precipitation accumulation within individual basins.

1.3 Major Floods

Major floods occurred on the Bow River in 1879, 1897, 1902, 1915, 1929, 1932, 1995, 2005, and 2013. The available records indicate that major floods occurred on the Elbow River in 1915, 1923, 1929, 1932, 1967, 1995, 2005, 2008, and 2013. The major floods on both rivers were commonly associated with high rainfall or rain-on-snow events during the period from May to July.

Prior to construction of the Bearspaw Dam in 1953 and subsequent winter flow regulation changes, the Bow River, was subject to ice-jam flood events in the City of Calgary. Although ice-jam floods still occur in the vicinity of the Town of Cochrane, they are not as significant as the open-water floods. Ice-jam floods are not the primary concern in flood risk assessment for the Bow River in Calgary and downstream of Calgary.

Major floods were recorded on the Highwood River in 1915, 1923, 1929, 1932, 1942, 1953, 1963, 1967, 1995, 2005, and 2013. Anecdotal evidence suggests flooding on the Highwood River in the 1880's. The Sheep River, and other tributaries, also experienced major floods for many concurrent years. During the June 2013 flood event, a large number of residents were evacuated from their homes for a considerable period of time in the Town of High River due to large volumes of flood water that inundated several neighborhoods.

Large floods along the Sheep River and its tributaries affect several communities including the Town of Turner Valley, the Town of Black Diamond, and the Town of Okotoks as well as the Hamlet of Millarville located along Threepoint Creek.

1.4 Study Objectives

The primary objective of this study is to conduct a basin-wide hydrology assessment and flood frequency analyses for multiple locations along the Bow, Elbow, Highwood and Sheep Rivers, including major communities and the locations of hydrometric gauges, and upstream and downstream of major tributary confluences. The study report includes the updated values of the 2012, 2013, and 2014 flood peak discharges at several locations along these rivers and their tributaries.

The results of the frequency analysis completed in this study include the flood peak discharge estimates for the 2-, 5-, 10-, 20-, 35-, 50-, 75-, 100-, 200-, 350-, 500-, 750-, and 1000-year floods. It is important to note that some of the 2013, 2014 and 2015 flow values used in this study are preliminary and subject to change following finalization by Water Survey of Canada (WSC). Therefore, the flood frequency statistics presented in this report should be used with caution and reviewed when the finalized discharge values are available.

1.5 Study Scope

The scope of this hydrology study is summarized below:

- Generation of naturalized daily flow series at all major storage facilities on the upper Bow River and its tributaries (i.e., Bearspaw Reservoir, Ghost Lake, Horseshoe Reservoir, Kananaskis Reservoir, Lake Minnewanka, Spray Lakes, Barrier Lake, and Lower and Upper Kananaskis Lakes), the Glenmore Reservoir on the Elbow River, the Highwood River below the Highwood Diversion Canal Headgates, and other locations along the Bow River from Banff to the mouth.
- Generation of regulated daily flow series along the Bow and Elbow Rivers by routing the naturalized flows at all major storage facilities on the upper Bow River and Elbow River, and considering water supply diversions by the City of Calgary and the irrigation districts (i.e., Western Irrigation District [WID], Eastern Irrigation District [EID], and Bow River Irrigation District [BRID]), and the operation of water intake structures.
- Frequency analyses of the flood flow series along the Bow, Elbow, Highwood and Sheep Rivers using the available data up to 2015. The frequency analyses are conducted in two parts: (1) analysis of peak flow series using recorded natural flows or naturalized flow series; and (2) analysis of peak flow series using regulated flow series. Final flood frequency estimates for natural/naturalized flow conditions are recommended for use. However, limitations of the frequency analysis methodology do not support the use of regulated flood frequency estimates for flows higher than experienced in the historical record (i.e., above the 75-year flood).
- Commentary on the effects of climate change on the flood frequency estimates as well as on the seasonality of flood peak occurrences.

2.0 DATA SOURCES AND PAST STUDIES

2.1 Data and Information Sources

The hydrology data used in this the study are assembled from various sources including the following:

- historical flow and water level data from the WSC website;
- preliminary 2013, 2014 and 2015 flow and water level data obtained from WSC and AEP;
- hourly data records (1983 to 2015) obtained from TransAlta for the hydro facilities on the Bow River and its tributaries;
- hydro and water supply reservoir operation rules obtained from TransAlta and the City of Calgary;
- the information of times of travel versus flows provided by AEP for the Bow and Highwood Rivers;
- recorded diversion flows and operational rules of Carseland Dam provided by AEP;
- recorded diversion flows (2001 to 2015) and operational rules of Bassano Dam provided by EID; and
- hourly data records (2003 to 2015) obtained from the City of Calgary for the Glenmore Reservoir.

Table 2.1 provides a summary of the basic hydrologic information used to derive the flood frequency estimates for the Bow River and its tributaries. The data details are provided in Appendix A.

2.2 **Previous Studies**

This study included review of background documents, previous hydrology and flood frequency studies, and historical flood information, including the following:

- Basin-Wide Hydrology Assessment and Flood Documentation for Bow and Elbow Rivers (Golder 2014);
- Bow River and Elbow River Basins, Hydrology of 2013 Flood Event (Golder 2016a);
- Hydrology of Flood Events in Elbow River (Golder 2016b);
- 2013 Highwood River Flood Hydrology Study (Golder 2014);
- Hydrology Study, Bow and Elbow River Updated Hydraulic Model Project (Golder 2010);
- Pine Creek Flood Hazard Mapping Study (AMEC 2013);
- Bow and Elbow Rivers Provincial Flood Damage Assessment Report (IBI and Golder 2015);
- Cougar Creek and Stoneworks Creek, 2013 Forensic Analysis and Short-Term Debris Flood Forensic Analysis and Short-Term Debris Flood Mitigation (BGC Engineering Ltd. 2013a,b);
- Flood Hazard Study for the Bow River and Forty Mile and Echo Creeks at Banff (Northwest Hydraulic Consultants 2013);
- Flood Protection Elbow River at Calgary (T. Blench and Associates Ltd. 1965); and
- Calgary Floodplain Study Volumes I and II (AENV 1983 Previous Alberta Department of the Environment Water Resources Management Services Technical Services Division).

The review of previous studies and findings were used to establish the assumptions, and to understand the data limitations and the approaches of the analyses in the past studies. The results of these past studies provide a frame of reference for the interpretation of the results of this study. In addition, the review helped identify both data gaps and apparent discrepancies in the data that may affect their use in subsequent analyses.

					Gross	Effective Dreinage Area			Recorded Flow	Naturalized Flow	Regulated Flow
WSC Number	Node ID	WSC Station Name or Location of Interest	Latitude	Longitude	Drainage Area [km²]	Effective Drainage Area [km²]	Period of Record	Length of Record [years]	Type of Recorded Hydrologic Data	Length of Record ¹ [years]	Length of Record [years]
BOW RIVER											
05BA001	301	Bow River at Lake Louise	51° 25' 44"	-116° 11' 21"	422	422	1910 - 2015	62	Flow	n/a	n/a
05BB001	116	Bow River at Banff	51° 10' 22"	-115° 34' 24"	2210	2210	1909 - 2015	107	Flow	86	n/a
	105	Bow River below Spray River	51° 09' 58"	-115° 33' 28"	2993	2993	n/a	n/a		86	86
	107	Bow River below Cascade River	51° 09' 49"	-115° 28' 37"	3727	3727	n/a	n/a		86	86
	108	Bow River at Canmore	51° 05' 10"	-115° 21' 58"	3870	3870	n/a	n/a		86	86
	109	Bow River above Kananaskis	51° 05' 47"	-115° 04' 06"	4199	4199	n/a	n/a		86	n/a
	110	Bow River below Kananaskis	51° 05' 54"	-115° 03' 26"	5139	5139	n/a	n/a		86	n/a
05BE004	111	Bow River near Seebe	51° 07' 02"	-115° 02' 11"	5170	5170	1923 - 1962 1979 - 2015³	77	Flow	93 (1923 - 2015)	86
	318	Bow River above Ghost Reservoir	51° 11' 01"	-114° 47' 51"	5475	5473	n/a	n/a		86	86
05BE006	58	Bow River below Ghost Dam (Ghost Reservoir Outflow)	51° 12' 51"	-114° 36' 50"	6550	6550	1933 - 1989	51	Flow	86	86
05BH005	114	Bow River near Cochrane	51° 10' 25"	-114° 28' 10"	7412	7383	2006 - 2015³	10	Flow	86	86
	302	Bearspaw Reservoir Inflow	51° 07' 30"	-114° 18' 23"	7712	7672	n/a	n/a		86	86
		Bow River below Bearspaw Dam	- 40 0-1 -01				1983 - 2015	33		105	
05BH008	59	Bow River below Bearspaw Dam, extended	51° 05' 58"	-114° 13' 35"	7770	7730	1911 - 2015	104	Flow	(1911 - 2015)	86
05BH004	59	Bow River at Calgary	51° 03' 01"	-114° 03' 12"	7868	7736	1911 - 2015	104	Flow	105 (1911 - 2015)	n/a
	176	Bow River below Elbow River	51° 02' 43"	-114° 02' 19"	9128	8995	n/a	n/a		86	86
	158	Bow River below Nose Creek	51° 02' 38"	-144° 00' 45"	10114	9656	n/a	n/a		86	86
	164	Bow River below Fish Creek	50° 54' 16"	-114° 00' 32"	10640	10182	n/a	n/a		86	86
	177	Bow River below Pine Creek	50° 50' 32"	-113° 57' 09"	10887	10397	n/a	n/a		86	86
	331	Bow River above Highwood River	50° 49' 08"	-113° 46' 51"	11258	10532	n/a	n/a		86	86
	165	Bow River below Highwood River	50° 49' 06"	-113° 46' 31"	15342	14497	n/a	n/a		86	86
05BM002	178	Bow River below Carseland Dam	50° 49' 53"	-113° 25' 07"	15665	14696	1910 - 1914 1956 - 2015	63	Flow	86	86
	180	Bow River at Hwy. 547	50° 46' 19"	-113° 07' 53"	17443	15920	n/a	n/a		86	86
	181	Bow River at Hwy. 842	50° 46' 19"	-112° 50' 43"	18028	16344	n/a	n/a		86	86
	189	Bow River below Crowfoot Creek	50° 48' 15"	-112° 39' 19"	20169	17672	n/a	n/a		86	86
05BM004	182	Bow River below Bassano Dam	50° 44' 57"	-112° 32' 36"	20253	17751	1910 - 1933 1964 - 2015	75	Flow	105 (1910 - 2015)	86
	184	Bow River at Hwy. 539	50° 25' 51"	-112° 13' 36"	20915	18186	n/a	n/a		86	86
	185	Bow River at Hwy. 36	50° 14' 47"	-112° 04' 40"	21423	18544	n/a	n/a		86	86
	186	Bow River at Hwy. 875	50° 07' 49"	-111° 46' 40"	22307	18878	n/a	n/a		86	86
05BN012	187	Bow River near the Mouth	50° 02' 53"	-111° 35' 22"	25280	19160	1965 - 2015	51	Flow	86	86
	188	Bow River at the Mouth	49° 56' 07"	-111° 41' 19"	25612	19306	n/a	n/a		86	86

					Gross	Effective Drainage Area			Recorded Flow	Naturalized Flow	Regulated Flow
WSC Number	Node ID	WSC Station Name or Location of Interest	Latitude	Longitude	Drainage Area [km²]	[km ²]	Period of Record	Length of Record [years]	Type of Recorded Hydrologic Data	Length of Record ¹ [years]	Length of Record ² [years]
BOW RIVER TR	IBUTARIE	S									
05BC006	201	Spray Reservoir at Three Sisters Dam	50° 59' 51"	-115° 22' 04"	481	481	1949-2015	n/a	Level	n/a	86
05BC002	51	Spray River near Spray Lakes	50° 52' 58"	-115° 22' 23"	362	362	1915-1939	25	Flow	n/a	86
05BC001	106	Spray River at Banff	51° 09' 38"	-115° 33' 26"	751	751	1911 - 2015	105	Flow	86	n/a
05BD002	154	Cascade River near Banff	51° 13' 55"	-115° 31' 07"	664	664	1911-1941	31	Flow	86	86
05BD003	207	Lake Minnewanka near Banff	51° 14' 07"	-115° 29' 15"	647	647	1916-2015	100	Level	n/a	86
05BB005	358	Readearth Creek near the Mouth	51° 13' 22"	115° 48' 40"	147	147	1976-1996	21	Flow	n/a	n/a
05BB003	305	Forty Mile Creek near Banff	51° 12' 25"	-115° 35' 10"	133	133	1913 - 1948 1972 - 1977	15	Flow	n/a	n/a
	306	Forty Mile Creek at the Mouth	51° 10' 35"	-115° 35' 15"	148	148	n/a	n/a		n/a	n/a
	307	Cougar Creek Upstream of Bow River	51° 04' 45"	-115° 20' 11"	49	49	n/a	n/a		n/a	n/a
	308	Policeman's Creek at Canmore	50° 05' 09"	-115° 20' 56"	10	10	n/a	n/a		n/a	n/a
	309	Stoneworks Creek at Hwy. 1	51° 06' 07"	-115° 21' 27"	6	6	n/a	n/a		n/a	n/a
	310	Exshaw Creek at Exshaw	51° 03' 30"	-115° 09' 39"	33	33	n/a	n/a		n/a	n/a
	311	Kananaskis River at the Mouth	51° 05' 44"	-115° 03' 43"	937	937	n/a	n/a		n/a	n/a
05BF005	204	Upper Kananaskis Lake	50° 36' 50"	-115° 07' 16"	151	151	1932-2015	n/a	Level	n/a	86
05BF009	312	Lower Kananaskis Lake	50° 41' 25"	-115° 07' 59"	359	359	1932-2015	n/a	Level	n/a	86
05BF025	56	Kananaskis River below Barrier Dam	51° 02' 31"	-115° 02' 07"	899	899	1975 - 2015³	41	Flow	86	n/a
05BF001	313	Kananaskis River near Seebe, extended	51° 02' 46"	-115° 01' 49"	933	933	1912 - 2015	91	Flow	n/a	n/a
0500010	214	Ghost River above Waiparous Creek	E1º 16! 10"	1149 551 24"	495	405	1983 - 2015	33	Flow	2/2	2/2
05BG010	314	Ghost River above Waiparous Creek, extended	51° 16' 12"	-114° 55' 34"	485	485	1912 - 2015	96	Flow	n/a	n/a
05BG006	315	Waiparous Creek near the Mouth	51° 17' 01"	-114° 50' 22"	222	222	1966 - 2015	50	Flow	nla	7/2
056000	315	Waiparous Creek near the Mouth, extended	51 17 01	-114 50 22	333	333	1912 - 2015	96	Flow	n/a	n/a
05BG001	316	Ghost River near Cochrane	51° 15' 40"	-114° 45' 50"	911	011	1912 - 1982	63	Flow	nla	2/2
056001	310	Ghost River near Cochrane, extended	51 15 40	-114 45 50	911	911	1912 - 2015	96	Flow	n/a	n/a
	317	Ghost River at the Mouth	51° 14' 28"	-114° 44' 15"	940	940	n/a	n/a		n/a	n/a
05BE005	210	Ghost Lake near Cochrane	51° 13' 10"	-114° 42' 32"	6480	6480	n/a	n/a	Level	n/a	86
05BH006	319	Jumpingpound Creek near Jumpingpound	51° 04' 07"	-114° 32' 44"	455	455	1908 - 1933³	13	Flow	n/a	n/a
		Jumpingpound Creek at Township Road No. 252					2006 - 2015	9			
05BH015	320	Jumpingpound Creek at Township Road No. 252, extended	51° 07' 41"	-114° 34' 01"	474	474	1908 - 1933 1966 - 2015	63	Flow	n/a	n/a
		Jumpingpound Creek near the Mouth					1966 - 2005	39			
05BH009	321	Jumpingpound Creek near the Mouth, extended	51° 09' 15"	-114° 31' 44"	571	571	1908 - 1933 1966 - 2015	63	Flow	n/a	n/a
	174	Jumpingpound Creek at Cochrane	51° 11' 18"	-114° 30' 06"	601	601	n/a	n/a		50 (1966 - 2015)	n/a
	322	Bighill Creek at Cochrane	51° 10' 53"	-114° 28' 50"	177	99	n/a	n/a		n/a	n/a
05BH016	324	West Nose Creek at Calgary	51° 07' 49"	-114° 02' 54"	324	212	n/a ⁴	n/a⁴	n/a ⁴	n/a	n/a
05BH014	325	Nose Creek above Airdrie	51° 18' 46"	-114° 01' 37"	247	178	2005 - 2015	10	Flow	n/a	n/a
05BH901	326	Nose Creek near the Mouth	51° 03' 00"	-114° 01' 00"	986	878	1980 - 1989³	10	Flow	n/a	n/a
05BH003	175	Nose Creek at Calgary	51° 07' 20"	-114° 02' 52"	893	746	1911 - 1916 1970 - 1986	27	Flow	77 (1930 - 1995 2005 - 2015)	n/a
05BK001	327	Fish Creek near Priddis	50° 53' 09"	-114° 19' 41"	261	261	1908 - 2015	69	Flow	n/a	n/a

WSC Number					Gross	Effective Drainage Area			Recorded Flow	Naturalized Flow	Regulated Flow
WSC Number	Node ID	WSC Station Name or Location of Interest	Latitude	Longitude	Drainage Area [km²]	[km ²]	Period of Record	Length of Record [years]	Type of Recorded Hydrologic Data	Length of Record ¹ [years]	Length of Record [years]
)5BK003	359	Fish Creek at Bow Bottom Trail	50° 54' 25"	114° 00' 56"	442	442	1989-1993	4	Flow	n/a	n/a
	163	Fish Creek at the Mouth	50° 54' 15"	-114° 00' 38"	440	440	n/a	n/a		60 (1956 - 2015)	n/a
	330	Pine Creek at the Mouth	50° 50' 30"	-113° 57' 11"	217	190	n/a	n/a		n/a	n/a
	179	Arrowwood Creek above Hwy. 547	50° 46' 22"	-113° 08' 09"	830	718	n/a	n/a		50 (1966 - 2015)	n/a
05BM008	332	Crowfoot Creek near Cluny	50° 50' 07"	-112° 45' 47"	1374	950	1951 - 2015	65	Flow	n/a	n/a
05BN002	191	Twelve Mile Creek near Cecil	50° 08' 59"	-111° 39' 51"	2803	124	1951 - 2015	65	Flow	n/a	n/a
05BN006	192	New West Coulee near the Mouth	50° 13' 19"	-112° 05' 55"	318	102	1957 - 2015	59	Flow	n/a	n/a
ELBOW RIVER	and TRIB	UTARIES									
25D 1004	000	Elbow River at Bragg Creek	50% 50 1571	1 1 1 2 0 1 0 0 1	704	704	1935 - 2015	81	Floor	n/a	n/a
05BJ004	333	Elbow River at Bragg Creek, extended	50° 56 '57"	-144° 34' 06"	791	791	1908 - 2015	107	Flow	n/a	n/a
	00.4	Elbow River at Sarcee Bridge			1100	1100	1979 - 2015	35		n/a	n/a
05BJ010	334	Elbow River at Sarcee Bridge, plus 1983 value	50° 59' 45"	-144° 09' 55	1189	1189	1915 - 2015	58	Flow	n/a	n/a
05BJ005	116	Elbow River above Glenmore Dam (Elbow River Inflow into Glenmore Reservoir)	50° 59' 58"	-144° 05' 53"	1220	1220	1930 - 2015	86	Flow	n/a	n/a
05BJ008	213	Glenmore Reservoir at Calgary (Glenmore Dam Outflow)	51° 00' 00"	-144° 05' 50"	1224	1224	1976-2015	40	Level	n/a	86
	161	Elbow River below Glenmore Dam	51° 00' 46"	-144° 05' 37"	1236	1236	1908 - 2015	107	Flow	n/a	86
05BJ001	335	Lott Creek near Calgary	51° 00' 17"	-144° 13' 21"	114	114	n/a	n/a		n/a	n/a
SHEEP RIVER	and TRIBU	ITARIES		-			•				
05BL014	337	Sheep River at Black Diamond	50° 41' 15"	-114° 14' 38"	592	592	1909 - 1916 1969 - 2015	55	Flow	n/a	n/a
	338	Ware Creek at the Mouth	50° 42' 54"	-114° 27' 36"	129	129	n/a	n/a		n/a	n/a
	339	Threepoint Creek above Ware Creek	50° 42' 56"	-114° 27' 34"	136	136	n/a	n/a		n/a	n/a
05BL012	342	Sheep River at Okotoks	50° 43' 26"	-113° 58' 21"	1494	1494	1908 - 1968 2006 - 2015	25	Flow	n/a	nla
0366012	542	Sheep River at Okotoks, extended	30 43 20	-113 30 21	1434	1454	1908 - 1919 1958 - 2015	70	FIOW	n/a	n/a
	344	Sheep River at the Mouth	50° 44' 21"	-113° 51' 21"	1575	1570	n/a	n/a		n/a	n/a
05BL013	340	Threepoint Creek at Millarville	50° 46' 15"	-114° 16' 46"	507	507	1909 - 1916 1965 - 2015	56	Flow	n/a	n/a
	341	Threepoint Creek at the Mouth	50° 44' 08"	-114° 11' 59"	638	638	n/a	n/a		n/a	n/a
HIGHWOOD RI	VER and T	RIBUTARIES									
05BL019	346	Highwood River at Diebel's Ranch	50° 24' 19"	-114° 29' 56"	774	774	1951 - 2015	65	Flow	n/a	n/a
	350	Highwood River near Longview	50° 31' 50"	-114° 14' 16"	1196	1196	n/a	n/a		n/a	n/a
	351	Highwood River Upstream of Highwood Diversion Canal	50° 33' 10"	-114° 00' 04"	1913	1913	n/a	n/a		n/a	n/a
	352	Highwood Diversion Canal near Headgates	50° 33' 07"	-113° 59' 23"	n/a⁵	n/a⁵	1977 - 2015	39	Flow	n/a	n/a
05BL025	353	Highwood River Downstream of Highwood Diversion Canal	50° 33' 13"	-113° 59' 58"	1914	1914	n/a	n/a		n/a	n/a
		Highwood River Below the Little Bow Canal					1909 - 19151986 - 2015	37		n/a	n/a
05BL004	354	Highwood River Below the Little Bow Canal, extended	50° 35' 07"	-113° 52' 09"	1953	1953	1905 - 1915 1970 - 2015	53	Flow	53 (1905 - 2015)	n/a
		Highwood River near the Mouth					1970 - 2015	46		n/a	n/a
05BL024	357	Highwood River near the Mouth, extended	50° 46' 60"	-113° 49' 25"	3952	3941	1905 - 1915 1970 - 2015	53	Flow	53 (1905 - 2015)	n/a
	172	Highwood River at the Mouth	50° 49' 03"	-113° 46' 46"	3991	3964	n/a	n/a		65 (1951 - 2015)	86

WSC Number					Gross	Effective Dreiners Area			Recorded Flow	Naturalized Flow	Regulated Flow
	Node ID	WSC Station Name or Location of Interest	Latitude	Longitude	Drainage Area [km²]	Effective Drainage Area [km ²]	Period of Record	Length of Record [years]	Type of Recorded Hydrologic Data	Length of Record ¹ [years]	Length of Record ² [years]
05BL022	345	Cataract Creek near Forestry Road	50° 17' 04"	-114° 35' 29"	166	166	1966 - 2015	50	Flow	n/a	n/a
05BL023	347	Pekisko Creek near Longview	50° 28' 23"	-114° 12' 28"	232	232	1967 - 2015	48	Flow	n/a	n/a
05BL007	348	Stimson Creek near Pekisko	50° 25' 42"	-114° 09' 56"	236	236	1911 - 1919 1938 - 2015	87	Flow	n/a	n/a
05BL027	349	Trapp Creek near Longview	50° 28' 38"	-114° 25' 37"	137	137	1979 - 2015	37	Flow	n/a	n/a
05BL015	355	Little Bow Canal at High River	50° 35' 09"	-113° 52' 06"	n/a⁵	n/a ⁵	1910 - 2015	103	Flow	n/a	n/a
05AC930	356	Little Bow River at Highway No. 553	50° 21' 15"	-113° 32' 35"	792	312	1999 - 2015	13	Flow	n/a	n/a

1. Period of record for naturalized flows is 1930 to 2015 for a total of 86 years, unless otherwise stated.

2. Period of record for regulated flows is 1930 to 2015 for a total of 86 years, unless otherwise stated.

3. No frequency analysis performed on recorded flows.

4. Data not available on Water Survey of Canada website.

5. Drainage areas for points of diversion cannot be defined.

n/a - not applicable (i.e., no flow series of this type).

3.0 FLOOD FLOW SERIES

3.1 Flow Naturalization

The hydrology of the Bow River is affected by 13 dams, 4 weirs and 8 reservoirs, making it the most regulated river in Alberta (Bow River Basin Council, 2010). In 1911, Calgary Power (which would evolve into TransAlta Utilities over the next century) began constructing Alberta's first significant hydroelectric plant, Horseshoe dam on the Bow River. Two years later (1913) Calgary Power opened another two hydroelectric plants on the Bow River (Kananaskis at Seebe) and its tributary (i.e., dam at Lake Minnewanka). Both Kananaskis plant and Horseshoe plants are run-of-the-river plants. Instead of storing water in a reservoir, the plants generate power from the river's natural water flow.

Ghost Dam, which has relatively significant flood storage capacity on the upper Bow River, was built in 1929 and started operation in 1930. Development of the power plant on Spray River was completed in 1951 (i.e., Rundle, Spray and Three Sisters power plants) and Bearspaw dam was built in 1954. TransAlta built a new dam and power plant on the Cascade River to replace the original in 1942. In 1947, the Barrier Plant was developed on the Kananaskis River as one of the three TransAlta hydro plants in the Kananaskis System, with Interlake and Pocaterra being the other two built in 1955.

On the lower reach of Bow River, the Bow River supplies water for three irrigation districts in southern Alberta: the Eastern, Western, and Bow River irrigation districts. The water for the Eastern Irrigation District is diverted at Bassano Dam (1914), the water for the Western Irrigation District is diverted at Calgary Weir (1904), and the water for the Bow Irrigation District is diverted at the Carseland weir (1909). The Ghost Dam is the major structure on the main stem that has a significant effect on the flood flow of the Bow River. Hence, significant regulation of flows of the Bow River started from 1930, when the Ghost Dam became operational. Hydropower plants developed before 1930, had little effect (if any) on the Bow River flows since the two upstream plants (Horseshoe and Kananaskis at Seebe) are run-of-the-river plants.

3.1.1 Methodology

Naturalized daily flow series from 1930 to 2015 were developed following the same methodology as those used for the 2010 and 2014 studies completed by Golder. This methodology involves use of the River Basin Assessment Tools (RBAT) model (Optimal Solutions Ltd. 2009) from the Prairie Provinces Water Board (PPWB), the Streamflow Synthesis and Reservoir Regulation (SSARR) channel routing procedures (USACE 1991), and the coefficients built into RBAT and provided by AEP. Details of the Natural Flow Computation software are provided in Appendix B. The methods used to derive naturalized flows at each location are described in the following sections, and in Appendix B.

3.1.2 Upper Reach of Bow River and Its Tributaries

The flow naturalization was conducted for the following locations along the upper reach of the Bow River and its tributaries: Spray Lake, Upper and Lower Kananaskis Lakes, Rundle Canal, Lake Minnewanka, Bow River downstream of Spray River, Bow River near Seebe, Ghost Lake, Bow River at Cochrane, and Bearspaw Reservoir. The naturalization was based on the recorded reservoir levels and outflows from the date each structure started its operation. The data necessary for the naturalization were obtained from TransAlta, the City of Calgary, and AEP's Hydrol database. The data include TransAlta's and Calgary's rule curves for normal operating and flood conditions.

Spray River

- Development of the power plant on Spray River was completed by TransAlta in 1951 (i.e., Rundle, Spray and Three Sisters power plants).
- Prior to 1951, WSC Station 05BC001 (Spray River at the Mouth) recorded natural flow (1910 to 1951) from the entire drainage area of 730 square kilometres (km²).
- The runoff that came from the additional drainage area of 391 km² between Spray Lake and the mouth of the Spray River for the period 1915 to 1939 was generated based on the recorded natural flow at WSC Stations 05BC001 (Spray River at Banff) and 05BC002 (Spray River near Spray Lakes).
- A non-linear relationship between the runoff from the 391 km² drainage area and the Spray River flow at the mouth (drainage area 730 km²) was established based on the data from 1915 to 1939 (see Figure B-3 in Appendix B).
- The naturalized flow for Spray River at the Mouth for the period 1951 to 1975 was estimated based on the non-linear relationship mentioned above.
- Naturalization of flow from 1975 to 2015 was conducted using the water level data at Three Sisters hydro-Plant and the flow data for Rundle hydro-plant recorded at WSC Station 05BE007 (Spray Power Diversion at Canmore) and obtained from TransAlta.

Cascade River

- Calgary Power (which would evolve into TransAlta Utilities) opened a hydroelectric plant on Cascade River using the dam at Lake Minnewanka in 1913. TransAlta built a new dam and power plant on the Cascade River to replace the original power plant in 1942.
- Naturalization of flow from 1917 to 2015 was conducted using the water level and flow data recorded at Cascade hydro-Plant and obtained from TransAlta.
- Ghost Diversion was considered as part of natural inflow to Lake Minnewanka (see the explanation in Appendix B).
- Sensitivity of Ghost River Diversion on the estimated Bow River flood flows between Lake Minnewanka and Ghost Lake was evaluated.
- Sensitivity of the effect of missing Ghost Diversion flow data (1995 to 2015) on flood flow estimates along Ghost River was evaluated.

Kananaskis River at Kananaskis Lakes (Upper and Lower)

- TransAlta built the Interlake and Pocaterra hydro plants in 1955 on Kananaskis River at the Upper Kananaskis and Lower Kananaskis, respectively.
- Naturalization of flow was conducted for the period from 1975 to 2015.
- The two lakes were considered as a single waterbody from 1975 to 1985 since the record of outflow was available only from the Lower Kananaskis Lake.
- Prior to 1975, there is no recorded outflow data for both Upper and Lower Kananaskis Lakes. Hence, naturalized flows for Kananaskis River at the two lakes were not developed for period prior to 1975.

Kananaskis River at Barrier Lake

- TransAlta built the Barrier hydro plant in 1947 by constructing Barrier Dam at the lower reach of Kananaskis River.
- Recorded flow data are available at WSC Stations 05BF001 (Kananaskis River near Seebe) for the period 1911 to 1962, and 05BF024 (Barrier Lake near Seebe) for the period 1975 to 2011. Additional hourly data for the period 1985 to 2015 were obtained from TransAlta.
- Channel flow routing was conducted to route flow from Lower Kananaskis Lake to Barrier Lake.
- The missing data in the period 1963 to 1974 were filled using weekly natural flow data from the AEP database (AEP 2002).

Bow River at Canmore

- Naturalizing daily flows in the Bow River at Canmore included removing the effects of the Spray Lake diversion for the period from 1951 to 2015.
- A complete data set was available and used to conduct the flow naturalization for the period from 1975 to 2015.
- Estimated median power generation in each month for the period 1975 to 2015 was used to estimate the outflow through Rundle system for the period 1951 to 1975. The typical daily turbine flows were between 11 and 13 cubic metres per second (m³/s), but the flows were higher than 20 m³/s on rare occasions.

Bow River at Seebe

- Flow naturalization for Bow River at Seebe was conducted for the periods from 1923 to 1962 and 1979 to 2015.
- Data are missing for the period 1962 to 1979. The generated flow at this location for this period only reflects the routed flow from the upstream location (i.e., Bow River at Canmore).

Bow River at Ghost Lake

- Ghost Reservoir started operation in August 1929. Therefore, naturalization of flow at this location was conducted for the period from 1930 to 2015.
- Few missing data points were filled using linear interpolation of the available flows on the previous and subsequent days.
- Corrections to recorded data were made for the instances where there were obvious data errors such as decimal place shifted by one or two places from its expected position and data for February 30 and April 31 in some instances.

Bow River at Cochrane and Bearspaw

- TransAlta built the Bearspaw hydro plant in 1954 by constructing Bearspaw Dam on the Bow River, just upstream from the City of Calgary.
- Flow naturalization at locations between Cochrane and Bearspaw include flows from tributary creeks (e.g., flow from Jumpingpound Creek) when the flow data were available.

- Flow recoded at two WSC Stations (05BH008: Bow River below Bearspaw Dam; and 05BH004: Bow River at Calgary), and hourly data obtained from TransAlta were used to naturalize flow at Bearspaw and Cochrane.
- Withdrawals by the City of Calgary from Bearspaw were considered in the flow naturalization.

3.1.3 Lower Reach of Bow River – Below Bearspaw Reservoir

Naturalized daily flow series for the Bow River below Bearspaw Reservoir were generated using the methods similar to those used for the upper reach of the Bow River, including the following:

- Adding and routing naturalized flows for Bow River downstream of Bearspaw, natural or naturalized flows from its tributaries (Elbow River, Nose Creek, Fish Creek, Highwood River), and estimated local runoff from intervening catchments between individual locations.
- Considering water supply diversions to the irrigation districts (i.e., WID, EID, and BRID).
- Considering operations of the water intake structures at Carseland and Bassano dams.

The following data and methods were used to develop naturalized flow at each location on the Bow River downstream of the Highwood River confluence:

- WID and BRID data are available except for short and sporadic periods of missing data that were filled using linear interpolation.
- There are two return flows from WID to the Bow River and the Red Deer River. Return flow from WID was added to the Bow River reach downstream of the confluence with the Highwood River. The estimated return flows to the Bow River were about 16.3% of gross diversion at WID weir with an estimated lag time of three weeks based on information extracted from South Saskatchewan River Basin natural flow database.
- Naturalized flow series were derived by adding the historic diversions to river flows at appropriate locations, and routing the combined flow further downstream.
- For diversion to EID, data are not available prior to 1990. Historic water uses have some relationship with areas irrigated (Table 3.1) based on the EID Integrated Resources Management Strategy (EID, 1995). This relationship was used to estimate annual diversion and return flows prior to 1990. The annual diversion and return flow rates were assumed to be the same for each month from April to October.

Year	Area to be Irrigated [acres]	Other Areas [acres]	Total Water Diverted [acres-feet]	Water Returned to River Systems [acres-feet]	Total Consumptive Use [acres-feet]
1991	235,966	29,490	629,872	Not Available	Not Available
1990	225,436	36,625	723,364	149,585	573,779
1989	222,877	36,967	601,954	168,640	433,314
1988	221,327	35,617	721,698	139,623	582,075
1987	217,875	32,889	643,099	147,039	496,060
1986	218,747	30,963	672,924	146,074	526,850
1985	217,919	30,031	647,613	139,986	507,627
1984	214,893	30,628	666,947	150,128	516,819
1983	214,830	30,513	601,378	162,062	439,316
1982	213,308	27,578	490,132	161,283	328,849

Table 3.1: Irrigated Area and Water Diverted for Irrigation (EID 1995)

3.1.4 Lower Reach of Elbow River

Glenmore Dam and Reservoir were built on the Elbow River in 1932. Natural flow data for the Elbow River upstream of Glenmore Reservoir are available at WSC Station 05BJ005 (Elbow River above Glenmore Dam) for the period 1933 to 1977. Records of natural and regulated flows below Glenmore Reservoir are available at WSC Station 05BJ001 (Elbow River below Glenmore Dam) for the periods 1908 to 1932 and 1934 to 2015, respectively. The drainage areas at WSC Stations 05BJ005 and 05BJ001 provided by WSC are 1,220 and 1,236 km², respectively. Because the difference between the two drainage areas is less than 2% and considered negligible, the 1908-1932 data at 05BJ001 and the 1934-1977 data at 05BJ005 were used as the representative natural flow series at Glenmore Reservoir.

The regulated flow series at 05BJ001 from 1978 to 2015 were naturalized using historic reservoir water level, outflow, and water supply withdrawal data. Rule curve and the flood operating guidelines for Glenmore Reservoir were obtained from the City of Calgary and used in the assessment of naturalized and regulated flows.

The naturalized flow series generated for the period 1978 to 2015 were compared to the recorded daily flow series at WSC Station 05BJ010 (Elbow River at Sarcee Bridge). The two flow series appear consistent and comparable, with the two drainage areas differing by less than 4% (see Figure B-12 in Appendix B).

3.1.5 Lower Reach of Highwood River

For the Highwood River downstream of the Highwood Diversion Canal, the naturalized flow series were generated by adding the recorded diversion flows at WSC Station 05BL025 (Highwood Diversion Canal near Headgates) and WSC Station 05BL015 (Little Bow Canal at High River) to the recorded daily flow series at WSC Station 05BL004 (Highwood River below Little Bow Canal) and at WSC Station 05BL024 (Highwood River near the Mouth).

3.2 Flow Regulation

3.2.1 Bow River and Its Tributaries

The Ghost Dam is the major structure that has a significant effect on the flood flow of the Bow River. Hence, significant regulation of flows of the Bow River started from 1930, when the Ghost Dam became operational. Hydropower plants developed before 1930, had little effect (if any) on the Bow River flows since the two upstream plants (Horseshoe and Kananaskis at Seebe) are run-of-the-river plants.

Regulated daily flows for the Bow River and its tributaries were obtained by running the Water Resources Management Model (WRMM) (AENV, 2002) in daily interval for the period 1930 to 2015 using the naturalized flow series. The model simulations were carried out based on available current operating rules, reservoir routing channel flow routing, and estimates of current water use.

TransAlta's operation rules for their reservoirs have four components (Figure 3.1) as summarized below:

- mandatory key level (called seasonal full supply level) governed by Probable Maximum Flood considerations;
- rules that govern operating in the ideal operating zone, also termed the Top and Bottom comfort zones; and
- minimum operating levels, driven by operational constraints and the turbine capacities.

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

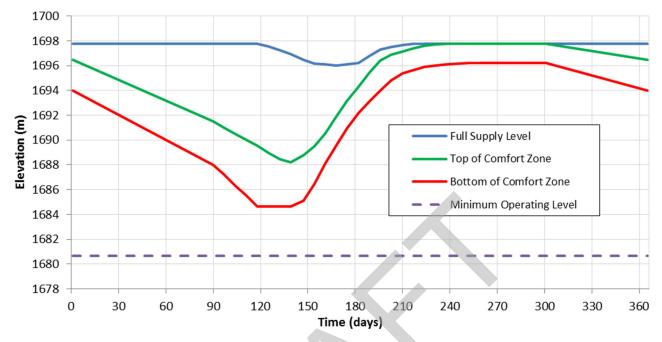


Figure 3.1: Typical Shape of Operating Zones for TransAlta's Reservoirs

The model attempted to maintain the reservoir levels at the top of the comfort zone (i.e., the green line in Figure 3.1). This was not always possible due to a combination of downstream water demands from the three major irrigation districts, Calgary, and AEP. These demands require maintaining a minimum instream flow of 34 m³/s below Bearspaw Dam at all times. In addition, the target elevation at the top of the comfort zone was violated occasionally during flood events. This occurred when there was insufficient outflow capacity to discharge the excess inflow volumes to maintain the water levels at the top of the comfort zone.

The operating rules for all TransAlta structures on the Bow River and its tributaries are provided in Appendix B.

3.2.2 Elbow River at Glenmore Dam

Glenmore Dam and Reservoir were built on the Elbow River in 1932 to provide water supply for the City of Calgary. Although dedicated reservoir storage is not formally reserved for flood regulation purposes, there are operational guidelines that inform operations during high flow events. To support this study, the City of Calgary provided its reservoir drawdown instructions and release policies for the low-level outlet and spillway.

Considerable operator judgement is required to drawdown reservoir levels (ranging from 2 to 4 metres [m]) during a flood event using the low-level outlet. Operating rules are based on the general assumption of hourly decision-making. At any point in time, low-level outlet releases are linked to inflows and the drawdown that has actually been achieved. The maximum total low-level outlet flow is 165 m³/s. This is the maximum flow that can be achieved to lower the reservoir level before outflow occurs through the spillway, and outflow will be reduced or be set equal to inflow when the target drawdown is reached. If inflow exceeds 165 m³/s, the reservoir level will begin to rise since the low-level outlet flow cannot exceed 165 m³/s. Once the reservoir level exceeds the spillway crest, water will be discharged through both the low-level outlet and the spillway, with a gradual shut down of the low-level outlet until the level reaches 1 m above the spillway crest. When the reservoir level reaches 1 m above the spillway continues to discharge as there is sufficient head to provide adequate outflow capacity.

As noted, the above rules are based on hourly decision-making for dam operations. When a daily time step is used in the model, flood flows are so large that the inflows and outflows may quickly exceed 165 m³/s within a day. Reservoir levels are typically targeted at the seasonal operating levels, but this is not always possible due to the withdrawals by the City of Calgary and the requirement to maintain the minimum outflow of 1.2 m³/s at all times.

Regulated daily flows in the Elbow River at Glenmore were obtained by running the WRMM in daily interval for the period 1932 to 2015 using the naturalized daily inflows to Glenmore Reservoir. The simulations were carried out based on the operating rules described above. Because of limited availability of recorded extreme flood events with return periods greater than 100 years, the base simulation results do not properly reflect the reservoir attenuation effects of extreme flood events. Therefore, the flood frequency estimates of large return periods based on the base simulation results have relatively high uncertainty.

In order to provide a better understanding of the ability of Glenmore Reservoir to attenuate extreme flood peaks, an alternative methodology was investigated, by routing the inflow flood hydrographs with peak discharges of various return periods through the reservoir (see Section 4.4 for more details). This alternative methodology was able to incorporate reservoir capacity and the corresponding results reflect more reasonable attenuation effects of Glenmore Reservoir for the full range of flood events (i.e. 2-year to 1,000-year floods). The routing of the flows through the reservoir was completed based on flood operating procedure prior to completion of the upgraded gates.

3.3 Annual Maximum Instantaneous Flow Series

Flood frequencies were estimated based on the annual maximum instantaneous flow series. When these data were not available, the annual maximum daily flow series were converted to annual maximum instantaneous flow peaks based on the relationships established at the gauging stations. The flow series for the Bow River and its tributaries were derived as follows:

- For the locations where there is no upstream flow regulation (i.e., Bow River at Banff, Elbow River at Bragg Creek, Highwood River at Diebel's Ranch, Sheep River at Black Diamond, etc.), the reported WSC instantaneous flow peaks were used for flood frequency analysis.
- For natural flow records, relationships between the recorded annual maximum daily and instantaneous flow peaks were established. These relationships were used to fill in any data gaps and generate a complete annual maximum instantaneous flow series for the periods of record.
- For the locations where there are natural and regulated flow records (e.g., the recorded flows for Spray River prior to 1951 were natural flows, and after 1951 regulated flows), the natural and regulated data series were considered separately to establish the relationships between annual maximum daily and instantaneous flow peaks.
- Daily flows were generated for the naturalized and regulated scenarios, and these were converted to annual maximum instantaneous flow peaks based on the above-mentioned relationships.
- Along the Bow River, the annual maximum daily flow series were converted to annual maximum instantaneous flow peaks based on the relationships established at the gauging stations. For example, relationships (Figure 3.2) were established for the Bow River at Calgary for both the natural flow series (i.e., the recorded data prior to 1932) and the regulated flow series (i.e., the recorded data after 1932). These relationships were used for all locations between Bearspaw Dam and Pine Creek.
- For the Elbow River at Sarcee Bridge, the relationship (Figure 3.3) was established based on the recorded data at WSC Station 05BJ010 and the historic large floods estimated by T. Blench & Associates (1965).
- If the reported annual maximum daily and instantaneous flow values for the same year are not for the same flood event, the annual maximum daily values are replaced by the daily values for the events corresponding to the annual maximum instantaneous flows. For example, the annual maximum daily flow values reported for Elbow River at Bragg Creek for 1973, 1974, 1983, 1991, 2003 and 2012 were replaced by the daily flow values for the same events as the annual maximum instantaneous flows. In addition, the 1974 data points for the Elbow River at Bragg Creek were not used for developing the relationship, because there was an unrealistically large difference between the annual maximum daily and instantaneous flow values.
- For some locations along the Bow River and its tributaries, the annual maximum instantaneous flow series were extended based on the relationships established between upstream and downstream locations using the recorded annual maximum daily flow series for the overlapping periods. For example, the annual maximum instantaneous flow series for the Elbow River at Bragg Creek were extended to the period 1908 to 1935 using the relationship established with the data from the combined three (3) stations (i.e., Elbow River at Sarcee Bridge, Elbow River above Glenmore and Elbow River below Glenmore) (see Figures A-30 and A-31 in Appendix A).

The annual maximum instantaneous flow series for the Elbow River at Sarcee Bridge were extended by combining the annual maximum daily flow series recorded at three WSC Stations (i.e., 05BJ001, 05BJ005, and 05BJ010), because these stations are located close to each other and the maximum difference in their drainage areas is less than four percent (i.e., 1,189 km² at WSC Station 05BJ010, 1,220 km² at WSC Station 05BJ005, and 1,236 km² at WSC Station 05BJ001).

Appendix A presents the relationships established between annual maximum daily and instantaneous flow peaks for the Bow River and its tributaries. Each relationship was evaluated and selected based on both the statistical best-fit, as well as professional judgement. Appendix A also presents plots showing the recorded and estimated annual maximum instantaneous flow series. Tables A-1 and A-2 show the multiplication factors used for converting maximum daily flow to maximum instantaneous flow peaks.

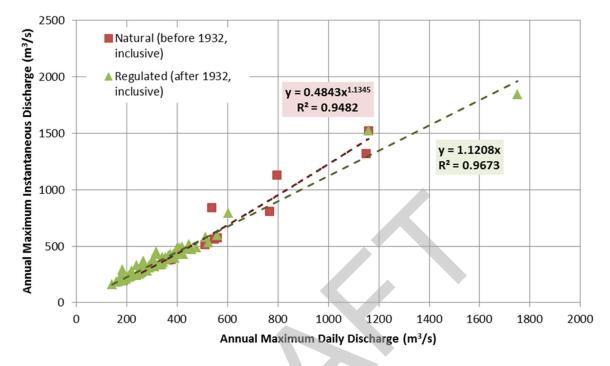


Figure 3.2: Relationship between Annual Maximum Daily and Instantaneous Flows for the Bow River at Calgary

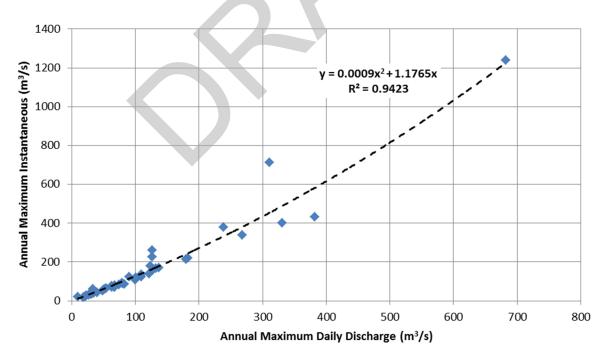


Figure 3.3: Relationship between Annual Maximum Daily and Instantaneous Flows for the Elbow River at Sarcee Bridge

4.0 FLOOD FREQUENCY ANALYSIS

4.1 Statistical Tests

4.1.1 Methods

Prior to fitting the appropriate frequency distribution to the flood flow data, a number of statistical tests were performed to determine the quality of the flood flow data series. A Golder software tool similar to Environment Canada's Consolidated Frequency Analysis (CFA), but with enhanced methodology, was used for the following: flood frequency analyses and statistical tests for independence (not serially correlated), trend, randomness, and homogeneity. The software tool includes modern boot strapping and estimation of confidence intervals.

The following probability distributions were analyzed with select parameter estimation methods (i.e., method of moments [moment], maximum likelihood estimation [MLH], and Method of L-moments [MLM]):

- Three-parameter Log Normal (moment and MLH);
- Generalized Extreme Value Distribution that includes Extreme Value 1, 2, and 3 distributions (MLM);
- Log Pearson Type III (LP3, moment and MLH); and
- Weibull (moment).

Numerical goodness-of-fit test was performed using the non-parametric Anderson-Darling test (Stephens, 1974).

Frequency analyses of the annual maximum instantaneous flow series (for the natural and naturalized as well as regulated flood flow series) were conducted for estimating the flood peak discharges of various return periods (i.e., 2-, 5-, 10-, 20-, 35-, 50-, 75-, 100-, 200-, 350-, 500-, 750-, and 1000-year floods). The methods of fitting statistical probability distributions followed the standard approach. While this approach produced reasonable and appropriate results, accurate flood frequency estimates depend on sufficient data sample size. Estimates of return periods greater than 100 years, which are based on relatively short periods of record, are expected to have a high level of uncertainty. The level of uncertainty is represented by the upper and lower 95% confidence intervals. Therefore, extra care should be used for estimates that have very large confidence intervals.

As noted elsewhere, limitations of the analysis methodology do not support the use of regulated flood frequency estimates for flows higher than experienced in the historical record. While reported, regulated flood frequency estimates above the 75-year flood are not recommended for use for design purposes, as they do not consider the capacity of existing reservoirs and over-estimate the ability of regulation to reduce flood peaks.

4.1.2 Results

Tables A-3 and A-4 in Appendix A provide the results of statistical tests on the recorded, naturalized, and regulated annual maximum instantaneous flow series at various locations along the Bow River and its tributaries. The results show that most of the annual maximum instantaneous flow series are independent, random, homogeneous, and do not display any significant trends. The results are highlighted and discussed below:

The annual maximum instantaneous natural flow series for the Bow River at Banff display a trend at the 1% and 5% level of significance. However, the trend does not appear to be due to any large-scale climatic change. Five of the flood flows recorded prior to 1933 were higher than any of the flood flows recorded after 1934 with the exception of the 2012 and 2013 flood flows. Statistical tests were performed on the 1934-2015 flow data. The test results show that the data do not display trend at the 1% and 5% level of significance.

- The annual maximum instantaneous naturalized flow series for the Bow River below Bassano Dam, at Highway 36 and near the Mouth, display non-randomness at the 1% and 5% level of significance. However, the annual maximum instantaneous naturalized flow series for the Bow River at Highway 539, Highway 875, and Bow River at the Mouth, which are located a few kilometers from Bassano Dam and Highway 36, are random. Therefore, the non-randomness results for the Bow River below Bassano Dam, at Highway 36 and near the Mouth, do not appear to be due to any large-scale climatic change. Statistical tests were performed using the flood flow data for the Bow River at Bassano Dam after removing two of the largest floods (i.e., 1915 and 1929 floods). The test results show that the flood flow series are independent and random at 5% level of significance.
- The annual maximum instantaneous regulated flow series for the Bow River near Seebe, below Ghost Dam, below Bearspaw Dam, at Calgary, and below Bassano Dam, display trends, non-homogeneous and non-randomness at the 1% and 5% level of significance. These results are mainly due to reservoir regulation and river diversions. They do not appear to be due to any large-scale climatic change, because the statistical tests of the flood flow series for the other locations immediately upstream and downstream of the above-mentioned locations do not display significant serial dependence or trend and appear to be random and homogeneous.
- The annual maximum instantaneous natural and naturalized flow series for the Spray River at Banff, Kananaskis River near Seebe, Ghost River above Waiparous Creek, and Jumpingpound Creek at Cochrane, display trend, non-homogeneous and non-randomness at the 1% and 5% level of significance.

4.1.3 Discussion of the Results

Data non-homogeneities are caused when artificial changes that affect the statistical properties of the observations through time. In reality, obtaining perfectly homogeneous data is almost impossible, because the changes such as flow regulation, forestry operations, and water diversions often affect the flood flow magnitudes.

The above-mentioned changes have increased since the start of systematic streamflow monitoring in 1908 (AENV 1983). There was evidence that extensive forest fires occurred during the late 1800s and early 1900s in the vicinity of the Bow River basin. In a study of the landscape change in Banff National Park, Byrne (1968) expressed the opinion that climatic conditions during the latter half of the nineteenth century were relatively dry and conducive to forest fire. The reduced forest cover might have resulted in increased peak runoff rates in the early period of flood flow record for the Bow River.

Conversely, the recovery of the forest cover might have resulted in reduction of peak runoff rates in the later period of record. This may partially account for non-homogeneity of the flood flow record. However, forest cover may be depleted or replenished at any time by man or nature and should not be considered as a permanent change in the flood flow pattern. Therefore, the pre-1934 records and the post-1933 flow records have been combined.

The magnitudes of consumptive water diversions from the Bow and Elbow Rivers upstream of Calgary are relatively low. These diversion quantities are very small in comparison to flood peak flows in the Bow and Elbow Rivers. There are two non-consumptive water diversions from the Bow River upstream of Calgary (i.e., the Smith-Dorrien Creek and Ghost River diversions). There are three consumptive water diversions along the lower reach of the Bow River (i.e., diversions to the irrigation districts at Calgary Weir, Carseland Dam and Bassano Dam). There are two major consumptive water diversions from the Highwood River (Highwood and Little Bow Diversions for Irrigation).

A system of 8 reservoirs and 11 hydropower plants was established in the Bow River basin between 1911 and 1955. Detailed analysis of the storage effects of this system is presented in Appendix A. The dependence, trends and non-randomness at some of these locations may be due to a combination of long-term variability in the region's climate regime and alteration of flow patterns by major storage facilities. Notwithstanding the trend and non-homogeneity in some of the flood flow series, all of the flow series are considered appropriate for the flood frequency analysis.

4.2 Analysis of the Natural and Naturalized Flood Flow Series

4.2.1 Bow River

Frequency analyses of the annual maximum instantaneous flow series, including the preliminary estimates of the 2013, 2014 and 2015 flood flows, for the natural and naturalized flood flows at the various locations along the Bow River, were conducted for estimating the flood peak discharges of various return periods (i.e., 2-, 5-, 10-, 20-, 35-, 50-, 75-, 100-, 200-, 350-, 500-, 750-, and 1000-year floods). Table 4.1 summarizes the flood frequency estimates and the upper and lower 95% confidence intervals.

Appendix C provides the annual maximum instantaneous flow series used in the frequency analyses, the various frequency distributions, and the best distribution fit with 95% confidence intervals.

The flood frequency estimates along the Bow River through Calgary, downstream of the Elbow River, Nose Creek, Fish Creek, and Pine Creek confluences were obtained using the following alternative approach:

- Flood frequency estimates for the Bow River downstream of tributaries were not based on a simple coincident flood peak assumption, which would have over-estimated the probable increase in Bow River main-stem flows through Calgary. Instead, Bow River flows were determined using a more sophisticated analysis based on an examination of both instantaneous and maximum daily flow records for the Bow River and its tributaries. See Table C.4.1 in Appendix C for these results, which are also reported in Table 6.1.
- Flood frequency estimates for the Bow River below the Elbow River involved development of a maximum annual instantaneous flow series at this location based on an examination of the concurrent maximum daily and instantaneous flow records for both river for each year. The most realistic combined Bow River flow series was used for the frequency analysis, based on the following options:
 - simultaneous occurrence of instantaneous peak flows in the Bow and Elbow Rivers;
 - instantaneous peak flow in the Bow River plus daily peak flow in the Elbow River;
 - daily peak flow in the Bow River and instantaneous peak flow in the Elbow River; and
 - daily peak flow in the Bow River and daily peak flow in the Elbow River.

The highest flow combination was selected to represent the maximum instantaneous flow for each year. Criteria 2) (i.e., combination of instantaneous peak flow in the Bow River plus daily peak flow in the Elbow River) governs for 81 years out of 104 years. Criteria 1, 3 and 4 governs for 12 years, 11 years, and zero years out of 104 years, respectively.

- Flood frequency estimates for the Bow River below Nose Creek, Fish Creek, and Pine Creek involved calculating appropriate tributary contributions, based on frequency analysis of maximum daily tributary flows that occurred on the same day as annual instantaneous Bow River flows using the following methods:
 - 1) Generate annual daily flow series for Nose and Fish Creeks corresponding to the date when we had instantaneous maximum flood flows on Bow River at Calgary. The annual daily flow series will be derived only for the years that we have recorded flows for the two creeks.
 - 2) Using the annual daily flow series derived in Step 1 for the two creeks, complete flood frequency estimates.
 - 3) Using estimated regional/local peaking factor, derive flood frequency estimates for daily flows for Pine Creek based on the flood frequency estimates already completed for Pine Creek based on regional analysis. A peaking factor of 1.23 that was developed for Meadow Creek near the Mouth (i.e. WSC Station No. 05BA029) was used.
 - 4) Using the flood frequency estimates generated in Steps 2 and 3 for tributary creeks and flood frequency estimated for Bow River at Calgary, derive flood frequency estimates for Bow River below each tributary.

wsc	FIOOD FREQUENCY FIOW ES WSC Station Name / Location of	Gross Drainage	Effective Drainage	Flow	Distribution					-					Comput	ed Insta	ntaneous		lows with ³/s)	95% Coi	nfidence I	Bounds									
Station ID / Node ID	Interest	Area (km²)	Area (km ²)	Type ¹	/ Method	100	00-yr	75	0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr		5-yr	50)-yr	35	5-yr	20)-yr	10-yr		5-yr		2.	-yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
BOW RIVER						Lot.	LOWEI	ESt.	Lowei	ESt.	Lowei	231.	LOWEI	Lot.	LOWEI	Lot.	LOWEI	L3t.	Lower	L 3t.	LOWEI	LSI.	LOwer	L3t.	LOwei	231.	LOwei	LJI.	Lower	231.	Lower
05BA001	Bow River at Lake Louise	422	422	N	EV2	182	304 95.8	172	279 94.2	159	247 92.3	149	222 90.1	135	191 86.7	118	156 81.9	111	145 80.0	102	129 77.0	95.1	117 74.3	84.6	101 70.0	72.7	83.3 63.9	61.9	68.7 56.7	48.2	51.9 45.4
05BB001	Bow River at Banff	2210	2210	N	EV2	554	754 425	538	715 418	517	667 410	498	630 401	468	576 389	431	509 369	416	483 360	394	450 346	375	422 333	346	380 313	308	333 285	269	288 253	211	225 200
Node 105	Bow River below Spray River	2993	2993	NZ	3P(MLH)	844	1230 593	811	1160 578	769	1070 560	729	997 542	670	883 514	602	763 479	574	716 464	537	653 443	505	598 425	456	524 395	398	440 358	341	368 315	264	283 248
Node 107	Bow River below Cascade River	3727	3727	NZ	3P(MLH)	1040	1540 718	995	1460 701	942	1350 677	892	1260 652	818	1110 616	733	950 572	698	889 554	652	810 528	611	742 505	550	644 470	477	537 422	406	441 371	309	329 289
Node 108	Bow River at Canmore	3870	3870	NZ	3P(MLH)	1090	1650 753	1050	1550 734	993	1430 708	940	1320 684	861	1170 645	770	1000 599	734	937 580	684	852 553	642	781 529	577	677 492	499	563 442	425	462 388	323	344 302
Node 109	Bow River above Kananaskis	4199	4199	NZ	3P(MLH)	1120	1640 780	1080	1550 762	1020	1440 736	968	1340 711	890	1190 675	799	1030 629	763	964 610	713	879 582	670	809 558	605	704 519	526	590 468	449	487 412	343	366 321
Node 110	Bow River below Kananaskis	5139	5139	NZ	EV2	1770	3850 831	1660	3430 817	1510	2910 795	1400	2540 776	1230	20 50 742	1050	1550 694	983	1400 678	894	1200 649	822	1060 624	719	868 582	606	687 526	505	551 462	380	407 358
05BE004 / Node 111	Bow River near Seebe	5170	5170	NZ	EV2	1760	3520 903	1650	3160 883	1510	2720 858	1400	2390 837	1240	1940 794	1060	1510 743	994	1370 718	906	1190 687	834	1050 657	731	878 607	616	703 541	513	562 470	384	414 360
Node 318	Bow River above Ghost Reservoir	5475	5473	NZ	EV2	1630	3480 790	1530	3130 776	1400	2670 757	1300	2330 739	1150	1890 709	989	1450 666	928	1310 647	847	1130 621	781	996 598	686	824 560	581	657 506	486	530 445	367	393 346
	Bow River below Ghost Dam (Ghost Reservoir Outflow)			NZ	LP3(MLH)	1680	3320 1020	1590	3050 987	1480	2690 946	138 0	2390 912	1240	1990 860	1080	1580 794	1020	1440 767	936	1270 726	868	1130 692	767	940 636	651	753 566	543	602 490	402	431 374
05BE006 / Node 58	Bow River below Ghost Dam (Ghost Reservoir Outflow), historic	6550	6550	NZ	Historical adjustment ratio applied to Lp3(MLH) ²	2390	4730 1450	2230	4280 1380	2030	3690 1300	1850	3210 1220	1610	2590 1120	1350	1980 994	1260	1770 945	1130	1530 875	1030	1330 817	878	1080 728	718	830 624	577	640 521	408	437 379
	Bow River near Cochrane			NZ	LP3(MLH)	1840	4320 1030	1740	3860 997	1600	3300 964	1490	2880 929	1330	2300 874	1140	1780 805	1080	1610 775	983	1390 736	906	1220 703	794	996 646	667	786 574	550	614 494	401	432 370
05BH005 / Node 114	Bow River near Cochrane, historic	7412	7383	NZ	Historical adjustment ratio applied to LP3(MLH) ²	2620	6160 1470	2440	5410 1400	2190	4520 1320	2000	3870 1250	1730	2990 1140	1430	2230 1010	1330	1980 955	1180	1670 887	1070	1440 830	909	1140 740	736	867 633	585	653 525	407	438 375
	Bearspaw Reservoir Inflow			NZ	LP3(MLH)	2030	4820 1060	1910	4300	1740	3660 979	1600	3160 940	1410	2540 878	1190	1940 802	1110	1720 770	1010	1470 727	917	1270 689	791	1020 629	650	780 549	523	592 464	367	399 335
Node 302	Bearspaw Reservoir Inflow, historic	7712	7672	NZ	Historical adjustment ratio applied to LP3(MLH) ²	2890	6870 1510	2680	6030 1440	2380	5020 1340	2150	4240 1260	1840	3310 1140	1490	2430 1000	1370	2120 949	1220	1770 876	1080	1500 814	906	1170 720	717	860 605	556	629 493	372	405 340
05BH008 / Node 59	Bearspaw Reservoir Outflow (assigned same flows as Bow River at Calgary)	7770	7730	NZ	LP3(MLH)	2380	5260 1150	2220	4720 1110	2020	4080 1060	1850	3590 1020	1610	2920 947	1350	2210 867	1250	1960 831	1120	1670 783	1020	1440 739	872	1150 673	709	861 587	564	646 496	389	423 357
	Bow River at Calgary, extended			NZ	LP3(MLH)	2510	5130 1430	2350	4610 13 70	2130	3980 1290	1950	3480 1230	1700	2830 1120	1430	2180 1010	1330	1960 959	1190	1670 893	1080	1460 836	925	1180 745	751	904 637	597	674 533	409	442 379
05BH004 / Node 59	Bow River at Calgary, historic	7868	7736	NZ	Historical adjustment ratio applied to LP3(MLH) ²	4880	9970 2780	4400	8630 2570	3790	7080 2300	3330	5940 2100	2710	4510 1790	2090	3190 1480	1880	2770 1360	1610	2260 1210	1400	1890 1080	1120	1430 902	845	1020 717	627	708 560	401	433 372
	Bow River below Elbow River			NZ	LP3(MLH)	3200	7480 1440	2970	6690 1390	2670	5670 1320	2430	4890 1260	2090	3880 1160	1720	2880 1060	1590	2550 1010	1410	2130 945	1270	1830 889	1070	1430 804	853	1050 693	665	769 575	443	486 403
Node 176	Bow River below Elbow River, historic	9128	8995	N	Concurrent ⁶	5310	7930 4230	4820	7080 3840	4190	6040 3350	3710	5240 2990	3050	4180 2470	2390	3140 1970	2150	2780 1780	1860	2340 1560	1630	2010 1390	1310	1560 1130	996	1150 882	739	816 675	464	497 434
	Bow River below Nose Creek		0.5-5	NZ	LP3(MLH)	3210	7500 1440	2980	6720 1390	2680	5650 1320	2430	4910 1260	2090	3880 1170	1730	2900 1060	1590	2570 1010	1410	2140 947	1270	1840 891	1070	1430 806	855	1060 695	667	772 577	444	487 404
Node 158	Bow River below Nose Creek, historic	10114	9656	N	Concurrent ⁶	5370	10500 3270	4880	9110 3050	4240	7530 2750	3760	6370 2530	3090	4890 2170	2420	3520 1810	2180	3070 1660	1890	2540 1490	1650	2140 1330	1330	1640 1110	1010	1180 882	746	827 679	465	497 436

Table 4.1: Flood Frequency Flow Estimates Calculated Using Various Methods - Natural and Naturalized Flows

WSC Station ID	WSC Station Name / Location of	Flow	Distribution		Hutu	i ui ui i	antata	i un 200					Comput	ted Insta	ntaneous		lows with ³/s)	95% Coi	nfidence l	Bounds											
/ Node ID	Interest	Area (km²)	Area (km²)	Type ¹	/ Method	1000-yr		75	i0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr	75	5-yr	50	-yr	35	35-yr		20-yr)-yr	5-	-yr	2-	yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower		Upper Lower
	Bow River below Fish Creek			NZ	LP3(MLH)	3350	8020 1440	3100	7110	2780	5990 1330	2520	5160 1270	2160	4080 1180	1780	3010 1080	1640	2650 1020	1450	2210 959	1310	1890 903	1100	1470 819	871	1080 706	676	785 585	447	492 406
Node 164	Bow River below Fish Creek, historic	10640	10182	N	Concurrent ⁶	6100	8720 5020	5480	7740 4500	4700	6550 3860	4120	5650 3400	3340	4470 2760	2580	3330 2160	2310	2940 1940	1980	2460 1680	1730	2110 1490	1380	1630 1200	1040	1190 926	762	839 698	469	502 439
	Bow River below Pine Creek			NZ	LP3(MLH)	3310	7900 1430	3070	7020 1380	2750	5900 1320	2500	5100 1260	2140	4040 1170	1760	2980 1070	1620	2620 1020	1440	2190 950	1300	1870 896	1090	1460 815	866	1070 702	673	780 583	446	490 405
Node 177	Bow River below Pine Creek, historic	10887	10397	N	Concurrent ⁶	6180	11300 4080	5560	9790 3730	4770	8060 3280	4180	6790 2950	3390	5190 2470	2620	3720 2010	2350	3240 1830	2020	2670 1620	1760	2250 1440	1400	1710 1180	1050	1220 922	770	851 703	472	504 443
	Bow River above Highwood River			NZ	LP3(MLH)	2650	5670 1280	2480	5120 1240	2260	4400 1190	2080	3850 1140	1820	3140 1070	1530	24 30 986	1430	2160 949	1290	1850 894	1170	1620 851	1010	1300 780	824	997 686	661	752 584	462	501 425
Node 331	Bow River above Highwood River, historic	11258	10532	N	Prorated ⁷	6260	8880	5630	7890	4830	6680	4240	5770	3440	4570	2660	3410	2380	3010	2040	2520 1740	1780	2160	1420	1670	1070	1220	780	857	478	511
Node 165	Bow River below Highwood River	15342	14497	NZ	EV2	7180	5180 16300 2250	6390	4650 13800 2150	5420	3990 11000 2000	4690	3520 8980 1900	3750	2860 6620 1740	2840	2240 4520 1530	2530	2010 3860 1450	2150	3100 1330	1870	1540 2590 1240	1500	1240 1950 1100	1140	956 1380 931	867	716 1000 762	582	448 644 538
05BM002 / Node 178	Bow River below Carseland Dam	15665	14696	NZ	EV2	6770	15100 2380	6080	12900 2280	5240	10500 2130	4590	8670 2010	3730	6500 1830	2880	4580 1620	2590	3960 1540	2230	3220 1420	1950	2690 1320	1580	2020	1210	1460 983	917	1050 797	604	677 550
Node 180	Bow River at Hwy. 547	17443	15920	NZ	EV2	5800	12800 2100	5250	11100 2030	4560	9020 1920	4020	7520 1830	3310	56 70 1670	2590	4060 1490	2340	3540 1420	2030	2880 1320	1790	2420 1230	1460	1860 1100	1140	1360 932	870	994 761	580	648 529
Node 181	Bow River at Hwy. 842	18028	16344	NZ	EV2	5160	12100 1930	4700	10400 1860	4110	8480 1770	3 650	7130 1680	3030	5380 1550	2410	3830 1400	2180	3360 1340	1910	2770 1250	1690	2330 1170	1390	1780 1050	1090	1300 897	842	955 737	566	632 516
Node 189	Bow River below Crowfoot Creek	20169	17672	NZ	EV2	5030	11800 1890	4570	10100 1820	4000	8260 1720	3560	6950 1640	2950	5240 1510	2350	3730 1370	2130	3270 1310	1860	2700 1220	1650	2270 1140	1360	1730 1030	1060	1270 876	822	932 720	552	617 503
05BM004 / Node 182	Bow River below Bassano Dam, extended	20253	17751	NZ	LP3(MLH)	7580	9900 3580	6810	9030 3370	5840	7950 3 090	5100	7010 2830	4130	6400 2440	3160	4580 2070	2830	3980 1930	2420	3280 1720	2100	2770 1560	1680	2120 1320	1260	1520 1050	932	1080 816	591	658 545
Node 184	Bow River at Hwy. 539	20915	18186	NZ	3P(MLH)	4590	8600 2640	4270	7820 2500	3870	686 0 2330	3520	604 0 2170	3010	4890 1940	2470	3790 1680	2270	3380 1580	2000	2880 1440	1780	2490 1310	1480	1950 1140	1150	1420 937	870	1010 752	562	618 508
Node 185	Bow River at Hwy. 36	21423	18544	NZ	3P(MLH)	4380	8170 2480	4080	7440 2350	3700	6560 2200	3350	5780 2060	2870	4690 1840	2350	3600 1590	2150	3220 1490	1900	2740 1360	1690	2360 1250	1400	1850 1080	1090	1340 891	825	953 714	534	588 484
Node 186	Bow River at Hwy. 875	22307	18878	NZ	3P(MLH)	4240	7790 2420	3940	7080 2290	3570	6230 2140	3250	5500 2000	2780	4480 1780	2280	3460 1550	2090	3100 1460	1850	2630 1330	1650	2270 1220	1370	1790 1060	1070	1300 876	811	932 704	530	583 481
05BN012 / Node 187	Bow River near the Mouth	25280	19160	NZ	3P(MLH)	4610	8580 2580	4290	7840 2450	3890	6950 2290	3540	6120 2120	3030	4970 1910	2490	3840 1660	2280	3440 1560	2020	2930 1430	1800	2520 1310	1490	1970 1140	1160	1430 942	872	1020 749	559	617 507
Node 188	Bow River at the Mouth	25612	19306	NZ	3P(MLH)	4450	8230 2500	4140	7470 2380	3760	6620 2230	3420	5820 2080	2930	4750 1860	2410	3700 1620	2220	3310 1530	1960	2810 1390	1750	2430 1280	1450	1910 1120	1130	1390 925	856	991 737	552	608 500
BOW RIVER			-				044		205		200		007		000		000		045		400		104		400		400		440		00.0
05BC001 / Node 106	Spray River at Banff, before 1951	751	751	N	3P(MLH)	224	341 153	218	325 150	209	306 147	201	287 143	188	260 137	173	228 130 336	166	215 126	157	199 121	149	184 116	136	163 109	120	139 99.5	102	116 88.4 111	74.6	83.6 66.8
	Spray River at Banff	751	751	NZ	EV2	432	802 218	402	720 210	363	613 200	332	536 191	287	434 179	240	163	222	303 156	199	262 145	180	229 137	154	187 123	125	145 106	99.2	88.1	68.2	75.1 62.8
05BD002 / Node 154	Cascade River near Banff	664	664	NZ	EV2	423	938 187	390	824 181	348	686 172	314	583 165	268	453 154	219	336 140	201	296 133	178	248 124	159	214 116	134	169 104	106	125 88.2	82.7	94.4 72.6	54.9	61.6 49.9
05BF001	Kananaskis River near Seebe, before 1946	933	933	N	EV2	797	1320 223	722	1180 217	629	991 207	556	853 199	458	678 187	360	511 170	325	456 163	281	389 152	247	338 143	201	271 131	154	202 114	115	149 93.3	72.3	90.7 63.3
05BF025 / Node 56	Kananaskis River below Barrier Dam	899	899	NZ	EV2	691	1510 231	623	1290 222	537	1040 210	472	865 200	386	648 184	300	457 166	270	396 159	234	326 148	205	275 139	168	213 125	130	157 106	100	114 88.3	68	74.8 62.8
05BG010	Ghost River above Waiparous Creek, extended with diversion added	485	485	NZ	EV2	1160	1930 450	990	1610 404	790	1250 343	648	1010 297	474	718 238	320	474 179	272	398 157	216	311 131	175	250 111	126	177 85.2	82.2	114 60.0	51.7	70.1 40.2	24.0	30.5 20.0
05BG006	Waiparous Creek near the Mouth	333	333	N	3P(MLH)	1000	2650 378	900	2290 350	776	1890 315	670	1550 285	528	1150 240	388	764 193	339	645 175	278	508 153	230	397 134	169	270 106	109	159 74.7	65.5	88.4 47.5	26.9	36.8 20.1
000000	Waiparous Creek near the Mouth, extended	555	000	N	3P(MLH)	692	1200 410	630	1080 378	553	925 339	487	794 303	395	623 253	301	455 200	267	397 181	224	325 155	190	268 135	144	196 105	97.9	127 74.3	61.6	76.4 48.8	26.3	32.0 21.3

Table 4.1: Flood Frequency Flow Estimates Calculated Using Various Methods - Natural and Naturalized Flows

WSC Station ID	WSC Station Name / Location of	Gross Drainage	Effective Drainage	Flow	Distribution	liious	- Natur		a Natu	anzee	1110002	•			Compute	ed Instar	ntaneous		lows with ³/s)	95% Co	nfidence I	Bounds									
/ Node ID	Interest	Area (km²)	Area (km²)	Type ¹	/ Method		00-yr		0-yr		0-yr)-yr)-yr		0-yr		5-yr		-yr		i-yr)-yr)-yr		-yr		-yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower		Upper Lower								
05BG001 /	Ghost River near Cochrane, extended with diversion added	911	911	NZ	LP3(MLH)	1960	8410 741	1710	6670 680	1420	4860 596	1190	3670 536	909	2420 451	642	1440 352	553	1150 317	446	843 271	367	639 234	267	410 184	174	239 129	108	137 85.3	48.6	59 39.4
Node 316	Ghost River near Cochrane, sensitivity analysis	911	911	NZ	EV2	1630	2620 699	1430	2250 639	1180	1810 563	1000	1500 502	773	1130 422	557	784 336	485	674 303	398	544 261	333	450 228	251	331 181	173	223 131	114	145 91.0	55.8	68.1 46.8
05BH015	Jumpingpound Creek at Township Road No. 252, extended	474	474	N	3P(MLH)	878	1930 435	795	1710 403	695	1430 362	608	1220 327	489	929 273	3 69	657 218	326	563 196	271	448 169	228	363 146	171	257 114	113	160 80.2	69.5	93.3 51.6	27.8	36.6 20.9
05BH009	Jumpingpound Creek near the Mouth	571	571	N	3P(MLH)	655	1870 267	595	1640 248	522	1370 225	459	1150 204	371	887 176	282	615 145	250	517 131	210	410 114	177	328 100	134	229 80.1	90.3	139 58.2	56.3	81.7 39.0	23.4	33.0 16.6
	Jumpingpound Creek near the Mouth, extended			N	3P(MLH)	1030	2250 488	936	2000 448	815	1670 404	710	1410 363	568	1070 306	425	747 241	374	638 217	310	505 186	260	407 160	193	287 125	127	177 87.5	76.8	102.0 56.5	30	39.7 22.3
Node 174	Jumpingpound Creek at the Mouth	601	601	NZ	3P(MLH)	821	1990 358	746	1760 334	655	1460 303	575	1230 276	465	930 237	353	660 193	313	563 176	262	447 154	222	360 136	167	254 108	112	158 77.7	69.8	93.3 51	28.6	39.5 20.2
05BH003 / Node 175	Nose Creek at Calgary, extended	893	746	N	EV2	348	495 101	303	426 91.9	249	347 80.9	209	288 72.2	159	219 58.8	113	158 46.5	97.3	138 42.2	79	115 36.2	65.5	98.1 31.3	48.3	75.4 24.5	32.3	53.3 17.7	20.5	35.6 12	8.92	15.6 5.71
Node 163	Fish Creek at the Mouth	440	440	NZ	3P(MLH)	1220	3260 443	1080	2820 406	907	2290 355	766	1860 311	581	1310 252	406	849 194	347	702	275	529 142	221	404 120	154	261 89.4	92	144 59.1	50.1	74.8 35.1	16.9	23.1 12.4
05BK001	Fish Creek near Priddis	261	261	N	3P(MLH)	926	3500 465	829	3010 422	713	2440 373	614	1990 328	481	1430 264	350	921 203	305	761 182	248	574 152	204	445 128	148	290 95.5	93.3	160 63.8	53.7	83.9 38.7	19.1	25.7 13.9
05BM008	Crowfoot Creek near Cluny	1374	950	N	3P(MLH)	797	1980 193	701	1700 182	589	1380 170	495	1120 159	373	794 141	259	514 117	220	428 108	174	323 93.8	139	249 79.5	95.5	160 58	56.6	87.7 36.3	30.4	45.1 20.3	10.1	16.3 7.34
05BN006	New West Coulee near the Mouth	318	102	N	EV3	11.7	16.8 7.88	11.4	16.1 7.82	11.1	15.2 7.75	10.7	14.4 7.65	10.2	13.2 7.48	9.49	11.8 7.23	9.18	11.2 7.11	8.73	10.4 6.93	8.32	9.8 6.77	7.65	8.8 6.45	6.76	7.58 5.92	5.78	6.36 5.18	4.17	4.61 3.73
05BN002	Twelve Mile Creek near Cecil	2803	124	N	3P(MLH)	26.9	48.9 16.8	25.5	44.9 16.3	23.6	40 15.7	22	35.7 15.1	19.5	29.8 14.2	16.7	23.7 12.8	15.6	21.5 12.3	14.2	18.6 11.5	12.9	16.3 10.7	11.1	13.1 9.53	9.05	9.99 7.88	7.11	7.93 6.16	4.68	5.54 3.94
Node 179	Arrowwood Creek above Hwy. 547	830	718	NZ	LP3(moment)	298	977 97.1	273	824 92.5	239	677 86.8	212	552 81.9	172	398 73.2	129	263 61.3	113	217 56.1	93	165 49.3	76.9	128 42.8	55	86.5 32.2	33.4	50.6 20.3	17.4	27.1 10.8	4.4	7.9 2.52
ELBOW RIVE	R								02.0		00.0										1010				02.2						
	Elbow River at Bragg Creek			N	3P(MLH)	1280	2750 637	1170	2450 595	1040	2100 541	918	1810 490	753	1420 419	583	1030 343	521	898 315	442	735 277	379	607 245	292	440 199	204	285 149	133	172 103	62.3	74.7 51.8
	Elbow River at Bragg Creek, extended using relationship established with Elbow at Sarcee Bridge based on maximum daily floods			N	3P(MLH)	1560	2920 909	1420	2600 839	1250	2240 755	1100	1920 676	895	1500 565	686	1100 450	610	953 408	514	779 353	437	642 307	333	470 243	229	303 175	146	184 117	66.1	78.7 55.7
	Elbow River at Bragg Creek, extended using relationship				Historical		4160		3650		3070		2580		1950		1380		1170		938		758		538		334		196		79.8
05BJ004	established with Elbow at Sarcee Bridge based on maximum daily floods, historic	791	791	N	adjustment ratio applied to 3P(MLH) ²	2220	1300	1990	1180	1710	1030	1480	908	1160	735	859	563	752	503	619	425	516	363	381	278	253	193	155	124	67.1	56.5
	Elbow River at Bragg Creek,						2810		2 510		2170		1880		1490		1070		932		761		631		460		300		183		78.4
	extended using relationship established with Elbow at Sarcee Bridge based on instantaneous floods			N	3P(MLH)	1510	885	1380	819	1210	736	1070	664	873	559	671	445	597	404	504	349	430	304	329	241	227	173	146	117	66.5	56.5
	Elbow River at Bragg Creek,				Historical		4000		3520		2980		2520		1930		1340		1150		916		745		527		331		195		79.6
	extended using relationship established with Elbow at Sarcee Bridge based on instantaneous floods, historic			N	adjustment ratio applied to 3P(MLH)²	2150	1260	1930	1150	1660	1010	1440	891	1140	727	840	557	736	497	607	420	508	359	377	277	250	191	155	125	67.5	57.4
	Elbow River at Sarcee Bridge, combined data from 05BJ001,			N	3P(MLH)	1410	2650 750	1280	2370 697	1130	2040 630	997	1760 565	813	1380 477	625	1010 385	556	879 351	470	718 307	401	593 268	307	435 216	212	282 159	138	172 109	64.2	76.2 54.5
	05BJ005, 05BJ010 Elbow River at Sarcee Bridge,						2810		2510		2150		1860		1460		1070		930		762		634		467		304		187		81.9
05BJ010	combined data from 05BJ001, 05BJ005, 05BJ010 with estimated instantaneous flows from the 1983	1189	1189	N	3P(MLH)	1510	821	1380	762	1210	687	1070	621	874	526	672	424	599	385	506	335	431	294	331	237	229	173	148	120	69.4	59.4
	AENV floodplain study Elbow River at Sarcee Bridge, combined data from 05BJ001,			N	Historical adjustment ratio	2150	4000	1930	3520	1660	2950	1440	2500	1140	1900	841	1340	738	1150	610	918	509	749	379	535	253	335	157	199	70.4	83.1

Table 4.1: Flood Frequency Flow Estimates Calculated Using Various Methods - Natural and Naturalized Flows

5			

wsc	WSC Station Name / Location of	Gross Drainage	Effective Drainage	Flow	Distribution										Comput	ed Insta	ntaneous		lows with ³/s)	95% Cor	nfidence	Bounds									
Station ID / Node ID	Interest	Area (km²)	Area (km²)	Type ¹	/ Method	10	00-yr	75	50-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr		ō-yr	50	-yr	35	-yr	2	0-yr	1	0-yr	5	i-yr	2.	-yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
	05BJ005, 05BJ010 with estimated instantaneous flows from the 1983 AENV floodplain study, historic				applied to 3P(MLH)²	Lot.	1170	Lot	1070	200	941	200	834	Lot.	685	Lot	531	200	474	Lot	404	Lot.	347	Lot.	271	Lot.	191	200	128	Lot	60.3
	Elbow River below Glenmore Dam			NZ	EV2	2590	4500 976	2220	3780 881	1780	2950 764	1470	2360 672	1090	1680 544	748	1100 420	639	922 371	511	720 314	419	583 271	306	413 212	204	266 154	132	169 107	65.2	79.5 56.6
05BJ001 / Node 161	Elbow River below Glenmore Dam, historic	1236	1236	NZ	Historical adjustment ratio applied to EV2 ²	3690	6410 1390	3110	5300 1240	2440	4040 1050	1970	3170 903	1420	2190 708	936	1380 526	787	1140 457	616	867 378	495	689 320	350	473 243	225	293 170	140	180 114	66.1	80.6 57.4
SHEEP RIVE	R AND TRIBUTARIES		ī	-																											
05BL014	Sheep River at Black Diamond	592	592	Ν	3P(MLH)	1900	5010 910	1720	4390 837	1500	3680 751	1310	3100 672	1050	2310 561	787	1600 445	693	1360 401	576	1080 345	484	872 301	361	601 235	240	360 165	148	206 107	61.5	79.6 47.1
05BL012	Sheep River at Okotoks	1494	1494	Ν	3P(MLH)	9220	31900 1500	8160	26900 1430	6910	21700 1330	5860	17400 1250	4 470	12100 1120	3150	7640 947	2700	6220 872	2150	4560 770	1740	3460 688	1210	2150 547	729	1150 382	395	612 228	125	265 72.6
0562012	Sheep River at Okotoks, extended	1494	1494	N	3P(MLH)	2620	4650 1520	2420	4220 1430	2180	3670 1310	1950	3210 1190	1640	2580 1030	1300	1950 852	1180	1730 784	1020	1460 694	886	1240 616	701	939 507	504	646 377	338	417 261	158	196 127
	Sheep River at the Mouth	1575	4570	N	Prorated ³	9690	33500 1580	8580	28300 1500	7260	22800 1400	6160	18300 1310	4700	12700 1180	3310	8030 996	2840	6540 917	2260	4790 809	1830	3640 723	1270	2260 575	766	1210 402	415	643 240	131	279 76.3
Node 344	Sheep River at the Mouth, extended	1575	1570	N	Prorated ³	2750	4890 1600	2540	4440 1500	2290	3860 1380	2050	3370 1250	1720	2710 1080	1370	2050 896	1240	1820 824	1070	1530 730	931	1300 648	737	987 533	530	679 396	355	438 274	166	206 134
05BL013	Threepoint Creek near Millarville	507	507	N	3P(MLH)	1140	2690 542	1040	2380 501	914	2010 455	803	1710 410	650	13 10 345	495	941 275	439	806 249	368	648 216	312	521 187	235	371 149	158	232 106	98.2	134 70	39.8	52 29
HIGHWOOD	RIVER AND TRIBUTARIES									_																		_			
05BL019	Highwood River at Diebel's Ranch	774	774	Ν	LP3(MLH)	1390	7030 469	1250	5750 446	1080	4370 417	9 45	3400 390	765	2290 350	583	1430 300	519	1170 282	439	887 254	378	693 231	295	477 195	212	301 155	146	186 115	78.8	92.8 66.6
	Highwood River below Little Bow Canal			NZ	3P(MLH)	6300	14100 1240	5560	12200 1180	4690	991 0 1070	3960	8140 974	3000	5940 848	2100	3890 698	1800	3250 640	1430	2530 561	1150	1970 484	804	1290 393	490	744 285	276	437 187	108	178 84.3
05BL004	Highwood River below Little Bow Canal, extended	1953	1953	NZ	EV2	2670	3870 1470	2360	3380 1340	1990	2800 1180	1710	2370 1040	1340	1820 852	994	1310 667	875	1140 603	730	943 519	620	792 451	476	598 361	337	419 264	229	283 186	118	142 101
	Highwood River below Little Bow Canal, extended, historic			NZ	Historical adjustment ratio applied to EV2 ⁵	2830	4100 1560	2490	3570 1410	2090	2950 1240	1790	2490 1090	1400	1900 889	1030	1360 692	905	1180 624	752	972 535	637	814 463	486	611 369	342	426 268	231	286 188	118	142 101
	Highwood River near the Mouth			NZ	3P(MLH)	4590	14200 1850	4200	12600 1740	3720	10500 1590	3300	8740 1460	2700	6600 1260	2100	4630 1040	1870	3980 957	1590	3150 851	1360	2500 759	1050	1780 623	726	1110 467	468	644 328	208	265 154
05BL024	Highwood River near the Mouth, extended	3952	3941	NZ	EV2	4910	7740 266 0	4340	6680 2420	3640	5440 2120	3120	4540 1880	2440	3450 1560	1800	2440 1220	1580	2110 1090	1310	1730 933	1110	1440 807	853	1080 642	602	749 471	409	505 331	212	254 181
	Highwood River near the Mouth, extended, historic			NZ	Historical adjustment ratio applied to EV2 ⁵	5200	8190 2820	4580	7050 2560	3830	5720 2230	3270	4760 1970	2550	3600 1630	1870	2530 1270	1630	2180 1130	1350	1780 961	1140	1480 829	872	1100 656	612	761 479	413	510 334	213	255 181
Node 470	Highwood River at the Mouth	2004	2001	NZ	Prorated ⁴	4940	7780 2680	4360	6720 2430	3660	5470 2130	3140	4570 1890	2450	3470 1570	1810	2450 1230	1590	2120 1100	1320	1740 938	1120	1450 812	858	1090 646	605	753 474	411	508 333	213	255 182
Node 172	Highwood River at the Mouth, historic	3991	3964	NZ	Prorated ^₄	5230	8240 2840	4600	7090 2570	3850	5750 2240	3290	4790 1980	2560	3620 1640	1880	2540 1280	1640	2190 1140	1360	1790 967	1150	1490 834	877	1110 660	615	765 482	415	513 336	214	256 182
05BL022	Cataract Creek near Forestry Road	166	166	N	EV2	1280	2770 128	1070	2280 122	834	1730 114	670	1350 106	475	934 96.6	309	581 83.6	259	478 78.5	201	363 71.7	161	284 65.2	113	193 55.9	72.4	117 45.4	45.4	67.9 33.9	22.2	29.2 18.4
05BL023	Pekisko Creek near Longview	232	232	N	3P(MLH)	680	1770 284	608	1540 262	522	1260 233	449	1040 207	350	764 172	254	511 134	221	428 119	180	332 100	148	262 85.5	106	176 63.9	66.9	102 43.7	38.4	55.5 26.7	13.7	19.9 9.65
05BL007	Stimson Creek near Pekisko	236	236	N	3P(MLH)	456	943 227	413	835 209	360	708 188	314	600 169	252	458 141	189	322 112	167	277 102	138	221 86.9	116	179 74.9	86.2	127 58.8	56.6	77.5 40.9	34	44 25.9	12.7	16.6 9.58
05BL027	Trapp Creek near Longview	137	137	N	3P(MLH)	819	2020 82.4	719	1740 79.5	602	1410 75.4	505	1150 71.6	379	822 65.5	261	532 57.9	222	438 55.1	175	331 50.3	139	257 46.6	95.8	178 40.7	56.9	119 31.2	31	72.7 20.2	11.3	18.3 7.99
1 Sorios Typo:	N: Natural Flows (recorded data): NZ:	Naturalized E	lows																												

Table 4.1: Flood Frequency Flow Estimates Calculated Using Various Methods - Natural and Naturalized Flows

1. Series Type: N: Natural Flows (recorded data); NZ: Naturalized Flows

2. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling results for Bow River at Calgary with and without historic floods (by applying a percentage multiplier to each return period) 3. Prorated: Instantaneous flood flows and confidence bounds were estimated by applying ratio between effective drainage areas at Node 344 and WSC station 05BL012 using an exponent of 1.

4. Prorated: Instantaneous flood flows and confidence bounds were estimated by applying ratio between effective drainage areas at Node 172 and WSC station 05BL024 using an exponent of 1.

5. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling result for Highwood River below Little Bow with and without historic floods (by applying a percentage multiplier to each return period) 6. Instantaneous flood flows were generated based on an examination of the concurrent data records

7. Prorated: Instantaneous flood flows were estimated by applying ratio between effective drainage areas at the node in interest and node upstream or downstream of the node in interest using an exponent of 1

5			

The flood frequency statistics at the ungauged locations were estimated as follows.

- Drainage areas at WSC stations were obtained from WSC hydrometric data. Drainage areas at ungauged locations were estimated from the known drainage areas at upstream or downstream WSC stations by adding or subtracting, respectively, the estimated local areas between the WSC stations and locations of interest.
- The naturalized flood frequency estimates for the Bow River downstream of Spray River were estimated as follows:
 - Prior to 1951, WSC Station 05BC001 recorded natural flow (1910 to 1951).
 - Naturalized flows for Spray River at Banff were derived from 1951 to 2015 as described in Section 3.1.2.
 - Natural/Naturalized flows time series for Bow River downstream of Spray River were then derived by using recorded flows for Bow River at Banff (WSC Station 05BB001) and natural/naturalized flows from Spray River.
 - Return period flood estimates were then obtained from a frequency analysis of natural/naturalized maximum annual instantaneous flows at Bow River downstream of Spray River.
- The naturalized flood frequency estimates for the Bow River below Cascade confluence were estimated as follows:
 - Naturalized flows for Cascade River near Banff were derived from 1917 to 2015 as described in Section 3.1.2.
 - Natural/Naturalized flows time series for Bow River below Cascade confluence were then derived by using routed flows for Bow River downstream of Spray River and natural/naturalized flows from Cascade River near Banff.
 - Return period flood estimates were then obtained from a frequency analysis of natural/naturalized maximum annual instantaneous flows at Bow River below Cascade confluence.
- The naturalization flow series at ungauged locations along the Bow River are the routed flow series from upstream locations without accounting for the contributing runoff from the additional drainage areas between the upstream and ungauged locations. Hence, maximum annual peak flow series that can be extracted from the naturalized daily flow series at ungagged locations will not represent expected peak flow at that location since did not include contribution from tributary watersheds. To account for the local runoff contributions along the Bow River, the following methods were used to estimate the peak flows at the ungauged locations:
 - The return period flood estimates for the Bow River at Canmore were derived using the estimated values for the Bow River below Cascade River based on the ratio of the total drainage areas of the two locations. Given a small difference in drainage area contributing additional flow between Bow River below Cascade River and Bow River at Canmore (i.e., less than 4%) an exponent of 1.0 for the ratio of the drainage area is a reasonable assumption (Haan et al 1994).
 - The return period flood estimates for the Bow River above Kananaskis River were derived based on interpolation of the flood estimated for the Bow River at Canmore and the Bow River below Kananaskis River using the drainage area contributing flows at each locations.

- AEP BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT
- The return period flood estimates for the Bow River upstream of Ghost Reservoir were derived using the values for the Bow River near Seebe based on the ratio of the total drainage areas of the two locations. Given a small difference in drainage area contributing additional flow between the two locations (i.e., less than 6%) an exponent of 1.0 for the drainage area ratio is a reasonable assumption (Haan et al 1994).
- The return period flood estimates for the Bow River at Cochrane were derived based on interpolation of the flood estimated for the Bow River below Ghost Reservoir and the Bow River above Bearspaw using the drainage area contributing flows at each locations.
- The return period flood estimates for multiple locations on the Bow River below Carseland Dam (i.e., Bow River at Highways 547, 842, 539, 36 and 875) were derived by interpolation of the flood flows estimated at the three gauging stations along the river (i.e., Bow River below Carseland Dam (05BM002), Bow River below Bassano Dam (05BM004), and Bow River near the Mouth (05BN012)) using the ration of drainage area contributing flows at each locations. This approach is basically a linear transfer of return period flood estimates at WSC Stations 05BM002, 05BM004 and 05BN012 to locations on the Bow River that are in between two adjacent stations. The approach, that essentially constrains the flood estimates at a location to a value between those at the upper and lower WSC stations, is considered reasonable as the relationship between effective runoff contributing areas and flood flows at locations in the lower reaches of the Bow River becomes complex.
- The return period flood estimates for the Bow River at the mouth were assumed to be the same as return period flood estimates for the Bow River near the Mouth (i.e., at WSC Station 05BN012) given there is less than 1% increase in drainage between the two locations.

4.2.2 Major Bow River Tributaries

Frequency analyses of the annual maximum instantaneous flow series for the major tributaries of the Bow River were performed in previous studies (Golder 2010, 2014a, 2014b). Similar approaches as previous studies were used to update the return period flood estimates for these tributaries in this study. The flood frequency estimates for tributaries between Bow River below Elbow River and Bow River above Highwood River were then used to conservatively estimate flood flows along the Bow River below the tributary confluences assuming coincident occurrence of flood peak flows. The analyses and results for all major Bow River tributaries are described below.

Forty Mile Creek

The period of record for Forty Mile Creek near Banff (WSC Station 05BB003), with a drainage area of 133 km², is relatively short. The available data are for the periods from 1912 to 1919, 1945 to 1948 and 1972 to 1977. The data sample size is not sufficient for reliable flood frequency estimates. Therefore, the flood frequency estimates for Forty Mile Creek near Banff were made using the following method:

- 1) The relationship between the annual maximum daily and instantaneous flow peaks for Forty Mile Creek near Banff was established based on six years of data recorded for the period 1972 to 1977.
- 2) The recorded annual maximum daily flow series for the three year period (1975 to 1977) for Forty Mile Creek near Banff and Redearth Creek near the Mouth (WSC Station 05BB005, drainage area of 147 km²) show that the flood events at the two locations occurred on the same days.

- 3) The regression relationship established between the recorded maximum daily flow series for Redearth Creek near the Mouth and Bow River at Banff (WSC Station 05BB001) for the concurrent period 1974 to 1996, shows relatively good correlation (R² of 75.1% as shown in Appendix A, Fig. A-14). This relationship was used to extend the annual maximum daily flow series for Redearth Creek near the Mouth for the period 1909 to 1973 and 1997 to 2015.
- 4) The annual maximum daily flow series for Redearth Creek near the Mouth derived in Step 3) was used to develop the annual maximum daily flood series for Forty Mile Creek near Banff based on the ratio of drainage areas.
- 5) The annual maximum instantaneous flow series for Forty Mile Creek near Banff were derived using the annual maximum daily flow series from Step 4) and the relationship established in Step 1). This flow series was then used to develop the flood frequency estimates for Forty Mile Creek near Banff (see Table 4.1).

Ghost River and Waiparous Creek

Ghost River near Cochrane has a drainage area of 911 km². Most of the Ghost River flow comes from the high mountains and meadows. The gradual snowmelt maintains high river flow well into the summer. Groundwater springs feed the river flow in the winter. Flow records for the Ghost River are available at the following two stations:

- Ghost River above Waiparous Creek (WSC Station 05BG010) with a drainage area of 485 km² for the period 1983 to 2012; and
- Ghost River near Cochrane (WSC Station 05BG001) with a drainage area of 911 km² for the period 1911 to 1983, with data missing from 1920 to 1928.

Flood flows in the Ghost River are affected by the Ghost River diversion that has been in operation since 1941. Diversion flow data are available from WSC Station 05BG003 (Ghost River Diversion to Lake Minnewanka) for the period 1941 to 1994. The annual maximum instantaneous "naturalized" flow series for the Ghost River near the mouth were generated for the period 1929 to 2015 as follows (see Table 4.2 for a summary):

- For the period 1929 to 1940, the annual maximum instantaneous flows for the Ghost River near the mouth were assumed to be the same as those recorded at WSC Station 05BG001.
- For the period from 1941 to 1982, the annual maximum instantaneous flows for the Ghost River near the mouth were estimated by adding the diversion flows recorded at WSC Station 05BG003 to the flood flow series recorded at WSC Station 05BG001.
- For the period from 1983 to 1994, the annual maximum instantaneous flows for the Ghost River near the mouth were derived using a systematic combination of the flood flow data recorded at the Ghost River above Waiparous Creek (WSC Station 05BG010) and the flood flow data recorded at Waiparous Creek near the Mouth (WSC Station 05BG006). In addition, the diversion flows recorded at WSC Station 05BG0003 were added to generate the naturalized flood flow series (see Table 4.2 for description of the methodology).
- For the period 1995 to 2015, the same method was used as for the period 1983 to 1994, with the exception that Ghost River Diversion data were not available after 1994. A diversion flow of 8 m³/s was assumed to generate the naturalized flows, because 90% of the recorded diversion flows over the period of 12 years (i.e., 1983 to 1994) were less than 8 m³/s (see Figure A-21). A sensitivity analysis was conducted to assess if the assumed diversion flow will have any significant effect on the estimated flood frequency by considering a diversion flow of 30 m³/s.

The flood peak flow for the June 2013 event was estimated to be about 670 m³/s for the Ghost River near the mouth. The estimate was based on the available high water marks using a hydraulic model. See TransAlta's flood assessment for the Hamlet of Benchlands (Golder 2013).

The flood frequency estimates for the Ghost River above Waiparous Creek (WSC Station 05BG010) and Waiparous Creek near the Mouth (WSC Station 05BG006) were made using the flow data series extended back to 1912. The estimation methods for maximum daily flow series are described below:

- For the period 1912 to 1940, the annual maximum daily flow series for both 05BG010 and 05BG006 were derived by applying a direct station transfer approach to the recorded data at the Ghost River near Cochrane.
- For the period 1941 to 1965, the annual maximum daily flow series for 05BG006 was derived using the relationship established (see Figure A-19 in Appendix A) between 05BG006 and the Ghost River near Cochrane based on the recorded data at the two locations for the period 1966 to 1982.
- For the period 1941 to 1982, the annual maximum daily flow series for the Ghost River near Cochrane were recorded, and those for 05BG010were derived by subtracting the generated/recorded flows for 05BG006 from the recorded flows at the Ghost River near Cochrane.

Time Period	Annual Maximum Instantaneous Flow Estimates	Comment
1929-1940	Recorded flood flows at WSC Station 05BG001.	No diversion to Lake Minnewanka.
1941-1982	Flood flows recorded at WSC Station 05BG001 + Ghost River Diversion flows recorded at WSC Station 05BG003.	Ghost Diversion commenced in 1941.
1983-1994	 Based on the flood flows recorded at WSC Station 05BG010 and 05BG006. If the instantaneous flood peaks in the Ghost River and Waiparous Creek occurred on same day, then: Qinst Ghost above Waiparous + Qinst Waiparous near Mouth + Qdaily Ghost Diversion Otherwise, take the maximum of the following two values: Qinst Ghost above Waiparous + k * Qdaily Waiparous near Mouth + Qdaily Ghost Diversion Otherwise, take the maximum of the following two values: Qinst Ghost above Waiparous + k * Qdaily Waiparous near Mouth + Qdaily Ghost Diversion k*Qdaily Ghost above Waiparous + Qinst Waiparous near Mouth + Qdaily Ghost Diversion K*Qdaily Ghost above Waiparous + Qinst Waiparous near Mouth + Qdaily Ghost Diversion Where Qinst is the annual maximum instantaneous flow, Qdaily the daily flow on the same day as Qinst, and k a multiplier to convert daily flow to instantaneous flow. 	The WSC station Ghost River near Cochrane was decommissioned. New gauges on the Ghost River and Waiparous Creek were subsequently installed. The diversion flows were measured.
1995-2015	Used the same method as that for the period 1983-1994, but the daily Ghost Diversion flow was assumed at an average rate of 8 m³/s.	The Ghost River diversion gauge was decommissioned in 1994. A sensitivity analysis was performed with an assumed high diversion daily flow rate of 30 m ³ /s.
2013	670 m³/s + assumed flow (8 m³/s) in the Ghost diversion.	Estimated based on available high water marks

Table 4.2: Derivation of Naturalized Flows for the Ghost River near the Mouth

Jumpingpound Creek

Recorded flows for Jumpingpound Creek are available at the following three stations:

- Jumpingpound Creek near Jumping Pound (WSC Station 05BH006, gross drainage area of 455 km²) for the period 1908 to 1933;
- Jumpingpound Creek at Township Road 252 (WSC Station 05BH015, gross drainage area of 474 km²) for the period 2006 to 2015; and

 Jumpingpound Creek near the Mouth (WSC Station 05BH009, gross drainage area of 571 km²) for the period 1965 to 2006.

Because these three stations are located close to each other, the flow data from these stations were combined and adjusted based on the proportions of drainage areas, to generate the long-term flood flow series for the two locations (i.e., Jumpingpound Creek at Township Road 252 and Jumping Pound Creek near the Mouth). The resulting flow series used for the flood frequency analyses are provided in Appendix A. The resulting flood frequency estimates are provided in Table 4.1.

Elbow River

The flood frequency estimates for the Elbow River at Sarcee were obtained based on the combined flow records at the WSC Stations 05BJ001, 05BJ005 and 05BJ010, instantaneous flood peak estimates from the 1983 study report (AENV, 1983), and the extended flow data derived using the flow relationship established for the Elbow River at Sarcee location.

The flood frequency estimates for the Elbow River at Bragg Creek were obtained based on the recorded flow data at WSC Station 05BJ004 and the extended flow data derived using the correlation relationship established between this location and the combined flow records at the WSC Stations 05BJ001, 05BJ005 and 05BJ010.

The flood frequency estimates for the Elbow River below Glenmore Reservoir were obtained based on the naturalized flow data for the WSC Station 05BJ001 and the extended flow data derived using the correlation relationship between this location and the Sarcee location.

Nose Creek at Calgary

The available flow records for Nose Creek at Calgary (WSC Station 05BH003, gross drainage area of 893 km² and effective drainage area of 746 km²) were for the periods 1911 to 1919 and 1973 to 1986. This station was discontinued after 1986. Flow records are available for Nose Creek near the Mouth (WSC Station 05BH901, gross drainage area of 986 km²) for the period 1980 to 1989.

The annual maximum instantaneous flows recorded at the two locations for the concurrent period (1980 to 1986) are inconsistent. For example, the annual maximum instantaneous flow recorded at WSC Station 05BH003 on September 26, 1986 was 8.4 m³/s, while the annual maximum instantaneous flow recorded at Station 05BH901 on September 25, 1986 was 24.6 m³/s.

The recorded daily flood flow series at WSC Station 05BH901 for 1984, 1987, 1988 and 1989 were used to fill the data gaps and to extend the recorded flow data for Nose Creek at Calgary. The annual maximum instantaneous flows used for the flood frequency analysis are provided in Appendix A. A relationship between annual maximum daily and instantaneous flow series was established and shown in Figure A-28 in Appendix A.

An attempt was made to establish a regional relationship between Nose Creek and other streams (Fish, Jumpingpound, and Threepoint Creeks) to extend the flood flow series. However, coincident floods in Nose Creek and other regional creeks occurred only for two or three years over a recording period of more than 20 years. Therefore, it was not possible to establish a meaningful regional relationship to extend the flood flow series for Nose Creek. In addition, the Nose Creek watershed has a much larger proportion of non-contributing drainage areas compared to the other regional watersheds.

The flood frequency estimates for Nose Creek at Calgary are provided in Table 4.1. It is recognized that these estimates are different than previous estimates, including those prepared in 2010 and 2014 (Golder 2010, 2014). It is also recognized that the limited data record results in significant uncertainty in any flood frequency estimates, and that flood flows in some years may be impacted by local point inflows, including from stormwater management systems. Variation in frequency estimates undertaken at different times and using different lengths of record are expected, and different analysis techniques can result in different estimates even when the same data is assessed. However, Golder considers the current estimates to reflect the best available data at this time, and to be generally consistent with previous estimates when confidence limits of the statistical analysis are considered.

Fish Creek at the Mouth

The flow records for Fish Creek at the mouth (represented by WSC Station 05BK003, officially named Fish Creek at Bow Bottom Trail) are available only for the period 1989 to 1993. The flood flow series for Fish Creek at the mouth were derived using the flow data recorded at Fish Creek near Priddis (WSC Station 05BK001) and Threepoint Creek near Millarville (WSC Station 05BL013) using the following procedure:

- 1) Conduct flood frequency analysis for Fish Creek near Priddis and Threepoint Creek near Millarville using annual maximum daily flows.
- 2) Establish a relationship between drainage areas and flood estimates generated for various return periods from annual maximum daily flows to generate power factors (provided in Appendix C, Table C.3.3).
- 3) Transfer the flood flows from Fish Creek near Priddis to Fish Creek at the mouth based on the relationship established (i.e., power factors) in Step 2.
- 4) Generate instantaneous flood flows for Fish Creek at the mouth using the relationship established between the annual maximum daily and instantaneous flow series for Fish Creek near Priddis.

Threepoint Creek near Millarville has a drainage area of 507 km². A review of the recorded flow data at this station indicated a high level of similarity to the flow regime at Fish Creek near Priddis (drainage area of 261 km²). Over a period of 48 years (i.e., 1967 to 2014), the annual maximum daily flows at the two stations occurred on the same dates for 32 years, and for 5 years the maximum daily flows lagged by one day. The similarity between the closely-located Fish and Threepoint Creek watersheds supports the establishment of a relationship that can be used to transfer of the annual maximum daily flow series from Fish Creek near Priddis to Fish Creek at the mouth.

A relationship between annual maximum daily discharges and annual maximum instantaneous discharge was established for Fish Creek near Priddis using recorded data but excluding 2005 (Figure A-33 Appendix A). The recorded annual maximum instantaneous flood flow for Fish Creek near Priddis in June 2005 was affected by a breach of the Loon Lake Dam upstream of Priddis. Since there has been no detailed assessment of the impact on flood flows, the flood peak for 2005 was not considered in the relationship established between annual maximum daily discharge and annual maximum instantaneous discharge for Fish Creek near Priddis.

For the flood frequency analysis of annual instantaneous flood series for Fish Creek near Priddis, the recorded June 2005 instantaneous flood was adjusted using the ratio of recorded floods in 2005 and 2013 for Threepoint Creek near Millarville (i.e., the ratio of 2005 to 2013 floods for Threepoint near Millarville was multiplied by the 2013 recorded flood for Fish Creek near Priddis to estimate the peak flood flow for 2005).

Pine Creek at the Mouth

The flow data available for Pine Creek was collected by Golder between 2005 and 2007 as part of a monitoring program for the City of Calgary (Golder 2008).

Flood frequency estimates for several locations along Pine Creek through the Municipal District of Foothills and Calgary were conducted as part of a currently unpublished AEP flood hazard mapping study (AMEC 2013). AMEC provided two sets of flood frequency estimates, one based on the HSPF hydrologic model and the other based on a regression analysis of flood flows recorded on regional streams. In consideration of the uncertainties associated with estimating flood discharges in Pine Creek, AMEC recommended and used the more conservative estimates based on the HSPF modelling for the Pine and Radio Tower Creek flood hazard study.

In this current study, flood frequency estimates for Pine Creek were made based on a regional analysis only. Table 4.3 provides a comparison of the flood frequency estimates. The flood frequency estimates produced by Golder for this current study generally have higher magnitudes than those produced by AMEC for return period greater 50-years. This variation in frequency estimates was expected given the substantially different analysis techniques used by Golder and AMEC.

Return Period [years]	Regional Analysis (Current Study) [m³/s]	HSPF Hydrologic Model (AMEC 2013) [m³/s]
2	3.30	3.90
5	10.5	12.9
10	17.7	19.8
20	26.5	27.3
50	40.1	38.1
100	51.9	47.0
200	65.0	56.7
500	84.2	70.8
1,000	99.7	82.4

Table 4.3: Comparison of Flood Frequency Estimates for Pine Creek

 m^3/s = cubic metres per second.

Highwood River and its Tributaries

Flood Frequency estimates for various locations along the Highwood River and its tributaries were obtained based on the recorded flood flow series. For locations where there is no upstream flow regulation and the natural flow was recorded (i.e., Cataract, Pekisko, Stimson, and Trap Creeks), the flood frequency estimates were based on the annual maximum instantaneous flow series (see Section 3.3 and Appendix A). The flood flow series for the lower reach of the Highwood River were extended using the following procedure:

- 1) Established the relationships among the recorded annual maximum daily flow series and annual maximum Instantaneous flow series for Highwood River below the Little Bow Canal (WSC Station 05BL004) and Highwood River near the Mouth (WSC Station 05BL024).
- 2) The annual maximum daily flow series for Highwood River below the Little Bow Canal was extended by 70 years (i.e. the period 1916 to 1985) by using the recorded annual maximum daily flow series for Highwood River near Aldersyde (WSC Station 05BL009). The extended annual maximum instantaneous flow series were then generated using the relationship established in step 1).

- 3) Based on the relationship between Highwood River near Aldersyde and Highwood River near the Mouth, the flood flow series for Highwood River near the Mouth was extended by 53 years (i.e., for the period 1916 to 1969).
- 4) Based on the relationship between Highwood River below the Little Bow Canal and Highwood River near the Mouth, the flood flow series for Highwood River near the Mouth was extended by seven years (i.e., for the period 1909 to 1915).
- 5) The 1932 historical flood estimated for Highwood River near Aldersyde based on high-water marks (NHC 1974) was also used to estimate 1932 flood data for Highwood River below the Little Bow Canal and Highwood River near the Mouth.

The naturalized flood flow series for the Highwood River below the two diversions were derived by accounting for the diversion flows at Highwood Diversion Canal near Headgates (WSC Station 05BL025) and Little Bow Canal at High River (WSC Station 05BL015).

The flood frequency estimates for Highwood River at the Mouth were obtained by adjusting the estimates for WSC Station 05BL024 (i.e., Highwood River near the Mouth) to account for the larger drainage area at the mouth.

For Highwood River below Little Bow Canal, the June 2013 instantaneous flood flow is estimated to be 1,100 m³/s. This is based on the preliminary WSC estimate at Hogg Park of 1,770 m³/s and the predicted overflow calculated by preliminary hydraulic modelling completed to support the Highwood River Hazard Study.

The flood frequency estimates for the Highwood River and its tributaries are provided in Table 4.1.

Sheep River and Threepoint Creek

The flood frequency estimates for various locations along Sheep River and Threepoint Creek were based on the recorded data. Since there is no upstream flow regulation and natural flow was recorded, the flood frequency estimates were based on the annual maximum instantaneous flow series (see Section 3.3 and Appendix A). The flood flow series for Sheep River at Okotoks (WSC Station 05BL012) were extended based on the relationship that was established using the recorded annual maximum daily flow series for Sheep River at Black Diamond (WSC Station 05BL014).

The flood frequency estimates for Sheep River at the Mouth were made based on the flood frequency estimates for Sheep River at Okotoks and the ratio of the drainage areas.

The flood flow series for Threepoint Creek at the mouth were derived using the flood estimates for Threepoint Creek near Millarville using the following procedure:

- Conduct flood frequency analysis for Threepoint Creek near Millarville using recorded annual maximum daily flows.
- Transfer the flood flows from Threepoint Creek near Millarville to Threepoint Creek at the mouth based on the power factors provided in Appendix C, Table C.3.3.
- Generate instantaneous flood flows for Threepoint Creek at the mouth using the relationship established between the annual maximum daily and instantaneous flow series for Threepoint Creek near Millarville.

The flood frequency estimates for the Sheep River and its tributaries are provided in Table 4.1.

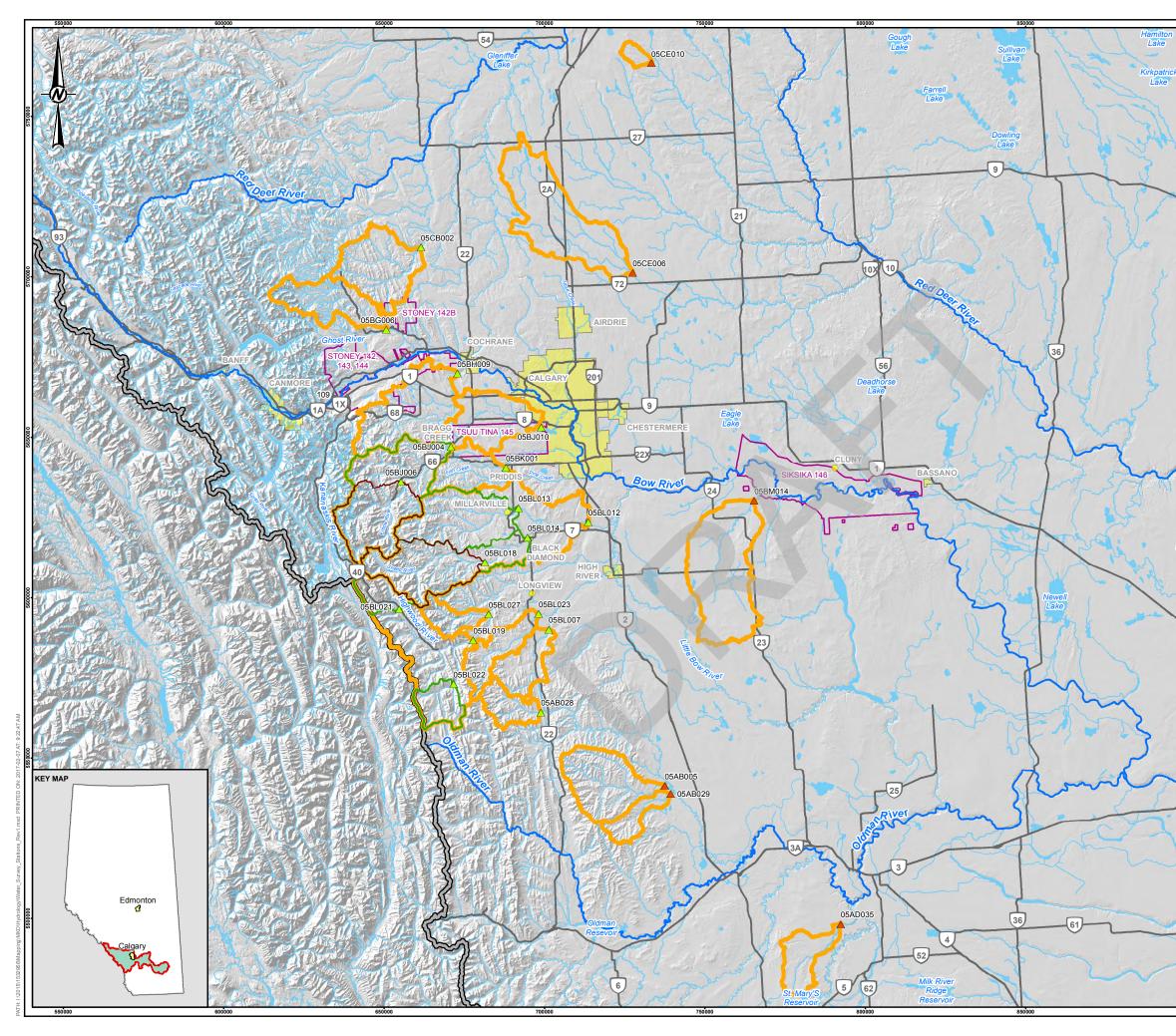
4.2.3 Ungauged Tributaries

The flood frequency estimates for ungauged tributaries contributing to the Bow, Elbow, and Sheep Rivers were made based on a regional flood frequency analysis. Table 4.4 provides the names, station numbers, drainage areas and relative locations (mountain or foothills) of WSC stations used for regional analysis.

WSC Station Name or Location of Interest	WSC Station ID	Latitude	Longitude	Gross Drainage Area [km²]
Mountain Region	·		-	-
Cataract Creek near Forestry Road	05BL022	50° 17' 07"	-114° 35' 19"	165.5
Waiparous Creek near the Mouth	05BG006	51° 16' 58"	-114° 50' 18"	333
Trapp Creek near Longview	05BL027	50° 28' 38"	-114° 25' 35"	137
Highwood River at Diebel's Ranch	05BL019	50° 24' 18"	-114° 30' 03"	774
Elbow River at Bragg Creek	05BJ004	50° 56' 56"	-114° 34' 15"	791
Fish Creek near Priddis	05BK001	50° 53' 08"	-114° 19' 37"	261
Pekisko Creek near Longview	05BL023	50° 28' 27"	-114° 12' 26"	232
Threepoint Creek near Millarville	05BL013	50° 46' 16"	-114° 16' 44"	507
Jumpingpound Creek near the mouth	05BH009	51° 09' 16"	-114° 31' 42"	571
Elbow River at Sarcee Bridge combined with Inflow to Glenmore	05BJ010	50° 59' 41"	-114° 09' 53"	1,189
Sheep River at Black Diamond	05BL014	50° 59' 41"	-114° 09' 53"	592
Stimson Creek near Pekisko	05BL007	50° 25' 48"	-114° 10' 01"	236
Elbow River above Elbow Falls	05BJ006	50° 51' 20"	-114° 47' 37"	437
Sheep River at Okotoks	05BL012	50° 43' 26"	-113° 58' 25"	1,494
Sheep River at Buck Ranch	05BL018	50° 37' 20"	-114° 25' 40"	454
Highwood River below Picklejar Creek	05BL021	50° 29' 55"	-114° 49' 02"	132
Willow Creek above Chain Lakes	05AB028	50° 11' 47"	-114° 12' 46"	162
Foothills Region				
West Arrowwood Creek near Arrowwood	05BM014	50° 45' 51"	-113° 14' 11"	777
Rosebude River below Carstairs Creek	05CE006	51° 24' 57"	-113° 43' 40"	753
Trout Creek near Granum	05AB005	49° 58' 39"	-113° 41' 10"	441
Meadow Creek near the mouth	05AB029	49° 57' 15"	-113° 39' 49"	130
Prairie Blood Coulee near Lethbridge	05AD035	49° 57' 15"	-113° 39' 49"	224
Ray Creek near Innisfail	05CE010	52° 00' 04"	-113° 35' 59"	44

Table 4.4: WSC Stations Used for Regional Analysis

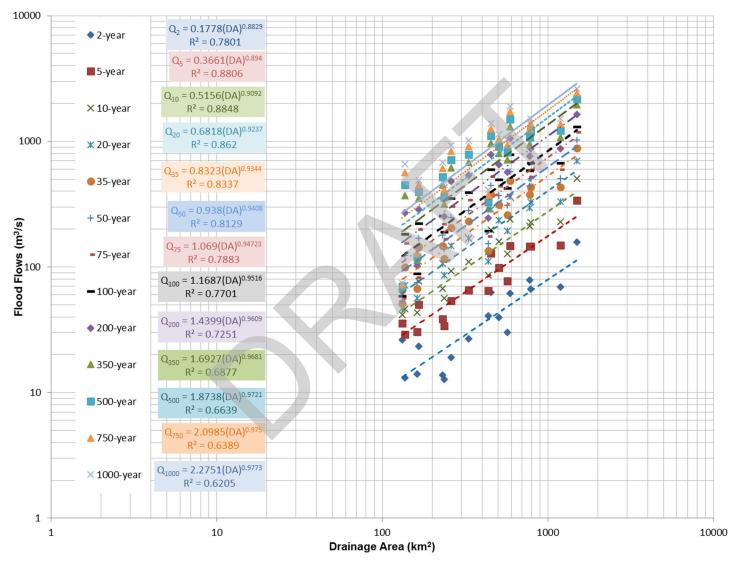
km² = square kilometre.


Empirical relationships between drainage area and flood frequency estimates were established for return periods ranging from the 2-year to the 1,000-year flood. The relationships were then used to derive flood frequency estimates for ungauged tributaries.

The flood frequency estimates for the ungauged tributaries were obtained as follows:

- Drainage areas at WSC stations were provided by WSC. Gross drainage areas at ungauged tributary locations were estimated through GIS analysis (see Figure 4.1).
- Flood frequency estimates for the WSC stations (see Appendix C.3) were made based on the natural annual maximum instantaneous flow series.
- Regional relationships between drainage area and peak discharge for a range of return periods (2-year to 1,000-year flood) were developed for two regions mountains and foothills, as shown in Figures 4.2 and 4.3.
- The resulting regional relationships were then used to estimate the flood peak discharges at the select ungauged locations for the various return periods, as summarized below:
 - The flood frequency estimates for Forty Mile Creek at the Mouth were obtained based on flood frequency estimates for Forty Mile Creek near Banff and the drainage area power factor established for mountain region.
 - The flood frequency estimates for Cougar Creek at the Mouth, Policeman's Creek at Canmore, Stoneworks Creek at Highway 1, Exshaw Creek at Exshaw, Bragg Creek at the Mouth, Threepoint Creek above Ware Creek, and Ware Creek at the Mouth were obtained based on the regional relationships established using data from gauged watersheds within the mountain region.
 - The flood frequency estimates for Bighill Creek at Cochrane, Pine Creek at the Mouth, and Lott Creek at the Mouth were obtained based on the regional relationships established using data from gauged watersheds within the foothills region.
 - The flood frequency estimates for Jumpingpound Creek at Township Road No. 252 and Jumpingpound Creek at the Mouth were obtained based on flood frequency estimates for Jumpingpound Creek near the Mouth and the drainage area power factor established for the foothills region.
 - The flood frequency estimates for West Nose Creek at WSC Station, West Nose Creek at the Mouth, Nose Creek near the Mouth, and Nose Creek above Airdrie were obtained based on flood frequency estimates for Nose Creek at Calgary and the drainage area power factor established for the foothills region.
- The resulting flood frequency estimates at the ungauged locations are provided in Table 4.5.

The alternative method reflects more realistic regulated flood flows downstream of Glenmore Reservoir since it considers the physical limitation of the reservoir to attenuate flood flows. The routing of the flows through the reservoir was completed based on flood operating procedure prior to completion of the upgraded gates.



000 01 0 0 0 25 50 1.175,000 KILOMETRES 0 0 0 0 0 0 0 0 0 0 0 0 0	LEGEN					
STATION IN FOOTHUL REGION VIEWAEE SOLALES DELINEATED SUB-ASIN* DELINEATED SUB-ASIN* DELINEATED SUB-ASIN* DELINEATED SUB-ASIN* DELINEATED SUB-ASIN* DELINEATED SUB-ASIN* DELINEATED BASIN* DERINARY HIGHWAY PROVINCIAL BOUNDARY VATERBODY VATERBODY VATERBODY VATERBODY VATERBODY NUMERATION LAND DELINEATED PROVINCIAL BOUNDARY VATERBODY VATERBODY VATERBODY NUMERATION CONTRACT BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CAMADAARS, CONTRACT BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CAMADAARS, CONTRACT BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CAMADAARS, LINGH'S RESERVED. NUMERATIONAL ALL INGH'S RESERVED. SUB-BASIN SWEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY MISSION DATA OBTAINED FROM ALTALIS E GOVERNMENT OF ALBERTARY INC. SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATIONS SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATIONS SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATION SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATIONS SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATION SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATIONS DIALINET SUB-BASINS WEEE DELINEATED BASED ON 10 ON 0P. 20 DENTEMPAY ALCONTOURS GENERATIONS DIALINE CONTOURS ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SUB-BASINS WEEE DELIN	WATER	SURVEY OF C	ANADA STATIONS			
	Δ	STATION IN N	IOUNTAIN REGION	1		
PELINEATED SUB-WATERSHED ^S DELINEATED BASIN ^S DELINEATED BASIN ^S WATERCOURSE PRIMARY HIGHWAY FIRST NATION LAND POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY WATERBODY WATERBODY POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY NUTREBODY NUTREBODY POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY NUTREBODY POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY POPULATED PLACE AND NOTATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRIFOOD CANDALARY, MARCHARD ALL RIGHTS RESERVES OBTAINED FROM MAGRICULTURE AND AGRIFODOL CANDALARY, MARCHARD ALL RIGHTS RESERVES OBTAINED FROM AGRICULTURE AND AGRIFODOL CANDALARY, MARCHARD ALL RIGHTS RESERVES OBTAINED FROM MALTALIS © GOVERNMERT OLE CANDALARY, MARCHARD ALL RIGHTS RESERVES OBTAINED FROM MALTALIS © GOVERNMERT OLE PROVINCIAL ROUNDARY OFTAINED FROM ALTALIS © GOVERNMERT OLE PROVINCIAL ROUNDARY OFTAINED FROM MALTALIS © GOVERNMERT OLE PROVINCIAL ROUNDARY OFTAINED FROM ALTALIS © GOVERNMERT OLE PROVINCIAL ROUNDARY OFTAINED FROM ALTALIS © COVERNMERT OLE PROVERT PROVINCIAL ROUNDARY OFTA		STATION IN F	OOTHILL REGION			
Image: Second Secon	WATER	SHED SCALES	i			
Image: Second Secon	2000	DELINEATED	SUB-WATERSHED	5		
MAJOR RIVER WATERCOURSE PRIMARY HIGHWAY FIRST NATION LAND POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY WATERBODY WATERBODY WATERBODY WATERBODY MADE AND HIGHWAYS OBTAINED FROM AGRICULTURE AND AGRI-FOOD AGRICULTURE AND AGRI-FOO LILLS-MADE AND HIGHWAYS OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (ARC). HILLS-MADE AND HIGHWAYS OBTAINED FROM ALTALIS & GOVERNMENT OF SUB-BASINS PROJECTION UT AND RESERVED. HILLS-MADE AND HIGHWAYS OBTAINED FROM ALTALIS & GOVERNMENT OF AGRICULTURE AND AGRICULTURE ADARE TO POGRAPHY MISSION (SRTM). HILLS-MADE AND HIGHWAYS OBTAINED FROM ALTALIS & GOVERNMENT OF AGRICULTURE ADARE TOPOGRAPHY MISSION (SRTM). HILLS-MADE AND HIGHWAYS OBTAINED FROM ALTALIS & GOVERNMENT OF HILLS-MADE AND HIGHWAYS OBTAINED FROM ALTALIS & HILLS	2	DELINEATED	SUB-BASIN⁵			
WITERCOURSE PRIMARY HIGHWAY FIRST NATION LAND POPULATED PLACE PROVINCIAL BOUNDARY WITERDODY WITERDODY WITERDODY POPULATED PLACE PROVINCIAL BOUNDARY VITERDODY POPULATED PLACE PROVINCIAL BOUNDARY PROVINCIAL B		DELINEATED	BASIN⁵			
PRIMARY HIGHWAY FIRST NATION LAND POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY WATER	—	MAJOR RIVE	R			
FIRST NATION LAND POPULATED PLACE PROVINCIAL EDUINDARY WATERBODY POPULATED PLACE PROVINCIAL EDUINDARY WATERBODY POPULATED PLACE PROVINCIAL EDUINDARY WATERBODY POPULATED PLACE PROVINCIAL EDUINDARY NATERBODY POPULATED PLACE PROVINCIAL EDUINDARY PROVINCIAL		WATERCOUF	₹SE			
POPULATED PLACE PROVINCIAL BOUNDARY WATERBODY WATERBODY PROVINCIAL BOUNDARY WATERBODY PROVINCIAL BOUNDARY WATERBODY PROVINCIAL BOUNDARY PROVINCIAL		PRIMARY HIG	SHWAY			
PROVINCIAL BOUNDARY WATERBODY WATERBODY WATERBODY		FIRST NATIO	N LAND			
000 0 25 50 0 0 25 50 0 11.175.00 KILOMETRES 50 VINTERENCE:00 NUMERENCE:00 VINTERENCE:00 VINTERENC		POPULATED	PLACE			
000 0 25 50 0 0 25 50 1.1,725,00 KLOMETRES 1.1,725,00 <td></td> <td>PROVINCIAL</td> <td>BOUNDARY</td> <td></td> <td></td> <td></td>		PROVINCIAL	BOUNDARY			
000 0 25 50 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 1 1 0 25 50 1 1 0 25 50 1 1 1 0 1 <td></td> <td>WATERBODY</td> <td>,</td> <td></td> <td></td> <td></td>		WATERBODY	,			
000 0 25 50 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 1 1 0 25 50 1 1 0 25 50 1 1 1 0 1 <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td>	8					
000 0 25 50 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 0 25 50 1 1 1 1 1 1 0 25 50 1 1 0 25 50 1 1 1 0 1 <td>220000</td> <td></td> <td></td> <td></td> <td></td> <td></td>	220000					
0 25 50 1:1,175,000 KILOMETRES REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF APOPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF ALBERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS ONSULTANT YYY'-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB						
0 25 50 1:1,175,000 KILOMETRES REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF APOPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF ALDERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS ONSULTANT YYY'-MM-DD 2017-02-07 DESIGNED MIGE OFFICE NG MIGE CONSULTANT YYY'-MM-DD OFFIC SU						
0 25 50 1:1,175,000 KILOMETRES REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF APOPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF ALDERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS ONSULTANT YYY'-MM-DD 2017-02-07 DESIGNED MIGE OFFICE NG MIGE CONSULTANT YYY'-MM-DD OFFIC SU						
0 25 50 1:1,175,000 KILOMETRES REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF APOPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF ALDERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS ONSULTANT YYY'-MM-DD 2017-02-07 DESIGNED MIGE OFFICE NG MIGE CONSULTANT YYY'-MM-DD OFFIC SU						
1:1,175,000 KILOMETRES REFERENCE(s) 1.11,175,000 KILOMETRES SUBMETRES ILI,175,000 KILOMETRES CONSULTANT VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-0	0					
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< td=""><td>2650</td><td></td><td></td><td></td><td></td><td></td></t<>	2650					
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
3 0 25 50 11:1,175,000 KILOMETRES REFERENCE(S) 1. HYDROMETRICS STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULOEY AND PROVINCIAL BOUNDARY OBTAINED FROM HIS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT OF AAUXAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT MUTLE VITUE OCONSULTANT VIY'MM-DD OLISION OF THE WATER SURVEY OF CANADA STATIONS SIGNED FOR REGIONAL ANALYSIS CONSULTANT YYY'MM-DD OLIT-02-07 DESIGNED OCONSULTANT VYY'MM-DD <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
1:1,175,000 KILOMETRES REFERENCE(s) 1.1,175,000 KILOMETRES SUBMETRES ILI,175,000 KILOMETRES CONSULTANT VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02	00000					
1:1,175,000 KILOMETRES REFERENCE(s) 1.11,175,000 KILOMETRES SUBMETRES ILI,175,000 KILOMETRES CONSULTANT VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-0	56					
1:1,175,000 KILOMETRES REFERENCE(s) 1.11,175,000 KILOMETRES SUBMETRES ILI,175,000 KILOMETRES CONSULTANT VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-0						
1:1,175,000 KILOMETRES REFERENCE(s) 1.1,175,000 KILOMETRES SUBMETRES ILI,175,000 KILOMETRES CONSULTANT VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED VIYY-MM-DD OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02-07 DESIGNED OUT-02						
REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA ((AFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM INS ENERGY INC. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM INS ENERGY INC. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM ALTALIS © GOVERNMENT OF ALBERTX 2015. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM ALTALIS © GOVERNMENT OF ALBERTX 2015. ALL RIGHTS RESERVED. 6.SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG			0	25	50	
REFERENCE(s) 1. HYDROMETRIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA ((AFC). 2. HILISHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM INS ENERGY INC. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM INS ENERGY INC. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM ALTALIS © GOVERNMENT OF ALBERTX 2015. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM ALTALIS © GOVERNMENT OF ALBERTX 2015. ALL RIGHTS RESERVED. 6.SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER ITTLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG						
1. HYDROMETŘIC STATIONS, BASIN DATA OBTAINED FROM AGRICULTURE AND AGRI-FOOD CANADA (AAC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM IHS ENERGY INC. 4.POPULATED PLACES AND INDIAN RESERVED. 5.SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD33 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB			1:1,175,000	KILON	METRES	
CANADA (AAFC). 2. HILLSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM INS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVED SOBTAINED FROM ALTALIS © GOVERNMENT O ALBERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	REFER	ENCE(S)				
2. HILSHADE AND HIGHWAYS OBTAINED FROM GEOGRATIS, © DEPARTMENT OF NATURAL RESOURCES CANADA ALL RIGHTS RESERVED. 3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM IHS ENERGY INC. 4. POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT O ALBERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB			TIONS, BASIN DAT	A OBTAINED FROM AG	RICULTURE AND AG	RI-FOOD
3. HYDROLOGY AND PROVINCIAL BOUNDARY OBTAINED FROM IHS ENERGY INC. 94.POPULATED PLACES AND INDIAN RESERVES OBTAINED FROM ALTALIS © GOVERNMENT O ALBERTA 2015. ALL RIGHTS RESERVED. 5. SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NADB3 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	2. HILLS	SHADE AND HIG			© DEPARTMENT OF 1	NATURAL
19ALBERTA 2015. ALL RIGHTS RESERVED. 5.SUB-BASINS WERE DELINEATED BASED ON 10 m OR 20 m INTERVAL CONTOURS GENERAT FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYYY-MM-DD 2017-02-07 DESIGNED OF CASSOCIATES	3. HYDF	ROLOGY AND F	ROVINCIAL BOUN	DARY OBTAINED FROM		
FROM SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM). DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB					OM ALTALIS © GOVEF	RNMENT O
DATUM: NAD83 PROJECTION: UTM ZONE 11 CLIENT ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	"5.SUB-E	BASINS WERE	DELINEATED BASE	D ON 10 m OR 20 m IN	ITERVAL CONTOURS	GENERAT
ALBERTA ENVIRONMENT AND PARKS PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB						
PROJECT HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	CLIENT					
HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	ALBE	RTA ENVI	RONMENT A	ND PARKS		
HYDROLOGY ASSESSMENT - BOW, ELBOW, HIGHWOOD AND SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB						
SHEEP RIVER TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB						
TITLE LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT VYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB			199599101EIN	1 - 60W, EL60		JAND
LOCATION OF THE WATER SURVEY OF CANADA STATIONS USED FOR REGIONAL ANALYSIS CONSULTANT YYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	HYDF					
CONSULTANT YYYY-MM-DD 2017-02-07 DESIGNED NG PREPARED SK REVIEWED GB	HYDF SHEE			SURVEY OF C	ANADA STATI	ONS
BESIGNED NG PREPARED SK REVIEWED GB	HYDF SHEE TITLE	ATION OF	THE WATER			
Golder AssociatesPREPAREDSKREVIEWEDGB	HYDF SHEE TITLE LOCA					
Associates REVIEWED GB		D FOR RE			2017-02-07	
Associates		D FOR RE		YYYY-MM-DD		
		D FOR RE		YYYY-MM-DD DESIGNED	NG	
			GIONAL ANA Golder	YYYY-MM-DD DESIGNED PREPARED	NG SK	

4.1 E

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

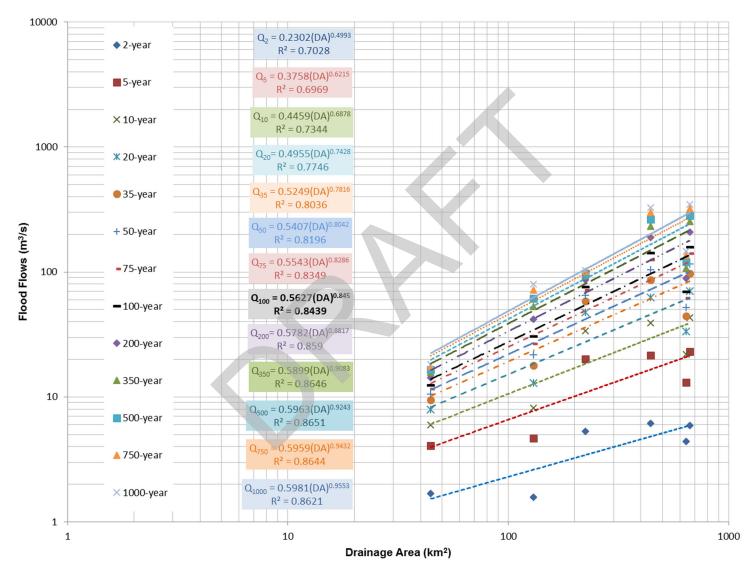


Figure 4.3: Empirical Relationships – Foothills Region in the Bow River Basin

USC Station Name /	Regional Analysis (RA) /			Gross Drainage	Effective					C	omputed Instar	ntaneous Flood	I Flows (m ³ /s) ¹					
Location of Interest	Single Station Transfer (SST) Approach ¹	Latitude	Longitude	Area (km ²)	Drainage Area (km²)	1000-year	750-year	500-year	350-year	200-year	100-year	75-year	50-year	35-year	20-year	10-year	5-year	2-year
Forty Mile Creek near Banff ²	SST using Redearth Creek near the Mouth	51° 12' 25"	-115° 35' 06"	133	133	57.3	55.9	53.8	51.9	49.0	45.2	43.7	41.4	39.4	36.2	32.1	27.6	20.8
Forty Mile Creek at the Mouth	SST Using Forty Mile Creek near Banff - Mountain Region Power	51° 10' 35"	-115° 35' 15"	148	148	60.2	58.7	56.6	54.7	51.7	47.9	46.3	44.1	42.1	38.8	34.6	30.1	22.9
Cougar Creek at the Mouth	Mountain Region (RA)	51° 04' 45"	-115° 20' 11"	42.6	42.6	89.0	81.4	71.9	64.0	53.0	41.5	37.4	32.0	27.7	21.8	15.6	10.5	4.88
Bragg Creek at the Mouth	Mountain Region (RA)	51° 56' 58"	-114° 34' 23"	49.7	49.7	103.0	94.6	83.5	74.3	61.4	48.1	43.2	37.0	32.0	25.2	18.0	12.0	5.59
Policeman's Creek at Canmore	Mountain Region (RA)	50° 05' 09"	-115° 20' 56"	10.4	10.4	22.4	20.5	18.2	16.3	13.6	10.8	9.8	8.47	7.41	5.92	4.32	2.96	1.40
Stoneworks Creek at Hwy. 1	Mountain Region (RA)	51° 06' 07"	-115° 21' 27"	6.17	6.17	13.5	12.4	11.0	9.9	8.3	6.60	5.99	5.20	4.56	3.66	2.70	1.86	0.886
Exshaw Creek at Exshaw	Mountain Region (RA)	51° 03' 30"	-115° 09' 39"	32.3	32.3	67.9	62.1	54.9	48.9	40.6	31.9	28.7	24.7	21.4	16.9	12.1	8.18	3.82
Jumpingpound Creek Near the Mouth	Recorded	51° 09' 16"	-114° 31' 42"	571	571	1035	936	815	711	568	425	374	310	260	193	127	76.8	30.0
Jumpingpound Creek at Township Road No.252	SST using Jumpingpound Creek near the Mouth - Foothills Region Power	51° 07' 41.9"	-114° 34' 03"	474	474	866	785	686	600	482	363	321	267	225	168	112	68.4	27.3
Jumpingpound Creek at the Mouth	SST using Jumpingpound Creek near the Mouth - Foothills Region Power	51° 11' 19"	-114° 30' 05"	601	601	1087	982	855	744	594	444	390	323	270	200	132	79.3	30.8
Bighill Creek at the Mouth	Regional Analysis using Foothills Relationship	51° 10' 53"	-114° 28' 50"	177	99	48.4	45.6	41.8	38.4	33.3	27.4	25.0	21.8	19.1	15.1	10.5	6.55	2.29
West Nose Creek at WSC Station	SST using Nose Creek at Calgary - Foothills Region Power	51° 07' 49"	-114° 02' 54"	275	163	81.4	72.2	61.0	52.5	41.6	31.3	27.6	23.2	20.0	15.6	11.3	7.97	4.17
West Nose Creek at the Mouth	SST using Nose Creek at Calgary - Foothills Region Power	51° 07' 49"	-114° 02' 54"	324	212	104.5	92.4	77.7	66.6	52.4	39.0	34.3	28.7	24.5	19.0	13.6	9.37	4.76
Nose Creek above Airdrie	SST using Nose Creek at Calgary - Foothills Region Power	51° 18' 46"	-114° 01' 37"	247	178	88.4	78.3	66.2	56.8	44.9	33.6	29.7	24.9	21.4	16.6	12.0	8.41	4.36
Nose Creek at Calgary	Recorded	51° 07' 20"	-114° 02' 52"	893	746	348	303	249	209	159	113	97.3	79.0	65.5	48.3	32.3	20.5	8.92
Nose Creek at the Mouth	SST using Nose Creek at Calgary - Foothills Region Power	51° 03' 00"	-114° 01' 00"	986	878	407	353	289	242	184	130	111	90.1	74.4	54.5	36.1	22.7	9.68
Fish Creek at the Mouth	SST based on Threepoint Creek near Millarville and Fish Creek near Priddis	50° 54' 15"	-114° 00' 38"	440	440	1041	943	823	719	577	434	383	318	267	199	132	80.4	31.7
Pine Creek at the Mouth	Foothills Region (RA)	50° 50' 30"	-113° 57' 11"	217	212	99.7	93.1	84.2	76.4	65.0	51.9	46.9	40.1	34.5	26.5	17.7	10.5	3.34
Lott Creek at the Mouth	Foothills Region (RA)	51° 00' 17"	-144° 13' 21"	114	114	55.2	52.0	47.5	43.6	37.7	30.8	28.1	24.4	21.3	16.7	11.6	7.14	2.45
Ware Creek at the Mouth	Mountain Region (RA)	50° 42' 54"	-114° 27' 36"	129	129	263	240	211	187	154	119	107	90.7	78.0	60.7	42.8	28.2	13.0
Threepoint Creek above Ware Creek	Mountain Region (RA)	50° 42' 56"	-114° 27' 34"	136	136	276	252	222	196	161	125	112	95.2	81.8	63.6	44.8	29.5	13.6
Threepoint Creek near Millarville	Recorded	50° 46' 15"	-114° 16' 44"	507	507	1140	1040	914	803	650	495	439	368	312	235	156	96.2	39.8
Threepoint Creek at the Mouth	SST using Threepoint Creek near Millarville - Mountain Region Power	50° 41' 07"	-114° 11' 59"	638	638	1430	1300	1140	1000	810	616	545	457	387	290	192	118	48.7

Table 4.5: Results of Regional Flood Frequency and Single Station Transfer Analysis

1. Where the "Regional Analysis Approach" listed as Mountain and Foothills, instantaneous flood flows were derived using regression formulae presented in the Mountains and Foothills figures

2. Instantaneous flood flows were estimated by applying ratio between effective drainage areas at Redearth Creek and Forty Mile Creek

4.3 Consideration of Historic Flood Information

Bow and Elbow Rivers

In hydrologic assessment terms, historic floods are defined as documented floods which occurred prior to the start of systematic flow monitoring. Historic floods along the Bow River at Calgary are documented to have occurred in 1879, 1897, and 1902. Newspaper reports and local residents indicated that the 1879 flood that was observed on the Bow River was as severe as the flood of 1897. These historic floods have been considered in several previous assessments and studies (including: AENV 1983; Golder 2010; Golder 2014a) and are also being considered in the current study. Including this documented historic flood information improves flood frequency analysis results for the Bow River at Calgary, and the knowledge gained on the impact of the historic flooding can be applied for other locations along the Bow and Elbow Rivers, as detailed below.

The historic flood peak discharges for the Bow River at Calgary, upstream of the Elbow River, have been estimated as $2,265 \text{ m}^3$ /s for both 1879 and 1897, and $1,557 \text{ m}^3$ /s for 1902 (AENV 1983). The largest flood after commencement of systematic monitoring in 1911 occurred in June 2013. WSC estimated the 2013 flood peak discharge for the Bow River at Calgary to be 1,840 m³/s.

Precipitation and air temperature data recorded at three Environment Canada climate stations (i.e., Calgary Airport, Banff, and Kneehill) were examined to assess the validity that the historic floods on the Bow River which occurred in 1897 and 1902 are associated with significant amounts of precipitation in the basin. Plots of the precipitation and air temperature data recorded in 1897 and 1902 are provided in Appendix C.5. The 1897 flood was documented to have occurred on June 18, 1897, and the 1902 flood on July 4, 1902.

The recorded precipitation data are examined as follows:

- The annual total precipitation recorded in 1902 is the highest amount (more than 870 mm at Calgary and more than 770 mm at Banff) on record since 1885.
- The total precipitation over a period of three months (May to July) in 1902 (approximately 580 mm at Calgary, approximately 400 mm at Banff, and approximately 360 mm at Kneehill) is much higher than the 1897 precipitation over the same three month period.
- Large amounts of precipitation (approximately 100 mm) were recorded at the Calgary Airport and Kneehill stations for the four-day period June 14 to 18, 1897, when the historic flood occurred. The total precipitation at the Banff station over the same period was 63 mm.
- During the 1902 flood event, a large amount of precipitation was recorded at the Calgary Airport, while the precipitation recorded at Banff and Kneehill was not as high as Calgary. This indicates that there was noticeable areal variation in precipitation in the upper watershed of the Bow River.
- The 1897 and 1902 floods were likely caused mainly by large rainfalls, because the recorded air temperatures at all stations were higher than the freezing point for more than one month in 1879 and for more than two months in 1902 before the floods.

Analyses of the historic precipitation and air temperature data indicate that the magnitudes of the historic floods observed in Calgary were influenced by the areal distribution and magnitude of precipitation in the upstream watershed. There is some uncertainty with the estimated magnitudes of the historic floods, but it is clear that the

1897 and 1902 floods were caused by large rainfall events (over the majority of the upstream watershed in 1897 and mainly over the watershed area downstream of Banff in 1902).

In this and previous Golder studies (Golder 2010, 2014), the historic Bow River floods were included in the assessment along with the systematically recorded flow data for flood frequency analysis through Calgary. Inclusion of historic flood information is thought to increase the reliability of the flood frequency estimates (particularly for low-probability events) by extending the period of record and capturing more extreme flood events. The statistical method used to incorporate the historical information is outlined in the relatively new United States Geological Survey Bulletin 17C (USGS 2015). This methodology improves and replaces that of the previous Bulletin 17B (USGS 1982) methodology, and allows for a more sophisticated and statistically robust inclusion of pre-systematic, historic flood information described by perception thresholds and flow intervals.

To incorporate knowledge of historic floods at Calgary, flood frequency estimates at select location locations along the Bow and Elbow Rivers were calculated using available systematic flow records and adjusted to account for the relative impact of the historic floods. For the Bow River at Calgary, the flood frequency estimates are based on results from the Bulletin 17C methodology directly (see Figure C.1.15 in Appendix C).

Adjustments for the Elbow River were made based on ratios between the flood frequency estimates calculated for the Bow River at Calgary with and without historic flood information (Table 4.6), which were then applied to the previously-calculated, best-fit distribution flood frequency estimates for the Elbow River using recorded data. Historic flood information was considered for natural/naturalized and regulated estimates for (1) the Bow River between Ghost Dam and Bow River below Elbow confluence and (2) the Elbow River below Bragg Creek.

It is reasonable to assume that the historic floods documented for Bow River at Calgary would have also occurred along both the Bow and Elbow Rivers around and through Calgary but not for Bow River upstream of Ghost Dam due to spatial variation of precipitation within the Bow River basin. For example, the June 2013 flood is roughly considered a 5-year flood at Lake Louise but a 25-year flood at Ghost Reservoir. It is also not realistic to assume that the relative impact of the historic floods extends much farther downstream of Calgary, as significant flood attenuation is expected for the lower Bow River and the effects of historical floods on estimated flood frequency are expected to be small.

Return Period [years]	Adjustment Ratios for the Bow and the Elbow Rivers	Adjustment Ratios for the Highwood River
2	1.01	1.00
5	1.06	1.01
10	1.10	1.02
20	1.15	1.02
35	1.18	1.03
50	1.21	1.03
75	1.23	1.03
100	1.25	1.04
200	1.30	1.04
350	1.34	1.05
500	1.37	1.05
750	1.40	1.06
1,000	1.43	1.06

Table 4.6: Historical Flood Adjustment Ratios Used for Flood Frequency Estimates

Highwood River

Anecdotal evidence suggests that High River was flooded by the Highwood River in the 1880s, prior to the construction of the CPR line in 1894 (NHC 1974). However, a reliable flow estimate is not available. The only documentation is that "a resident recounted a story told by her mother about flooding in High River during the 1880s." NHC noted that "an area extending from the high ridge one mile south of 12th Avenue to two or three miles north of town was covered with water" and "that this early report is the indication of widespread flooding through and to the south of the present High River town site due to overbank flow out of the Highwood River into the Little Bow basin."

Fortunately, the USGS Bulletin 17C methodology allows for inclusion of historic flood events with uncertain flows using observation thresholds and estimated flow intervals over an ungauged period in which a flood has been documented to have occurred.

Based on the rather limited information available about the 1880s flood, it is reasonable to assume that it was more severe than any other flood the resident, her mother, or others had observed at the time of the interview in 1974. If a larger flood had occurred, it is reasonable to assume that it would have been observed and noted. This is not the case and NHC notes that the flood of 1923 "appears to be the first one since the 1880s that placed water within town boundaries," with an estimated unrecorded peak in excess of approximately 650 m³/s. Considering the 1923 estimate upstream of High River and the largest flow recorded at Aldersyde until 1974 (708 m³/s in 1942), it is reasonable to assume that the historical flood was at least approximately 710 m³/s at Aldersyde.

This estimate is also supported by the fact that the historical flood flow causes flooding south of 12th Avenue. Using preliminary hydraulic modelling, Golder determined that a flow upstream of High River between 400 to 500 m³/s would have been required to trigger flooding south of 12th Avenue, similar to the 520 m³/s flow threshold flow needed to cause overflow into the Little Bow River basin by NHC.

Similar to how historic data was considered for the Bow River at Calgary using the Bulletin 17C methodology, frequency analysis was performed using the Highwood River below Little Bow Canal flood peak data series, with and without including the 1880 to 1890 pre-systematic period. Appropriate perception thresholds and flow intervals were assigned for one "flood" year and nine "non-flood" years, using the 710 m³/s threshold determined above.

Flood frequency estimate ratios (see Figure C.1.72 in Appendix C and Table 4.6) calculated at High River, with and without historic flood and pre-systematic flow monitoring period data, were then used to adjust the previously-calculated, best-fit distribution flood frequency estimates at High River below Little Bow Canal and at the mouth.

4.4 Analysis of the Regulated Flood Flow Series

The regulated daily flow series for the Bow River and its tributaries with flow regulation (i.e., Cascade, Spray, Kananaskis and Elbow Rivers) were generated for the period 1930 to 2015 by routing the naturalized daily flow series through the major storage facilities based on the current reservoir operation rules.

The annual maximum daily regulated flow series were converted to the annual maximum instantaneous regulated flow series using the relationships described in Section 3.3. Table A2 in Appendix A provides a summary of the factors used in the conversion.

Table 4.7 presents the resulting flood frequency estimates and the corresponding upper and lower confidence intervals for the regulated flows. The annual maximum instantaneous regulated flow series used in the flood frequency analyses are provided in Appendix C.

It is important to note that limitations of the base analysis methodology do not support the use of regulated flood frequency estimates for flows higher than experienced in the historical record. While reported, regulated flood frequency estimates above the 100-year flood are not recommended for use for design purposes, as they do not consider the capacity of existing reservoirs and over-estimate the ability of regulation to reduce flood peaks.

An alternative method was used to generate improved regulated flood frequency estimates for the Elbow River below Glenmore Dam. The alternate method routed a series of synthetic flood inflow hydrographs through Glenmore Reservoir. The hydrographs were developed with peaks corresponding to the hydrologically-derived, naturalized 2-year to 1,000-year maximum instantaneous flood flows calculated as part of this study. The shape and characteristics of the hydrographs were determined using a methodology developed by Golder as part of study completed for the City of Calgary (Golder 2016b). It is summarized as follows.

- 1) Derive the flood volume corresponding to the hydrographs that contain the naturalized annual maximum instantaneous flood series for Elbow River at Sarcee Bridge (assumed the same as Glenmore Reservoir inflow) for the duration of flood events.
- 2) Establish relationship between flood volumes derived in Step 1 and corresponding naturalized annual maximum instantaneous flood series. For the Elbow River, the flood events in 1915, 1923, 1929, 1932, 1995, 2005, 2008, 2011 and 2013 were considered to establish the relationships (Golder 2016b).
- 3) Estimate total volumes corresponding to the magnitudes of flood frequency estimates derived for the naturalized 2-year to 1000-year maximum instantaneous flood flows.
- 4) Identify a typical hourly inflow flood hydrograph that is representative of the response of the catchment based on the historical records. For the Elbow River, the typical shape of the hourly inflow hydrograph was derived by using flood events of 1995, 2005, 2008, and 2011 (Golder 2016b).
- 5) Establish time from the start of the rise of the flood hydrograph to when flood peak (i.e., time to peak) based on the naturalized annual maximum instantaneous flood series and representative durations of flood events.
- 6) Derive synthetic inflow flood hydrographs considering the total volumes, magnitudes of flood peaks, time to peak for various return periods, and the typical hourly inflow flood hydrograph shape identified in Step 4.

The resulting inflow and outflow hydrographs are provided in Figures C.3.1 to C.3.13 in Appendix C.

WSC Station	WSC Station	Gross	Effective		Distribution										Com	puted Ins	tantaneou		lows with § ³/s)	95% Confi	idence Boı	unds									
ID / Node ID	Name / Location of Interest	Drainage Area (km²)	Drainage Area (km²)	Flow Type ¹	Distribution / Method	100	0-yr*	750)-yr*	500	0-yr*	350)-yr*	200	0-yr*	100)-yr*	75	-yr	50)-yr	35	i-yr	20	0-yr	10	-yr	5-	yr	2.	-yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower												
BOW RIVER																															
Node 105	Bow River below Spray Confluence	2993	2993	R	EV2	621	951 438	601	893 432	574	820 423	550	764 415	513	677 401	468	587 383	450	551 374	425	504 361	402	468 348	368	414 326	326	355 296	282	303 261	220	235 206
Node 107	Bow River below Cascade Confluence	3727	3727	R	3P(MLH)	708	989 516	684	942 506	652	881 492	622	825 478	577	740 456	524	647 428	502	610 416	472	562 400	446	522 384	406	461 359	357	392 324	308	331 285	237	255 222
Node 108	Bow River at Canmore	3870	3870	R	Prorated ²	735	1030 536	710	978 525	677	915 511	646	857 496	599	768 473	544	672 444	521	633 432	490	584 415	463	542 399	422	479 373	371	407 336	320	344 296	246	265 231
05BE004	Bow River			RR	EV2	1400	2030 831	1320	1880 812	1220	1690 783	1140	1540 757	1020	1330 717	887	1110 664	835	1030 641	767	924 610	710	840 580	626	726 532	532	602 470	444	494 404	330	360 308
/ Node 111	near Seebe	5170	5170	R	LP3(MLH)	1020	1750 658	984	1640 650	937	1490 637	897	1370 626	836	1210 608	762	1040 581	732	967 571	691	881 556	655	809 540	599	707	530	598 472	460	501 425	358	381 335
Node 318	Bow River above Ghost Reservoir	5475	5473	R	LP3(MLH)	991	1710 641	958	1600 633	. 912	1450 621	873	1340 609	814	1180 592	742	1010 566	713	941 556	673	858 541	638	788 526	583	688 498	516	582 460	448	487 414	348	371 326
	Bow River below Ghost			RR	Weibull	730	826 607	718	809 599	700	785 588	684	764 579	658	730 561	623	686 537	608	669 527	586	642 512	565	618 497	531	579 472	483	527 436	427	467 389	329	363 300
	Dam (Ghost Reservoir			R	LP3(MLH)	1160	2070 703	1120	1940 693	1060	1770 681	1010	1620 669	937	1410 650	847	1190 623	811	1110 611	761	1000 591	718	914 574	652	786	571	654 502	490	539 447	373	399 349
05BE006 / Node 58	Outflow) Bow River below Ghost Dam (Ghost Reservoir	6550	6550	R	Historical adjustment ratio applied	1650	2950	1570	2720	1450	2430	1360	2180	1220	1840	1060	1490	999	1370	917	1200	848	1080	747	900	630	721	521	573	378	405
	Outflow), historic				to LP3(MLH) ³		1000		972		933		899		846		780		753		712		678		622		554		475		354
	Bow River near Cochrane			R	LP3(MLH)	1230	2240 720	1180	2090 711	1120	1890 698	1070	1730 684	983	1500 662	885	1260 635	845	1180 624	791	1050 605	744	958 588	673	823 556	587	677 511	500	553 455	377	404 352
05BH005 / Node 114	Bow River near Cochrane, historic	7412	7383	R	Historical adjustment ratio applied to LP3(MLH) ³	1750	3190 1030	1650	2930 997	1530	2590 956	1440	2320 919	1280	1950 862	1110	1580 795	1040	1450 769	953	1260 729	879	1130 694	771	943 637	647	747 564	531	588 484	382	410 357
	Bearspaw Reservoir Inflow			R	LP3(MLH)	1230	2290 710	1180	2130 701	1110	1910 686	1060	1750 672	972	1510 652	872	1260 621	832	1170 609	778	1040 589	731	943 571	659	810 542	573	665 497	487	539 441	367	392 342
Node 302	Bearspaw Reservoir Inflow, historic	7712	7672	R	Historical adjustment ratio applied to LP3(MLH) ³	1750	3260 1010	1650	2990 983	1520	2620 940	1420	2350 903	1270	1970 849	1090	1580 777	1030	1440 750	937	1250 710	863	1110 674	755	928 621	632	733 548	518	573 469	372	398 347

WSC Station	WSC	Gross	Effective	Flow	Distribution										Com	puted Ins	tantaneou		ows with 9 ³/s)	95% Confi	dence Bou	Inds									
ID / Node ID	Name / Location of Interest	Drainage Area (km²)	Drainage Area (km²)	Type ¹	Distribution / Method	100	0-yr*	750	-yr*	500	-yr*	350)-yr*	200)-yr*	100)-yr*	75	-yr	50	-yr	35	-yr	20)-yr	10	-yr	5-	yr	2-3	·yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower												
	Bow River below Bearspaw Dam			RR	EV2	5090	9770 911	4430	8330 870	3650	6640 823	3070	5470 785	2350	4020 721	1700	2780 639	1480	2400 610	1230	1930 570	1040	1610 535	808	1210 479	593	843 412	436	591 345	286	347 252
	Bow River below Bearspaw Dam,					2820	5030	2500	4460	2200	3760	2060	3280	1740	2600	1110	1960	1200	1750	1140	1490	1000	1300	840	1030	675	785	500	592	250	392
	extended using Bow River at Calgary - all flows			RR	EV2	2820	1250	2590	1200	2290	1140	2060	1080	1740	998	1410	899	1290	858	1140	801	1020	749	849	674	675	575	528	478	359	336
05BH008	Bow River below Bearspaw Dam, extended				Historical adjustment	1000	7170		6250		5150	0770	4410		3380		2450	1500	2160	1070	1790	4000	1540		1180		866	504	629		398
	using Bow River at Calgary - all flows, historic			RR	ratio applied to EV2³	4020	1780	3630	1680	3140	1560	2770	1450	2260	1300	1770	1130	1590	1060	1370	965	1200	885	972	772	744	634	561	508	364	341
	Bow River below Bearspaw Dam, extended	7770	7730	RR	EV2	1830	4320	1710	3830	1560	3260	1430	2800	1250	2 230	1060	1690	986	1510	891	1280	813	1120	701	896	578	686	469	525	333	367
	using Bow River at Calgary - post 1932 flows				LVZ	1850	740	1710	728	1300	710	1430	695	1230	671	1000	633	900	616	091	594	013	573	701	535	576	484	409	420	555	308
	Bearspaw Reservoir Outflow (assigned			R	LP3(MLH)	1360	2670	1300	2460	1220	2210	1150	1990	1050	1690	935	1400	888	1290	825	1140	772	1020	690	867	594	698	500	557	370	395
	same flows as Bow River at Calgary)					1000	755	1000	744		726		712	1000	685		651		636		614	112	592		559		508	000	449	010	343
Node 59	Bearspaw Reservoir Outflow (assigned same flows			R	Historical adjustment	1940	3800	1820	3450	1670	3030	1540	2670	1370	2200	1170	1750	1090	1590	994	1370	912	1200	790	993	655	770	531	592	375	401
	as Bow River at Calgary), historic				ratio applied to LP3(MLH) ³		1080	1020	1040	1010	995	1010	956		892		815		784		740	012	699		640		560	001	477	0.0	348
	Bow River at Calgary			RR	EV2	2750	4950 1180	2530	4390 1140	2240	3720 1090	2010	3210 1040	1700	2570 965	1370	1940 869	1260	1730 829	1110	1470 774	990	1270 729	828	1010 655	659	769 563	517	580 468	353	385 330
05BH004	Bow River at Calgary, historic	7868	7736	RR	Historical adjustment ratio applied to EV2 ³	3920	7050 1680	3550	6150 1600	3070	5100 1490	2700	4310 1400	2210	3340 1260	1720	2430 1090	1550	2130 1020	1340	1770 932	1170	1500 861	948	1160 750	727	848 621	549	616 497	358	391 335

WSC Station	WSC Station	Gross Drainage	Effective Drainage		Distribution		Ŭ								Com	nputed Ins	stantaneou		lows with [;] ³/s)	95% Confi	idence Boı	unds									
ID / Node ID	Name / Location of Interest	Area (km²)	Area (km²)	Type ¹	/ Method	100	0-yr*	750	-yr*	500)-yr*	350)-yr*	200)-yr*	100)-yr*	75	i-yr	50)-yr	35	i-yr	20)-yr	10)-yr	5-	yr	2-	yr
				-		Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower								
	Bow River below Elbow River			R	LP3(MLH)	1740	3880 894	1650	3510 878	1540	3070 854	1450	2740 837	1310	2290 804	1150	1830 761	1080	1660 743	998	1440 714	926	1280 689	819	1050 645	694	828 582	574	647 509	414	445 381
Node 176	Bow River below Elbow River,	9128	8995	R	Historical adjustment ratio applied	2480	5530	2310	4920	2110	4210	1950	3680	1700	2980	1440	2290	1330	2050	1200	1730	1090	1510	938	1200	765	913	610	688	420	451
	historic Bow River below Nose			R	to LP3(MLH) ³ LP3(MLH)	1660	1270 3480	1580	1230 3160	1460	1170 2770	1370	1120 2460	1230	1050 2070	1080	953 1640	1020	915 1490	935	860 1310	866	814 1160	763	739 959	643	642 756	530	541 596	380	386 409
Node 158	Creek Bow River below Nose Creek,	10114	9656	R	Historical adjustment ratio applied	2370	988 4960 1410	2220	960 4430 1350	2000	924 3800 1270	1840	893 3300 1200	1600	842 2690 1100	1350	777 2050 973	1260	750 1840 924	1130	712 1580 858	1020	676 1370 798	874	620 1100 710	709	549 834 605	563	471 633 501	385	349 415 354
	historic Bow River below Fish Creek			R	to LP3(MLH) ³ LP3(MLH)	1690	3660 979	1600	3330 955	1490	2910 922	1390	2620 891	1250	2140 841	1090	1690 774	1030	1530 749	947	1340 712	877	1180 680	772	977 625	651	768	535	602 475	383	412 351
Node 164	Confluence Bow River below Fish Creek Confluence,	10640	10182	R	Historical adjustment ratio applied to LP3(MLH) ³	2410	5220 1400	2240	4670 1340	2040	3990 1260	1870	3520 1200	1630	2790 1090	1360	2120 969	1270	1890 923	1140	1610 858	1040	1390 803	884	1120 716	718	847 612	569	640 505	389	418 356
	historic Bow River below Pine Creek			R	LP3(MLH)	1680	3680 979	1600	3380 956	1480	2960 923	1390	2610 891	1250	2130 839	1090	1690 773	1030	1530 749	945	1330 711	875	1180 678	770	974 624	649	766 553	534	600 474	382	411 350
Node 177	Bow River below Pine Creek, historic ³	10887	10397	R	Historical adjustment ratio applied to LP3(MLH) ³	2390	5240 1400	2240	4740 1340	2030	4060 1260	1870	3510 1200	1630	27 70 1090	1360	2120 968	1270	1890 923	1140	1600 857	1030	1390 801	882	1120 715	716	845 610	568	638 504	388	417 355
	Bow River above Highwood			R	LP3(MLH)	1690	3730 987	1610	3400 963	1490	2960 928	1400	2620 897	1260	2150 845	1100	1700 779	1030	1530 755	949	1340 719	878	1190 683	773	979 628	651	769 556	536	603 476	383	413 351
Node 331	River Bow River above Highwood River,	11258	10532	R	Historical adjustment ratio applied	2410	5320 1410	2260	4770	2040	4060 1270	1880	3520 1200	1640	2800 1100	1380	2130 975	1270	1890 930	1140	1610 866	1040	1410 807	885	1120 719	718	848 613	570	641 506	389	419 356
Node 165	historic Bow River below Highwood River	15342	14497	R	to LP3(MLH) ³ EV2	5330	11600 1800	4780	9960 1730	4100	8030 1630	3590	6660 1540	2910	4960 1410	2250	3500 1260	2020	3000 3000 1200	. 1740	2450 1120	1520	2060 1040	1240	1570 927	954	1140 785	732	837 646	497	548 458
05BM002	Bow River below	15665	14696	RR	EV2	6120	11300 2360	5550	9950 2250	4820	8250 2100	4260	6980 1980	3500	5450 1790	2730	3990 1570	2460	3510 1470	2120	2940 1340	1860	2490 1250	1500	1930 1080	1130	1410 889	831	997 692	498	589 434
/ Node 178	Carseland Dam	60001	14090	R	3P(MLH)	3790	6830 2190	3550	6270 2090	3240	5570 1960	2970	4950 1840	2570	4090 1650	2150	3220 1460	1980	2900 1380	1770	2480 1260	1590	2160 1170	1330	1720 1030	1050	1270 864	808	931 698	525	578 475
Node 180	Bow River at Hwy. 547	17443	15920	R	3P(MLH)	3540	6390 2010	3320	5870 1920	3040	5180 1810	2780	4610 1710	2410	3840 1550	2020	3020 1370	1860	2730 1300	1660	2340 1200	1500	2040 1100	1260	1620 973	997	1210 822	767	882 666	502	552 454
Node 181	Bow River at Hyw. 842	18028	16344	R	3P(MLH)	3320	6050 1900	3120	5530 1820	2860	4910 1720	2620	4370 1630	2280	3640 1480	1910	2850 1310	1770	2590 1240	1580	2220 1140	1430	1950 1060	1210	1550 941	959	1150 796	741	850 645	487	537 442
Node 189	Bow River below Crowfoot Creek	20169	17672	R	3P(MLH)	3490	6350 1990	3270	5800 1900	3000	5150 1800	2750	4590 1700	2390	3820 1550	2000	3000 1370	1850	2710 1300	1660	2330 1190	1490	2030 1110	1260	1620 982	1000	1200 830	773	886 673	508	560 460

WSC Station	WSC Station	Gross Drainage	Effective Drainage	Flow	Distribution										Com	nputed Ins	tantaneous	s Flood Fl (m [:]		95% Confi	dence Bou	inds									
ID / Node ID	Name / Location of Interest	Area (km²)	Area (km²)	Type ¹	/ Method	1000)-yr*	750	-yr*	500)-yr*	350)-yr*	200	-yr*	100	-yr*	75	-yr	50	-yr	35	-yr	20)-yr	10	-yr	5-	yr	2-	yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower										
05BM004	Bow River below Bassano Dam			RR	EV2	7280	11000 3610	6620	9760 3410	5780	8290 3140	5130	7160 2880	4240	5720 2530	3330	4330 2140	3010	3880 1990	2600	3310 1800	2270	2870 1640	1830	2280 1390	1380	1690 1110	1000	1220 836	580	695 503
/ Node 182	Bow River below Bassano Dam, extended	20253	17751	R	EV2	5210	9870 2100	4740	8670 2020	4150	7260 1890	3690	6160 1800	3060	4780 1650	2430	3500 1480	2200	3090 1400	1920	2580 1300	1700	2220 1210	1400	1730 1070	1090	1290 897	836	965 727	552	580 500
Node 184	Bow River at Hwy. 539	20915	18186	R	EV2	4870	9420 1930	4440	8290 1850	3890	6920 1750	3470	5880 1680	2890	4590 1550	2310	3350 1390	2100	2970 1320	1830	2480 1230	1630	2130 1150	1340	1660 1020	1050	1250 869	811	932 710	541	568 492
Node 185	Bow River at Hwy. 36	21423	18544	R	EV2	4160	7930 1690	3800	6990 1640	3340	5890 1550	2990	5010 1480	2500	3940 1370	2 010	2900 1230	1830	25 70 1180	1600	2150 1090	1430	1860 1020	1180	1460 908	932	1100 773	722	826 633	484	508 441
Node 186	Bow River at Hwy. 875	22307	18878	R	EV2	3840	7230 1640	3530	6430 1590	3120	5410 1510	2800	4640 1440	2370	3680 1330	1910	2730 1210	1750	2430 1150	1540	2050 1070	1380	1780 1000	1150	1410 893	912	1070 762	712	812 625	481	505 438
05BN012	Bow River near the	25280	19160	RR	EV2	5820	12000 1910	5310	10600 1860	4660	8770 1790	4150	7480 1730	3450	5860 1600	2730	4280 1440	2470	3760 1370	2140	3150 1270	1880	2690 1180	1520	2070 1040	1150	1490 860	833	1040 669	473	592 394
/ Node 187	Mouth			R	EV2	5000	9740 2010	4540	8510 1910	3950	7000 1790	3500	5950 1690	2890	4590 1550	2280	3340 1370	2060	2910 1300	1790	2430 1200	1580	2070 1110	1300	1620 981	1000	1200 827	768	889 668	506	532 459
Node 188	Bow River at the Mouth	25612	19306	R	EV2	4650	8880 1900	4230	7810 1830	3710	6500 1730	3300	5590 1630	2740	4330 1500	2170	3160 1330	1970	2760 1260	1720	2320 1160	1520	1980 1080	1260	1570 959	981	1170 812	754	871 658	501	527 455
BOW RIVER TH							78.1		75.3		71.8		69.1		65.5		62.2		61.5		60.9		60.7		60.4		59.8		58.9		55.7
05BD002 / Node 154	Cascade River near Banff	664	664	R	LP3(moment)	63.3	59.1	62.5	58.9	61.4	58.7	60.5	58.5	59.4	58.1	58.4	57.6	58.1	57.4	57.8	57.1	57.6	56.8	57.4	56.4	57.4	56	57.3	55.8	54.8	52.9
05BD003 / Node 207	Lake Minnewanka near Banff, End of Day Elevations ⁷ (m)	647	647	R	LP3(moment)	1475.53	1475.81 1475.42	1475.53	1475.80 1475.42	1475.53	1475.79 1475.41	1475.53	1475.78 1475.41	1475.52	1475.76 1475.40	1475.52	1475.73 1475.39	1475.52	1475.71 1475.39	1475.51	1475.68 1475.39	1475.51	1475.65 1475.39	1475.48	1475.60 1475.38	1475.44	1475.50 1475.37	1475.34	1475.39 1475.27	1474.99	1475.12 1474.82
Node 41	Outflows from Spray	#N/A	#N/A	R	EV3	127	148 111	126	144 110	123	140	121	135 108	117	128 106	111	119 102	109	115 100	105	110 97.3	101	104 93.8	93.7	96.8 87	83.6	88.1 76.2	71.2	77.8 63.3	47.8	55.6 40.8
Node 43	Lake Transalta's Diversion from Spray River to Bow River at Canmore	#N/A	#N/A	R	EV3	66.3	62.8	66.2	72.3 62.8	66.1	71.9 62.8	66	71.6 62.8	65.8	70.8 62.7	65.4	69.6 62.6	65.1	68.9 62.5	64.7	67.8 62.3	64.2	66.7 62.1	63	64.5 61.6	60.8	61.3 59.6	56.9	58.4	45.2	<u>49.9</u> 39.9
05BC006 / Node 201	Spray Reservoir at Three Sisters Dam, End of Day Elevations ⁷ (m)	481	481	R	LP3(moment)	1698.94	1699.72 1698.34	1698.93	1699.68 1698.34	1698.91	1699.61 1698.34	1698.89	1699.55 1698.34	1698.86	1699.45 1698.34	1698.79	1699.28 1698.32	1698.75	1699.20 1698.31	1698.69	1699.08 1698.29	1698.63	1698.96 1698.27	1698.49	<u>1698.74</u> 1698.20	1698.25	1698.42 1698.05	1697.88	1698.03 1697.65	1696.83	1697.20 1696.39
05BC002 / Node 51	Spray River near Spray Lake, reduced simulated watershed	362	362	R	3P(MLH)	692	1230 183	616	1080 175	526	899 165	450	752 155	348	563 140	250	392 122	217	333 113	176	262 102	144	210 90.4	104	146 70.0	66.1	88.6 47.8	39.5	56.1 30.5	17.2	26.7 14.8
05BC001	Spray River at Banff, after 1951	751	751	RR	EV2	382	788 62.2	327	653 58.9	262	505 54.8	216	407 51.6	160	286 47.0	110	186 40.6	94.7	156 38.2	76.4	122 34.9	63.2	97.2 32.6	47.0	68.8 28.4	32.6	45.3 23.4	22.6	29.3 18.5	13.4	15.9 12

WSC Station	WSC Station	Gross Drainage	Effective Drainage	Flow	Distribution		0								Con	nputed Ins	tantaneou		lows with § ³/s)	5% Confi	idence Boi	unds									
ID / Node ID	Name / Location of Interest	Area (km²)	Area (km ²)	Type ¹	/ Method	100)-yr*	750	-	500)-yr*)-yr*	200)-yr*	100)-yr*		-yr)-yr		-yr)-yr	10	-yr		yr		-yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
Node 61	Kananaskis River Outflow from Upper Kananaskis Lake	#N/A	#N/A	R	3P(MLH)	106	145 78.9	102	137 76.2	95.5	127 72.7	89.9	118 69.3	81.6	104 64.1	72.1	89.7 58.3	68.3	83.8 56.1	63.2	76.3 52.6	58.9	70 49.7	52.3	60.8 45.3	44.7	50.5 39.8	37.4	41.3 34.1	27.8	30 24.9
Node 62	Kananaskis River Outflow from Pocaterra	#N/A	#N/A	R	Weibull	169	193 128	164	186 124	156	177 120	149	169 115	138	157 108	124	142 99.7	118	135 95.6	110	126 90.3	103	119 85.3	92.3	106 77.9	78.6	89.8 68	65	73.6 58.1	46.9	51.3 43.9
Node 63	Kananaskis River Outflow from Barrier Dam	#N/A	#N/A	R	EV2	1060	2820 300	950	2380 291	817	1890 277	715	1540 265	580	1120 249	447	772 227	401	661 217	344	531 203	300	438 190	242	324 171	184	226 146	138	158 120	88.3	99.7 79.6
05BF001	Kananaskis River near Seebe, after 1946	933	933	RR	EV2	835	1530 309	728	1300 287	600	1030 256	507	837 235	389	615 198	281	426 161	246	367 147	204	299 130	173	249 116	134	187 97	98.4	132 76.3	72.0	92.5 58.9	46.6	55.8 41.8
05BG010	Ghost River above Waiparous Creek	485	485	RR	EV2	1870	3060 201	1560	2550 188	1210	1990 169	966	1610 154	678	1140 134	437	755 111	363	636 103	280	497 88.9	222	397 80.2	154	279 66.8	95.7	176 51.0	57.6	104 35.3	25.3	40.5 18.7
05BG001	Ghost River near Cochrane	911	911	RR	3P(MLH)	1050	3230 529	957	2830 489	844	2360 442	744	1970 401	607	1470 343	466	1010 276	415	857 251	350	678 219	298	543 191	228	379 155	157	233 113	100	135 75.9	44.5	55.0 34.3
	Elbow River below Glenmore			RR R	EV2 3P(MLH)	895 810	2080 311 1590	810 748	1800 298 1430	703 672	1460 284 1250	620	1220 268 1090	507 507	916 244 872	394 405	646 217 656	354 367	558 206 580	304 318	457 190 486	265 277	379 174 409	212 221	285 151 307	158 161	199 122 210	113 111	136 93.4 136	64 57	77 55 66.1 48
05BJ001 / Node 161	Dam Elbow River below Glenmore Dam, historic	1236	1236	R	Historical adjustment ratio applied to 3P(MLH) ³	1150	433 2270 617	1050	408 2000 572	921	377 1710 517	604 811	348 1460 467	660	305 1130 397	507	255 821 319	452	237 715 292	383	212 585 255	327	190 483 224	253	159 352 182	178	123 232 136	118	88.7 145 94.3	57.6	48 67.1 48.7
	Elbow River below Glenmore Dam			R	Alternative method ⁸	1974	n/a n/a	1747	n/a n/a	1522	n/a n/a	1266	n/a n/a	1003	n/a n/a	669	n/a n/a	494	n/a n/a	357	n/a n/a	242	n/a n/a	160	n/a n/a	160	n/a n/a	157	n/a n/a	70	n/a n/a
Node 213	Glenmore Reservoir, End of Day Elevations ⁷ (m)	1224	1224	R	3P(MLH)	1076.47	1080.60 1075.60	1076.42	1080.17 1075.57	1076.37	1079.62 1075.54	1076.31	1079.14 1075.49	1076.21	1078.44 1075.40	1076.09	1077.71 1075.31	1076.04	1077.42 1075.28	1075.96	1077.06 1075.24	1075.88	1076.76 1075.18	1075.76	1076.34 1075.08	1075.58	1075.95 1075.00	1075.36	1075.63 1074.92	1074.95	1075.05 1074.78
HIGHWOOD RI					1																										
	Highwood River below Little Bow Canal			RR	3P(MLH)	6190	15400 1280	5470	13200 1210	4610	10800 1120	3900	8780 1010	2960	6310 854	2080	4110 707	1780	3400 649	1410	2580 560	1140	1990 490	799	1310 396	487	748 283	274	425 183	106	170 81.8
05BL004	Highwood River below Little Bow Canal, extended	1953	1953	RR	EV2	2650	3860 1460	2350	3370 1330	1980	2780 1170	1700	2360 1030	1340	1810 848	992	1310 663	873	1140 602	728	941 518	619	791 450	476	598 360	336	419 263	229	282 185	118	142 100
	Highwood River below Little Bow Canal, extended, historic			RR	Historical adjustment ratio applied to EV2 ⁴	2810	4090 1550	2480	3560 1400	2080	2920 1230	1780	2470 1080	1400	1890 885	1030	1360 687	903	1180 623	750	970 534	636	813 462	486	611 368	341	426 267	231	285 187	118	142 100

WSC Station	WSC Station	Gross	Effective Drainage		Distribution										Com	puted Ins	tantaneou		lows with 9 ³/s)	95% Confi	dence Boı	inds									
ID / Node ID	Name / Location of Interest	Area (km²)	Area (km²)	Type ¹	/ Method	100	0-yr*	750)-yr*	500	-yr*	350)-yr*	200	-yr*	100	-yr*	75	-yr	50	-yr	35	-yr	20)-yr	10	-yr	5-	yr	2-	yr
						Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower								
	Highwood River near the Mouth			RR	3P(MLH)	4700	14000 1900	4300	12400 1780	3800	10400 1610	3360	8810 1470	2750	6730 1270	2130	4670 1050	1900	3970 960	1610	3130 852	1370	2520 763	1050	1780 624	728	1100 467	467	644 326	205	263
05BL024	Highwood River near the Mouth, extended	3952	3941	RR	EV2	4880	7720 2640	4320	6660 2400	3630	5430 2110	3110	4520 1870	2440	3440 1550	1790	2440 1210	1580	2110 1090	1310	1730 932	1110	1440 806	853	1080 642	602	748 471	409	505 330	211	253 180
	Highwood River near the Mouth, extended, historic			RR	Historical adjustment ratio applied to EV2 ⁴	5170	8170 2790	4560	7030 2530	3820	5710 2220	3260	4740 1960	2550	3590 1620	1860	2530 1250	1630	2180 1130	1350	1780 960	1140	1480 828	872	1100 656	612	760 479	413	510 333	212	254 180
	Highwood River at the Mouth			RR	Prorated ⁵	4930	7800 2670	4360	6720 2420	3670	5480 2130	3140	4560 1890	2460	3470 1570	1810	2460 1220	1600	2130 1100	1320	1750 941	1120	1450 814	861	1090 648	608	755 476	413	510 333	213	255 182
Node 172	Highwood River at the Mouth, historic	3991	3964	RR	Prorated⁵	5220	8260 2830	4600	7090 2560	3860	5760 2240	3290	4780 1980	2570	3620 1640	1880	2550 1270	1650	2200 1140	1360	1800 970	1150	1490 836	880	1110 662	618	767 484	417	515 336	214	256 182
05BL015	Little Bow Canal at High River	N/A ⁶	N/A ⁶	Canal	3P(MLH)	23.8	42 12.6	22.1	38.1 12	19.9	33.6 11	18.0	29.7 10.2	15.2	24.3 9.06	12.2	18.6 7.64	11.1	16.6 7.11	9.62	13.9 6.38	8.42	11.9 5.74	6.72	9.11 4.84	4.89	6.28 3.75	3.33	4.06 2.72	1.6	1.89 1.33
05AC930	Little Bow River at Highway No. 533	792	312	RR	EV2	1040	1520 15.2	832	1250 15.1	609	952 14.5	463	754 14.1	301	568 13.7	176	397 12.9	141	341 12.4	103	275 11.7	77.8	225 11	50	163 9.73	28.6	105 8.05	15.9	62.5 6.34	6.39	21.3 4.2

* Regulated flood frequency estimates above the 75-year flood are not recommended for use for design purposes, as they do not consider the capacity of existing reservoirs and over-estimate the ability of regulation to reduce flood peaks

1. Series Type: RR: Recorded Regulated Flows; R: Regulated Flows

2. Prorated: Instantaneous flood flows and confidence bounds were estimated by applying ratio between effective drainage areas at Node 108 and Node 107

3. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling the frequency analysis for Bow River at Calgary with and without historic floods (by applying a percentage multiplier to each return period) 4. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling the frequency analysis for Highwood River below Little Bow with and without historic floods (by applying a percentage multiplier to

each return period)

5. Prorated: Instantaneous flood flows and confidence bounds were estimated by applying ratio between effective drainage areas at Node 172 and WSC station 05BL024

6. Drainage areas for point of diversion cannot be defined

7. Lake Level in metres above sea level

8. Alternative Method: Inflow Design Floods generated based on historically adjusted flood for Elbow at Sarcee were routed through Glenmore Reservoir based on Operation rules provided by the City of Calgary

5.0 COMMENTARY ON THE EFFECTS OF CLIMATE CHANGE

Recent studies on the effect of climate change (e.g., Martz et al. 2007; Valeo et al. 2007) indicate that climate change could result in increased air temperature, more frequent drought and water shortages, increased precipitation in some areas, and increased flooding. As a result of climate change and variability, many regions of Canada, including the Prairies, could experience warmer air temperatures and changes in stream flow magnitude and timing (e.g., higher winter stream flows and lower summer stream flows).

Prediction of future scenarios depends on the climate model used for the prediction. Precipitation is projected to increase in Alberta, with less precipitation falling as snow and more rainfall-on-snow events (Valeo et al. 2007). Such changes in precipitation patterns could increase the frequency and intensity of extreme events (i.e., flood, drought, hail, and windstorms). For the Bow River watershed, it is predicted that if rain-on-snow events occur more frequently and the snowpack begins to melt earlier, then flood events could occur earlier in the spring than in the past.

Using the predictions from the Canadian Regional Climate Model, Valeo et al. (2007) showed that May precipitation could increase by more than 35 percent under a $2xCO_2$ scenario. The resulting increases in precipitation in May could nearly double spring peak flows.

Islam and Gan (2015) used a physically-based land surface scheme, the Modified Soil Biosphere Atmosphere (MISBA), to assess the future stream flows in the South Saskatchewan River Basin of Alberta, which includes the Bow River and its tributaries, under the combined impacts of climate change and El Nino Southern Oscillation (ENSO). Under climate change projections alone or under a combined impact of climate change and ENSO, the annual mean flows for the Bow River Bow River and its tributaries (Elbow, Highwood and Sheep Rivers) are projected to decrease. However, the mean spring (March to May) flow in the Bow River at Calgary is projected to increase by 6%, 16%, and 23% in 2020s, 2050s, and 2080s, respectively. In contrast, the mean summer (June to August) flows in the Bow River and its tributaries (Elbow, Highwood and Sheep Rivers) are projected to decrease by 25%, 26%, and 28% in 2020s, 2050s, and 2080s, respectively.

The 2013 floods in the Bow and Elbow River basins have been the largest floods since 1932, as illustrated in Figure 5.1. Based on the recorded flow data for the past 103 years (i.e., 1911 to 2013), the annual peak flows do not appear to be trending upward in the Bow River or Elbow River. The trend in the Bow River appears to be a decreasing one, likely due to flow regulation at TransAlta's hydropower reservoirs on the Bow River and its tributaries. There is no trend in the annual peak flows in the Elbow River. Any trend shown in Figure 5.1 is not statistically significant.

About 80 percent of the recorded annual peak flows in the Bow and Elbow Rivers occurred between the ends of May and June (see Table 5.1 and Figure 5.2). The frequency of annual peak flows occurring outside this time window (earlier or later) does not appear to be changing with time. The recent patterns in the timing of these peak flows are similar to what were observed at the beginning of the century. There is no clear evidence that the patterns in magnitude or timing of annual peak flows have changed significantly over the past hundred years.

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

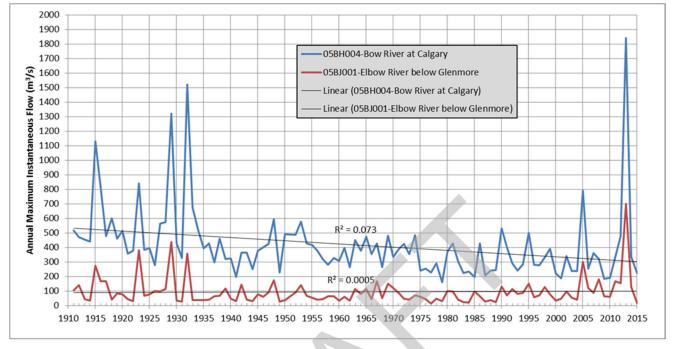


Figure 5.1: Annual Flood Peak Flows in the Bow and Elbow Rivers in Calgary

Month		of Annual Maximum Daily nce 1911		es of Annual Maximum Daily Since 1911
	Number	%	Number	%
April	-	-	4	4
Мау	9	9	25	24
June	75	72	59	57
July	16	15	7	7
August	3	3	8	8
September	1	1	4	4

Table 5.1: Timings of Annual Maximum Daily Flows in the Bow and Elbow Rivers

AEP - BOW, ELBOW, HIGHWOOD, AND SHEEP RIVER HYDROLOGY ASSESSMENT

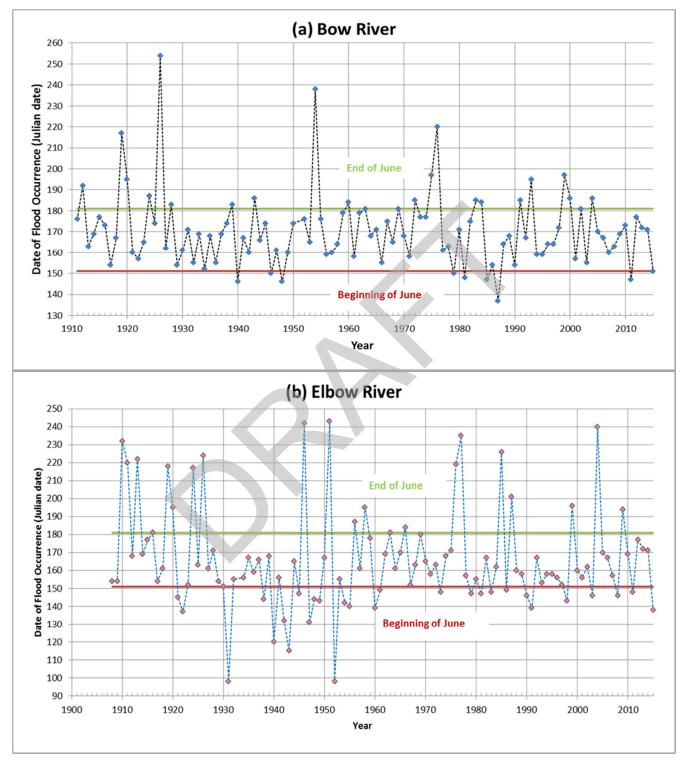


Figure 5.2: Timings of Past Annual Peak Flows in the Bow and Elbow Rivers

6.0 CONCLUSIONS

The results of this study support the following conclusions:

- The flood frequency estimates obtained in this study are the most up-to-date for the various locations along the Bow, Elbow, Highwood, and Sheep Rivers and their tributaries. These estimates provide the updated flood hydrology information as input to the River Hazard Studies being completed under the Provincial Flood Hazard Identification Program, as well as flood mitigation and other projects.
- This study includes June 2013 flood flow data for the Bow River Basin and other river basins along the eastern mountain slopes in southern Alberta. It also includes preliminary estimates of the annual maximum flows in 2013, 2014 and 2015. Inclusion of additional flow information, particularly for the large 2013 floods, increases the sample sizes for flood frequency analyses, and the reliability of resulting flood frequency estimates.
- Consideration of historic flood information (i.e., 1879, 1897 and 1902 floods) for updating the flood frequency estimates for the Elbow River increases the reliability of results for the Elbow River.
- The reliability of the Highwood River flood frequency estimates is increased by including in the analysis the anecdotal evidence about a historic flood of the 1880's.
- Application of the RBAT and WRMM models, including use of the SSARR channel routing procedures, provides an accurate basis to simulate and account for the storage effects of the various reservoirs in the Bow River basin. The resulting natural/naturalized and regulated flood flow series provide good data sets for the flood frequency analyses.

Table 6.1 summarizes the recommended estimates of instantaneous flood peak discharges for return periods ranging from the 2-year flood to the 1,000-year flood for natural/naturalized flow conditions. The 95% upper and lower confidence intervals are provided where applicable.

The maximum recorded length available and used in the flood frequency are less than 100 years, except the two locations on Bow River (Bow at Banff and Bow at Calgary). Hence, there are significant uncertainties (i.e., the confidence intervals are very large) with flood frequency estimates for return periods greater than the 100-year.

WSC Station	WSC Station Name /	Effective Drainage	Distribution										Com	puted Ins	tantaneous	s Flood Fl (m ⁱ		5% Confi	idence Bou	nds									
/ Node ID	Location of Interest	Area (km ²)	/ Method	100	00-yr	75	0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr		5-yr	50	0-yr	3	ō-yr	20)-yr	1	0-yr	5	-yr		-yr
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
BOW RIVER																													
05BA001	Bow River at Lake Louise	422	EV2	182	304 95.8	172	279 94.2	159	247 92.3	149	222 90.1	135	191 86.7	118	156 81.9	111	145 80	102	129 77	95.1	117 74.3	84.6	101 70	72.7	83.3 63.9	61.9	68.7 56.7	48.2	51.9 45.4
05BB001	Bow River at Banff	2210	EV2	554	754 425	538	715 418	517	667 410	498	630 401	468	576 389	431	509 369	416	483 360	394	450 346	375	422 333	346	380 313	308	333 285	269	288 253	211	225 200
Node 105	Bow River below Spray River	2993	3P(MLH)	844	1230 593	811	1160 578	769	1070 560	729	997 542	670	883 514	602	763 479	574	716 464	537	653 443	505	598 425	456	524 395	398	440 358	341	368 315	264	283 248
Node 107	Bow River below Cascade River	3727	3P(MLH)	1050	1590 725	1010	1490 707	956	1380 682	905	1270 659	829	1130 621	742	966 577	707	902 559	659	821 533	618	752 509	556	652 474	481	542 426	409	445 374	311	331 291
Node 108	Bow River at Canmore	3870	Prorated ¹	1090	1650 753	1050	1550 734	993	1430 708	940	1320 684	861	1170 645	770	1000 599	734	937 580	684	852 553	642	781 529	577	677 492	499	563 442	425	462 388	323	344 302
Node 109	Bow River above Kananaskis	4199	Interpolated ²	1270	2220 773	1210	2040 755	1130	1810 731	1060	1640 708	957	1400 670	843	1140 624	798	1060 605	738	942 578	689	853 554	614	726 515	527	595 464	446	485 407	338	360 317
Node 110	Bow River below Kananaskis	5139	EV2	1770	3850 831	1660	3430 817	1510	2910 795	1400	2540 776	1230	2050 742	1050	1550 694	983	1400 678	894	1200 649	822	1060 624	719	868 582	606	687 526	505	551 462	380	407 358
05BE004 / Node 111	Bow River near Seebe	5170	EV2	1760	3520 903	1650	3160 883	1510	2720 858	1400	2390 837	1240	1940 794	1060	1510 743	994	1370 718	906	1190 687	834	1050 657	731	878 607	616	703 541	513	562 470	384	414 360
Node 318	Bow River above Ghost Reservoir	5473	Prorated ¹	1860	3730 956	1750	3340 935	1600	2880 908	1480	2530 886	1310	2050 840	1120	1600 786	1050	1450 760	959	1260 727	883	1110 695	774	929 643	652	744 573	543	595 498	406	438 381
05BE006 / Node 58	Bow River below Ghost Dam (Ghost Reservoir Outflow), historic	6550	Historical adjustment ratio applied to LP3(MLH) ³	2390	4730 1450	2230	4280 1380	2030	3690 1300	1850	3210 1220	1610	2590 1120	1350	1980 994	1260	1770 945	1130	1530 875	1030	1330 817	878	1080 728	718	830 624	577	640 521	408	437 379
05BH005 / Node 114	Bow River near Cochrane, historic	7383	Interpolated ²	3270	6650 1890	3020	5890 1780	2690	5000 1650	2420	4300 1540	2060	3 410 1370	1680	2540 1190	1540	2240 1120	1360	1890 1030	1220	1930 946	1010	1280 822	800	955 683	619	696 554	413	445 383
Node 302	Bearspaw Reservoir Inflow, historic	7672	Assigned the same flows as Bow River at Calgary	3580	7320 2040	3290	6450 1920	2920	5460 1770	2620	4680 1650	2220	3700 1460	1790	2730 1260	1630	2400 1180	1440	2020 1080	1280	1730 991	1060	1350 854	829	998 703	634	716 566	415	448 385
05BH004 / Node 59	Bow River at Calgary, historic	7736	Historical adjustment ratio applied to LP3(MLH) ³	4880	9970 2780	4400	8630 2570	3790	7080 2300	3330	5940 2100	2710	4510 1790	2090	3190 1480	1880	2770 1360	1610	2260 1210	1400	1890 1080	1120	1430 902	845	1020 717	627	708 560	401	433 372
Node 176	Bow River below Elbow River	8995	Concurrent ⁸	5310	7930 4230	4820	7080 3840	4190	6040 3350	3710	5240 2990	3050	4180 2470	2390	3140 1970	2150	2780 1780	1860	2340 1560	1630	2010 1390	1310	1560 1130	996	1150 882	739	816 675	464	497 434
Node 158	Bow River below Nose Creek	9656	Coincident ^₄	5370	10500 3270	4880	9110 3050	4240	7530 2750	3760	6370 2530	3090	4890 2170	2420	3520 1810	2180	3070 1660	1890	2540 1490	1650	2140 1330	1330	1640 1110	1010	1180 882	746	827 679	465	497 436
Node 164	Bow River below Fish Creek	10182	Coincident ^₄	6100	8720 5020	5480	7740 4500	4700	6550 3860	4120	5650 3400	3340	4470 2760	2580	3330 2160	2310	2940 1940	1980	2460 1680	1730	2110 1490	1380	1630 1200	1040	1190 926	762	839 698	469	502 439
Node 177	Bow River below Pine Creek	10397	Coincident ^₄	6180	11300 4080	5560	9790 3730	4770	8060 3280	4180	6790 2950	3390	5190 2470	2620	3720 2010	2350	3240 1830	2020	2670 1620	1760	2250 1440	1400	1710 1180	1050	1220 922	770	851 703	472	504 443
Node 331	Bow River above Highwood River	10532	Prorated ¹	6260	8880 5180	5630	7890 4650	4830	6680 39 90	4240	5770 3520	3440	4570 2860	2660	3410 2240	2380	3010 2010	2040	2520 1740	1780	2160 1540	1420	1670 1240	1070	1220 956	780	857 716	478	511 448
Node 165	Bow River below Highwood River	14497	EV2	7180	16300 2250	6390	13800 2150	5420	11000 2000	4690	8980 1900	3750	6620 1740	2840	4520 1530	2530	3860 1450	2150	3100 1330	1870	2590 1240	1500	1950 1100	1140	1380 931	867	1000 762	582	644 538
05BM002 / Node 178	Bow River below Carseland Dam	14696	EV2	6770	15100 2380	6080	12900 2280	5240	10500 2130	4590	8670 2010	3730	6500 1830	2880	4580 1620	2590	3960 1540	2230	3220 1420	1950	2690 1320	1580	2020 1170	1210	1460 983	917	1050 797	604	677 550
Node 180	Bow River at Hwy. 547	15920	Interpolated ²	7090	13000 2860	6370	11300 2720	5480	9480 2510	4790	8010 2340	3890	6460 2070	2990	4580 1800	2690	3970 1700	2310	3240 1540	2010	2720 1420	1620	2060 1230	1230	1480 1010	923	1060 805	599	669 548
Node 181	Bow River at Hwy. 842	16344	Interpolated ²	7210	12300 3030	6470	10800 2870	5560	9120 2650	4870	7770 2450	3950	6450 2160	3030	4580 1860	2720	3970 1750	2330	3250 1580	2030	2730 1450	1630	2070 1250	1240	1490 1020	925	1070 807	597	667 547
Node 189	Bow River below Crowfoot Creek	17672	Interpolated ²	7560	10000 3550	6790	9130 3340	5820	8020 3070	5090	7050 2810	4120	6400 2420	3150	4580 2060	2820	3980 1920	2420	3280 1710	2100	2770 1550	1680	2120 1320	1260	1520 1050	932	1080 816	591	658 545
05BM004 / Node 182	Bow River below Bassano Dam, extended	17751	LP3(MLH)	7580	9900 3580	6810	9030 3370	5840	7950 3090	5100	7010 2830	4130	6400 2440	3160	4580 2070	2830	3980 1930	2420	3280 1720	2100	2770 1560	1680	2120 1320	1260	1520 1050	932	1080 816	591	658 545
Node 184	Bow River at Hwy. 539	18186	Interpolated ²	6660	9490 3270	6030	8660 3090	5240	7640 2840	4620	6740 2610	3790	5960 2280	2950	4350 1940	2660	3810 1820	2300	3170 1630	2010	2690 1480	1620	2070 1260	1230	1490 1020	913	1060 795	581	645 533

WSC Station	WSC Station Name /	Effective	Distribution										Com	outed Ins	tantaneous			5% Confi	dence Bou	inds									
ID / Node ID	Location of Interest	Drainage Area (km ²)	/ Method	100	00-yr	75	0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr	(m [.] 75	5-yr	50)-yr	35	i-yr	20)-yr	1(0-yr	5	-yr	2.	-yr
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower								
Node 185	Bow River at Hwy. 36	18544	Interpolated ²	5910	9160 3020	5390	8360 2850	4740	7390 2640	4220	6510 2430	3510	5590 2140	2780	4160 1840	2520	3680 1720	2190	3080 1560	1930	2630 1420	1570	2040 1220	1200	1470 989	898	1050 778	573	635 524
Node 186	Bow River at Hwy. 875	18878	Interpolated ²	5200	8840 2780	4790	8080 2630	4280	7150 2450	3850	6300 2260	3250	5260 2020	2620	3990 1740	2390	3550 1630	2100	3000 1490	1860	2570 1360	1530	2000 1180	1180	1450 964	884	1030 762	565	625 515
05BN012 / Node 187	Bow River near the Mouth	19160	3P(MLH)	4610	8580 2580	4290	7840 2450	3890	6950 2290	3540	6120 2120	3030	4970 1910	2490	3840 1660	2280	3440 1560	2020	2930 1430	1800	2520 1310	1490	1970 1140	1160	1430 942	872	1020 749	559	617 507
Node 188	Bow River at the Mouth	19306	Assigned the same flows as 05BN012 ⁶	4610	8580 2580	4290	7840 2450	3890	6950 2290	3540	6120 2120	3030	4970 1910	2490	3840 1660	2280	3440 1560	2020	2930 1430	1800	2520 1310	1490	1970 1140	1160	1430 942	872	1020 749	559	617 507
BOW RIVER T	RIBUTARIES		COBINETE																										<u> </u>
05BB003 / Node 305	Forty Mile Creek near Banff	133	Transferred using Redearth Creek based on ratio of drainage area	57.3	n/a n/a	55.9	n/a n/a	53.8	n/a n/a	51.9	n/a n/a	49	n/a n/a	45.2	n/a n/a	43.7	n/a n/a	41.4	n/a n/a	39.4	n/a n/a	36.2	n/a n/a	32.1	n/a n/a	27.6	n/a n/a	20.8	n/a n/a
Node 306	Forty Mile Creek at the Mouth	148	Transferred using Redearth Creek based on ratio of drainage area	57.3	n/a n/a	55.9	n/a n/a	53.8	n/a n/a	51.9	n/a n/a	49	n/a n/a	45.2	n/a n/a	43.7	n/a n/a	41.4	n/a n/a	39.4	n/a n/a	36.2	n/a n/a	32.1	n/a n/a	27.6	n/a n/a	20.8	n/a n/a
05BC001 / Node 106	Spray River at Banff	751	EV2	432	802 218	402	720 210	363	613 200	332	536 191	287	434 179	240	336 163	222	303 156	199	262 145	180	229 137	154	187 123	125	145 106	99.2	111 88.1	68.2	75.1 62.8
05BD002 / Node 154	Cascade River near Banff	664	EV2	423	938 187	390	824 181	348	686 172	314	583 165	268	453 154	219	336 140	201	296 133	178	248 124	159	214 116	134	169 104	106	125 88.2	82.7	94.4 72.6	54.9	61.6 49.9
Node 307	Cougar Creek at the Mouth	43	Regionalization⁵	89	n/a n/a	81.4	n/a n/a	71.9	n/a n/a	64.0	n/a n/a	53 .0	n/a n/a	41.5	n/a n/a	37.4	n/a n/a	32.0	n/a n/a	27.7	n/a n/a	21.8	n/a n/a	15.6	n/a n/a	10.5	n/a n/a	4.88	n/a n/a
Node 308	Policeman's Creek at Canmore	10	Regionalization⁵	22.4	n/a n/a	20.5	n/a n/a	18.2	n/a n/a	16.3	n/a n/a	13.6	n/a n/a	10.8	n/a n/a	9.80	n/a n/a	8.47	n/a n/a	7.41	n/a n/a	5.92	n/a n/a	4.32	n/a n/a	2.96	n/a n/a	1.4	n/a n/a
Node 309	Stoneworks Creek at Hwy. 1	6	Regionalization⁵	13.5	n/a n/a	12.4	n/a n/a	11.0	n/a n/a	9.9	n/a n/a	8.3	n/a n/a	6.6	n/a n/a	5.99	n/a n/a	5.2	n/a n/a	4.56	n/a n/a	3.66	n/a n/a	2.7	n/a n/a	1.86	n/a n/a	0.886	n/a n/a
Node 310	Exshaw Creek at Exshaw	32	Regionalization⁵	67.9	n/a n/a	62.1	n/a n/a	54.9	n/a n/a	48.9	n/a n/a	40.6	n/a n/a	31.9	n/a n/a	28.7	n/a n/a	24.7	n/a n/a	21.4	n/a n/a	16.9	n/a n/a	12.1	n/a n/a	8.18	n/a n/a	3.82	n/a n/a
05BF025 / Node 56	Kananaskis River below Barrier Dam	899	EV2	691	1510 231	623	1290 222	537	1040 210	472	865 200	386	648 184	300	457 166	270	396 159	234	326 148	205	275 139	168	213 125	130	157 106	100	114 88.3	68	74.8 62.8
05BG010	Ghost River above Waiparous Creek, extended with diversion added	485	EV2	1160	1930 450	990	1610 404	790	1250 343	648	1010 297	474	718 238	320	474 179	272	398 157	216	311 131	175	250 111	126	177 85.2	82.2	114 60	51.7	70.1 40.2	24	30.5 20
05BG006	Waiparous Creek near the Mouth, extended	333	3P(MLH)	692	1200 410	630	1080 378	553	925 339	487	794 303	395	623 253	301	455 200	267	397 181	224	325 155	190	268 135	144	196 105	97.9	127 74.3	61.6	76.4 48.8	26.3	32 21.3
05BG001 / Node 316	Ghost River near Cochrane, extended with diversion added	911	LP3(MLH)	1960	8410 741	1710	6670 680	1420	4860 596	1190	3670 536	909	2420 451	642	1440 352	553	1150 317	446	843 271	367	639 234	267	410 184	174	239 129	108	137 85.3	48.6	59 39.4
Node 317	Ghost River at the Mouth	940	Assigned the same flows as 05BG001	1960	8410 741	1710	6670 680	1420	4860 596	1190	3670 536	909	2420 451	642	1440 352	553	1150 317	446	843 271	367	639 234	267	410 184	174	239 129	108	137 85.3	48.6	59 39.4
05BH015	Jumpingpound Creek at Township Road No. 252, extended	474	Transferred using Jumpingpound Creek near the Mouth - Foothills Region Power	866	n/a n/a	785	n/a n/a	686	n/a n/a	600	n/a n/a	482	n/a n/a	363	n/a n/a	321	n/a n/a	267	n/a n/a	225	n/a n/a	168	n/a n/a	112	n/a n/a	68.4	n/a n/a	27.3	n/a n/a
05BH009	Jumpingpound Creek near the Mouth, extended	571	3P(MLH)	1030	2250 488	936	2000 448	815	1670 404	711	1410 363	568	1070 306	425	747 241	374	638 217	310	505 186	260	407 160	193	287 125	127	177 87.5	76.8	102 56.5	30	39.7 22.3
Node 174	Jumpingpound Creek at the Mouth	601	Transferred using Jumpingpound Creek near the Mouth - Foothills Region Power	1087	n/a n/a	982	n/a n/a	855	n/a n/a	744	n/a n/a	594	n/a n/a	444	n/a n/a	390	n/a n/a	323	n/a n/a	270	n/a n/a	200	n/a n/a	132	n/a n/a	79.3	n/a n/a	30.8	n/a n/a
Node 322	Bighill Creek at the Mouth	99	Regionalization ⁵	48.4	n/a n/a	45.6	n/a n/a	41.8	n/a n/a	38.4	n/a n/a	33.3	n/a n/a	27.4	n/a n/a	25	n/a n/a	21.8	n/a n/a	19.1	n/a n/a	15.1	n/a n/a	10.5	n/a n/a	6.55	n/a n/a	2.29	n/a n/a

WSC Station ID	WSC Station Name /	Effective Drainage	Distribution										Com	puted Ins	tantaneous	s Flood Fl (m ⁻		5% Confi	dence Bou	nds									
/ Node ID	Location of Interest	Area (km ²)	/ Method	100	00-yr	75	0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr		i-yr	50)-yr	35	ō-yr	20)-yr	1	0-yr	5	-yr	2-	
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
05BH016	West Nose Creek at the Mouth	212	Transferred using Nose Creek at Calgary - Foothills Region Power	104.5	n/a n/a	92.4	n/a n/a	77.7	n/a n/a	66.6	n/a n/a	52.4	n/a n/a	39	n/a n/a	34.3	n/a n/a	28.7	n/a n/a	24.5	n/a n/a	19	n/a n/a	13.6	n/a n/a	9.37	n/a n/a	4.76	n/a n/a
05BH014	Nose Creek above Airdrie	178	Transferred using Nose Creek at Calgary - Foothills Region Power	88.4	n/a n/a	78.3	n/a n/a	66.2	n/a n/a	56.8	n/a n/a	44.9	n/a n/a	33.6	n/a n/a	29.7	n/a n/a	24.9	n/a n/a	21.4	n/a n/a	16.6	n/a n/a	12	n/a n/a	8.41	n/a n/a	4.36	n/a n/a
05BH003 / Node 175	Nose Creek at Calgary, extended	746	EV2	348	495 101	303	426 91.9	249	347 80.9	209	288 72.2	159	219 58.8	113	158 46.5	97.3	138 42.2	79	115 36.2	65.5	98.1 31.3	48.3	75.4 24.5	32.3	53.3 17.7	20.5	35.6 12	8.92	15.6 5.71
05BH901	Nose Creek at the Mouth	878	Transferred using Nose Creek at Calgary - Foothills Region Power	407	n/a n/a	353	n/a n/a	289	n/a n/a	242	n/a n/a	184	n/a n/a	130	n/a n/a	111	n/a n/a	90.1	n/a n/a	74.4	n/a n/a	54.5	n/a n/a	36.1	n/a n/a	22.7	n/a n/a	9.68	n/a n/a
05BK001	Fish Creek near Priddis	261	3P(MLH)	926	3500 465	829	3010 422	713	2440 373	614	1990 328	481	1430 264	350	921 203	305	761 182	248	574 152	204	445 128	148	290 95.5	93.3	160 63.8	53.7	83.9 38.7	19.1	25.7 13.9
Node 163	Fish Creek at the Mouth	440	Based on Threepoint Creek near Millarville and Fish Creek near Priddis	1041	n/a n/a	943	n/a n/a	823	n/a n/a	719	n/a n/a	577	n/a n/a	434	n/a n/a	383	n/a n/a	318	n/a n/a	267	n/a n/a	199	n/a n/a	132	n/a n/a	80.4	n/a n/a	31.7	n/a n/a
Node 330	Pine Creek at the Mouth	212	Regionalization⁵	99.7	n/a n/a	93.1	n/a n/a	84.2	n/a n/a	76.4	n/a n/a	65	n/a n/a	51.9	n/a n/a	46.9	n/a n/a	40.1	n/a n/a	34.5	n/a n/a	26.5	n/a n/a	17.7	n/a n/a	10.5	n/a n/a	3.34	n/a n/a
05BM008	Crowfoot Creek near Cluny	950	3P(MLH)	797	1980 193	701	1700 182	589	1380 170	495	1120 159	3 73	794 141	259	514 117	220	428 108	174	323 93.8	139	249 79.5	95.5	160 58	56.6	87.7 36.3	30.4	45.1 20.3	10.1	16.3 7.34
05BN006	New West Coulee near the Mouth	102	EV3	11.7	16.8 7.88	11.4	16.1 7.82	11.1	15.2 7.75	10.7	14.4 7.65	10.2	13.2 7.48	9.49	11.8 7.23	9.18	11.2 7.11	8.73	10.4 6.93	8.32	9.79 6.77	7.65	8.8 6.45	6.76	7.58 5.92	5.78	6.36 5.18	4.17	4.61 3.73
05BN002	Twelve Mile Creek near Cecil	124	3P(MLH)	26.9	48.9 16.8	25.5	44.9 16.3	23.6	40 15.7	22	35.7 15.1	19.5	29.8 14.2	16.7	23.7 12.8	15.6	21.5 12.3	14.2	18.6 11.5	12.9	16.3 10.7	11.1	13.1 9.53	9.05	9.99 7.88	7.11	7.93 6.16	4.68	5.54 3.94
Node 179	Arrowwood Creek above Hwy. 547	718	LP3(moment)	298	977	273	824	239	677	212	552	172	398	129	263	113	217	93	165	76.9	128	55	86.5	33.4	50.6	17.4	27.1	4.4	7.9
ELBOW RIVER	AND TRIBUTARIES			-																									
05BJ004	Elbow River at Bragg Creek, extended using relationship established with Elbow at Sarcee Bridge based on Instantaneous floods, historic	791	Historical adjustment ratio applied to 3P(MLH) ³	2150	4000 1260	1930	3520 1150	1660	2980 1010	1440	2520 891	1140	1930 727	840	1340 557	736	1150 497	607	916 420	508	745 359	377	527 277	250	331 191	155	195 125	67.5	79.6 57.4
05BJ010	Elbow River at Sarcee Bridge, combined data from 05BJ001, 05BJ005, 05BJ010 with estimated instantaneous flows from the 1983 AENV floodplain study, historic	1189	Historical adjustment ratio applied to 3P(MLH) ³	2150	4000 1170	1930	3520 1070	1660	2950 941	1440	2500 834	1140	1900 685	841	1340 531	738	1150 474	610	918 404	509	749 347	379	535 271	253	335 191	157	199 128	70.4	83.1 60.3
Node 161	Elbow River below Glenmore Dam, historic	1236	Assigned the same flows as 05BJ010	2150	4000 1170	1930	3520 1070	1660	2950 941	1440	2500 834	1140	1900 685	841	1340 531	738	1150 474	610	918 404	509	749 347	379	535 271	253	335 191	157	199 128	70.4	83.1 60.3
Node 340	Bragg Creek at the Mouth	50	Regionalization ⁵	103	n/a n/a	94.6	n/a n/a	83.5	n/a n/a	74.3	n/a n/a	61.4	n/a n/a	48.1	n/a n/a	43.2	n/a n/a	37	n/a n/a	32	n/a n/a	25.2	n/a n/a	18	n/a n/a	12	n/a n/a	5.59	n/a n/a
Node 335	Lott Creek at the Mouth	114	Regionalization ⁵	55.2	n/a n/a	52	n/a n/a	47.5	n/a n/a	43.6	n/a n/a	37.7	n/a n/a	30.8	n/a n/a	28.1	n/a n/a	24.4	n/a n/a	21.3	n/a n/a	16.7	n/a n/a	11.6	n/a n/a	7.14	n/a n/a	2.45	n/a n/a
SHEEP RIVER	AND TRIBUTARIES																												
05BL014	Sheep River at Black Diamond	592	3P(MLH)	1900	5010 910	1720	4390 837	1500	3680 751	1310	3100 672	1050	2310 561	787	1600 445	693	1360 401	576	1080 345	484	872 301	361	601 235	240	360 165	148	206 107	61.5	79.6 47.1
05BL012	Sheep River at Okotoks, extended	1494	3P(MLH)	2620	4650 1520	2420	4220 1430	2180	3670 1310	1950	3210 1190	1640	2580 1030	1300	1950 852	1180	1730 784	1020	1460 694	886	1240 616	701	939 507	504	646 377	338	417 261	158	196 127
Node 344	Sheep River at the Mouth, extended	1570	Prorated ¹	2750	4890 1600	2540	4440 1500	2290	3860 1380	2050	3370 1250	1720	2710 1080	1370	2050 896	1240	1820 824	1070	1530 730	931	1300 648	737	987 533	530	679 396	355	438 274	166	206 134

WSC Station ID	WSC Station Name /	Effective Drainage	Distribution										Com	outed Ins	tantaneous	Flood Flo (m ³	ows with 9 ³/s)	5% Confi	dence Bou	inds									
/ Node ID	Location of Interest	Area (km ²)	/ Method	100	00-yr	75	0-yr	50	0-yr	35	0-yr	20	0-yr	10	0-yr		i-yr	50)-yr	35	i-yr	20)-yr	1	0-yr	5	-yr	2-	-yr
				Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower	Flood Est.	Upper Lower
Node 338	Ware Creek at the Mouth	129	Regionalization⁵	265	n/a n/a	242	n/a n/a	213	n/a n/a	188	n/a n/a	155	n/a n/a	120	n/a n/a	108	n/a n/a	91.5	n/a n/a	78.7	n/a n/a	61.2	n/a n/a	43.1	n/a n/a	28.4	n/a n/a	13.1	n/a n/a
Node 339	Threepoint Creek above Ware Creek	136	Regionalization⁵	278	n/a n/a	254	n/a n/a	223	n/a n/a	198	n/a n/a	162	n/a n/a	126	n/a n/a	113	n/a n/a	95.9	n/a n/a	82.5	n/a n/a	64.1	n/a n/a	45.1	n/a n/a	29.7	n/a n/a	13.7	n/a n/a
05BL013	Threepoint Creek near Millarville	507	3P(MLH)	1140	2690 542	1040	2380 501	914	2010 455	803	1710 410	650	1310 345	495	941 275	439	806 249	368	648 216	312	521 187	235	371 149	158	232 106	98.2	134 69.8	39.8	52 29.4
Node 341	Threepoint Creek at the Mouth	638	Transferred using Threepoint Creek near Millarville (Mountain Region Power)	1430	n/a n/a	1300	n/a n/a	1140	n/a n/a	1000	n/a n/a	810	n/a n/a	616	n/a n/a	545	n/a n/a	457	n/a n/a	387	n/a n/a	290	n/a n/a	192	n/a n/a	118	n/a n/a	48.7	n/a n/a
HIGHWOOD R	VER AND TRIBUTARIES																												
05BL019	Highwood River at Diebel's Ranch	774	LP3(MLH)	1390	7030 469	1250	5750 446	1080	4370 417	945	3400 390	765	2290 350	583	1430 300	519	1170 282	439	887 254	378	693 231	295	477 195	212	301 155	146	186 115	78.8	92.8 66.6
05BL004	Highwood River below Little Bow Canal, extended, historic	1953	Historical adjustment ratio applied to EV2 ⁷	2830	4100 1560	2490	3570 1410	2090	2950 1240	1790	2490 1090	1400	1900 889	1030	1360 692	905	1180 624	752	972 535	637	814 463	486	611 369	342	426 268	231	286 188	118	142 101
05BL024	Highwood River near the Mouth, extended, historic	3941	Historical adjustment ratio applied to EV2 ⁷	5200	8190 2820	4580	7050 2560	3830	5720 2230	3270	4760 1970	2550	3600 1630	1870	2530 1270	1630	2180 1130	1350	1780 961	1140	1480 829	872	1100 656	612	761 479	413	510 334	213	255 181
Node 172	Highwood River at the Mouth, historic	3964	Prorated ¹	5230	8240 2840	4600	7090 2570	3850	5750 2240	3290	4790 1980	2560	3620 1640	1880	2540 1280	1640	2190 1140	1360	1790 967	1150	1490 834	877	1110 660	615	765 482	415	513 336	214	256 182
05BL022	Cataract Creek near Forestry Road	166	EV2	1280	2770 128	1070	2280 122	834	1730 114	670	1350 106	475	934 96.6	309	581 83.6	259	478 78.5	201	363 71.7	161	284 65.2	113	193 55.9	72.4	117 45.4	45.4	67.9 33.9	22.2	29.2 18.4
05BL023	Pekisko Creek near Longview	232	3P(MLH)	680	1770 284	608	1540 262	522	1260 233	449	1040 207	350	764 172	254	511 134	221	428 119	180	332 100	148	262 85.5	106	176 63.9	66.9	102 43.7	38.4	55.5 26.7	13.7	19.9 9.65
05BL007	Stimson Creek near Pekisko	236	3P(MLH)	456	943 227	413	835 209	360	708 188	314	600 169	252	458 141	189	322 112	167	277 102	138	221 86.9	116	179 74.9	86.2	127 58.8	56.6	77.5 40.9	34	44 25.9	12.7	16.6 9.58
05BL027	Trapp Creek near Longview	137	3P(MLH)	819	2020 82.4	719	1740 79.5	602	1410 75.4	505	115 0 7 1.6	379	82 2 65.5	261	532 57.9	222	438 55.1	175	331 50.3	139	257 46.6	95.8	178 40.7	56.9	119 31.2	31	72.7 20.2	11.3	18.3 7.99

1. Prorated: Instantaneous flood flows were estimated by applying ratio between effective drainage areas at the node in interest and node upstream or downstream of the node in interest using an exponent of 1

2. Interpolated: Instantaneous flood flows were estimated based on interpolation between frequency analysis for upstream and downstream stations

3. Historical Adjustment Ratio Applied: Instantaneous flood flows including historical floods were derived by applying a percentage multiplier to each return period based on ratios of Bow River at Calgary results with and without historic floods

4. Historical Assessment using Bulletin 17C Methodology: Instantaneous flood frequency flow estimates for Bow River at Calgary were derived using the updated Bulletin 17C methodology to incorporate historical floods

5. Regionalization: Instantaneous flood flows were derived based on regional analysis

6. Instantaneous flood flows at Node 188 (Bow River at the Mouth) were assigned the same as 05BN012 (Bow River near the Mouth)

7. Historical Adjustment Ratio Applied: Instantaneous flood flows and confidence bounds including historical floods were derived based on scaling the frequency analysis for Highwood River below Little Bow with and without historic floods (by applying a percentage multiplier to each return period) 8. Concurrent: Instantaneous flood flows were generated based on an examination of the concurrent data records

7.0 CLOSURE

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

GOLDER ASSOCIATES LTD.

APEGA PERMIT TO PRACTICE 05122

Prepared by:

Reviewed by:

ORIGINAL SIGNED

ORIGINAL SIGNED

Getu Biftu, Ph.D., P.Eng. Principal, Senior Hydrologist Wolf Ploeger, Dr.-Ing., P.Eng. Principal, Senior Water Resources Engineer

GB/DL

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

https://golderassociates.sharepoint.com/sites/121016/project files/5 technical work/04 report revisions/1_hydrology/hydrology report rev1_final/1532956_bow elbow highwood sheep hydrology_sept 2020.docx

IMPORTANT INFORMATION AND LIMITATION OF THIS REPORT

Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied, is made.

This report has been prepared by Golder for the benefit of the clients to whom it is addressed. The information and data contained herein represent Golder's best professional judgment in light of the knowledge and information available to Golder at the time of preparation. Except as required by law, this report and the information and data contained herein are to be treated as confidential and may be used and relied upon only by the clients, their officers and employees. Golder denies any liability whatsoever to other parties who may obtain access to this report for any injury, loss or damage suffered by such parties arising from their use of, or reliance upon, this report or any of its contents without the express written consent of Golder and the client.

REFERENCES

- AENV (Alberta Environment). 1983. 1983 Calgary Floodplain Study. April 1983.
- AENV. 2002. Water Resources Management Model (WRMM), Govt. of Alberta, Edmonton, Alberta.
- AMEC. 2013. Flood Frequency Analysis Review Pine Creek Flood Hazard Mapping Study. Prepared for Alberta Environment and Sustainable Resources Development. January 2013.
- AMEC. 2014. Weather Forecast Review Project for Operational Open-water River Forecasting. A report prepared for Alberta Environment and Sustainable Resources Development River Forecast Center. June 2014.
- BGC (BGC Engineering Ltd.). 2013a. Cougar Creek, 2013 Forensic Analysis and Short-Term Debris Flood Mitigation – Final Report. Prepared for the Town of Canmore. December 2013.
- BGC. 2013b. Stoneworks Creek, Forensic Analysis and Short-Term Debris Flood Mitigation Final Project Memorandum. Prepared for the Town of Canmore. December 2013.
- Bow River Basin Council. 2010. The Web-based Bow River Basin State of the Watershed Summary Report. Prepared by Bow River Basin Council.
- Byrne, R. 1968. Man and landscape change in the Banff National Park area before 1911, Edited by K.C. Scace, Alberta: Univ. of Calgary, Dept. of Geography, pg. 161-173
- EID (Eastern Irrigation District). 1995. Easter Irrigation District Integrated Resources Management Strategy. Prepared in Partnership with Government of Alberta. November 1995.
- Golder (Golder Associates Ltd.). 2008. Aquatics Baseline Information for Pine Creek, 2005-2007, Submitted to The City of Calgary, May 2008.
- Golder. 2010. Hydrology Study, Bow and Elbow River Updated Hydraulic Model Project, Rev. A. Prepared for Alberta Environment and The City of Calgary. March 2010.
- Golder. 2013. Peak Flow Estimate of the Ghost River at Benchlands during the June 2013 Flood. Technical Memorandum Prepared for TransAlta Corporation. August 13, 2013.
- Golder. 2014a. Basin-Wide Hydrology Assessment and 2013 Flood Documentation for Bow River and Elbow River, A report submitted to The City of Calgary and Alberta Environment and Sustainable Resources Development, September 2014
- Golder. 2014b. 2013 Highwood River Flood Hydrology Study. Prepared for Alberta Environment and Sustainable Resource Development. April 2014.
- Golder. 2016a. Hydrology of 2013 Flood Events for Bow River and Elbow River Basins, A report submitted to The City of Calgary, February 2016
- Golder. 2016b. Hydrology of Flood Events in Elbow River, A report submitted to The City of Calgary, January 2016
- Haan C.T., B.J. Barfield and J.C. Hayes. 1994. Design Hydrology and Sedimentology for Small Catchments. Academic Press.

- IBI and Golder Associates Ltd. 2015. Provincial Flood Damage Assessment Report. City of Calgary: Assessments of Flood Damages, Prepared for Government of Alberta, February 2015.
- Islam Z. and T.Y. Gan. 2015. Potential Combined Hydrologic Impacts of Climate Change and El Nino Southern Oscillation to South Saskatchewan River Basin, Journal of Hydrology, 523, 34-48.
- Northwest Hydraulics Consultants. 1974. Flood Regime Study of the Highwood River at High River. Conducted for Alberta Department of the Environment, May 1974.
- Northwest Hydraulics Consultants. 2013. Flood Hazard study for the Bow River and Forty Mile and Echo Creeks at Banff, Report prepared for Alberta Environment and Parks, March 2013.
- Optimal Solutions Ltd. 2009. Natural Flow Computation Program (NFCP) User's Manual, submitted to Prairie Provinces Water Board PWB in November 2009.
- Stephens, M.A. 1974. EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Vol. 69, pp. 730-737.
- T. Blench and Associates Ltd. (Blench). 1965. Flood Protection Elbow River at Calgary, August 1965.
- USACE (U.S Army Corps of Engineers). 1991. SSARR Users' Manual. North Pacific Division, Portland, USA
- USGS (United States Geological Survey). 1982. Guidelines for Determining Flood Flow Frequency, Revised Bulletin 17B of the Hydrology Committee, U.S. Water Resources Council.
- USGS (United States Geological Survey). 2015. Guidelines for Determining Flood Flow Frequency, Bulletin 17C, Techniques and Methods 4-BXX, U.S. Department of the Interior.
- WSC (Water Survey of Canada). 2015. Historic data downloaded from WSC's database. Preliminary 2013, 2014, and 2015 flow records obtained from WSC staff.
- Valeo, C., Z. Xiang, F.J.C. Bouchart, P. Yeung and M.C. Ryan. 2007. Climate change impacts in the Elbow River watershed. Canadian Water Resources Association Journal. Vol. 32(4): 285-302.

Data Used in this Study

Figure A-1: Bow River at Lake Louise (05BA001)

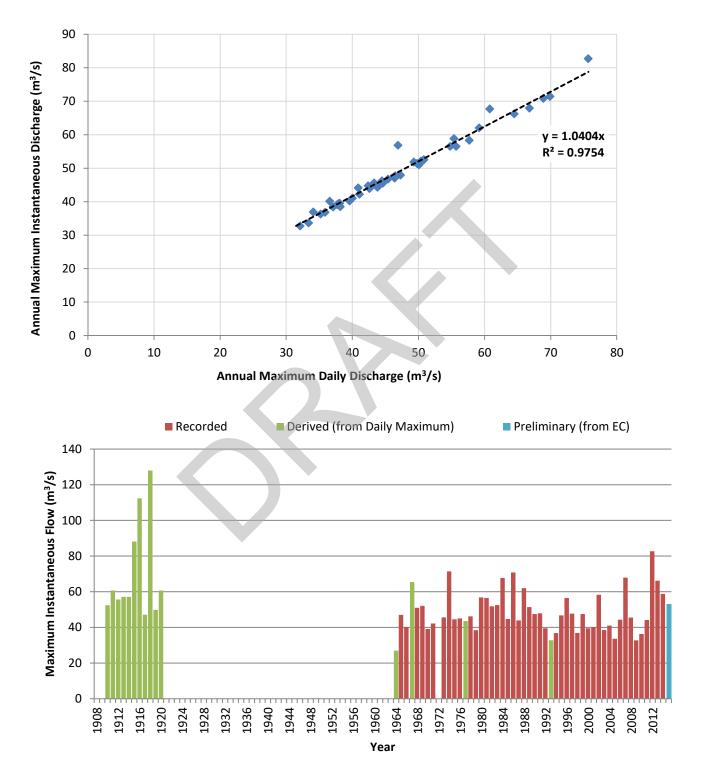


Figure A-2: Bow River at Banff (05BB001)

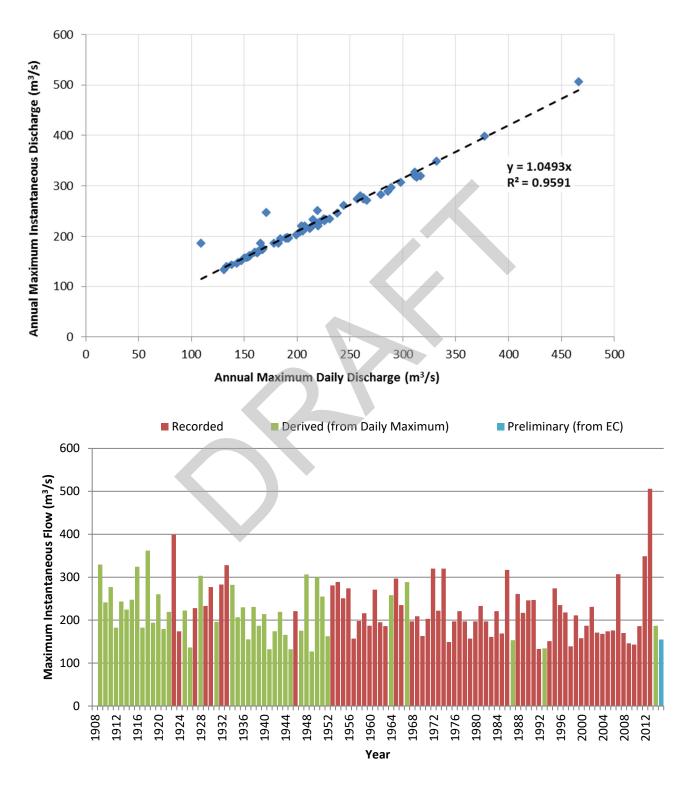
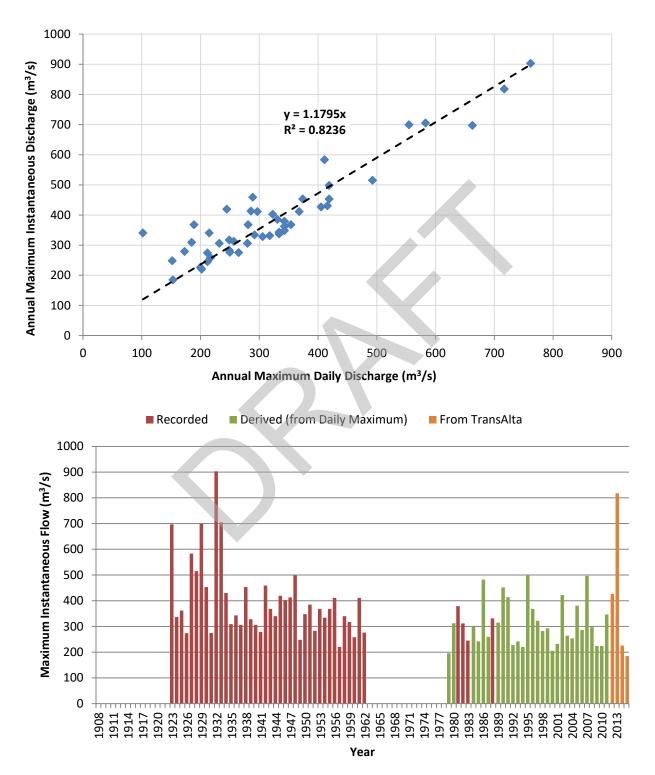



Figure A-3: Bow River near Seebe (05BE004)

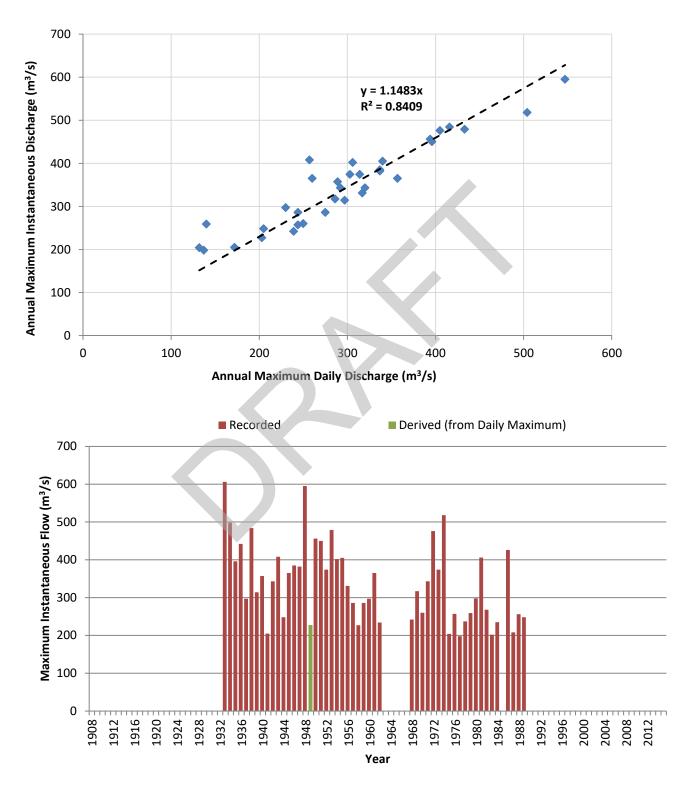
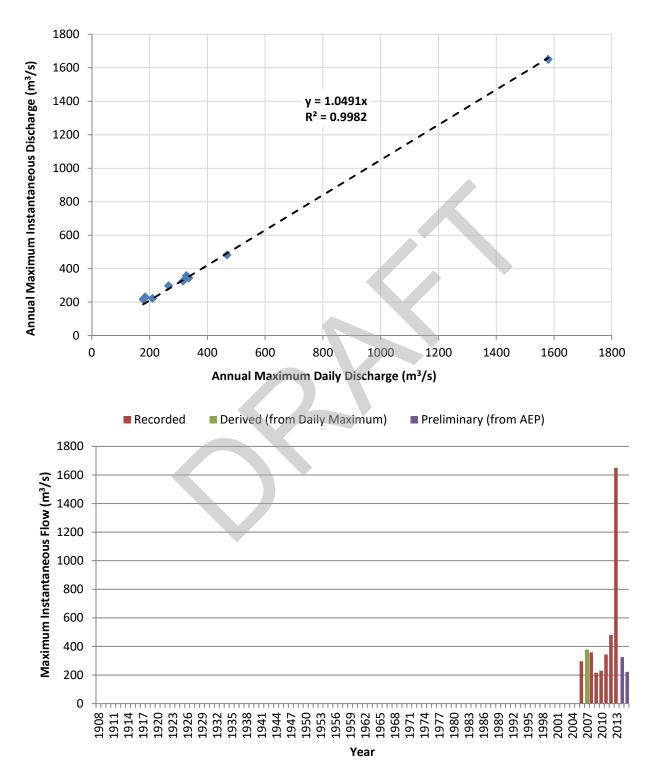
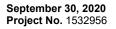




Figure A-4: Bow River below Ghost Dam (Ghost Reservoir Outflow) (05BE006)

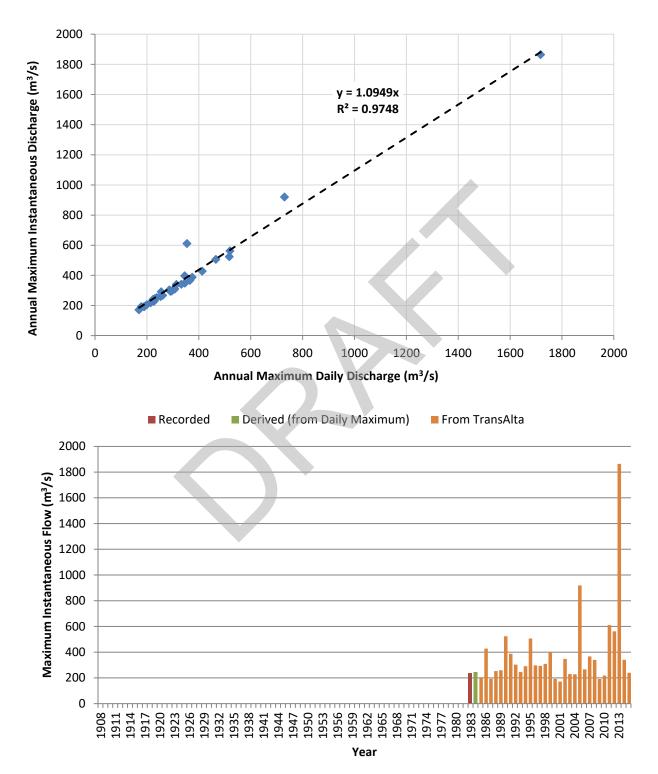


Figure A-5: Bow River near Cochrane (05BH005)

A-6

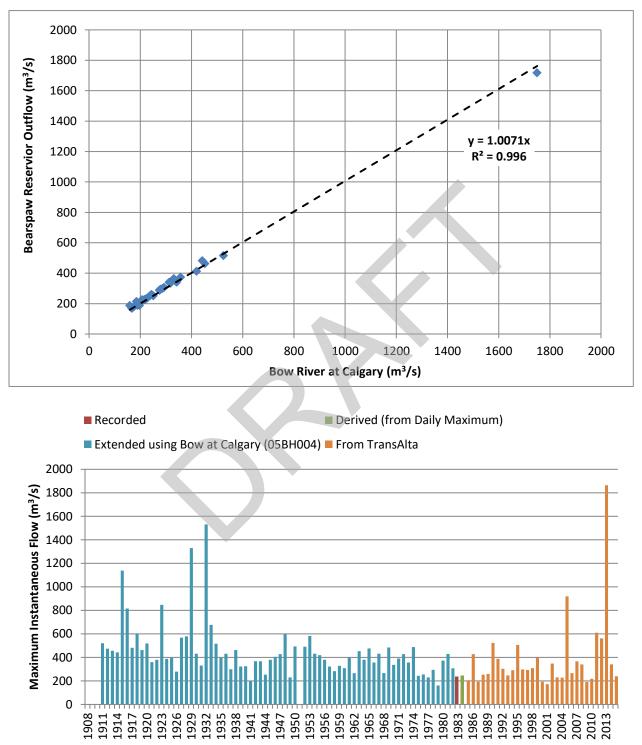


Figure A-7: Bow River below Bearspaw Dam (Bearspaw Reservoir Outflow) extended using Bow River at Calgary

Year

Figure A-8: Bow River at Calgary (05BH004)

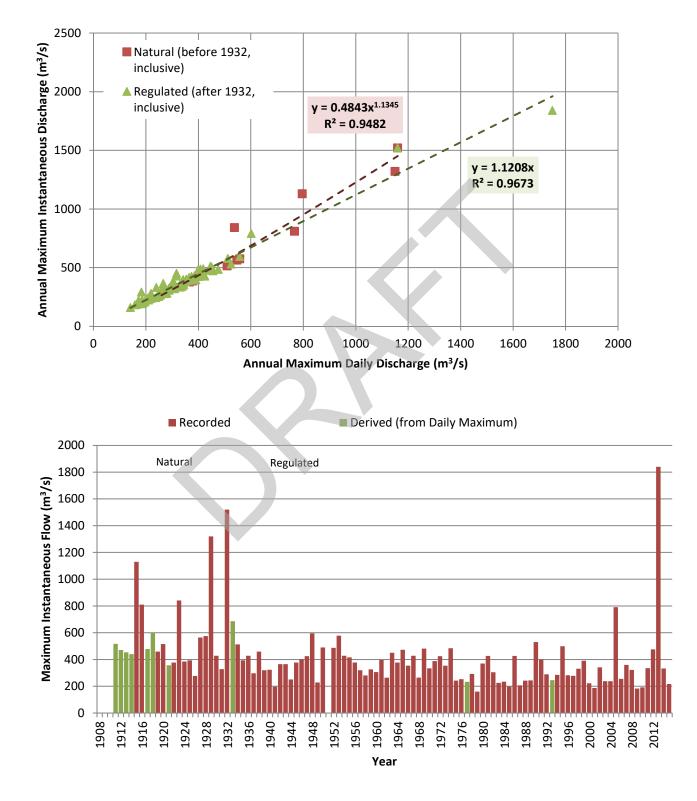


Figure A-9: Bow River below Carseland Dam (05BM002)

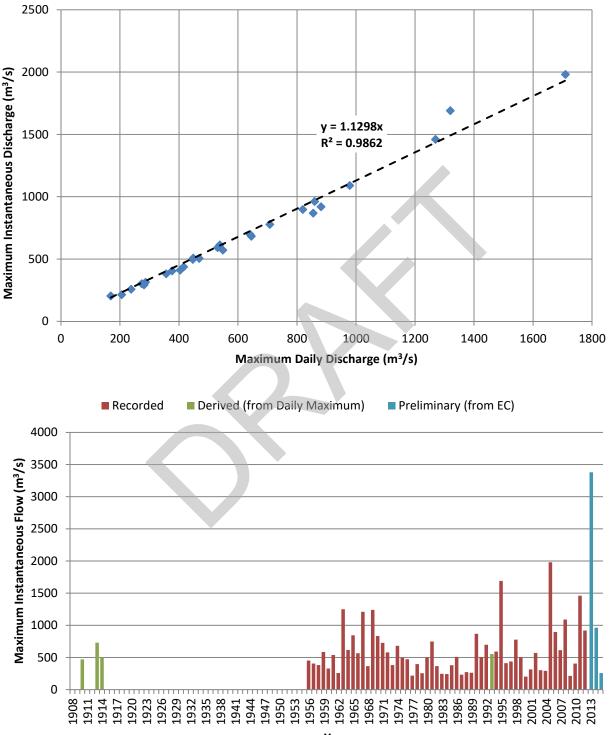
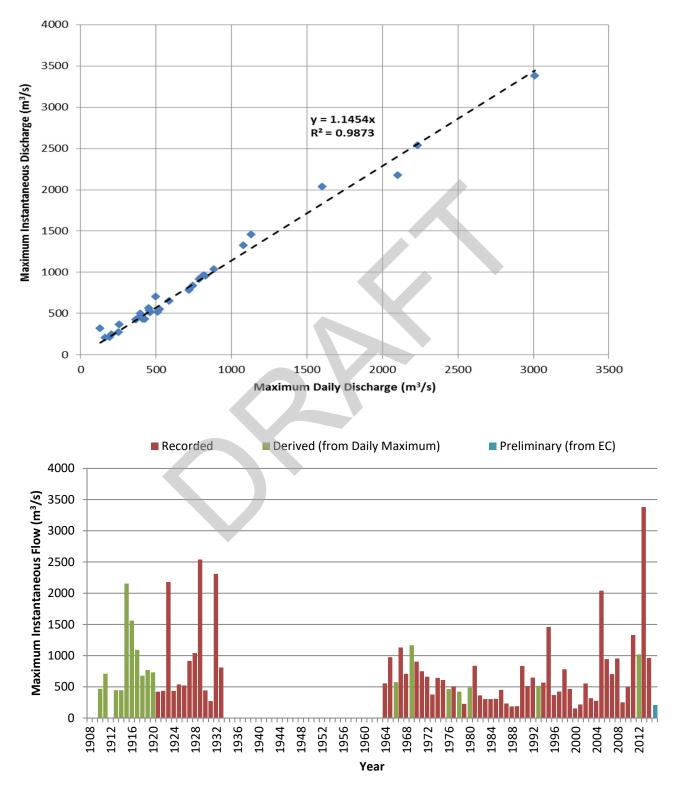



Figure A-10: Bow River below Bassano Dam (05BM004)

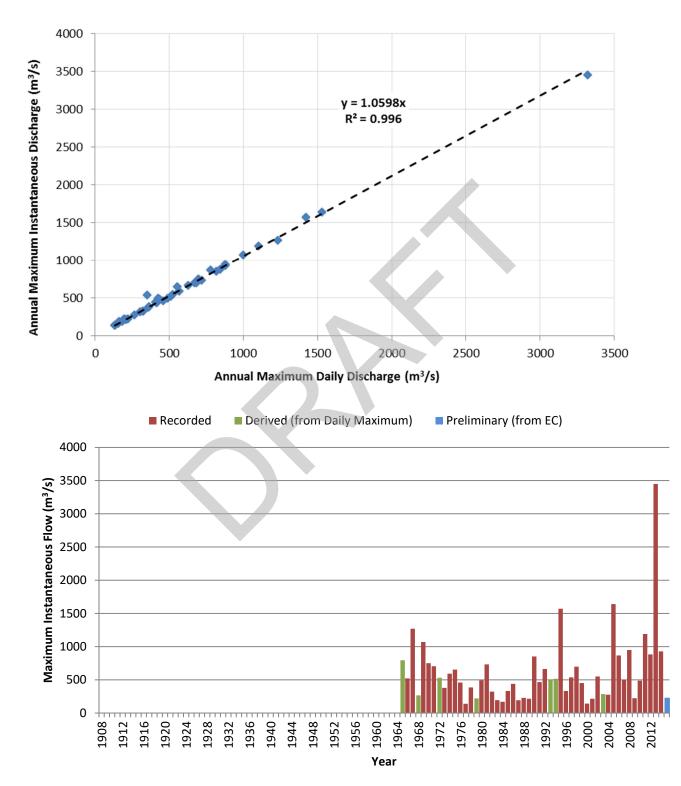


Figure A-11: Bow River near the Mouth - Highway 524 (05BN012)

Figure A-12: Spray River at Banff (05BC001)

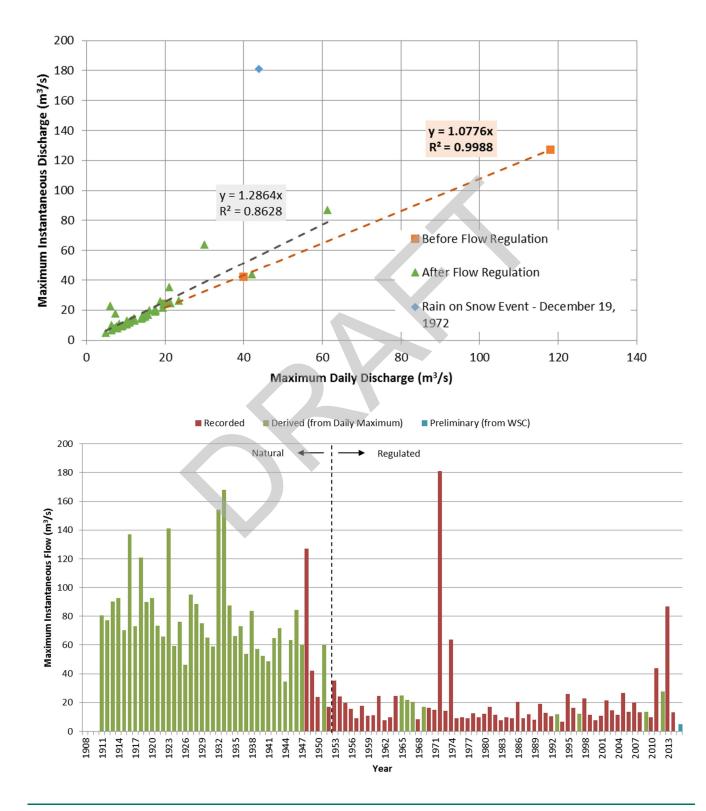


Figure A-13: Forty Mile Creek near Banff (05BB003)

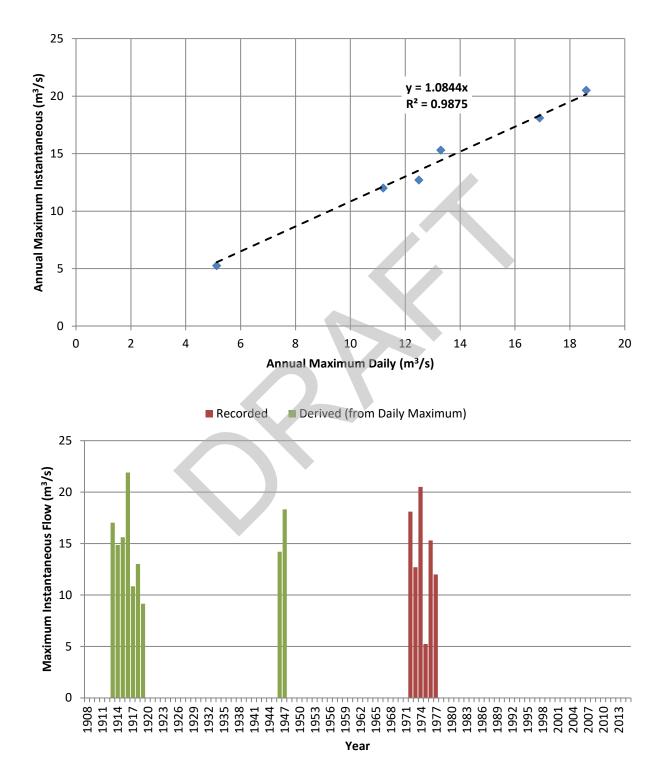
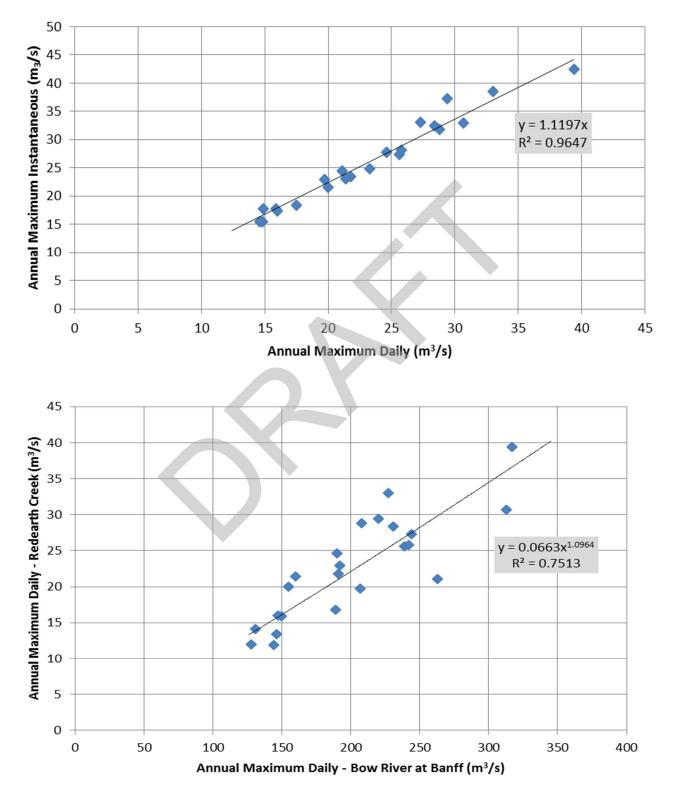
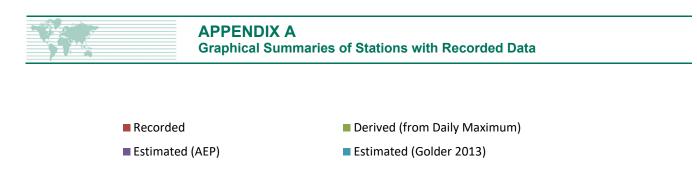




Figure A-14: Redearth Creek near the Mouth (05BB005)

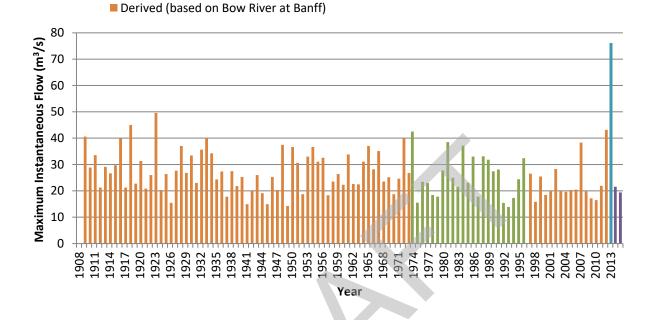
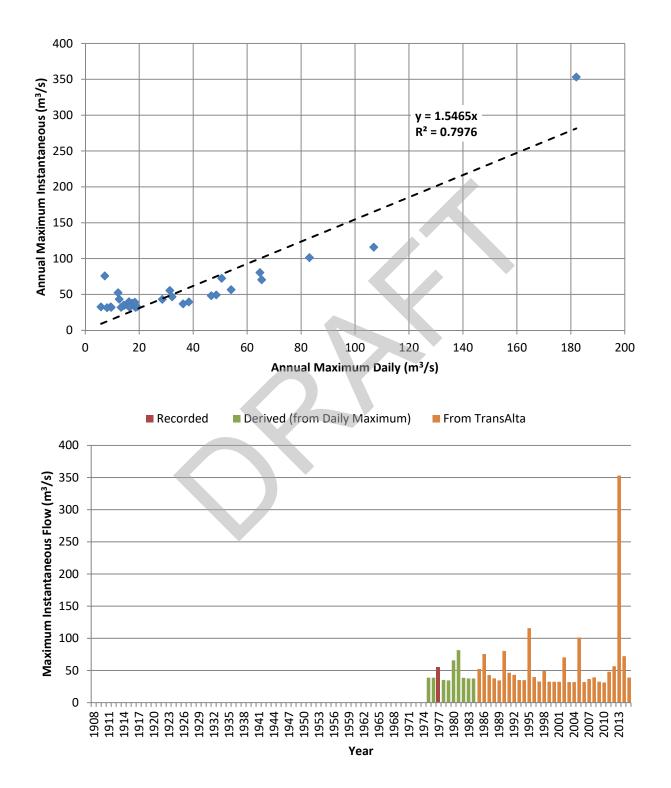
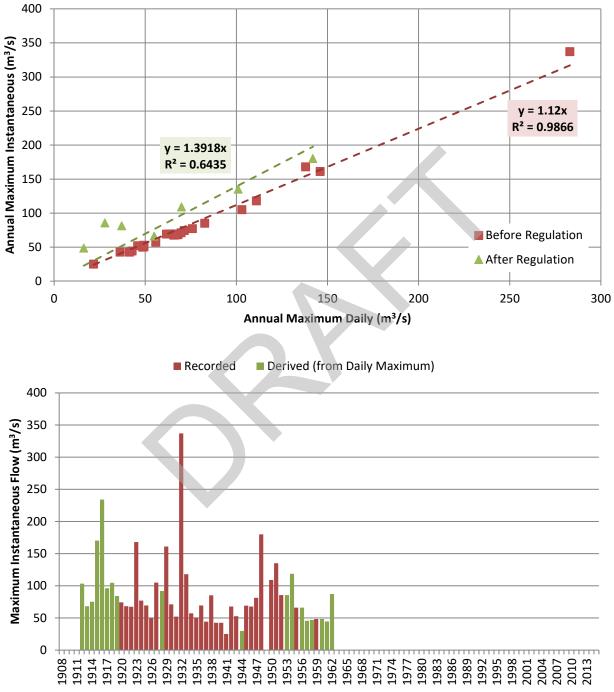



Figure A-15: Kananaskis River below Barrier Dam (05BF025)



September 30, 2020 Project No. 1532956

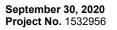


Figure A-16: Kananaskis River near Seebe (05BF001)

Year

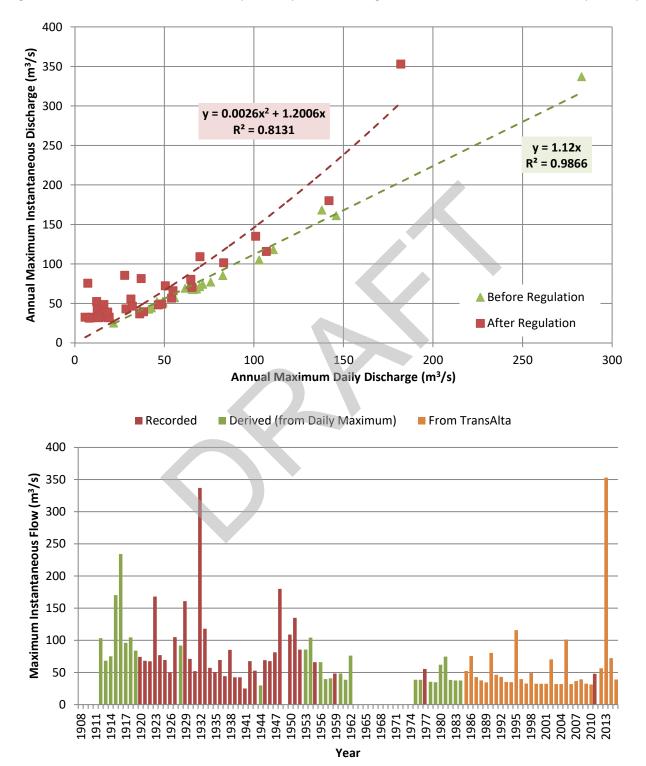
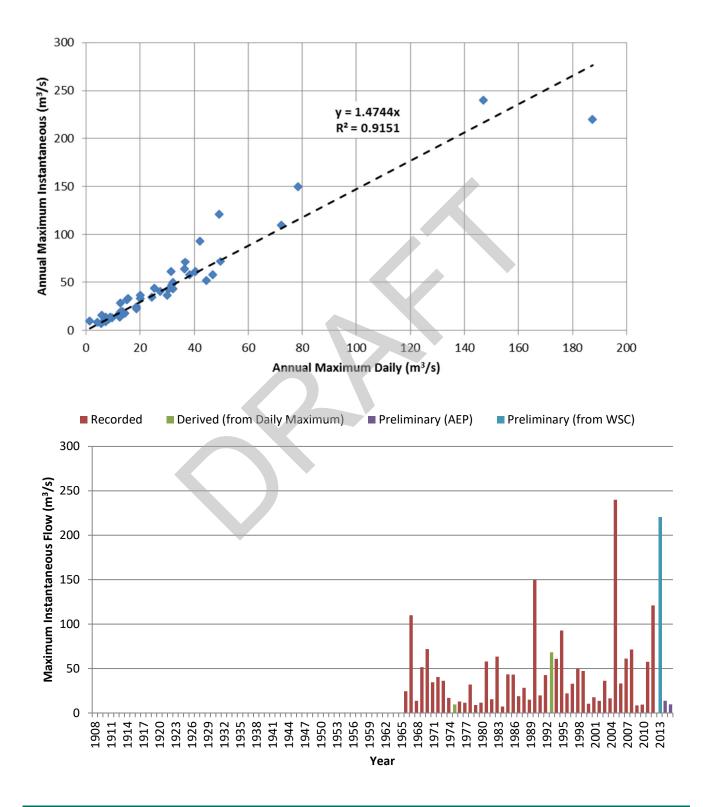
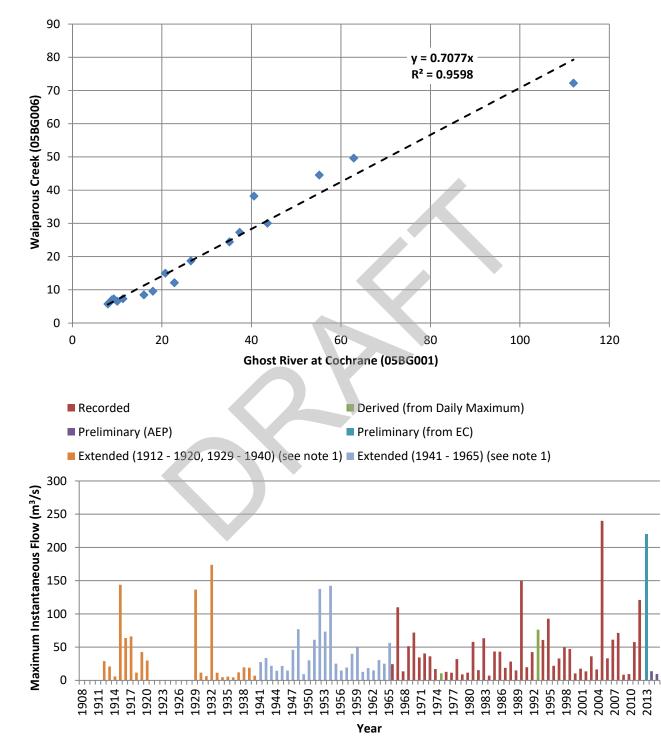
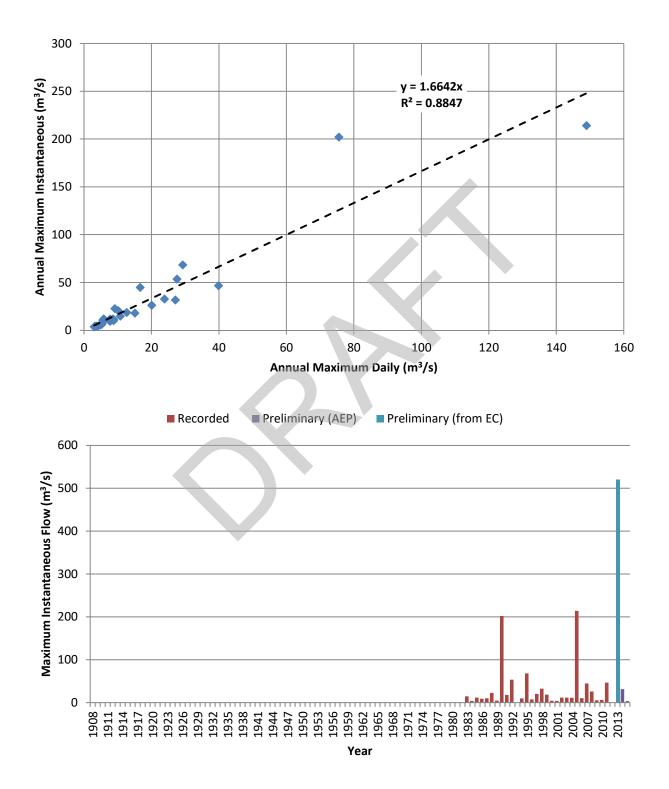
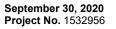



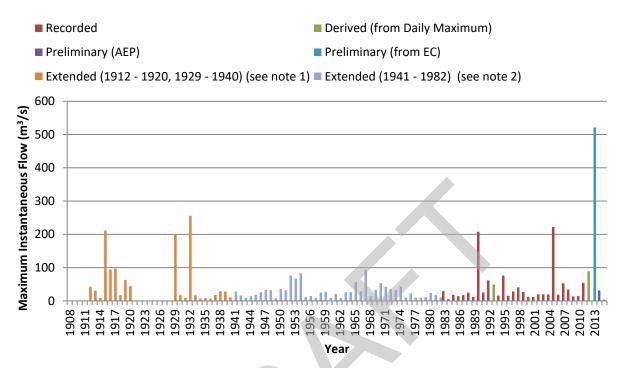
Figure A-17: Kananaskis River near Seebe (05BF001) extended using Kananaskis River below Barrier Dam (05BF025)

Figure A-18: Waiparous Creek near the Mouth (05BG006)

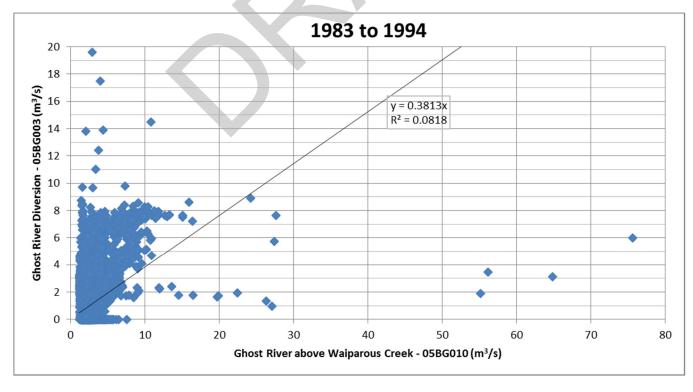
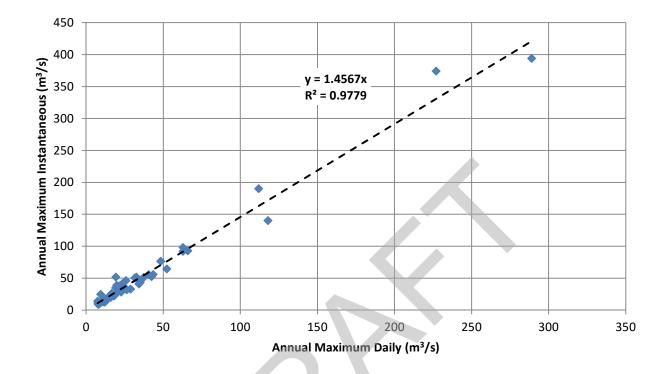



Figure A-19: Waiparous Creek near the Mouth (05BG006) (extended)


Note 1: extended using 05BG001 based on proportion of drainage area (no Ghost Diversion) Note 2: Extended using 05BG001 based on flow relationship (Ghost Diversion is active during this period)


Figure A-20: Ghost River above Waiparous Creek (05BG010)

Note 1: extended using 05BG001 based on proportion of drainage area Note 2: extended using 05BG001 based on post-diversion flows

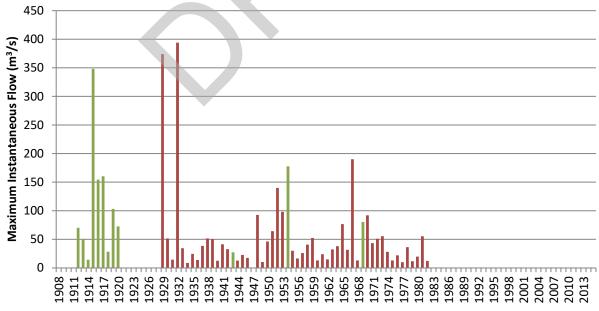
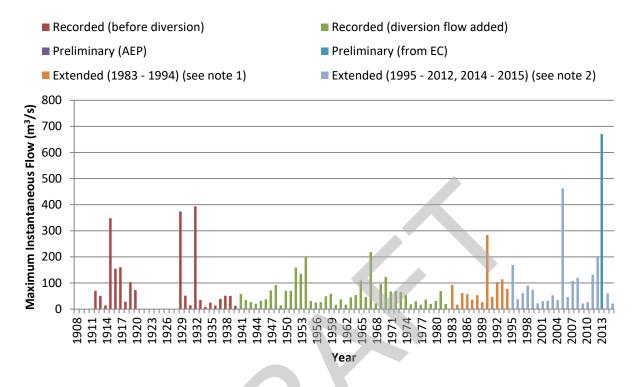



Figure A-22: Ghost River near Cochrane (05BG001)



Year

Figure A-23: Ghost River near Cochrane (05BG001) (extended)

Note 1: Extended using Waiparous Creek near the Mouth (05BG006), Ghost River Diversion to Lake Minnewanka (05BG003) and Ghost River above Waiparous Creek (05BG010) flows

Note 2: Extended using Waiparous Creek near the Mouth (05BG006), Ghost River above Waiparous Creek (05BG010) and assumed Ghost Diversion flows of 8 m³/s. for the sensitivity test, diversion flows of 30 m³/s were assumed for this period.

Figure A-24: Jumpingpound Creek near the Mouth (05BH009)

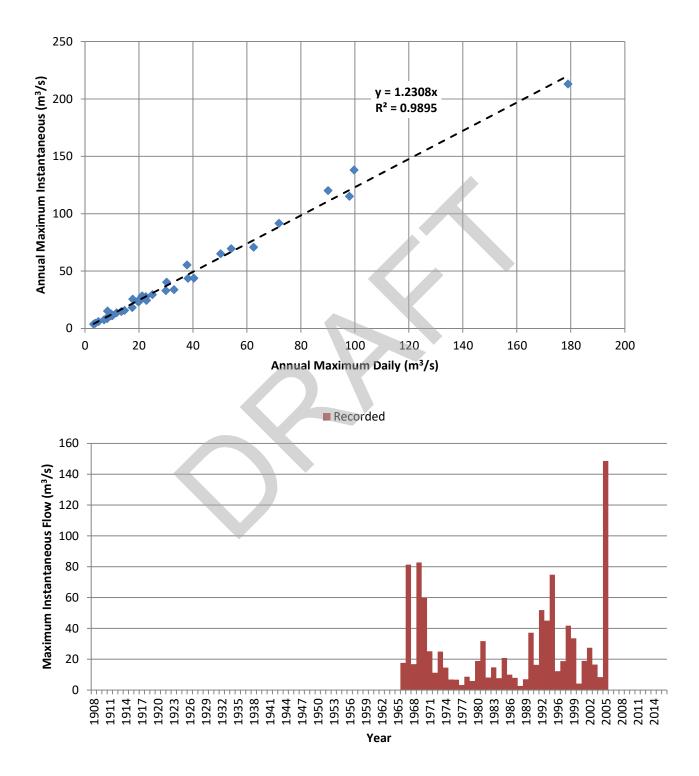
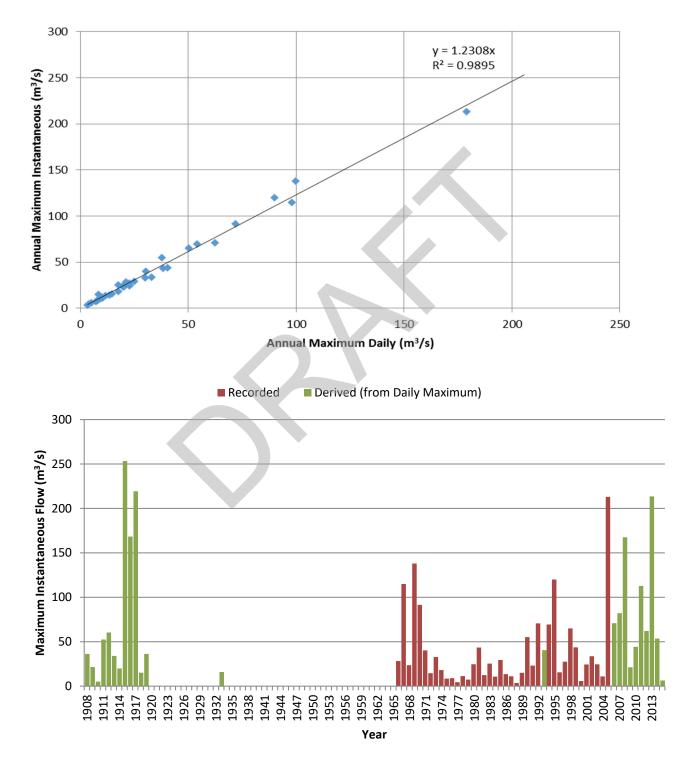



Figure A-25: Jumpingpound Creek near the Mouth (05BH009) (extended) –using flows at Jumpingpound Creek near Jumpingpound (05BH006) from 1908 to 1933, and Jumpingpound Creek at Township Road No. 252 (05BH015) from 2006 to 2015

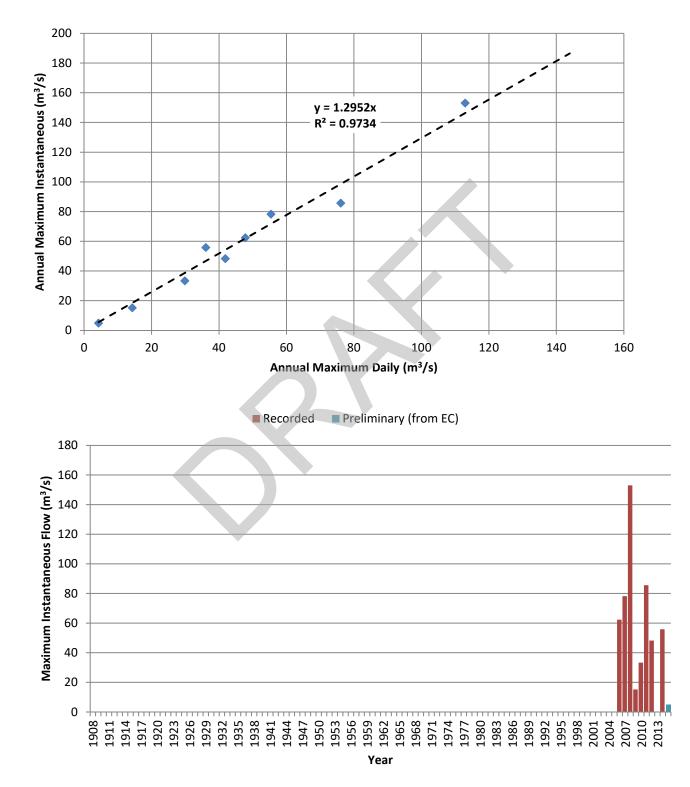


Figure A-26: Jumpingpound Creek at Township Road No. 252 (05BH015)

Figure A-27: Jumpingpound Creek at Township Road No. 252 (05BH015) (extended) - using flows at Jumpingpound Creek near Jumpingpound (05BH006) from 1908 to 1933, and Jumpingpound Creek near the Mouth (05BH009) from 1966 to 2005

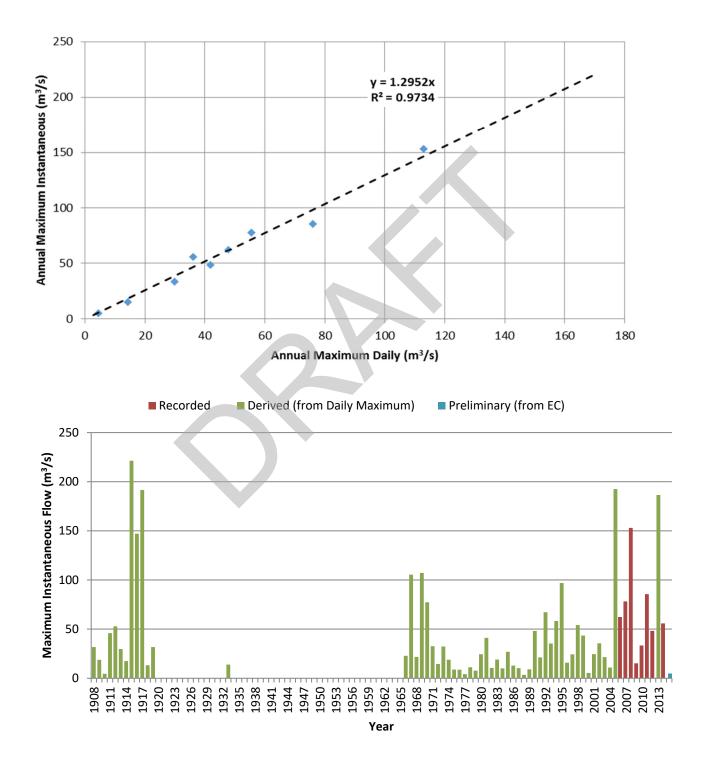
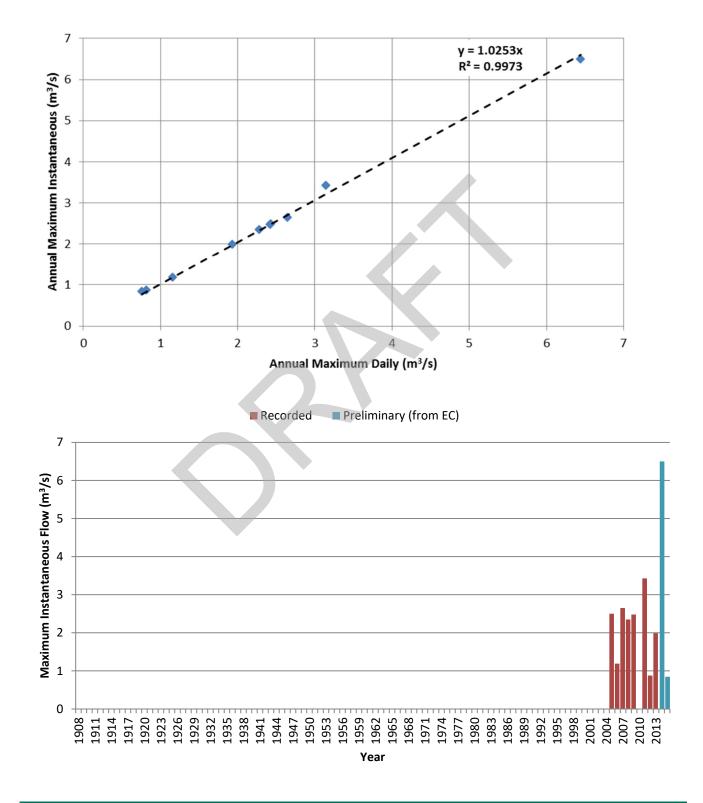
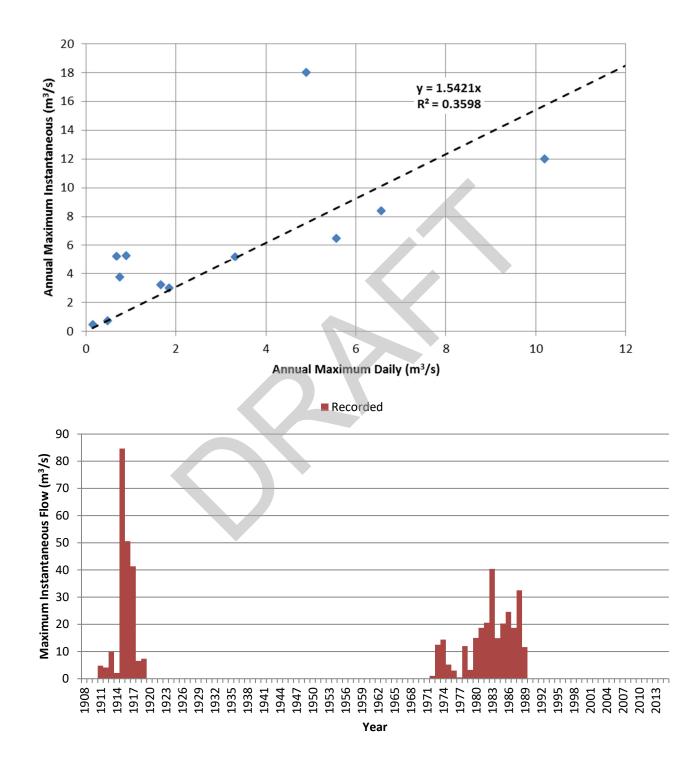
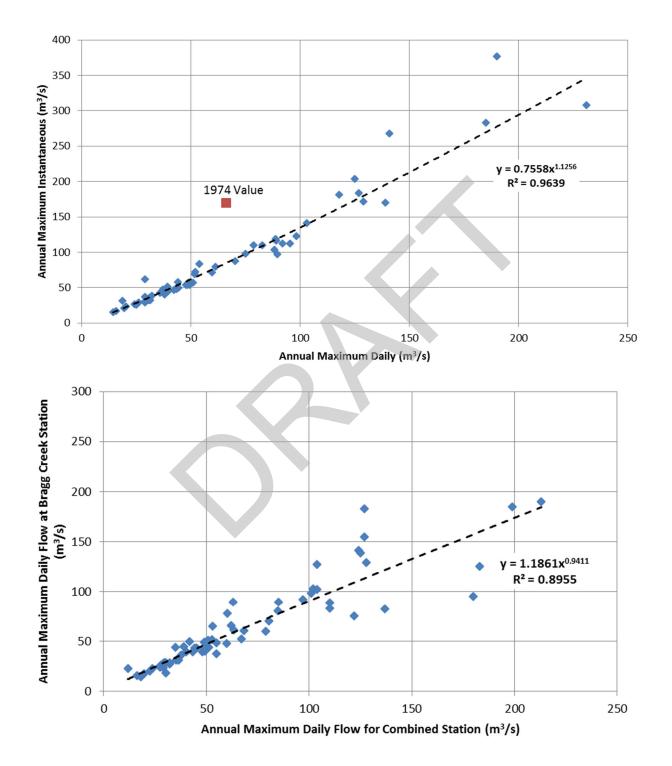
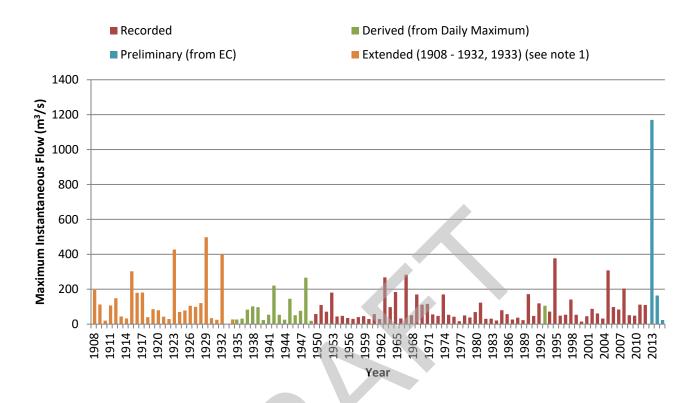



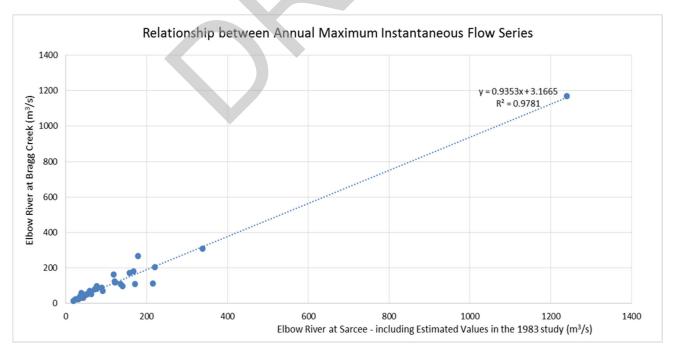
Figure A-28: Nose Creek above Airdrie (05BH014)

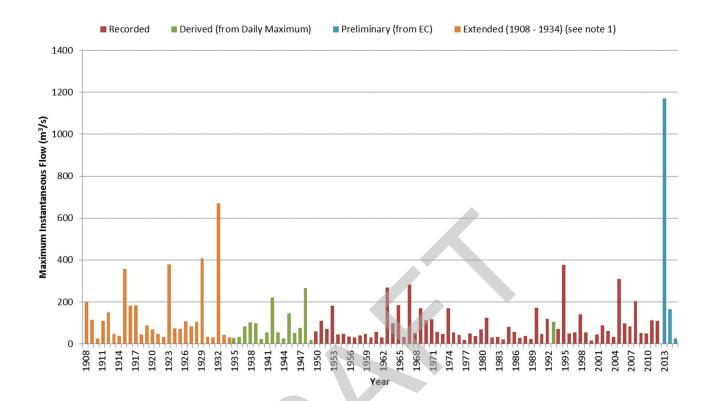



Figure A-29: Nose Creek at Calgary and at Mouth (Combined 05BH003 and 05BH901)

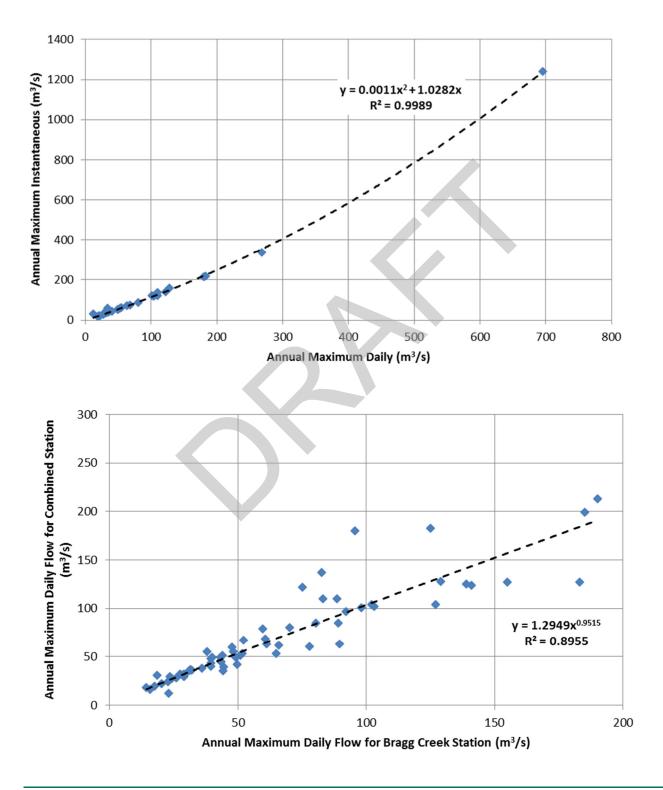
Note: Poor relationship between daily maximum and instantaneous maximum flows. The relationship was not used to extend dataset for instantaneous maximum flows.




Figure A-30: Elbow River at Bragg Creek (05BJ004) (extended)



Note 1: Extending using Elbow River combined flows, Elbow River below Glenmore (05BJ001), Elbow River Upstream of Glenmore Reservoir (05BJ005), and Elbow River at Sarcee Bridge (05BJ010).



Note 1: Extending using relationship established with annual maximum instantaneous flow series for Elbow River at Sarcee Bridge (05BJ0010 including estimate values from the 1983 study)

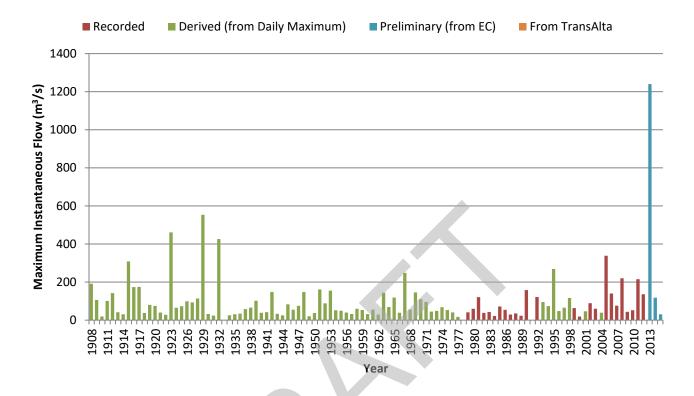
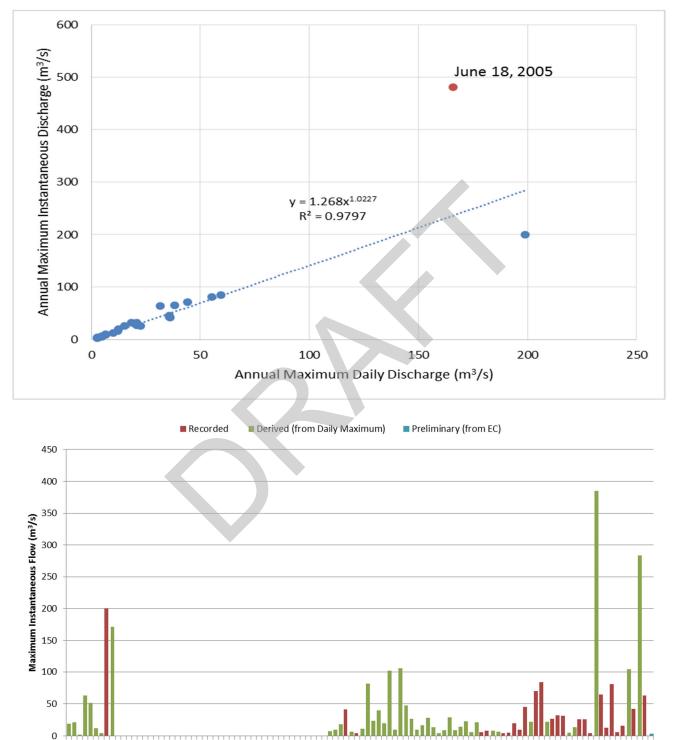
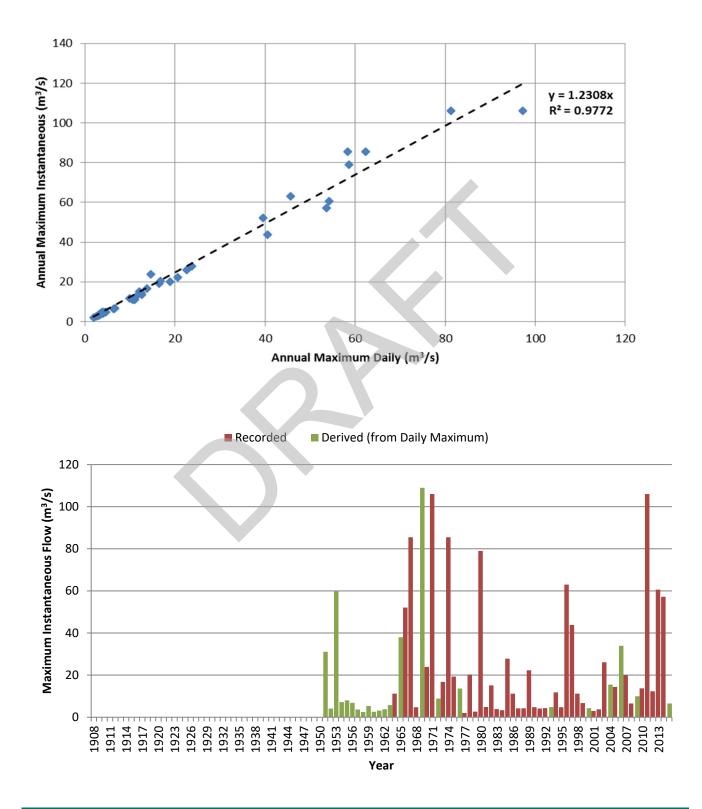


Figure A-31: Elbow River at Sarcee Combined – using Elbow River below Glenmore (05BJ001), Elbow River Upstream of Glenmore Reservoir (05BJ005), and Elbow River at Sarcee Bridge (05BJ010)

APPENDIX A Graphical Summaries of Stations with Recorded Data

Note: Using flows at Elbow River below Glenmore (05BJ001) from 1908 to 1932; Elbow River Upstream of Glenmore Reservoir (05BJ005) from 1934 to 1978; and Elbow River at Sarcee Bridge (05BJ010) from 1979 to 2015.




Figure A-33: Fish Creek at Priddis

Year

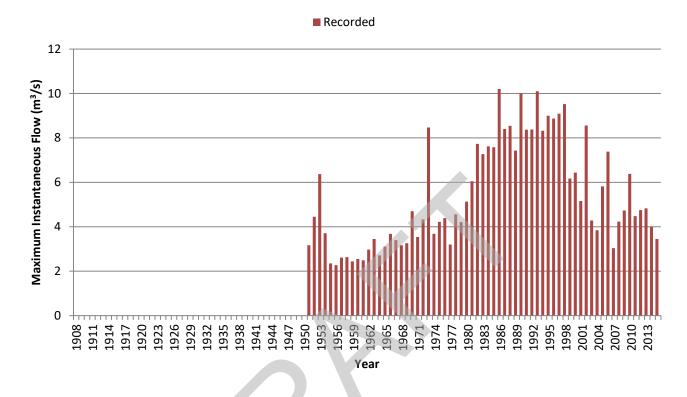
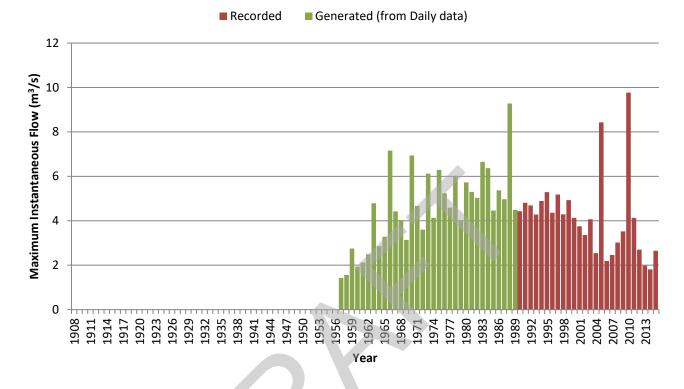

Figure A-34: Crowfoot Creek near Cluny (05BM008)

Figure A-35: Twelve Mile Creek near Cecil (05BN002)



Note: Presented data are the daily maximum flows. No instantaneous maximum flow data available to derived relationship between daily maximum and instantaneous maximum flows. Frequency analysis was completed using daily maximum flows.

Figure A-36: New West Coulee near the Mouth (05BN006)

Note: Presented data are the daily maximum flows. No instantaneous maximum flow data available to derived relationship between daily maximum and instantaneous maximum flows. Frequency analysis was completed using daily maximum flows.

Figure A-37: Sheep River at Black Diamond (05BL014)

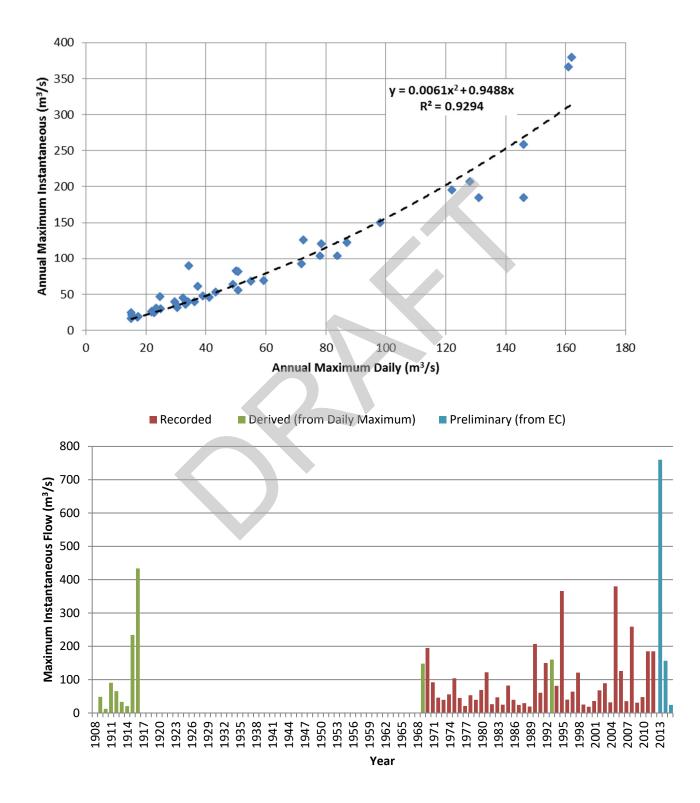


Figure A-38: Threepoint Creek at Millarville (05BL013)

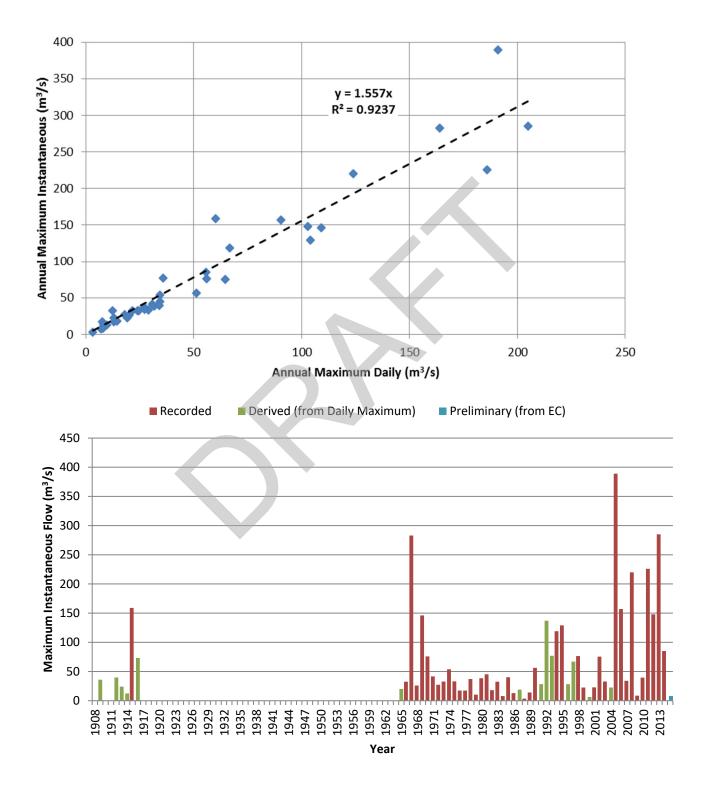
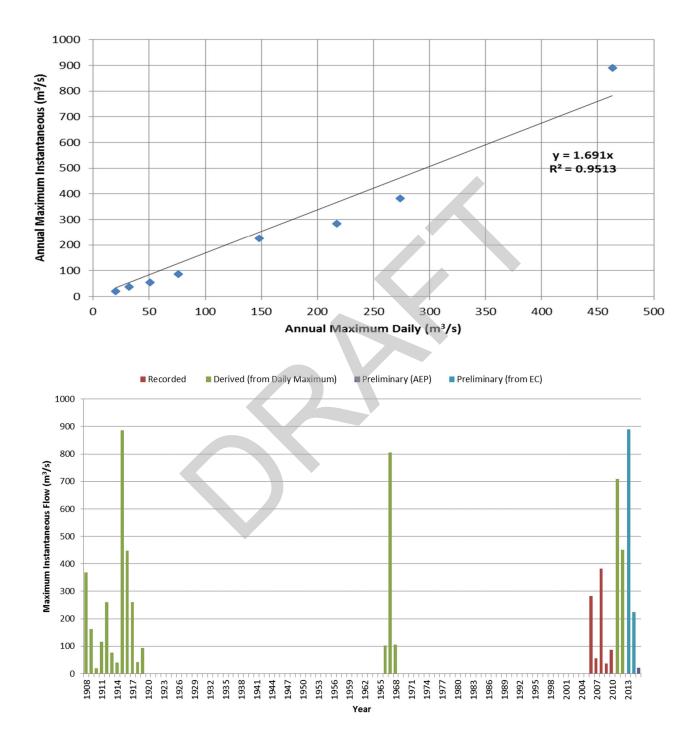



Figure A-39: Sheep River at Okotoks (05BL012)

APPENDIX A Graphical Summaries of Stations with Recorded Data

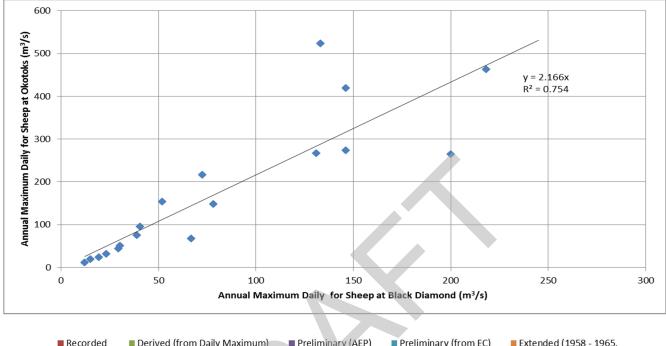


Figure A-40: Sheep River at Okotoks (05BL012) (extended) – using flows at Sheep River near Aldersyde (05BL020) from 1958 to 1965 and Sheep River at Black Diamond (05BL014) from 1969 to 2005

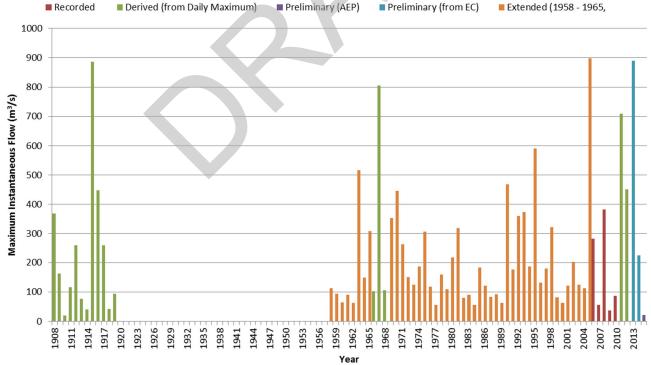


Figure A-41: Cataract Creek near Forestry Road (05BL022)

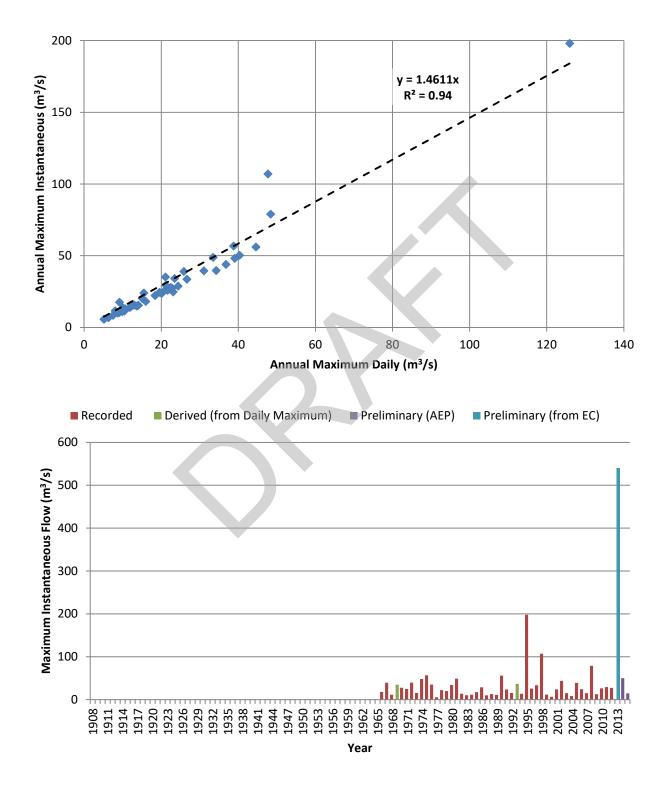


Figure A-42: Highwood River near Diebel's Ranch (05BL019)

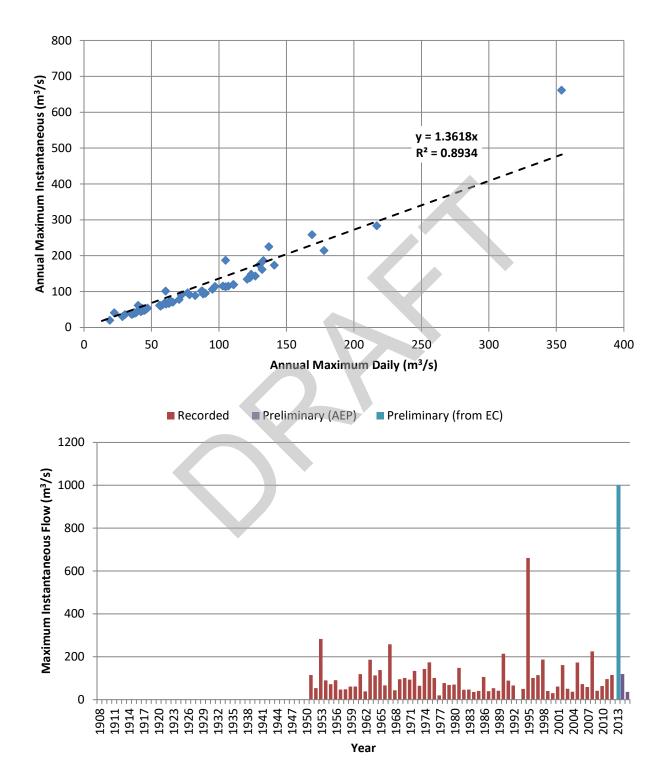


Figure A-43: Pekisko Creek near Longview (05BL023)

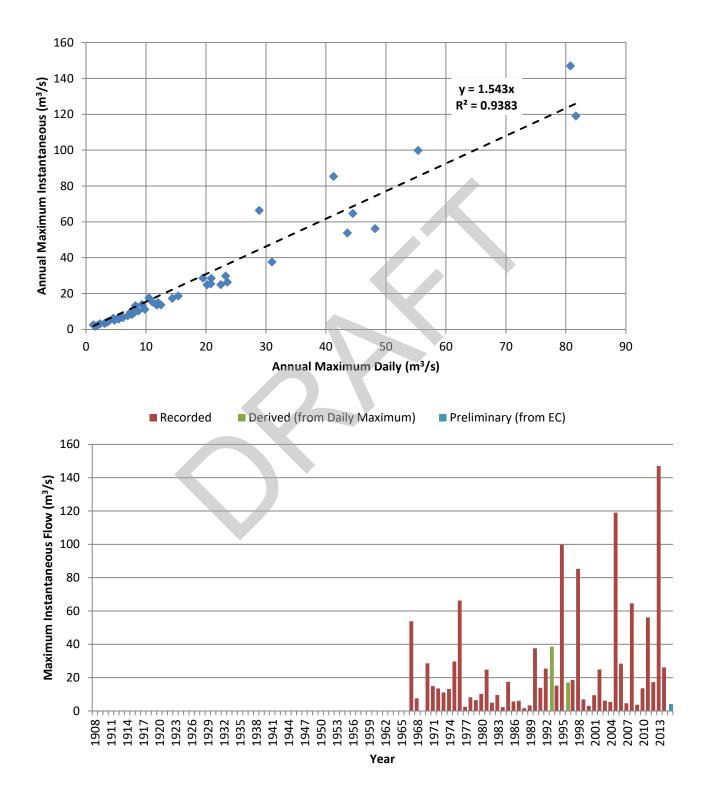
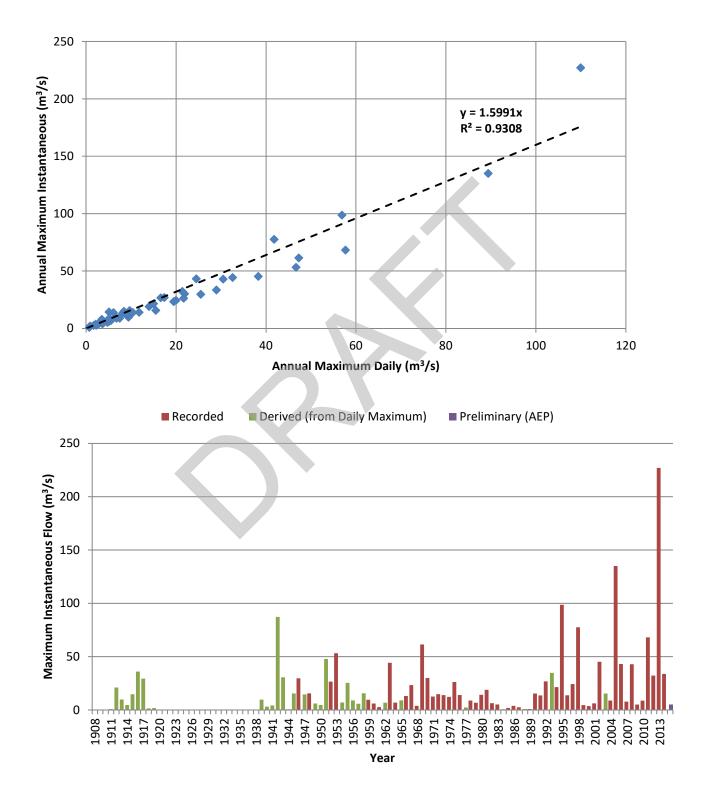
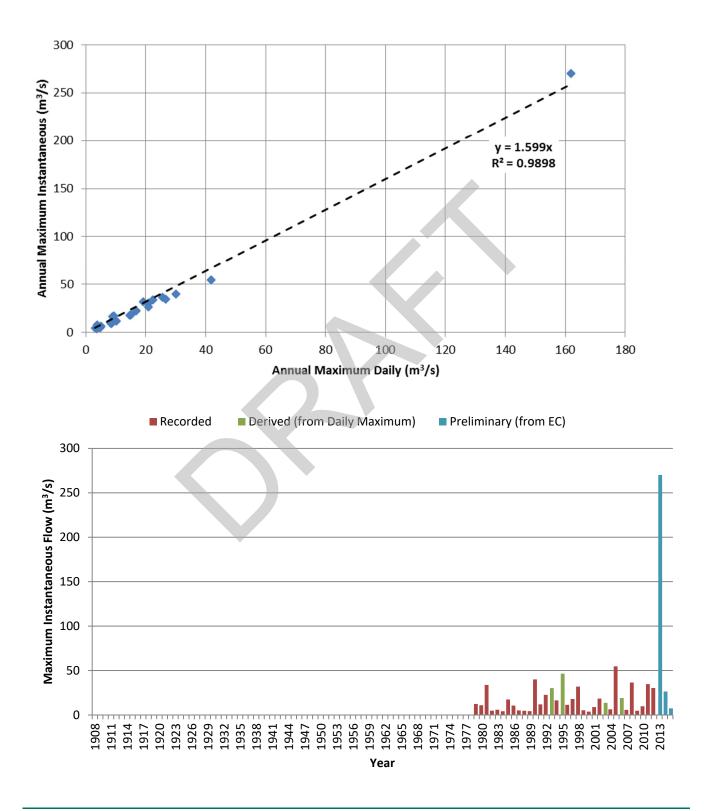
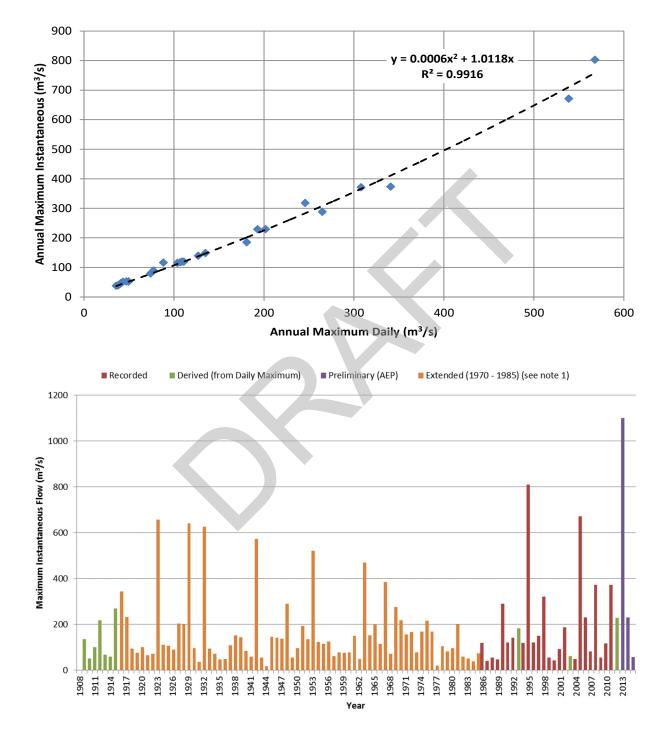


Figure A-44: Stimson Creek near Pekisko (05BL007)


Figure A-45: Trap Creek near Longview (05BL027)

Note 1: Extended using maximum daily flows at Highwood River near Aldersyde (05BL009).

APPENDIX A Graphical Summaries of Stations with Recorded Data

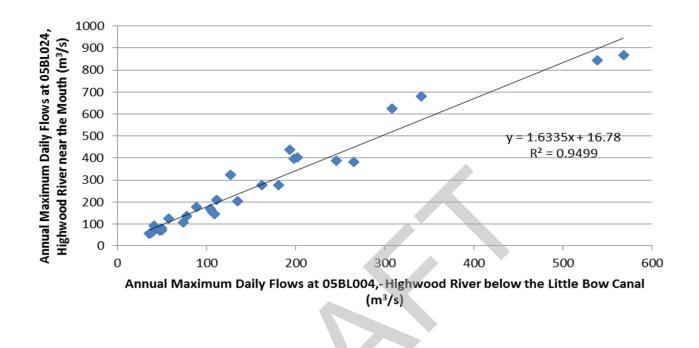


Figure A-47: Relationship between Highwood River near the mouth (05BL024) and Highwood River below the Little Bow Canal

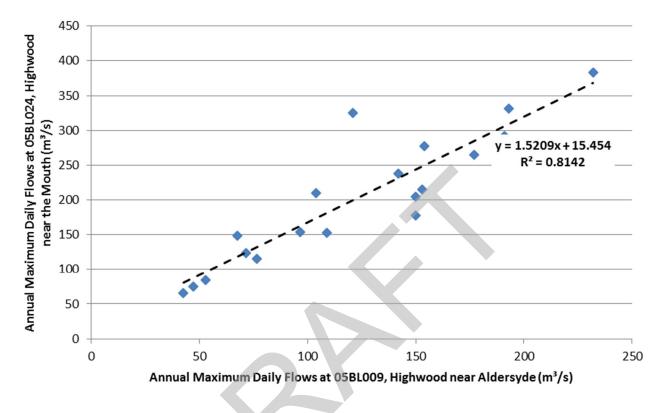
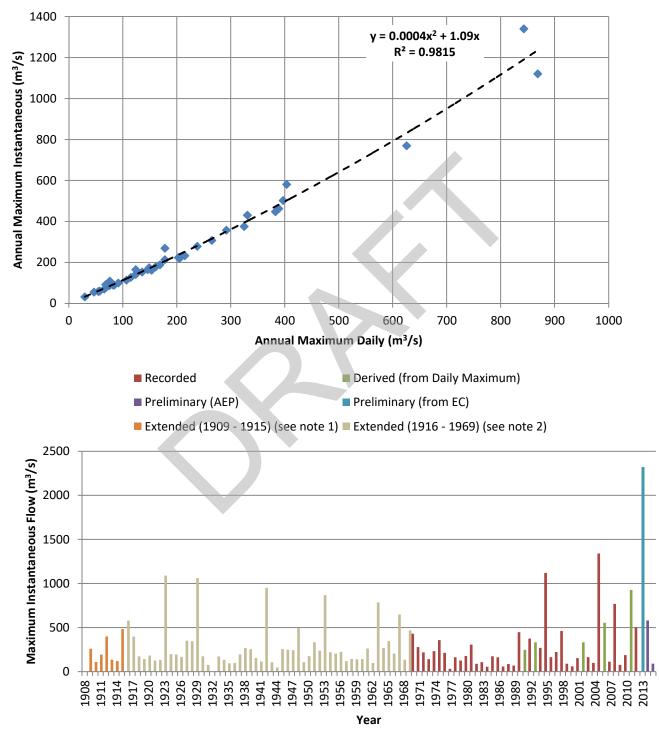
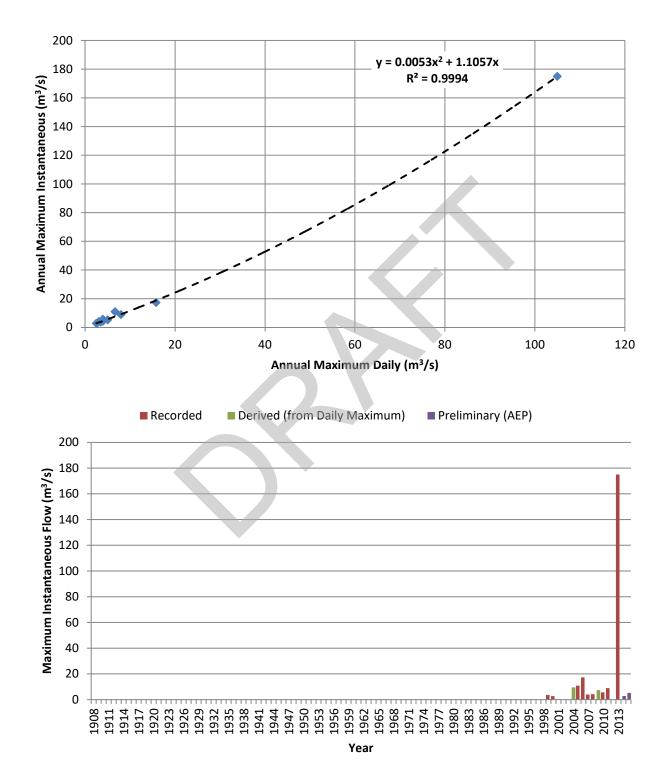



Figure A-48: Relationship between Highwood River near the mouth (05BL024), Highwood River near Aldersyde and Highwood River below the Little Bow Canal

Figure A-49: Highwood River near the mouth (05BL024)



Note 1: Extended using flows at Highwood River below the Little Bow Canal (05BL004). **Note 2**: Extended using flows at Highwood River near Aldersyde (05BL009).

Figure A-50: Little Bow River at Hwy 553 (05AC930)

Table A-1: Relationship between Daily Maximum and Instantaneous Maximum Flood Flows - Naturalized Flows

	Multiplication Factor	Source of Multiplication Factor
Bow River Naturalized Flow Station		1
Bow River above Spray Confluence (05BB001) - Node 116	1.0493	Bow at Banff
Bow below Spray Confluence - Node 105	1.0493	Bow at Banff
Bow below Cascade Confluence - Node 107	1.0493	Bow at Banff
Bow River at Canmore - Node 108	1.0493	Bow at Banff
Bow River above Kananaskis - Node 109	1.1795	Bow near Seebe
Bow River below Kananaskis - Node 110	1.1795	Bow near Seebe
Bow River at Seebe - Node 111	1.1795	Bow near Seebe
Ghost Reservoir Inflow	1.1483	Ghost outflow
Ghost Reservoir Outflow (05BE006) - Node 58	1.1483	Ghost outflow
Bow Cochrane (05BH005) - Node 114	1.1483	Ghost outflow
Bearspaw Reservoir Inflow	0.4843x ^{1.1345}	Calgary pre 1932
SSRB / R Bearspaw Reservoir Outflow (same as Bow River at Calgary) - Node 59	0.4843x ^{1.1345}	Calgary pre 1932
Bow at Calgary d/s of Elbow Confluence - Node 176	0.4843x ^{1.1345}	Calgary pre 1932
Bow River at Nose Creek Confluence - Node 158	0.4843x ^{1.1345}	Calgary pre 1932
Bow River at Fish Creek Confluence - Node 164	0.4843x ^{1.1345}	Calgary pre 1932
UB Bow River at Pine Creek - Node 172	0.4843x ^{1.1345}	Calgary pre 1932
Bow River above Highwood Confluence	1.1298	Carseland
Bow River at Highwood Confluence - Node 165	1.1298	Carseland
Bow River at Carseland Weir - Node 178	1.1298	Carseland
Bow River at Hwy 547 - Node 180	1.1298	Carseland
Bow River at Hwy 842 - Node 181	1.1298	Carseland
Bow River at Crowfoot Confluence - Node 189	1.0995	Bassano
Bow River at Bassano - Node 182	1.0995	Bassano
LB Bow River between Bassano and Hwy 539 - Node 190	1.0995	Bassano
Bow River at Hwy 539 - Node 184	1.0995	Bassano
Bow River at Hwy 36 - Node 185	1.0598	near mouth
Bow River at Hwy 875 - Node 186	1.0598	near mouth
Bow River at the Gauge 05BN012 - Node 187	1.0598	near mouth
Bow River at the Mouth - Node 188	1.0598	near mouth
Tributaries Naturalized Flow Station		
Spray River at Mouth (05BC001) - Node 106	1.0776	Spray pre 1951
Cascade River at Lake Minewanka - Node 154	1.0776	Spray pre 1951
Kananaskis River at Barrier Lake - Node 56	1.12	pre 1946
Jumpingpound Creek - Node 174	1.2086	near mouth
Nose Creek at Calgary - Node 175	1.5421	
Fish Creek above confluence with Bow - Node 163	1.268x ^{1.0227}	near Priddis
Glenmore Dam Node - Node 161	0.0011x ² + 1.0282x	upstream of Glenmore/Sarcee bridge
Highwood River at High River - Node 171	0.0006x ² +1.0118x	below Little Bow canal
Highwood River at the Mouth - Node 172	0.0004x ² + 1.09x	near mouth
Arrowood Creek above Hwy 547 - Node 179	1	1
Crowfoot Creek above confluence with Bow River - Node 183	1.2308	near Cluny
New West Coulee Tributary - Node 192	1	no recorded inst. Max data

Table A-2: Relationship between Daily Maximum and Instantaneous Maximum Flood Flows - Regulated Flows

	Multiplication Factor	Source of Multiplication Factor
Bow River Regulated Flow Station		·
Bow River below Spray Confluence - Node 105	1.0493	Bow at Banff
Bow below Cascade Confluence - Node 107	1.0493	Bow at Banff
Bow River at Canmore - Node 108	1.0493	Bow at Banff
Bow River at Seebe - Node 111	1.1795	Bow near Seebe
Ghost Reservoir Inflow	1.1483	Ghost outflow
Ghost Reservoir Outflow (05BE006) - Node 58	1.1483	Ghost outflow
Bow Cochrane (05BH005) - Node 114	1.1483	Ghost outflow
Bearspaw Reservoir Inflow	1.1208	Calgary after 1932
SSRB / R Bearspaw Reservoir Outflow (same as Bow River at Calgary) - Node 59	1.1208	Calgary after 1932
Bow at Calgary d/s of Elbow Confluence - Node 176	1.1208	Calgary after 1932
Bow River at Nose Creek Confluence - Node 158	1.1208	Calgary after 1932
Bow River at Fish Creek Confluence - Node 164	1.1208	Calgary after 1932
UB Bow River at Pine Creek - Node 177	1.1208	Calgary after 1932
Bow River above Highwood Confluence	1.1298	Carseland
Bow River at Highwood Confluence - Node 165	1.1298	Carseland
Bow River at Carseland Weir - Node 178	1.1298	Carseland
Bow River at Hwy 547 - Node 180	1.1298	Carseland
Bow River at Hwy 842 - Node 181	1.1298	Carseland
Bow River at Crowfoot Confluence - Node 189	1.1738	Bassano
Bow River at Bassano - Node 182	1.1738	Bassano
Bow River between Bassano and Hwy 539 - Node 190	1.1738	Bassano
Bow River at Hwy 539 - Node 184	1.1738	Bassano
Bow River at Hwy 36 - Node 185	1.0604	Bow near the mouth
Bow River at Hwy 875 - Node 186	1.0604	Bow near the mouth
Bow River at the Gauge 05BN012 - Node 187	1.0604	Bow near the mouth
Bow River at the Mouth - Node 188	1.0604	Bow near the mouth
Tributaries Regulated Flow Station		
Cascade River at Lake Minewanka - Node 154	1.2864	Spray after 1951
Outflows from Spray Lake	1.2864	Spray after 1951
TransAlta's Diversion from Spray River to Bow River at Canmore	1.2864	Spray after 1951
Spray River below Spray Lake (reduced simulated watershed)	1.2864	Spray after 1951
Kananaskis River Outflow from Upper Kananaskis Lake	1.2864	Spray after 1951
Kananaskis River Outflow from Pocaterra	1.2864	Spray after 1951
Kananaskis River Outflow from Barrier Dam	0.0026x ² + 1.2006x	Kananaskis near Seebe, extended below Barrier
Glenmore Dam Node - Node 161	1.1349	Glenmore Dam downstream
Highwood River at High River - Node 171	0.0006x ² +1.0118x	below the Little Blow Canal
Highwood River at the Mouth - Node 172	$0.0004x^2 + 1.09x$	Highwood near the mouth
Spray Lake End of Day Elevations	1	no factor for water level
Upper Kananaskis Lake End of Day Elevations	1	no factor for water level
Pocaterra End of Day Elevations	1	no factor for water level
Barrier Lake End of Day Elevations	1	no factor for water level
Lake Minnewanka End of Day Elevations	1	no factor for water level
Ghost Lake End of Day Elevations	1	no factor for water level
Bearspaw Lake End of Day Elevations	1	no factor for water level
Glenmore Reervoir End of Day Elevations	1	no factor for water level
	,	

Table A-2: Relationship between Daily Maximum and Instantaneous Maximum Flood Flows - Regulated Flows

	Multiplication Factor	Source of Multiplication Factor
Bow River Regulated Flow Station		
Rundle Plant Spills	1	no factor for spill way

							BOW	RIVER						
WSC Station ID / Node ID	05BA001	05BB001	Node 105	Node 107	Node 108	Node 109	Node 110	05BE004 / Node 111	Node 318	05BE006 / Node 58		H005 le 114	Nod	ə 302
WSC Station Name or Location of Interest	Bow River at Lake Louise	Bow River at Banff	Bow River below Spray River	Bow River below Cascade River	Bow River at Canmore	Bow River above Kananaskis	Bow River below Kananaskis	Bow River near Seebe	Bow River above Ghost Reservoir	Bow River below Ghost Dam (Ghost Reservoir Outflow), historic	Bow River near Cochrane	Bow River near Cochrane, historic ¹	Bearspaw Reservoir Inflow	Bearspaw Reservoir Inflow, historic ¹
Anderson-Darling statistic, A ² = - N -S														
3 Parameter Log-normal	0.578	0.239	0.324	0.235	0.240	0.234	0.457	0.388	0.482	0.467	0.479	n/a	0.521	n/a
Extreme Value	0.466	0.216	0.335	0.247	0.251	0.243	0.330	0.268	0.345	0.460	0.505	n/a	0.552	n/a
Log_Pearson III	0.489	0.354	0.569	0.852	0.864	0.874	0.439	0.386	0.469	0.425	0.443	n/a	0.490	n/a
Weilbull	4.439	2.433	9.4	46.7	36.4	26.4	67.8	68.5	74.3	67.0	82.3	n/a	508.2	n/a
Serial correlation coefficient test for in	dependence													
S ₁	0.232	0.014	-0.004	0.021	0.013	0.002	0.037	0.065	0.034	0.020	0.079	n/a	0.089	n/a
t	1.815	0.142	-0.040	0.190	0.118	0.014	0.339	0.620	0.313	0.185	0.726	n/a	0.813	n/a
t(α=0.05)	1.672	1.660	-1.663	1.663	1.663	1.663	1.663	1.662	1.663	1.663	1.663	n/a	1.663	n/a
t(α=0.01)	2.392	2.363	-2.372	2.372	2.372	2.372	2.372	2.368	2.372	2.372	2.372	n/a	2.372	n/a
Spearman rank order correlation coeff	icient test for no	-trend												
r _s	0.258	0.252	0.040	0.062	0.058	0.052	0.086	0.139	0.087	0.011	-0.042	n/a	-0.028	n/a
t	2.048	2.672	0.367	0.573	0.535	0.477	0.791	1.334	0.801	0.101	-0.389	n/a	-0.254	n/a
t(α=0.05)	2.001	1.983	1.989	1.989	1.989	1.989	1.989	1.986	1.989	1.989	-1.989	n/a	-1.989	n/a
t(α=0.01)	2.662	2.623	2.636	2.636	2.636	2.636	2.636	2.631	2.636	2.636	-2.636	n/a	-2.636	n/a
Mann-Whitney split sample test for ho	mogeneity													
Size of earlier sample	31	54	43	43	43	43	43	47	43	43	43	n/a	43	n/a
z	-1.767	-1.751	-0.203	-0.695	-0.661	-0.661	-0.851	-0.937	-0.903	-0.376	-0.151	n/a	-0.272	n/a
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	n/a	-1.645	n/a
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	n/a	-2.326	n/a
Test of general randomness (Runs for	above or below	the median)												
Median	47.5	216	267	319	318	346	376	377	370	405	412	n/a	382	n/a
N1(for Q>=Median)	32	54	43	43	43	43	43	47	43	43	43	n/a	43	n/a
N2(for Q <median)< td=""><td>29</td><td>53</td><td>43</td><td>43</td><td>43</td><td>43</td><td>43</td><td>46</td><td>43</td><td>43</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td></median)<>	29	53	43	43	43	43	43	46	43	43	43	n/a	43	n/a
Run_ab	23	56	44	46	46	42	46	48	46	40	38	n/a	38	n/a
Z	2.181	0.292	0.000	0.434	0.434	0.434	0.434	0.105	0.434	0.868	1.302	n/a	1.302	n/a
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	n/a	1.960	n/a
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	n/a	2.576	n/a

NOTES:

n/a, statistical test is either not applicable or not available

1. Historic floods were calculated based on ratio between recorded flows and historic flows, therefore, statistical test is not applicable

2. Flood estimates were calculated using prorating based on drainage area

3. Selected distribution based on best statistical fit

4. Criteria for the respective statistical tests were not met

1532956

								BOW	RIVER							
WSC Station ID / Node ID		05BH004 / Node 59		Nod	e 176	Noc	le 158	Nod	e 164	Noc	de 177	Noc	de 331	Node 165	05BM002 / Node 178	Node 180
WSC Station Name or Location of Interest	Bearspaw Reservoir Outflow (same as Bow River at Calgary)	Bow River at Calgary, extended	Bow River at Calgary, historic	Bow River below Elbow River	Bow River below Elbow River, historic ¹	Bow River below Nose Creek	Bow River below Nose Creek, historic ¹	Bow River below Fish Creek	Bow River below Fish Creek, historic ¹	Bow River below Pine Creek	Bow River below Pine Creek, historic ¹	Bow River above Highwood River	Bow River above Highwood River, historic ¹	Bow River below Highwood River	Bow River below Carseland Dam	Bow River at Hwy. 547
Anderson-Darling statistic, A² = - N -S																
3 Parameter Log-normal	0.644	0.760	n/a	0.592	n/a	0.584	n/a	0.550	n/a	0.554	n/a	0.555	n/a	0.540	0.295	0.301
Extreme Value	0.599	0.665	n/a	0.561	n/a	0.552	n/a	0.534	n/a	0.539	n/a	0.539	n/a	0.358	0.113	0.145
Log_Pearson III	0.544	0.652	n/a	0.504	n/a	0.497	n/a	0.479	n/a	0.484	n/a	0.487	n/a	0.397	0.239	0.258
Weilbull	60.9	80.5	n/a	508	n/a	508	n/a	508	n/a	508	n/a	508	n/a	508	66	60
Serial correlation coefficient test for in	ndependence															
S ₁	0.065	0.145	n/a	0.080	n/a	0.082	n/a	0.087	n/a	0.089	n/a	0.091	n/a	0.219	0.137	0.137
t	0.594	1.478	n/a	0.733	n/a	0.746	n/a	0.799	n/a	0.812	n/a	0.829	n/a	2.042	1.259	1.259
t(α=0.05)	1.663	1.660	n/a	1.663	n/a	1.663	n/a	1.663	n/a	1.663	n/a	1.663	n/a	1.663	1.663	1.663
t(α=0.01)	2.372	2.363	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	2.372	2.372
Spearman rank order correlation coef	ficient test for no	o-trend														
r _s	0.014	0.184	n/a	-0.052	n/a	-0.049	n/a	-0.063	n/a	-0.064	n/a	-0.065	n/a	-0.164	-0.116	-0.116
t	0.126	1.899	n/a	-0.480	n/a	-0.447	n/a	-0.582	n/a	-0.588	n/a	-0.596	n/a	-1.525	-1.069	-1.069
t(α=0.05)	1.989	1.983	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	-1.989	-1.989
t(α=0.01)	2.636	2.624	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	-2.636	-2.636
Mann-Whitney split sample test for ho	mogeneity															
Size of earlier sample	43	52	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	43	43
Z	-0.773	-1.346	n/a	-0.540	n/a	-0.574	n/a	-0.540	n/a	-0.531	n/a	-0.531	n/a	-0.626	-0.229	-0.229
z(α=0.05)	-1.645	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	-1.645	-1.645
z(α=0.01)	-2.326	-2.326	n/a	-2.326	n/a	-2.3 26	n/a	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	-2.326	-2.326
Test of general randomness (Runs for	above or below	the median)														
Median	403	430	n/a	455	n/a	455	n/a	465	n/a	464	n/a	464	n/a	589	604	604
N1(for Q>=Median)	43	53	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	43	43
N2(for Q <median)< td=""><td>43</td><td>52</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>43</td><td>43</td></median)<>	43	52	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	43	43
Run_ab	42	42	n/a	36	n/a	36	n/a	36	n/a	36	n/a	36	n/a	34	34	34
Z	0.434	2.255	n/a	1.736	n/a	1.736	n/a	1.736	n/a	1.736	n/a	1.736	n/a	2.169	2.169	2.169
z(a=0.05)	1.960	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	1.960	1.960
z(a=0.01)	2.576	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	2.576	2.576

				BOW	RIVER						BOW RIVER	TRIBUTARIES		
WSC Station ID / Node ID	Node 181	Node 189	05BM004 / Node 182	Node 184	Node 185	Node 186	05BN012 / Node 187	Node 188		C001 de 106	Node 154	05BF001	05BF025 / Node 56	05BG010
WSC Station Name or Location of Interest	Bow River at Hwy. 842	Bow River below Crowfoot Creek	Bow River below Bassano Dam, extended	Bow River at Hwy. 539	Bow River at Hwy. 36	Bow River at Hwy. 875	Bow River near the Mouth	Bow River at the Mouth	Spray River at Banff, before 1951	Spray River at Banff	Cascade River near Banff	Kananaskis River near Seebe, before 1946	Kananaskis River below Barrier Dam	Ghost River above Waiparous Creek, extended
Anderson-Darling statistic, A ² = - N -S														
3 Parameter Log-normal	0.283	0.289	0.221	0.213	0.230	0.254	0.193	0.181	0.486	0.853	0.481	0.492	1.229	0.719
Extreme Value	0.170	0.176	0.278	0.283	0.292	0.315	0.223	0.219	0.683	0.794	0.392	0.395	1.044	0.354
Log_Pearson III	0.278	0.283	0.388	0.389	0.416	0.455	0.358	0.358	0.840	0.957	0.850	0.832	1.378	0.801
Weilbull	508	508	18.166	21.7	22.4	41.0	41.2	46.8	1.917	18.638	46.808	2.391	22.816	6.302
Serial correlation coefficient test for in	dependence													
S ₁	0.141	0.141	0.171	0.189	0.150	0.136	0.168	0.155	0.152	0.196	0.151	0.358	0.192	0.190
t	1.300	1.296	1.579	1.945	1.385	1.253	1.549	1.426	0.947	1.824	1.394	2.135	1.783	1.869
t(α=0.05)	1.663	1.663	1.663	1.660	1.663	1.663	1.663	1.663	1.686	1.663	1.663	1.696	1.663	1.661
t(α=0.01)	2.372	2.372	2.372	2.363	2.372	2.372	2.372	2.372	2.429	2.372	2.372	2.453	2.372	2.367
Spearman rank order correlation coeffi	icient test for no	-trend												
r _s	-0.071	-0.073	-0.177	-0.026	-0.152	-0.148	-0.207	-0.196	0.487	-0.278	0.061	0.558	-0.194	-0.010
t	-0.652	-0.675	-1.647	-0.264	-1.406	-1.371	-1.940	-1.834	3.478	-2.656	0.559	3.803	-1.810	-0.100
t(α=0.05)	-1.989	-1.989	-1.989	-1.983	-1.989	-1.989	-1.989	-1.989	2.023	-1.989	1.989	2.037	-1.989	-1.986
t(α=0.01)	-2.636	-2.636	-2.636	-2.624	-2.636	-2.636	-2.636	-2.636	2.708	-2.636	2.636	2.738	-2.636	-2.629
Mann-Whitney split sample test for hor	mogeneity													
Size of earlier sample	43	43	43	53	43	43	43	43	22	43	43	17	43	48
Z	-0.643	-0.626	-0.523	-1.384	-0.246	-0.229	-0.954	-0.816	-2.575	-3.386	-1.533	-2.446	-1.499	-0.029
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645		-1.645	-1.645
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326		-2.326	-2.326
Test of general randomness (Runs for	above or below	the median)												
Median	572	556	568	576	544	539	556	548	73.0	68.7	54.5	70.3	69.8	25.4
N1(for Q>=Median)	43	43	43	53	43	43	43	43	22	43	43	17	43	48
N2(for Q <median)< td=""><td>43</td><td>43</td><td>43</td><td>52</td><td>43</td><td>43</td><td>43</td><td>43</td><td>19</td><td>43</td><td>43</td><td>17</td><td>43</td><td>48</td></median)<>	43	43	43	52	43	43	43	43	19	43	43	17	43	48
Run_ab	36	36	32	39	32	36	30	34	20	41	34	12	42	36
Z	1.736	1.736	2.603	2.843	2.603	1.736	3.037	2.169	0.442	0.651	2.169	2.090	0.434	2.668
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960		1.960	1.960
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576		2.576	2.576

							B	OW RIVER TRIBUT	ARIES						
WSC Station ID / Node ID	05B	G006	05B	G001	05BH015	05B	H009	05BH003	/ Node 175	Node 163	05BK001	05BM008	05BN006	05BN002	Node 179
WSC Station Name or Location of Interest	Waiparous Creek near the Mouth	Waiparous Creek near the Mouth, extended	Ghost River near Cochrane, extended	Ghost River near Cochrane, sensitivity analysis	Jumpingpound Creek at Township Road No. 252, extended	Jumpingpound Creek near the Mouth	Jumpingpound Creek near the Mouth, extended	Nose Creek at Calgary, Extended	Nose Creek at Calgary	Fish Creek at the Mouth	Fish Creek near Priddis	Crowfoot Creek near Cluny	New West Coulee near the Mouth	Twelve Mile Creek near Cecil	Arrowwood Creek above Hwy. 547
Anderson-Darling statistic, A² = - N -S															
3 Parameter Log-normal	0.341	0.183	0.333	0.465	0.167	0.128	0.162	0.265	0.327	0.192	0.167	0.458	0.410	0.879	0.741
Extreme Value	0.593	0.779	0.347	0.280	0.498	0.555	0.332	0.248	0.859	0.619	0.537	2.000	0.394	1.191	0.914
Log_Pearson III	0.846	0.449	0.318	0.485	0.207	0.192	0.203	0.912	0.502	0.358	0.434	0.762	0.461	1.039	0.375
Weilbull	1.003	2.092	2.967	1.975	2.207	1.879	1.125	1.460	1.300	3.332	1.997	4.032	0.737	1.319	1.969
Serial correlation coefficient test for in	dependence														
S ₁	0.066	0.142	0.137	0.226	0.338	0.259	0.329	0.013	0.046	0.184	0.180	0.209	0.353	0.761	0.192
t	0.450	1.380	1.337	2.234	2.712	1.610	2.700	0.062	0.399	1.412	1.345	1.681	2.825	9.229	1.342
t(α=0.05)	1.678	1.661	1.661	1.661	1.672	1.688	1.671	1.711	1.666	1.672	1.674	1.670	1.673	1.670	1.678
t(α=0.01)	2.408	2.367	2.367	2.367	2.394	2.434	2.390	2.492	2.378	2.394	2.397	2.388	2.395	2.388	2.408
Spearman rank order correlation coeff	icient test for no	-trend													
r _s	-0.071	-0.124	-0.089	-0.221	-0.067	-0.047	-0.101	-0.113	-0.184	-0.133	-0.167	-0.136	0.022	-0.523	0.209
t	-0.494	-1.214	-0.863	-2.197	-0.509	-0.285	-0.791	-0.568	-1.622	-1.024	-1.252	-1.091	0.167	-4.870	1.484
t(α=0.05)	-2.011	-1.986	-1.986	-1.986	-2.002	-2.026	-2.000	-2.060	-1.992	-2.002	-2.004	-1.998	2.002	-1.998	2.011
t(α=0.01)	-2.682	-2.629	-2.629	-2.629	-2.663	-2.715	-2.659	-2.787	-2.643	-2.663	-2.668	-2.656	2.665	-2.656	2.682
Mann-Whitney split sample test for ho	mogeneity														
Size of earlier sample	25	48	49	48	32	20	32	14	38	30	35	30.0	30	33	25
Z	-0.999	-0.667	-0.887	-1.638	-1.467	-0.674	-1.086	-0.776	-1.676	-0.798	-1.762	-0.813	-0.743	-4.993	-0.728
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645		-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	-2.3 26	-2.326		-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326
Test of general randomness (Runs for	above or below t	the median)													
Median	33.1	27.9	51.5	53.6	28.3	24.6	29.4	8.59	5.66	15.9	32.0	19.527	4.36	4.56	3.98
N1(for Q>=Median)	25	48	49	48	30	20	32	14	39	30	29	30.0	30	33	25
N2(for Q <median)< td=""><td>25</td><td>48</td><td>47</td><td>48</td><td>30</td><td>19</td><td>31</td><td>13</td><td>38</td><td>30</td><td>28</td><td>30.0</td><td>29</td><td>32</td><td>25</td></median)<>	25	48	47	48	30	19	31	13	38	30	28	30.0	29	32	25
Run_ab	23	46	46	36	26	21	30	13	37	25	27	25.0	21	17	20
Z	0.857	0.616	0.612	2.668	1.302	0.167	0.633	0.582	0.572	1.562	0.666	1.562	2.494	4.125	1.715
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	1.960	1.960		1.960	1.960	1.960	1.960	1.960	1.960	1.960
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	2.576	2.576		2.576	2.576	2.576	2.576	2.576	2.576	2.576

				ELBOV	W RIVER						SHEEP RIVER A	ND TRIBUTARIES		
WSC Station ID / Node ID		05BJ004			05BJ010		Nod	le 161	05BL014	05B	L012	Nod	e 344	05BL013
WSC Station Name or Location of Interest	Elbow River at Bragg Creek	Elbow River at Bragg Creek, extended	Elbow River at Bragg Creek, historic ¹	Elbow River at Sarcee Bridge, same as Glemmore Reservoir Inflow - combined 05BJ001, 05BJ005, 05BJ0010	Elbow River at Sarcee Bridge, same as Glemmore Reservoir Inflow - combined 05BJ001, 05BJ005, 05BJ010 with 1983 values	Elbow River at Sarcee Bridge, same as Glenmore Reservoir Inflow - historic ¹	Elbow River below Glenmore Dam	Elbow River below Glenmore Dam, historic ¹	Sheep River at Black Diamond	Sheep River at Okotoks	Sheep River at Okotoks, extended	Sheep River at the Mouth ²	Sheep River at the Mouth, extended ²	Threepoint Creek near Millarville
Anderson-Darling statistic, A ² = - N -S														
3 Parameter Log-normal	0.241	0.356	n/a	0.156	0.212	n/a	0.497	n/a	0.100	0.314	0.281	n/a	n/a	0.335
Extreme Value	0.356	0.567	n/a	0.271	0.312	n/a	0.362	n/a	0.466	0.739	0.650	n/a	n/a	0.703
Log_Pearson III	0.421	0.716	n/a	0.302	0.666	n/a	0.345	n/a	0.377	0.339	1.030	n/a	n/a	0.558
Weilbull	479	17.1	n/a	620	15.2	n/a	9.681	n/a	1.320	0.989	1.312	n/a	n/a	2.240
Serial correlation coefficient test for in	dependence													
S ₁	0.049	0.037	n/a	0.075	0.101	n/a	0.102	n/a	0.165	0.075	0.105	n/a	n/a	0.169
t	0.436	0.385	n/a	0.762	1.028	n/a	1.049	n/a	1.208	0.354	0.866	n/a	n/a	1.258
t(α=0.05)	1.665	1.659	n/a	1.660	1.660	n/a	1.659	n/a	1.675	1.717	1.668	n/a	n/a	1.674
t(α=0.01)	2.375	2.362	n/a	2.363	2.363	n/a	2.362	n/a	2.400	2.508	2.383	n/a	n/a	2.397
Spearman rank order correlation coeff	icient test for no	-trend												
r _s	-0.117	0.034	n/a	-0.020	0.001	n/a	0.035	n/a	-0.110	-0.187	-0.104	n/a	n/a	-0.157
t	-1.050	0.349	n/a	-0.203	0.006	n/a	0.364	n/a	-0.802	-0.911	-0.861	n/a	n/a	-1.177
t(α=0.05)	-1.990	1.983	n/a	-1.983	1.983	n/a	1.983	n/a	-2.006	-2.069	-1.995	n/a	n/a	-2.004
t(α=0.01)	-2.640	2.623	n/a	-2.624	2.624	n/a	2.623	n/a	-2.672	-2.807	-2.650	n/a	n/a	-2.668
Mann-Whitney split sample test for hor	mogeneity													
Size of earlier sample	41	54	n/a	53	53	n/a	54	n/a	28	13	35	n/a	n/a	28
Z	-0.241	-0.221	n/a	-0.455	-0.256	n/a	-0.147	n/a	-1.355	-1.251	-0.341	n/a	n/a	-1.285
z(α=0.05)	-1.645	-1.645	n/a	-1.645	-1.645	n/a	-1.645	n/a	-1.645		-1.645	n/a	n/a	-1.645
z(α=0.01)	-2.326	-2.326	n/a	-2.326	-2.326	n/a	-2.326	n/a	-2.326		-2.326	n/a	n/a	-2.326
Test of general randomness (Runs for	above or below	the median)												
Median	56.1	59.8	n/a	63.4	66.8	n/a	59.7	n/a	60.7	124	149	n/a	n/a	36.0
N1(for Q>=Median)	41	54	n/a	53	53	n/a	54	n/a	28	13	35	n/a	n/a	29
N2(for Q <median)< td=""><td>40</td><td>54</td><td>n/a</td><td>52</td><td>53</td><td>n/a</td><td>54</td><td>n/a</td><td>27</td><td>12</td><td>35</td><td>n/a</td><td>n/a</td><td>28</td></median)<>	40	54	n/a	52	53	n/a	54	n/a	27	12	35	n/a	n/a	28
Run_ab	37	46	n/a	44	46	n/a	48	n/a	23	14	34	n/a	n/a	30
Z	1.005	1.740	n/a	1.862	1.562	n/a	1.353	n/a	1.495	0.213	0.482	n/a	n/a	0.136
z(a=0.05)	1.960	1.960	n/a	1.960	1.960	n/a	1.960	n/a	1.960		1.960	n/a	n/a	1.960
z(a=0.01)	2.576	2.576	n/a	2.576	2.576	n/a	2.576	n/a	2.576		2.576	n/a	n/a	2.576

					HIGHWOOD RIVER	AND TRIBUTARIE	S			
WSC Station ID / Node ID	05BL019	05B	L004	05E	3L024	Node 172	05BL022	05BL023	05BL007	05BL027
WSC Station Name or Location of Interest	Highwood River at Diebel's Ranch	Highwood River below Little Bow Canal	Highwood River below Little Bow Canal, extended	Highwood River near the Mouth	Highwood River near the Mouth, extended	Highwood River at the Mouth ⁶	Cataract Creek near Forestry Road	Pekisko Creek near Longview	Stimson Creek near Pekisko	Trapp Creek near Longview
Anderson-Darling statistic, A² = - N -S										
3 Parameter Log-normal	0.588	0.327	0.575	0.130	0.538	n/a	0.461	0.114	0.227	0.464
Extreme Value	0.466	0.446	0.389	0.179	0.244	n/a	0.296	0.499	0.432	0.524
Log_Pearson III	0.450	0.880	0.719	0.381	0.702	n/a	0.573	0.176	0.407	1.021
Weilbull	2.970	2.006	2.767	1.344	5.887	n/a	295	1.994	8.815	219
Serial correlation coefficient test for in	dependence									
S ₁	-0.060	0.055	0.091	0.233	0.154	n/a	-0.041	0.066	0.242	0.102
t	-0.470	0.319	0.928	1.571	1.577	n/a	-0.280	0.450	2.284	0.598
t(α=0.05)	-1.670	1.691	1.660	1.681	1.660	n/a	-1.678	1.679	1.663	1.691
t(α=0.01)	-2.388	2.441	2.363	2.416	2.363	n/a	-2.408	2.410	2.372	2.441
Spearman rank order correlation coeff	icient test for no	-trend								
r _s	0.032	-0.245	-0.057	-0.236	-0.039	n/a	-0.045	-0.051	-0.109	-0.261
t	0.255	-1.493	-0.584	-1.610	-0.397	n/a	-0.309	-0.347	-1.016	-1.602
t(α=0.05)	1.998	-2.030	-1.983	-2.015	-1.983	n/a	-2.011	-2.012	-1.988	-2.030
t(α=0.01)	2.656	-2.724	-2.623	-2.692	-2.624	n/a	-2.682	-2.685	-2.635	-2.724
Mann-Whitney split sample test for hor	mogeneity									
Size of earlier sample	33	19	27	23	53	n/a	25	24	44	19
Z	-0.650	-0.608	-0.186	-1.922	-0.654	n/a	-0.689	-1.480	-0.093	-0.714
z(α=0.05)	-1.645		-1.645	-1.645	-1.645	n/a	-1.645	-1.645	-1.645	
z(α=0.01)	-2.326		-2.326	-2.326	-2.326	n/a	-2.326	-2.326	-2.326	
Test of general randomness (Runs for	above or below t	the median)								
Median	77.3	121	117	203	197	n/a	24.6	13.9	13.6	12.4
N1(for Q>=Median)	33	19	54	23	53	n/a	25	25	44	19
N2(for Q <median)< td=""><td>32</td><td>18</td><td>53</td><td>23</td><td>53</td><td>n/a</td><td>25</td><td>24</td><td>43</td><td>18</td></median)<>	32	18	53	23	53	n/a	25	24	43	18
Run_ab	36	18	46	18	40	n/a	25	20	37	20
Z	0.627	0.496	1.650	1.789	2.733	n/a	0.286	1.586	1.617	0.171
z(a=0.05)	1.960		1.960	1.960	1.960	n/a	1.960	1.960	1.960	
z(a=0.01)	2.576		2.576	2.576	2.576	n/a	2.576	2.576	2.576	

1532956

								BOW	RIVER							
WSC Station ID / Node ID	Node 105	Node 107	Node 108		E004 le 111	318		E006 de 58		H005 de 114	3	02		05B	H008	
WSC Station Name or Location of Interest	Bow River below Spray River	Bow River below Cascade River	Bow River at Canmore ²	Bow River near Seebe, recorded	Bow River near Seebe, regulated	Bow River above Ghost Reservoir	Bow River below Ghost Dam (Ghost Reservoir Outflow), recorded	Bow River below Ghost Dam (Ghost Reservoir Outflow), regulated	Bow River near Cochrane	Bow River near Cochrane, historic ¹	Bearspaw Reservoir Inflow	Bearspaw Reservoir Inflow, historic ¹	Bearspaw Reservoir Outflow	Bearspaw Reservoir Outflow, extended using Bow River at Calgary - all flows	Bearspaw Reservoir Outflow, extended using Bow River at Calgary - all flows, historic	Bearspaw Reservoir Outflow, extended using Bow River at Calgary - post 1932 flows
Anderson-Darling statistic, A ² = - N -S																
3 Parameter Log-normal	0.396	0.358	0.323	0.185	0.454	0.455	0.553	0.503	0.527	n/a	0.563	n/a	0.202	0.687	n/a	0.419
Extreme Value	0.375	0.360	0.303	0.169	0.473	0.474	0.446	0.511	0.542	n/a	0.574	n/a	0.143	0.549	n/a	0.412
Log_Pearson III	0.526	0.584	0.533	0.373	0.437	0.437	0.645	0.444	0.467	n/a	0.482	n/a	0.549	1.094	n/a	1.045
Weilbull	4.537	4.746	11.8	2.041	54.3	54.3	0.379	67.9	62.1	n/a	56.0	n/a	1.709	26.5	n/a	79.9
Serial correlation coefficient test for in	dependence															
S ₁	0.013	0.055	0.053	0.129	0.112	0.112	0.232	0.030	0.004	n/a	0.020	n/a	0.098	0.307	n/a	0.168
t	0.114	0.506	0.485	1.117	1.026	1.026	1.651	0.276	0.039	n/a	0.185	n/a	0.541	3.243	n/a	1.514
t(α=0.05)	1.663	1.663	1.663	1.666	1.663	1.663	1.677	1.663	1.663	n/a	1.663	n/a	1.697	1.660	n/a	1.664
t(α=0.01)	2.372	2.372	2.372	2.378	2.372	2.372	2.407	2.372	2.372	n/a	2.372	n/a	2.457	2.364	n/a	2.374
Spearman rank order correlation coeffi	cient test for no-	trend									*					
۲ _s	0.152	0.143	0.053	0.370	-0.154	-0.154	0.454	-0.072	-0.109	n/a	-0.099	n/a	-0.198	0.443	n/a	0.263
t	1.407	1.321	0.487	3.451	-1.425	-1.425	3.568	-0.666	-1.007	n/a	-0.915	n/a	-1.124	4.991	n/a	2.435
t(α=0.05)	1.989	1.989	1.989	1.992	-1.989	-1.989	2.010	-1.989	-1.989	n/a	-1.989	n/a	-2.040	1.983	n/a	1.990
t(α=0.01)	2.636	2.636	2.636	2.643	-2.636	-2.636	2.680	-2.636	-2.636	n/a	-2.636	n/a	-2.744	2.625	n/a	2.639
Mann-Whitney split sample test for hon	nogeneity															
Size of earlier sample	43	43	43	39	43	43	26	43	43	n/a	43	n/a	17	54	n/a	41
Z	-1.542	-1.611	-0.531	-3.077	-1.490	-1.490	-2.921	-0.540	-0.721	n/a	-0.618	n/a	-0.144	-4.132	n/a	-3.381
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	n/a	-1.645	n/a		-1.645	n/a	-1.645
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	n/a	-2.326	n/a		-2.326	n/a	-2.326
Test of general randomness (Runs for a	above or below t	he median)														
Median	218	238	264	334	358	349	331	376	382	n/a	370	n/a	293	380	n/a	344
N1(for Q>=Median)	43	43	43	39	43	43	26	43	43	n/a	43	n/a	17	53	n/a	41
N2(for Q <median)< td=""><td>43</td><td>43</td><td>43</td><td>38</td><td>43</td><td>43</td><td>25</td><td>43</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>16</td><td>51</td><td>n/a</td><td>41</td></median)<>	43	43	43	38	43	43	25	43	43	n/a	43	n/a	16	51	n/a	41
Run_ab	50	46	46	36	40	40	20	42	44	n/a	46	n/a	15	40	n/a	36
Z	1.302	0.434	0.434	0.802	0.868	0.868	1.837	0.434	0.000	n/a	0.434	n/a	0.880	2.559	n/a	1.333
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	n/a	1.960	n/a		1.960	n/a	1.960
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	n/a	2.576	n/a		2.576	n/a	2.576

NOTES:

n/a, statistical test is either not applicable or not available

1. Historic floods were calculated based on ratio between recorded flows and historic flows, therefore, statistical test is not applicable

2. Flood estimates were calculated using prorating based on drainage area

3. Selected distribution based on best statistical fit

4. Criteria for the respective statistical tests were not met

·····									BOW RIVER								
WSC Station ID / Node ID	Nod	e 59	05B	H004	Nod	e 176	Nod	le 158	Noc	le 164	Nod	le 177	Nod	e 331	Node 165		3M002 de 178
WSC Station Name or Location of Interest	Bearspaw Reservoir Outflow (same as Bow River at Calgary)	Bearspaw Reservoir Outflow (same as Bow River at Calgary), historic	3ow River at Calgary	3ow River at Calgary, historic	Bow River below Elbow River	Bow River below Elbow River, historic ¹	Bow River below Nose Creek	Bow River below Nose Creek, historic ¹	3ow River below Fish Creek	3ow River below Fish Creek, historic ¹	Bow River below Pine Creek	Bow River below Pine Creek, historic ¹	Bow River above Highwood River	Bow River above Highwood River, historic ¹	Bow River below Highwood River	Bow River below Carseland Dam, recorded	Bow River below Carseland Dam,
derson-Darling statistic, A ² = - N -S	•			• <u> </u>						• • •				•			
3 Parameter Log-normal	0.705	n/a	0.867	n/a	0.732	n/a	0.498	n/a	0.506	n/a	0.498	n/a	0.487	n/a	0.200	0.299	0.165
Extreme Value	0.634	n/a	0.642	n/a	0.682	n/a	0.352	n/a	0.407	n/a	0.399	n/a	0.388	n/a	0.141	0.213	0.176
Log_Pearson III	0.558	n/a	0.804	n/a	0.574	n/a	0.350	n/a	0.372	n/a	0.364	n/a	0.354	n/a	0.750	0.400	0.790
Weilbull	54.5	n/a	27.4	n/a	508	n/a	47.1	n/a	60.2	n/a	54.9	n/a	60.2	n/a	46.8	24.7	41.1
erial correlation coefficient test for in	dependence																
S ₁	0.042	n/a	0.323	n/a	0.053	n/a	0.053	n/a	0.045	n/a	0.038	n/a	0.036	n/a	0.176	0.196	0.068
t	0.386	n/a	3.427	n/a	0.487	n/a	0.485	n/a	0.410	n/a	0.345	n/a	0.329	n/a	1.625	1.548	0.618
t(α=0.05)	1.663	n/a	1.660	n/a	1.663	n/a	1.663	n/a	1,663	n/a	1.663	n/a	1.663	n/a	1.663	1.671	1.663
t(α=0.01)	2.372	n/a	2.364	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	n/a	2.372	2.390	2.372
pearman rank order correlation coeff	icient test for no-	trend									*						
r _s	-0.094	n/a	0.486	n/a	-0.137	n/a	-0.081	n/a	-0.103	n/a	-0.100	n/a	-0.100	n/a	-0.181	-0.070	-0.156
t	-0.862	n/a	5.613	n/a	-1.268	n/a	-0.741	n/a	-0.952	n/a	-0.923	n/a	-0.920	n/a	-1.689	-0.547	-1.444
t(α=0.05)	-1.989	n/a	1.983	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	n/a	-1.989	-2.000	-1.989
t(α=0.01)	-2.636	n/a	2.625	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	n/a	-2.636	-2.659	-2.636
ann-Whitney split sample test for hor	mogeneity																
Size of earlier sample	43	n/a	53	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	32	43
Z	-0.402	n/a	-4.230	n/a	-0.428	n/a	-0.341	n/a	-0.402	n/a	-0.384	n/a	-0.384	n/a	-1.274	-0.543	-0.376
z(α=0.05)	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	n/a	-1.645	-1.645	-1.645
z(α=0.01)	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	n/a	-2.326	-2.326	-2.326
est of general randomness (Runs for		he median)															
Median	377	n/a	374	n/a	419	n/a	383	n/a	393	n/a	392	n/a	393	n/a	515	504	531
N1(for Q>=Median)	43	n/a	52	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	32	43
N2(for Q <median)< td=""><td>43</td><td>n/a</td><td>52</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>n/a</td><td>43</td><td>31</td><td>43</td></median)<>	43	n/a	52	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	n/a	43	31	43
Run_ab	42	n/a	40	n/a	38	n/a	42	n/a	40	n/a	40	n/a	44	n/a	42	27	40
Z	0.434	n/a	2.562	n/a	1.302	n/a	0.434	n/a	0.868	n/a	0.868	n/a	0.000	n/a	0.434	1.396	0.868
z(a=0.05)	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	n/a	1.960	1.960	1.960
z(a=0.01)	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	n/a	2.576	2.576	2.576

						BOW RIVER							BOW RIVER	TRIBUTARIES	
WSC Station ID / Node ID	Node 180	Node 181	Node 189		M004 le 182	Node 184	Node 185	Node 186		N012 le 187	Node 188	Node 154	Node 207	Node 201	Node 51
WSC Station Name or Location of Interest	Bow River at Hwy. 547	Bow River at Hyw. 842	Bow River below Crowfoot Creek	Bow River below Bassano Dam, recorded	Bow River below Bassano Dam, regulated	Bow River at Hwy. 539	Bow River at Hwy. 36	Bow River at Hwy. 875	Bow River near the Mouth, recorded	Bow River near the Mouth, regulated	Bow River at the Mouth	Cascade River at Lake Minnewanka	Lake Minnewanka End of Day Elevations7	Spray Lake End of Day Elevations7	Spray River below Spray Lake, reduced simulated watershed
nderson-Darling statistic, A² = - N -S															
3 Parameter Log-normal	0.171	0.148	0.157	0.299	0.248	0.262	0.247	0.241	0.372	0.250	0.251	11.517	11.062	7.081	1.558
Extreme Value	0.194	0.182	0.190	0.227	0.205	0.213	0.202	0.198	0.316	0.149	0.158	190.0	30.662	25.924	4.031
Log_Pearson III	0.802	0.788	0.802	0.486	0.424	0.441	0.430	0.444	0.421	0.325	0.330	9.159	9.089	5.089	1.561
Weilbull	53.1	74.0	74.0	2.399	26.0	26.6	26.1	26.0	37.3	21.9	22.0	508	508	508	6.207
serial correlation coefficient test for in	dependence														
S ₁	0.078	0.082	0.075	0.300	0.228	0.207	0.199	0.193	0.240	0.242	0.236	0.267	0.131	0.481	0.231
t	0.714	0.752	0.685	2.664	2.129	1.925	1.851	1.792	1.714	2.272	2.215	2.527	1.201	5.001	2.163
t(α=0.05)	1.663	1.663	1.663	1.666	1.663	1.663	1.663	1.663	1.677	1.663	1.663	1.663	1.663	1.663	1.663
t(α=0.01)	2.372	2.372	2.372	2.379	2.372	2.372	2.372	2.372	2.407	2.372	2.372	2.372	2.372	2.372	2.372
pearman rank order correlation coeffi	cient test for no-	-trend													P
r _s	-0.128	-0.118	-0.117	0.167	-0.230	-0.211	-0.201	-0.201	-0.081	-0.267	-0.263	0.072	-0.024	-0.300	-0.032
t	-1.181	-1.085	-1.084	1.447	-2.164	-1.976	-1.877	-1.877	-0.571	-2.544	-2.496	0.665	-0.216	-2.880	-0.292
t(α=0.05)	-1.989	-1.989	-1.989	1.993	-1.989	-1.989	-1.989	-1.989	-2.010	-1.989	-1.989	1.989	-1.989	-1.989	-1.989
t(α=0.01)	-2.636	-2.636	-2.636	2.645	-2.636	-2.636	-2.636	-2.636	-2.680	-2.636	-2.636	2.636	-2.636	-2.636	-2.636
lann-Whitney split sample test for hor	nogeneity														
Size of earlier sample	43	43	43	38	43	43	43	43	26	43	43	43	43	43	43
Z	-0.151	-0.022	-0.004	-2.469	-1.231	-1.032	-0.946	-0.911	-1.413	-1.697	-1.637	-1.568	-1.118	-4.268	-0.561
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645	-1.645
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326	-2.326
est of general randomness (Runs for	above or below t	the median)													
Median	501	497	519	555	531	536	479	478	500	511	502	56.6	1475	1697	15.0
N1(for Q>=Median)	43	43	43	38	43	43	43	43	26	43	43	48	51	44	43
N2(for Q <median)< td=""><td>43</td><td>43</td><td>43</td><td>37</td><td>43</td><td>43</td><td>43</td><td>43</td><td>25</td><td>43</td><td>43</td><td>38</td><td>35</td><td>42</td><td>43</td></median)<>	43	43	43	37	43	43	43	43	25	43	43	38	35	42	43
Run_ab	40	40	40	27	36	36	36	36	20	37	36	32	38	38	36
Z	0.868	0.868	0.868	2.673	1.736	1.736	1.736	1.736	1.837	1.519	1.736	2.512	1.014	1.297	1.736
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576	2.576

Table A 4. D . 14 tictical T of A 1... - 4 - - - 4 40 - d. f Eit of Brobability Distributio с. -41 ulated El . . .

WSC Station ID / Node ID	BOW RIVER TRIBUTARIES				ELBOW RIVER									
	05BC001	05BF001	05BG010	05BG001	Node 161		Node 213	05B	05BL004		05BL024		05BL015	05AC930
WSC Station Name or Location of Interest	Spray River at Banff, after 1951	Kananaskis River near Seebe, after 1946	Ghost River above Waiparous Creek	Ghost River near Cochrane	Elbow River below Glenmore Dam	Elbow River below Glenmore Dam, historic ¹	Glenmore Reservoir End of Day Elevations7	Highwood River below the Little Bow Canal	Highwood River below the Little Bow Canal, extended	Highwood River near the Mouth	Highwood River near the Mouth, extended	Highwood River at the Mouth ⁵	Little Bow Canal at High River	Little Bow River at Highway No. 533
nderson-Darling statistic, A ² = - N -S			8				E					E		
3 Parameter Log-normal	0.899	2.815	0.719	0.333	0.253	n/a	26.918	0.347	0.575	0.114	0.518	n/a	0.594	2.898
Extreme Value	0.408	1.063	0.354	0.347	0.276	n/a	33.184	0.489	0.389	0.168	0.226	n/a	0.618	0.444
Log_Pearson III	0.591	2.507	0.801	0.318	0.417	n/a	26.959	0.582	0.719	0.378	0.710	n/a	1.140	0.858
Weilbull	378	1.317	6.302	2.967	14.6	n/a	31.4	1.396	2.767	1.293	5.870	n/a	44.6	3.235
erial correlation coefficient test for in	dependence													
S ₁	0.118	0.326	0.190	0.137	0.168	n/a	-0.090	0.076	0.091	0.231	0.117	n/a	0.527	0.063
t	0.925	2.536	1.869	1.337	1.552	n/a	-0.819	0.446	0.928	1.555	1.205	n/a	6.197	0.199
t(α=0.05)	1.670	1.674	1.661	1.661	1.663	n/a	-1.663	1.691	1.660	1.681	1.660	n/a	1.660	1.812
t(α=0.01)	2.389	2.397	2.367	2.367	2.372	n/a	-2.372	2.441	2.363	2.416	2.363	n/a	2.364	2.764
pearman rank order correlation coeffi	cient test for no-	-trend									*			
r _s	0.062	0.408	-0.010	-0.089	-0.194	n/a	-0.211	-0.245	-0.057	-0.238	-0.021	n/a	-0.474	-0.126
t	0.487	3.311	-0.100	-0.863	-1.813	n/a	-1.976	-1.494	-0.584	-1.625	-0.220	n/a	-5.416	-0.423
t(α=0.05)	1.999	2.004	-1.986	-1.986	-1.989	n/a	-1.989	-2.030	-1.983	-2.015	-1.983	n/a	-1.984	-2.201
t(α=0.01)	2.657	2.668	-2.629	-2.629	-2.636	n/a	-2.636	-2.724	-2.623	-2.692	-2.623	n/a	-2.625	-3.106
lann-Whitney split sample test for hor	nogeneity													
Size of earlier sample	32	29	48	49	43	n/a	43	19	27	23	27	n/a	52	7
Z	-0.510	-2.650	-0.029	-0.887	-0.263	n/a	-1.184	-0.669	-2.473	-1.944	-0.151	n/a	-5.719	-0.429
z(α=0.05)	-1.645	-1.645	-1.645	-1.645	-1.645	n/a	-1.645		-1.645	-1.645	-1.645	n/a	-1.645	
z(α=0.01)	-2.326	-2.326	-2.326	-2.326	-2.326	n/a	-2.326		-2.326	-2.326	-2.326	n/a	-2.326	
est of general randomness (Runs for	above or below t	the median)												
Median	13.3	42.8	25.4	51.5	55.4	n/a		119	117	201	198	n/a	1.78	5.67
N1(for Q>=Median)	32	29	48	49	43	n/a		19	54	23	54	n/a	52	7
N2(for Q <median)< td=""><td>32</td><td>28</td><td>48</td><td>47</td><td>43</td><td>n/a</td><td></td><td>18</td><td>53</td><td>23</td><td>53</td><td>n/a</td><td>51</td><td>6</td></median)<>	32	28	48	47	43	n/a		18	53	23	53	n/a	51	6
Run_ab	28	24	36	46	39	n/a		18	46	18	42	n/a	23	5
Z	1.260	1.468	2.668	0.612	1.085	n/a		0.496	1.650	1.789	2.428	n/a	5.842	1.435
z(a=0.05)	1.960	1.960	1.960	1.960	1.960	n/a			1.960	1.960	1.960	n/a	1.960	
z(a=0.01)	2.576	2.576	2.576	2.576	2.576	n/a			2.576	2.576	2.576	n/a	2.576	

APPENDIX B

Naturalized Daily Flows and Flood Routing at Key Locations

APPENDIX B Naturalized Daily Flows and Flood Routing at Key Locations

B1.0 INTRODUCTION

The work completed in this study involves generation of daily natural flows for all relevant location of interest in the Bow River basin. The locations coincide with the major hydraulic structures in the basin (reservoirs and major water intake structures) and Water Survey of Canada (WSC) flow gauging locations. The principal approach for flow naturalization involved removal of the effects of storage and diversions. Flow naturalization was conducted reach by reach from upstream location (i.e., Bow River at Banff) to the downstream location (Bow River at the Mouth). The approach, known as the Project Depletion Method and was used by AEP in the past, and was built into the River Basin Assessment Tool (RBAT) model. Apart from minor modifications, the following section follows the explanation of the Project Depletion Method that has been laid out in the RBAT User's Manual. The principal update in this study is the use of up to date storage levels and outflows from TransAlta's structures in the period from 1985 to 2015, along with updated information from Environment Canada related to the June 2013 flood data.

B2.0 AVAILABILITY OF INPUT DATA

The process of developing natural flow estimates requires the use of historic records of reservoir levels and outflows from the date each structure started its operation. This appendix describes the methodology for calculating natural flows as well as how this methodology was implemented at each location of interest given the available data. It should be noted that the primary purpose of developing natural flows was to properly assess incoming annual peak flows into all major structures, and for as many years as possible. Naturalized annual peak flows constitute a principal input into the hydrologic frequency analyses. Annual peak flows were assessed for as many years as possible, as further explained in subsequent sections that provide more information about each storage site where natural flow series were developed.

B3.0 PROJECT DEPLETION METHOD

Alberta Environment uses the Project Depletion Method to calculate natural flows on all major rivers in Alberta. The same methodology is employed by the Prairie Provinces Water Board (PPWB). The PPWB consists of representatives from Environment Canada (representing the Federal Government) and the representatives of the three Prairie Provinces. The short summary that explains the project depletion method in this section follows closely the documentation of the Natural Flow Computation Program (NFCP) program used in this study. Technical specifications for NFCP were approved by the PPWB in November of 2008.

Natural flows are river flows that would have been observed at selected locations in a river basin assuming there had been no human intervention by operation of large storage reservoirs or withdrawals. The most common approach to estimate natural flows is the Project Depletion Method, which is essentially aimed at "undoing" the impacts of human intervention in a systematic way, reach by reach, in a downstream progression.

The calculation procedure is explained below for a small example shown in Figure B1 that contains all elements found in complex river basins. There are two river reaches with a reservoir R_1 at their confluence. In this example naturalized flow is calculated at the reservoir site. There is one diversion into the reservoir (D₁) and one return flow (RT₁) into the reservoir, one diversion channel out of the reservoir (D₂), and regulated outflow from the reservoir into natural channel reach C₃. The general approach to calculate naturalized flows at any location is to estimate local runoff which originates between the given location and the closest upstream locations at which natural flows had already been evaluated. Denote the naturalized flow at reservoir as Q_{R1} and the local runoff between natural flows Q₁, Q₂ and the reservoir as LR. The naturalized flow at the reservoir site can then be calculated as:

 $Q_{R1} = Q_1 + Q_2 + LR$

(2)



Figure B-1: Sample Schematic for Calculation of Naturalized Flows

Consequently, the principal component of deriving naturalized flows is determination of the local runoff LR. Assuming Qr1 and Qr2 are the recorded flows at locations 1 and 2, LR for the reservoir in Figure B1 can be calculated using the following equation assuming average flow over time step t:

 $LR = Q_{C3} + Q_{D2} - Q_{RT1} - Q_{D1} + \Delta V/t - Q_{r1} - Q_{r2}$

Where:

- Q_{C3} The recorded flow in channel C₃
- Q_{D1} Flow in diversion channel D₁
- Q_{D2} Flow in diversion channel D₂
- Q_{RT1} Flow in return flow channel RT₁
- $\Delta V/t$ Reservoir storage change over time step t

Reservoir storage change is further evaluated using the starting and ending storage (Vs and Ve) for a time step, along with adjustments for net evaporation (evaporation minus precipitation) for a given time interval *t*. Note that the sign for net evaporation is reversed since the consideration is to remove the effect of net evaporation (i.e. put the evaporation loss back in the river since this loss would not have happened if the reservoir had not been built):

$$\frac{\Delta V}{t} = \frac{Ve - Vs}{t} + \frac{(E - P)[A(Ve) + A(Vs)]}{2t}$$

Where:

 V_e Volume at the end of time step t (m³)

 V_s Volume at the start of time step t (m³)

- *P* Total precipitation over time step t (m)
- E Total evaporation from the reservoir surface over time step t (m)
- A(Ve) Surface area (m²) corresponding to the ending volume Ve
- $A(V_s)$ Surface area (m²) corresponding to the starting volume Vs

To summarize, local runoff LR can in general be assessed by conducting a water balance calculation for a sub-catchment which is delineated by the downstream point for which LR is evaluated and the upstream control points where recorded flow series are available. The general expression is:

$$LR = \sum_{i=1}^{m} Q_i - \sum_{j=1}^{n} Q_j + \sum_{k=1}^{l} \frac{\Delta V_k}{t}$$
(4)

Where:

 Q_i Average outflows (i=1, m) from a sub catchment within time step t

 Q_j Average inflows (i=1, m) into a sub catchment within time step t

While the storage change term $\Delta V/t$ is summed up over all storage reservoirs in the sub-catchment area under consideration. Inflows and outflows into a sub-catchment include all diversions and return flows into it, as well as diversions out of it. Normally, naturalized flows should be calculated at all on-stream reservoir locations, especially when reservoirs have sizeable live storage.

Equation (1) suggests that naturalized flows be first determined at upstream locations (e.g., locations 1 and 2 in the example in Figure B1). The calculation then proceeds in the above manner for all requested locations in the river basin in a downstream progression. It should be noted that for short (e.g., daily) time steps, the length of river reaches along channels C_1 and C_2 may require the use of channel routing, such that the routed outflow from these channels takes part in the mass balance calculation at the reservoir node, both for calculating local runoff LR, which would require the routing of the naturalized flow estimates previously made at nodes 1 and 2.

(3)

AEP uses the Wilson's routing equation in the Hydrol model which was borrowed from the Streamflow Synthesis and Reservoir Regulation (SSARR) model. A brief description of Wilson's equation is provided below.

As with the other river routing methods, the governing equation is related to channel storage change over a time step, which is a function of average inflow and outflow:

$$\frac{I_{t-1}+I_t}{2} - \frac{O_{t-1}+O_t}{2} = \frac{\Delta S}{t}$$
(5)

By subtracting both sides of the above equation with O_{t-1} , multiplying by $t/(O_t-O_{t-1})$ and by letting $\Delta S/(O_t-O_{t-1}) = TS$, the above equation becomes:

$$Ot = \frac{\left[\frac{I_{t-1} + I_t}{2} - O_{t-1}\right] \cdot t}{TS + \frac{t}{2}} + O_{t-1}$$

(6)

Where the term TS represents the average travel time along a river reach for given flow conditions, evaluated either by reading from the TS vs Q table or by using a functional form of the travel time vs flow curve as:

$$TS = \frac{Kts}{\left(\frac{O_{t-1}+O_t}{2}\right)^n}$$
(7)

The routing coefficients *Kts* and *n* must previously be determined by finding the best fit curve for a given set of the available (Ts,Q) coordinates. Usually, *Ts* can be determined for any given flow rate by linear interpolation from a table of (Ts,Q) points (these tables were provided by Alberta Environment and used in this project). In the above definition of *Ts*, the base of the denominator shown below represents the average channel flow over a time step as the arithmetic average of the outflows at the beginning and the end of the time step:

$$\frac{O_{t-1}+O_t}{2}$$

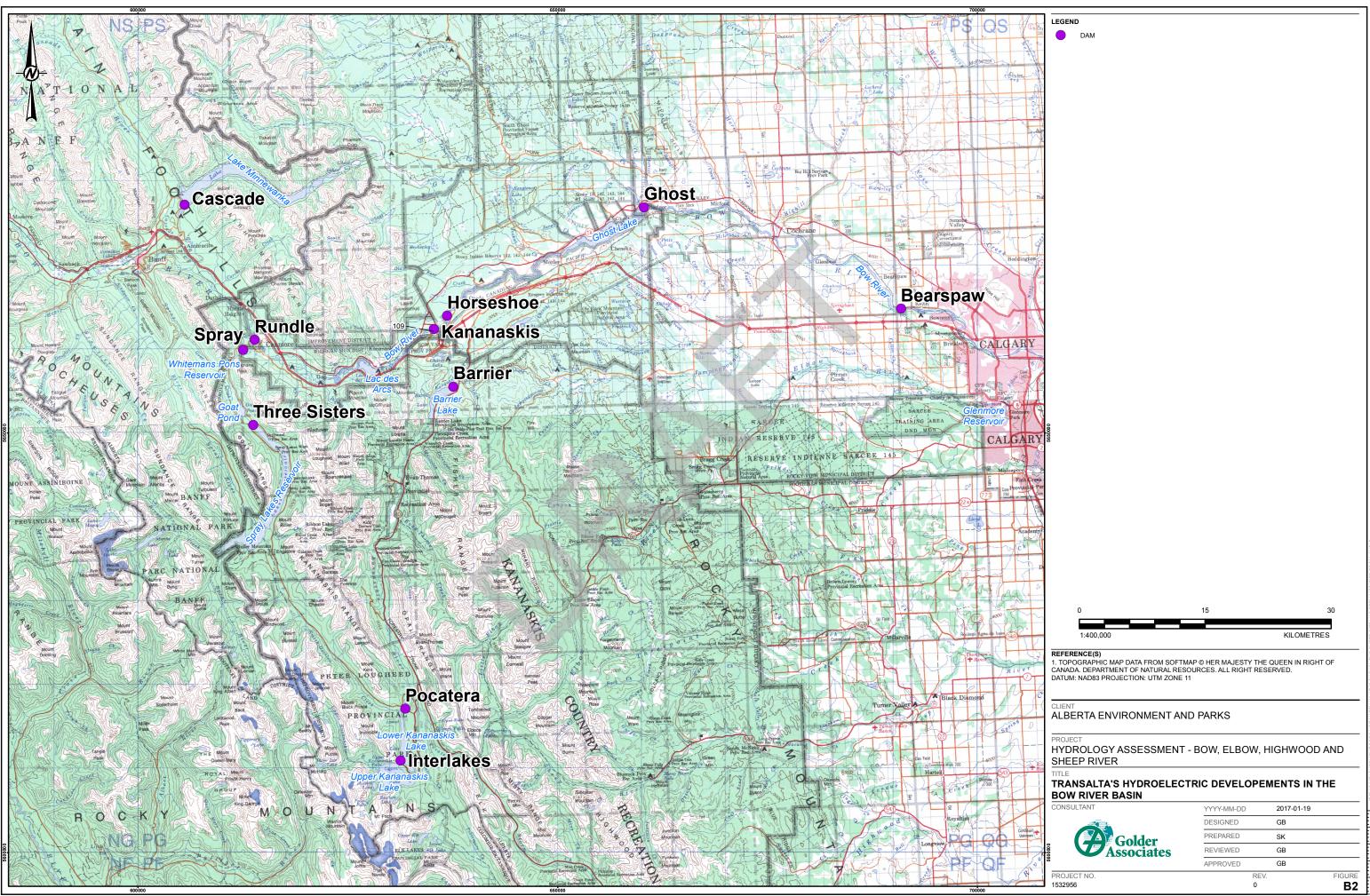
Various implementations of the SSARR method may rely on different estimates of the average channel flow during a given time step (which may also include inflows into the channel in some form). The method relies on the established empirical relationship between the travel time and flow for a given channel. Once this relationship is available, the calibration consists of deciding how many sequential phases a given river reach should be divided into, which is conducted using repeated simulation trials until the observed downstream hydrograph closely matches the simulated channel outflow. All work on calibration of the SSARR method in the South Saskatchewan River basin had already been done by AEP. The upper Bow River Basin schematic that was obtained from Alberta already has the channels broken into lengths that work as single phase channels (i.e., no further subdivision is required).

The use of the SSARR channel routing method is optional within RBAT (i.e., naturalized flows can be calculated with or without channel routing), since calculating naturalized flows using sufficiently long (monthly, seasonal or annual) time steps does not require channel routing. In this study, the time step was daily, while the travel time from the most upstream point of interest (Banff) to the mouth is well above one day, indicating that channel routing is required. The use of the SSARR routing method in the calculation of naturalized flows does not change

the methodology. Instead, it merely introduces a more realistic account of flow changes in large river systems where the total travel time is greater than the simulation time step. It should also be noted that the SSARR river routing is as accurate as the available input data.

It should be noted that the Wilson's equation deals with the transformation of surface water movement aimed to account for the channel storage change from day to day. However, large channel storage changes may happen in the Bow River during the formation of ice cover in November, and its subsequent melting in April. These transformations of water into ice and back into liquid can also be understood movements of flow into and out of storage, but such channel storage changes are not modelled by the Wilson's equation.

B4.0 GENERATION OF DAILY NATURAL FLOWS AT SPRAY LAKE


Figure B2 shows the Spray Lake and diversion to the three downstream power plants that eventually discharge into the Bow River at Canmore. The Spray River drains in the northerly direction and joins the Bow River at Banff. Flow Monitoring Station 05BC001 is located just upstream of the confluence with Bow River. The Spray Lake is a naturally occurring lake, which was dyked off to divert water through three hydro power plants over a shorter distance and a large drop in elevation. The diversion route is indicated in orange color in Figure B2. The total catchment area of Spray Lake at the mouth is approximately 751 km², of which about 520 km² drain into Spray Lake. Although the remaining catchment area downstream of the Lake is roughly one third of the total, the upstream runoff into Spray Lake is considerably higher due to higher specific yield, such that roughly 85% of the total annual natural flow of Spray Lake at the mouth (Station 05BC001) originates upstream of the dam.

Proper calculation of natural flows at Spray Lake requires the historic daily lake levels as well as all daily outflows from the lake. The old Spray river channel still collects the runoff downstream of the lake, but after construction of the dam in 1949 it also serves as a potential spillway conduit to evacuate large floods that exceed the capacity of the diversion route. The spillway into the Spray River has historically been used only once in 1974. Due to structural stability issues, the levels at Spray Lake in the last 15 to 20 years have been kept below normal, which prevented any spilling during the June 2013 flood. There are several issues associated with assessing daily natural flows at the dam site that are outlined below.

Between 1918 and 1939 natural inflow into the Spray Lake was based on the recorded flows at Station 05BC002. This station was submerged by the lake once the dam impoundment began. Its original drainage area was 360 km², which was increased by a factor of 1.3 to account for additional catchment area into the lake that was created by the dam (520 km²) less the adjustment for the considerable increase in the lake surface area which is handled by net evaporation directly in the water balance equation.

Construction of the dam and hydro power plant in 1949 has effectively divided the Spray river basin into two subbasins, one delineated by the Spray Lake which drains its outflow through the Goat Creek as a tributary of the Bow River at Canmore, and the other one which continues to function as natural runoff downstream of the Spray Lake. A non-linear relationship was established between the runoff from drainage area of 391 km² and the Spray River flow at the mouth (drainage area 730 km²) based on data from 1915 to 1939 (see Figure B3). The naturalized daily flows for Spray River at the mouth for the period 1951 to 1975 were estimated based on this relationship. Figure B4 provides the Spray Lake operation rules used for flow naturalization and regulations.

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET

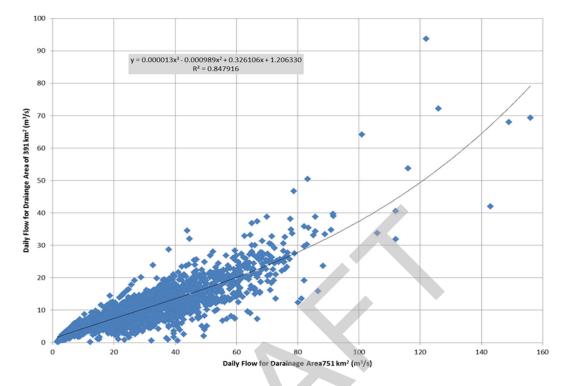


Figure B-3: Relationship between Daily Flows for Spray River

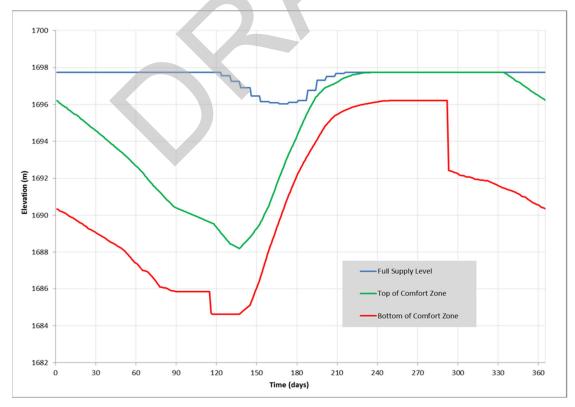


Figure B-4: Spray Lake Operating Rules

September 30, 2020

Report No. 1532956

B5.0 GENERATION OF DAILY NATURAL FLOWS AT LAKE MINNEWANKA

Lake Minnewanka is a naturally occurring lake that was raised to increase its storage. In addition to this, about 15% of the total runoff into Lake Minnewanka comes from the Ghost River catchment via the Ghost River diversion. This diversion was built in 1941 and a flow monitoring station has operated until 1994. Although the station has been discontinued, this diversion continues to operate, and it would also operate during floods.

In the 2010 study, the Ghost diversion was considered as integral part of the local runoff, since it is a structure that operates permanently without human intervention. Hence, naturalization was previously done with the Ghost Lake diversion implicitly included as part of the runoff into Lake Minnewanka, and this is the way TransAlta naturalizes flows on Lake Minnewanka. Attempts were made to develop relationship between the diverted flows and the flows that remain in the Ghost River downstream of the diversion, but no meaningful relationship could be established (see Figure B5). Here is the plot for ten years (1983 and 1994) of daily data for both stations picked up for the same days:

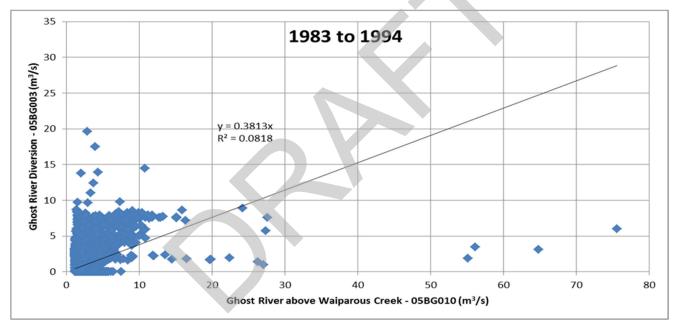


Figure B-5: Relationship between Ghost River Diversion and Ghost River flow above Waiparous Creek

One of the reasons may be the distance of Station 05BG010 from the point of diversion, which enables this station to collect additional highly variable runoff. Discrepancies may also be due to the accuracy of the flow values, which are converted from gauged water levels. Consequently, in this study Ghost diversion was considered as integral part of runoff into Lake Minnewanka for calculation of naturalized flows into the lake.

Naturalized flows into Lake Minnewanka were estimated based on its recorded outflows available from WSC Station 05BD002 until 1941 and from WSC Station 05BD004 from 1942. The Lake elevations (WSC Station 05BD003) are available from 1917. There are many days with missing data prior to 1943, when the continuous daily records began. However, the records between 1917 and 1943 are usually available at least once or twice a week, which allowed the use of linear interpolation as the first approximation for infilling the missing data, particularly since this lake is large and the levels do not vary substantially from day to day. Until 1941, the dam was operated in the range between 1450 and 1455 m, with flow regulation having a relatively small impact on

the downstream Bow River flows at Ghost and Bearspaw dams. The mean annual flow of Cascade River at the mouth is 8.4 m³/s, compared to about 90 m³/s for the Bow River at Bearspaw dam. Effects of flow regulation are more pronounced after 1942, when the lake levels were raised to operate in the range between 1465 and 1475 m and Ghost diversion started to operate. This study included verification and the previous calculation, smoothing out the noise during the winter months that often resulted in negative inflows into Lake Minnewanka, as well as extension of the natural flow calculation to July 31, 2015.

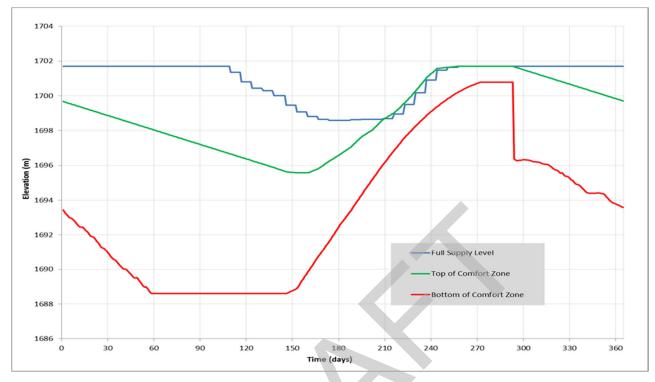
Figure B6 provides the current operating rules used for Lake Minnewanka by TransAlta.

Figure B-6: Lake Minnewanka Operating Rules

B6.0 GENERATION OF DAILY NATURAL FLOWS AT THE UPPER AND LOWER KANANASKIS LAKES

Upper and Lower Kananaskis Lakes are also naturally occurring lakes that were raised to higher elevations to provide more balancing storage and head for hydro power generation. The upper Kananaskis Lake receives runoff from the catchment area of about 150 km² and it drains into the lower Kananaskis Lake, which in addition to receiving outflow from the Upper Kananaskis Lake also receives inflow from a local catchment area of roughly the same size (151 km²), although some of the runoff originating from this area is diverted into the Spray Lakes via the Mud Lake diversion. The Lower Kananaskis Lake eventually drains into the Barrier Lake, located some 50 km downstream of it. The time of travel vs flow values for this river reach was retrieved from Alberta Environment and Parks the Hydrstra model, which enabled the use of the SSARR routing of outflows from the Lower Kananaskis Lake.

The Upper Kananaskis Dam had its normal full supply level raised in 1942 by about 14 m. The Lower Kananaskis Dam was built in 1955 with an increase in full supply elevation by 11 m and allowed annual fluctuation of water levels by 14 m. Prior to 1942, both lakes were functioning as natural water bodies. The hydro power plants associated with these lakes are known as Interlakes and Pocaterra. The following procedure is needed to calculate naturalized inflows into both lakes:


- a) Use the Upper Kananaskis storage levels and outflow records to remove the effect of storage and calculate naturalized flows at the Upper Kananaskis Lake; and
- b) Use the Lower Kananaskis storage levels, outflows and the outflow from the Upper Kananaskis as a part of the total inflow to assess the net runoff from the local contributing catchment into the Lower Kananaskis Lake.

The data available for full implementation of the above procedure are only available for the 1985 to 2015 for both reservoirs. Water levels at both lakes and the outflows from the Lower Kananaskis Lake are also available for 1975-1985 period, but the turbine flows out of the Upper Kananaskis Lake are missing. It was decided to naturalize flows from 1975 to 1985 for the combined Upper and Lower Kananaskis sub-catchments by using the storage change at both reservoirs and outflows from the Lower Kananaskis Lake, and then subdivide the total runoff into two series based on the size of the drainage areas. This approach provided 10 more years of data (1975-1984) that can provide input into statistical frequency analyses.

Calculation of natural flows for both lakes using lake levels and outflows is only possible after 1985. From 1975 to 1985, the flows between the Upper and Lower Kananaskis Lake are unknown while the storage change at both reservoirs and the outflow from the Lower Kananaskis Lake are still known. This allows the calculation of natural flows at the outflow of the Lower Kananaskis by combining two storage reservoirs (Upper and Lower Kananaskis) into an equivalent single storage. Total inflow into an equivalent (combined) storage was then divided into two inflow series based on the respective size of the catchment areas. Natural flows prior to 1975 cannot be assessed with certainty based on the data that are currently available.

Figures B7 and B8 provide the current operating rules used for Upper and Lower Kananaskis Lake by TransAlta.

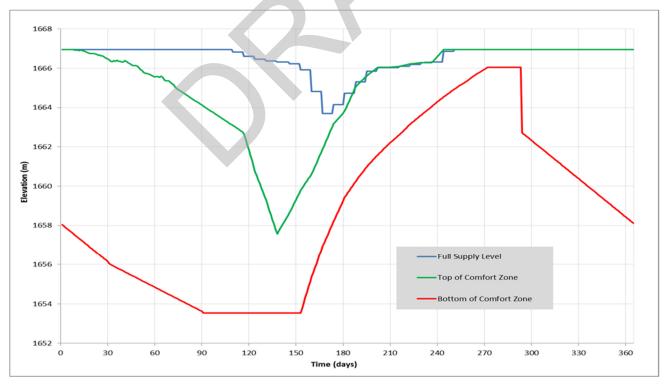


Figure B-8: Lower Kananaskis Lake Operating Rules

B7.0 GENERATION OF DAILY NATURAL FLOWS AT BARRIER LAKE

The following information is required for assessment of natural flows at the Barrier dam:

- a) Estimated daily naturalized flows at both the Upper and Lower Kananaskis Lake. This estimate was available for the 1975 2015 period.
- b) Continuous daily recorded outflows from the Lower Kananaskis Lake (Pocaterra). Some data are available prior to 1955 but mainly as seasonal records, and there is a large section of data completely missing from 1955 to 1975, when the continuous records begin.
- c) Travel time vs flow relationship for the 50 km Kananaskis River reach between Pocaterra and Barrier to allow proper channel routing.
- d) Historic daily elevations of Barrier Reservoir. These have been made available by AEP from 1948 to 1988, and they are also available from Water Survey of Canada as a continuous record from 1970 to 2015 (Station 05BF024). These two datasets are not always in perfect agreement in the overlapping period from 1970 to 1988.
- e) Historic daily outflows from the Barrier Reservoir. Genuine turbine flows should be available from TransAlta, however these are only available from 1985 to 2015. For periods prior to 1985, there are two Water Survey of Canada stations. Station 05BF025 is located immediately downstream of the dam, with a total catchment area of 899 km² and a continuous flow record from 1975 to 2015. The update in this study relied heavily on the information received from TransAlta. Station 05BF001 is located further downstream and includes a slightly larger catchment of 933 km² due to a small tributary upstream of it. The data record at this station is available from 1911 to 1962, but there were many missing data gaps that required in-filling, including the complete blackout period from 1963 to 1974 inclusive. Alberta Environment maintains a weekly natural flow database, which contains mean weekly outflows from the Barrier dam from 1948 to 2001. The mean weekly recorded flow data were used as a basis for infilling the missing Barrier outflows, using the linear interpolation model the middle of one week to the middle of the subsequent week.

The linear interpolation model used for conversion of weekly to daily flows on the Kananaskis River in the 1963 – 1974 period is not perfect, but it is the only option available to enable continuous simulation of the entire Bow River basin. The missing period of outflow data between 1963 and 1974 was filled by generating daily flow estimates using linear interpolation of weekly outflows from Barrier Dam provided in the SSRB Natural Flow database from AEP. It should also be noted that the effect of Upper and Lower Kananaskis storage change was ignored for years prior to 1975. Figure B9 provides the current operating rules used for Barrier Lake by TransAlta.

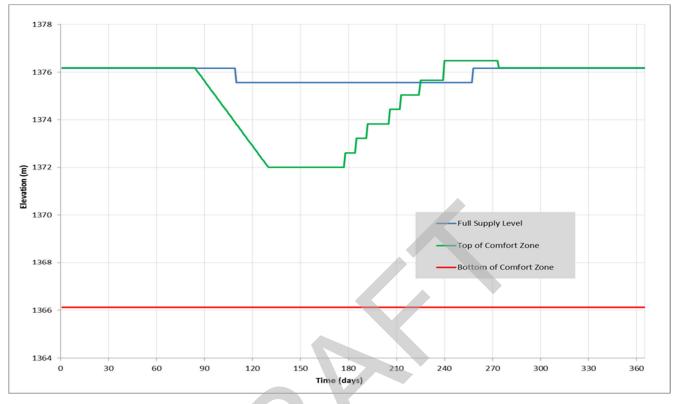


Figure B-9: Barrier Lake Operating Rules

B8.0 GENERATION OF DAILY NATURAL FLOWS BOW RIVER AT SEEBE

Station 05BE004 (Bow River at Seebe) is located roughly half way between Canmore and the Ghost Dam. It is one of the stations for which the development of natural flows has been requested in the RFP. The station data start in 1923, however there is a large data gap between of 18 years and 2 months from October 1962 to December 1978. Genuine natural flows can be developed only for the years when the recorded flows are available at this station. This would give time series of sufficient length for frequency analyses. In-filling of the years with missing data was completed by routing the upstream natural flows from the confluence of Banff and Cascade River.

B9.0 GENERATION OF DAILY NATURAL FLOWS AT GHOST RESERVOIR

Ghost Reservoir started to fill in August of 1929. Prior to 1929, the only possible change to natural flows upstream of Ghost Reservoir would be due to the operation of Lake Minnewanka on Cascade River, which at that time was operating in the lower range between 1450 and 1455 m. Although the Cascade River flows have been adjusted for the effects of Lake Minnewanka storage, the missing link required for estimating natural flows at the Ghost Reservoir site prior to 1929 are the recorded flows in the vicinity of the Ghost Reservoir site.

Station 05BE006 (Bow River below Ghost dam) started operation in 1933. The upstream flow monitoring station at Seebe (05BE004) started operation in 1923. The Ghost River tributary (Station 05BG001) that also contributes significant flows to the Ghost Reservoir storage has missing data between November 1920 and December 1928. The recorded flow data series that represents recorded outflows (or inflows) into the Ghost Reservoir do not exist prior to 1930.

Hence, it was only possible to assess natural flows into Ghost reservoir between 1930 and 2015, following required in-filling of the missing data. When the outflows were missing, the storage change and both inflows (Station 05BE004 at Seebe and the Ghost River Tributary Station 05BG001) were used to generate the outflow estimates. When the storage levels were missing and both outflows and inflows were available, storage levels were estimated by balancing inflows and outflows and by solving for the end of day storage as the only unknown. A regression was also developed between the Bow River below Ghost Reservoir (05BE006) and the Bow River at Calgary (05BH004), and it was used occasionally for in-filing the missing data when there was no other option.

The following information was necessary to estimate daily naturalized flows at the Ghost Reservoir for the period 1930 to 2015:

- a) Recorded and naturalized flows of the Bow River downstream of confluence with the Spray River;
- b) Recorded and naturalized flows of the Cascade River at Lake Minnewanka;
- c) Recorded and naturalized flows of the Kananaskis River at Barrier Reservoir;
- d) Time of travel vs flow for all routing reaches of the Bow river between Banff and the Ghost Reservoir as well as on the Kananaskis river below the Barrier dam;
- e) End of day Ghost Reservoir elevations;
- f) Recorded Ghost Reservoir outflows; and,
- g) Precipitation and evaporation on Ghost reservoir.

The RBAT model was run on a daily basis from 1930 to 2015 to obtain estimates of naturalized flows at the Ghost Reservoir. The calculation procedure starts at the most upstream nodes, and evaluates naturalized flows at each node in a downstream progression. This procedure requires separate routing of recorded flows from the three upstream control points, which are the confluence of the Bow and Spray Rivers, Lake Minnewanka and the Barrier Reservoir downstream to the Ghost Reservoir. These routed flows were used to calculate the local inflow into the Ghost Reservoir by subtracting them from the Ghost Reservoir outflow adjusted for storage change. Once the local inflow is calculated in this manner, it is added to the sum of routed natural flows starting from the same three control points and ending at the Ghost Reservoir.

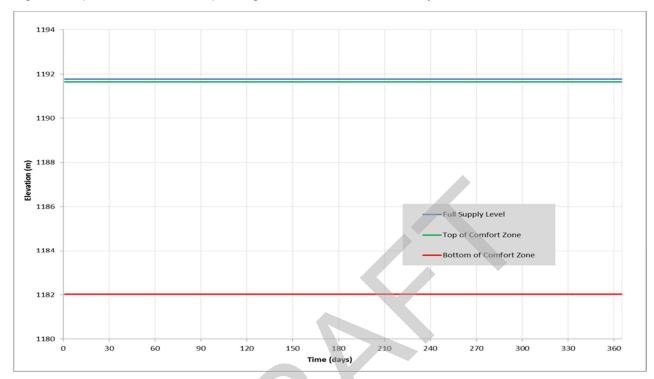
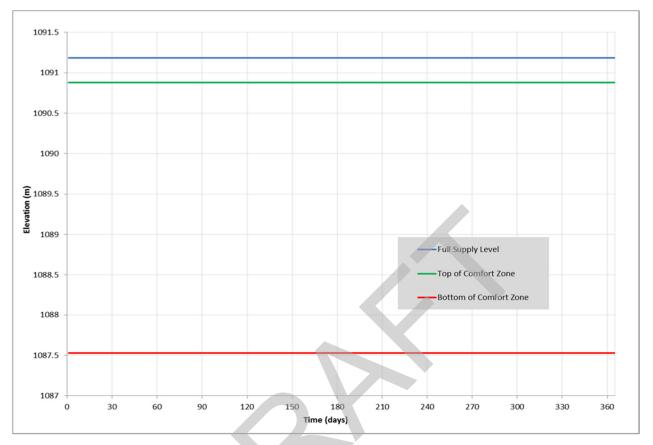


Figure B10 provides the current operating rules used for Ghost Lake by TransAlta.

Figure B-10: Ghost Lake Operating Rules

B10.0 GENERATION OF DAILY NATURAL FLOWS AT BEARSPAW RESERVOIR

Naturalized flows at Bearspaw Reservoir were also generated as part of the RBAT run. Updated daily reservoir elevations were received from TransAlta for the 1985 to 2015 period. There are two WSC stations on the Bow River below the Bearspaw dam. Station 05BH008 is close to the dam, but its record begins in 1983 and it is incomplete. The only other long term flow monitoring station in the relative vicinity of the Bearspaw dam is the Bow River at Calgary (05BH004). This station also needed some in-filling of missing data between 1930 and 2015, which was accomplished by developing a relationship with the Bow River below Ghost Dam (05BE006). WSC does not monitor Bearspaw reservoir levels.


Time series of the Bearspaw Reservoir levels provided by Alberta Environment begins in 1955, but this series does not contain the data related to the initial impoundment. Hence, for the period prior to 1955, the levels were kept constant with the evaporation and precipitation set to zero. Natural flow at Bearspaw dam was assessed as the sum of the natural flow at Cochrane (Station 05BH005) and local inflow between Cochrane and Bearspaw dam. Calculation of this local inflow required the following:

- a) Recorded flows at Cochrane and downstream of the dam;
- b) Storage change at Bearspaw dam (including net evaporation); and
- c) Withdrawals from the Bearspaw dam by the City of Calgary.

Figure B11 provides the current operating rules used for Bearspaw Reservoir by TransAlta.

B11.0 GENERATION OF DAILY NATURAL FLOWS AT GLENMORE RESERVOIR

Glenmore reservoir level data are available from WSC Station 05BJ008, with data records from 1976 to 2015. Additional water level data were obtained from 1933 to 1988 from Alberta Environment in the previous 2010 study. There are two WSC stations downstream of the dam (05BJ005 and 05BJ001) that together provide continuous data coverage for the period from 1912 to 2015. There is also one more flow monitoring station upstream of the dam (WSC Station 05BJ010) with data available after 1979.

The reservoir level data begin abruptly with the reservoir being close to full in 1933, so the actual impoundment of the dam could not be included in the calculation of naturalized flows. Consequently, the reservoir was modelled with fixed elevation (i.e. zero storage change) and zero net evaporation for all years prior to 1933, implying that the recorded flows downstream of the dam was equal to natural flows. Natural flows after 1933 were assessed by using the outflows from the dam adjusted for Glenmore reservoir storage change along with the withdrawals made by The City. The results of the updated 2006 bathymetric survey were used in this study to incorporate the latest estimate of the storage capacity curves. Figure B12 shows comparison of naturalized daily flow series to daily flow recorded at WSC Station 05BJ010.

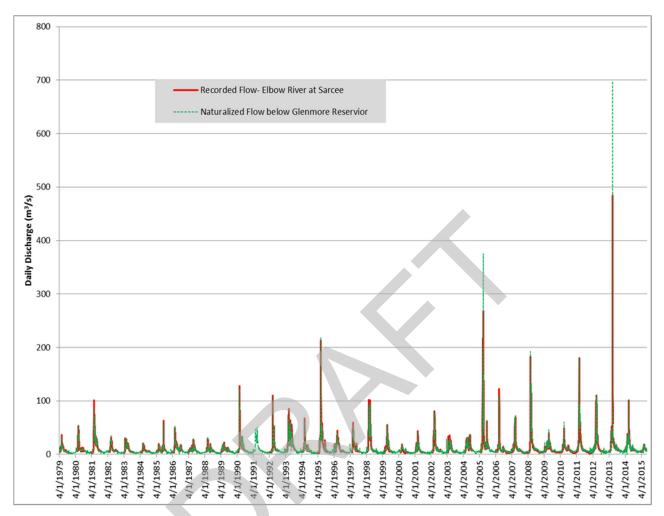


Figure B-12: Comparison of Naturalized and Recorded Flow Data for Elbow River

B12.0 BOW RIVER BASIN FROM CALGARY TO THE MOUTH

The 2010 and 2014 modelling study of the Bow River was completed only up to the end of Bearspaw Dam. The current study includes Glenmore Dam and all other river reaches down to the mouth of the Bow River. The principal tributaries are Fish Creek and the Highwood River, and the major diversion structures are the Carseland and Bassano diversion weirs. Relatively good diversion records were available for Carseland weir, however records of diversions to the Eastern Irrigation District were only available from 1990. Historic annual totals were available for some years prior to 1990 from EID, and these were used to extrapolate the annual water use trend back to 1930, while the weekly demands were obtained by running the WRMM simulation of the entire South Saskatchewan River Basin. Weekly water use data were then interpolated to daily, and a verification of this simulation was conducted to ensure that water use in recent years was equivalent to the recorded diversions.

An assessment of natural flows on the Bow River immediately below confluence with tributaries has been made, such as the Bow River below Fish Creek or below the Highwood River confluence. Assessment of natural flows at these sites can be done by adding the daily tributary inflows to the routed natural flows between Calgary and the tributary confluence. However, the resulting series can be established only for the duration of the available records at the confluence. This reduces the length of record for frequency analyses at the confluence locations.

B13.0 FLOOD ROUTING THROUGH THE BOW SYSTEM

The routing through the storage structures and interconnecting river reaches was conducted based on the existing flood operating guidelines obtained from TransAlta. TransAlta has a licence to store water in their reservoirs. Most reservoirs are expected to be back at their full supply levels by mid-July. For some reservoirs, their maximum allowable storage levels are below the full supply level for some days during the snowmelt period. This maximum allowable storage levels were established by the earlier PMF study that suggested minimum mandatory drawdowns to avoid overtopping the dams in case of catastrophic floods.

There are several constraints that affect the operation of TransAlta reservoirs:

- 1) Minimum maintenance flow downstream of the Bearspaw dam has been set to 1,200 cfs (34 m³/s). TransAlta has been in agreement with AEP to maintain this minimum flow at all times.
- 2) Maximum desirable outflows correspond to the hydro power plant capacities. The use of spillways will only be resorted to in an emergency when it is absolutely necessary.
- 3) Normally, the reservoir levels are maintained at the top of the operational comfort zone, which is defined separately for each of the reservoirs that have balancing storage. Reservoirs without storage act like large weirs that have two outputs, the hydro power plants (which act as a bottom outlet), and the emergency spillway.

The operating rules for TransAlta can be summarized in the following sequence of decisions which are made as the inflows into a reservoir are increasing from day to day:

- a) Outflows are adjusted such that reservoir levels are brought close to the full supply level (if they were not equal to or above them already). In this context the full supply level refers to the top of the comfort zone, which typically varies in terms of the actual elevation throughout the year.
- b) If inflows continue to rise, outflow will be increased until it reaches the turbine capacities.

- c) Finally, if the turbines are run at full capacity and there is still increase in storage above the full supply levels, the operators will open the spillway gates to a sufficient degree so as to release water over the spillway just enough for storage levels to remain at the top of the comfort zone.
- d) When reservoir inflows are too high to maintain the FSL while the outflow equals the full hydro power plant capacity and the available spillway capacity, the storage zone will have to be filled in conjunction with higher outflows via spillway (which are only possible if the storage is allowed to rise).

Table B1 provides the hydro power flow limits caused by the types and number of turbines available at their hydro power plants. Total flow in a channel located downstream of a reservoir is a sum of its spills and its turbine flows.

Name of Hydro Power Plant	Maximum Outflow [m ³ /s]
Three Sisters	24.6
Spray	45.3
Rundle	62.3
Interlakes	19.8
Pocatera	31.2
Barrier	36.8
Cascade	39.6
Kananaskis	120.7
Horseshoe	104.8
Ghost	243.5
Bearspaw	155.7

Table B1: Maximum Flows through Hydro Power Plants

Minimum Flows:

While turbine capacities define maximum desirable outflows from TransAlta's storage reservoirs, there are certain operational limits that should also be taken into account. Those are:

- a) River maintenance flows. These are defined on the main step of the Bow River study (e.g., 1,200 cfs at the Bearspaw dam), but also on the tributaries. The minimum outflow from Rundle hydro power plant is 7.6 m³/s all year round, while the Cascade hydro power plant maintains the minimum of 7.2 m³/s throughout the year except from Julian day 113 to Julian day 239. This is the snowmelt runoff period when TransAlta wants the dam to re-fill as much as possible, and during dry years re-filling may take precedence to power generation in those months, since storage is more valuable later during low flow winter months.
- b) Bearspaw Dam withdrawals by the City of Calgary have been modelled for all years at their current level of 4.47 m³/s. This is a mandatory withdrawal that has to be met all the time. The withdrawal from Glenmore reservoir is also mandatory, however it has a seasonal distribution and it is higher in summer months than in the winter.

The combination of the maintenance flow at Calgary of 34 m³/s and the mandatory withdrawal at Bearspaw dam of 4.47 m³/s cause the reservoirs to drop their elevations below the comfort zone level targets in dry years, such as for example in the mid-1930s and early 1940s. However, this is in line with the current operating procedures, since those two flow objective take precedence over the established storage target levels.

The Bow River Basin modelling schematic is illustrated in Figures B13 and B14.

APPE

APPENDIX B Naturalized Daily Flows and Flood Routing at Key Locations

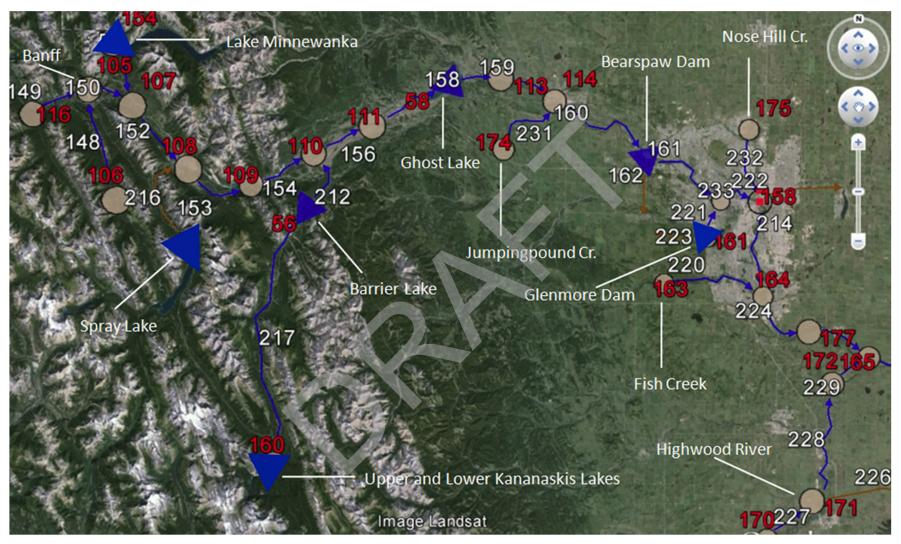


Figure B-13: Modeling Schematic of the Upper Bow River Basin from Banff to Calgary

APPENDIX B

APPENDIX B Naturalized Daily Flows and Flood Routing at Key Locations

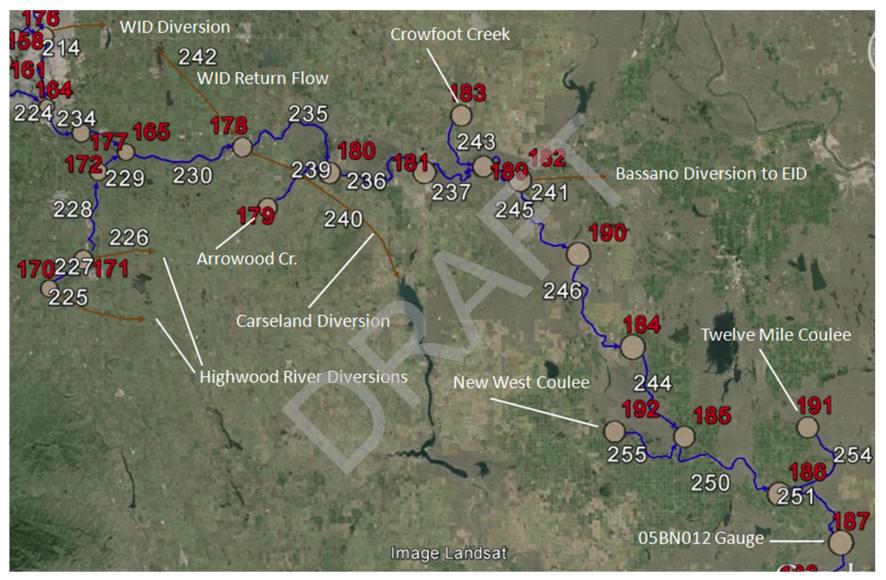


Figure B-14: Modeling Schematic of the Lower Bow River Basin from Calgary to Mouth

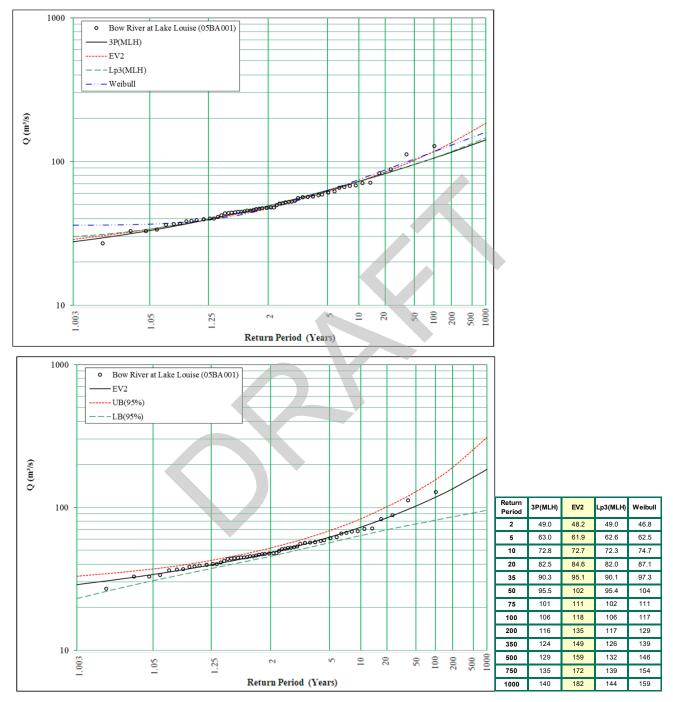
APPENDIX C

Frequency Analysis - Graphs and Tables

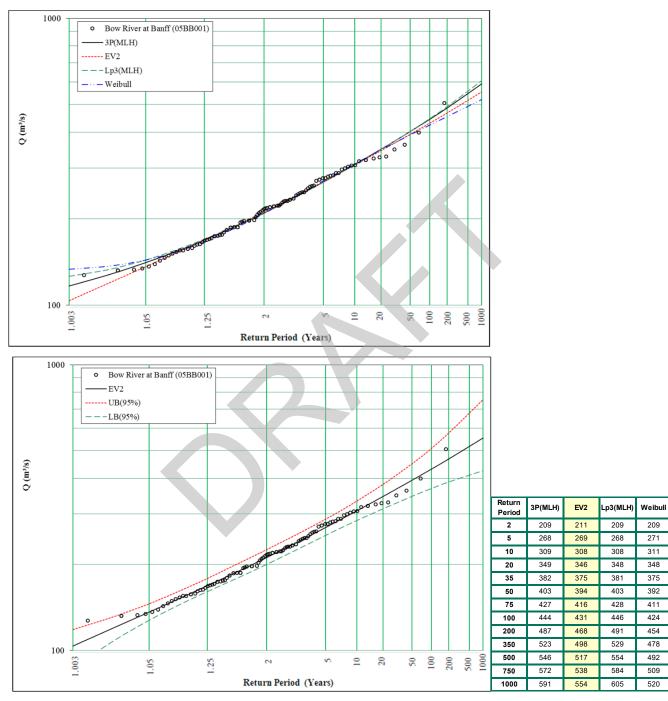
This document has a compilation of graphs and results from frequency analysis of

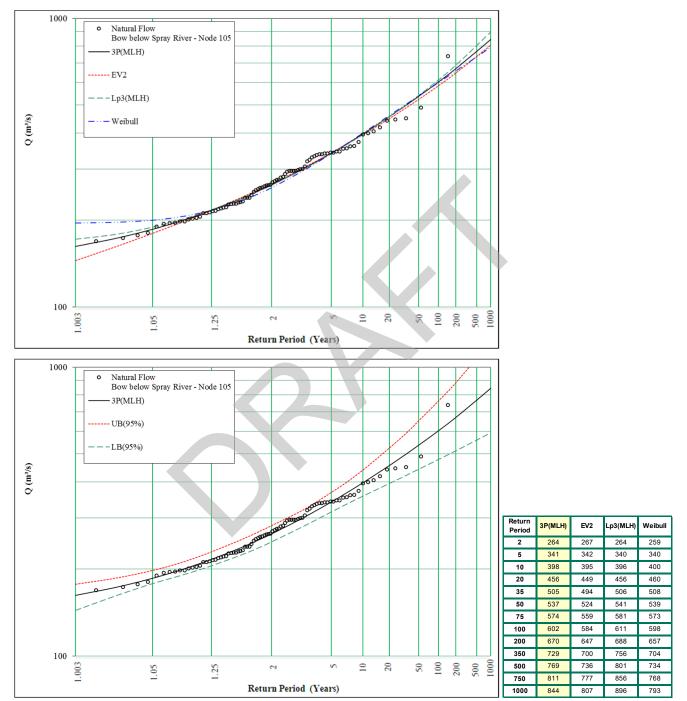
- recorded natural or generated naturalized flows at selected assessment nodes, including extended datasets and historic floods, and each station will have the following graphs:
- frequency distribution graph all distributions;
- frequency distribution graph best fit graph with confidence interval; and
- flood estimates all distributions.

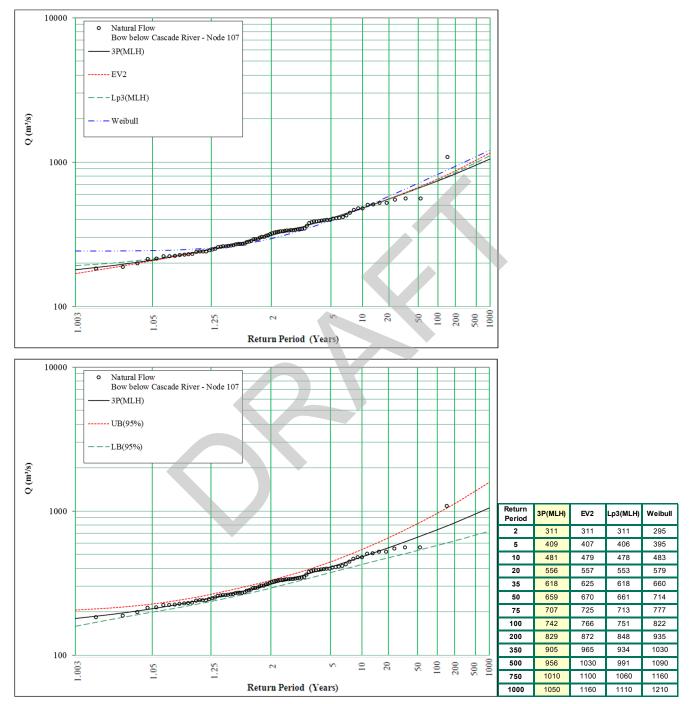
BOW RIVER

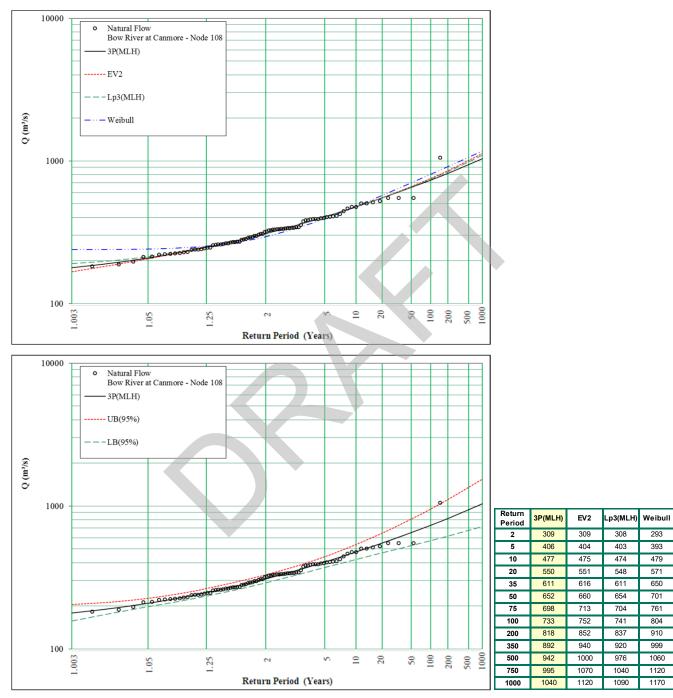


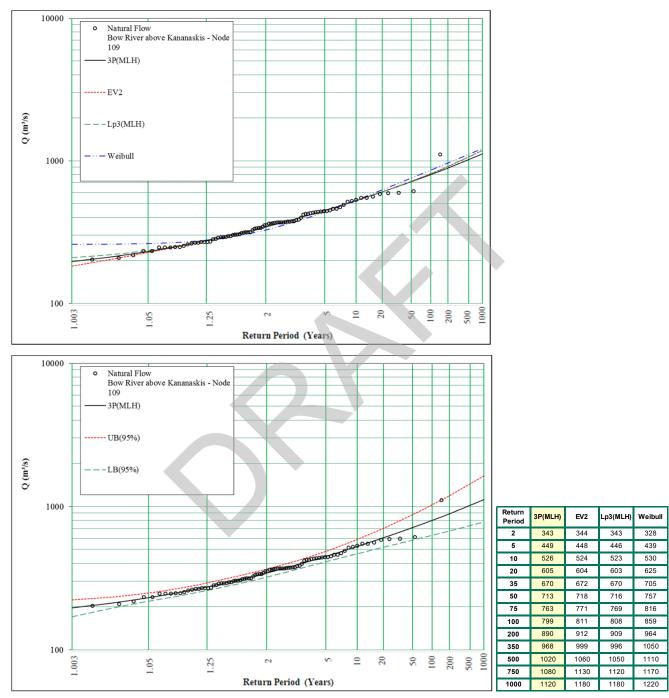
C1-2

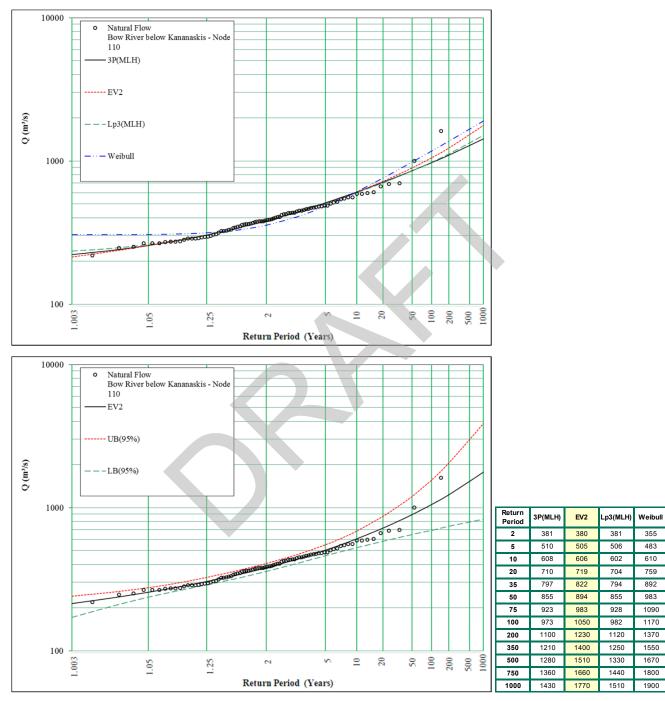

Figure C.1.1: 05BA001, Bow River at Lake Louise


Figure C.1.2: 05BB001, Bow River at Banff


Figure C.1.3: Node 105, Bow River below Spray River


Figure C.1.4: Node 107, Bow River below Cascade River


Figure C.1.5: Node 108, Bow River at Canmore


Figure C.1.6: Node 109, Bow River above Kananaskis

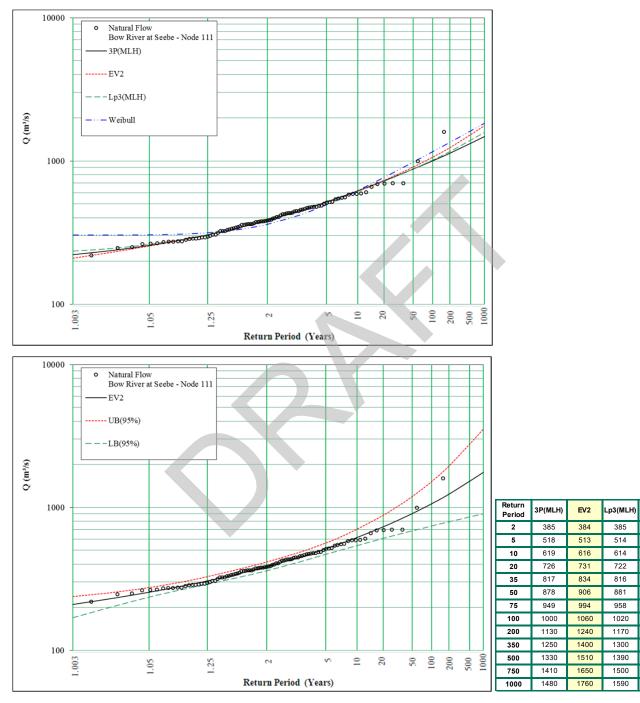
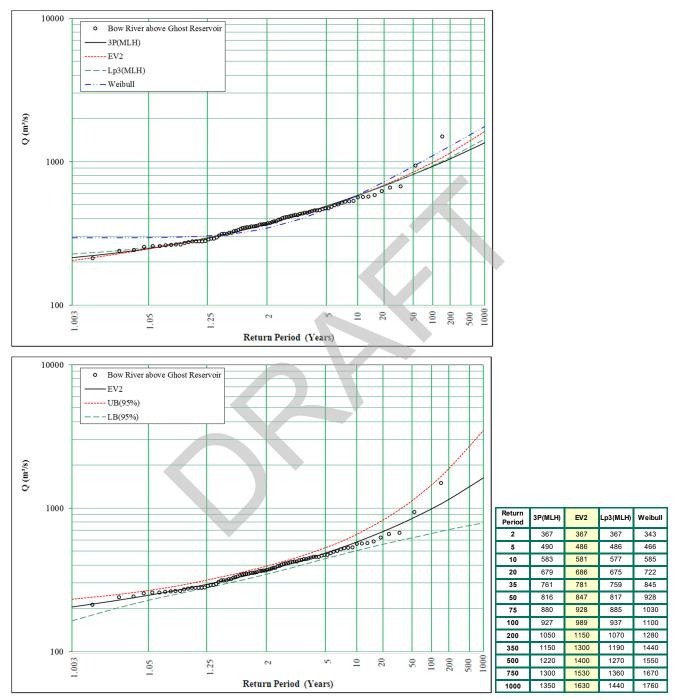
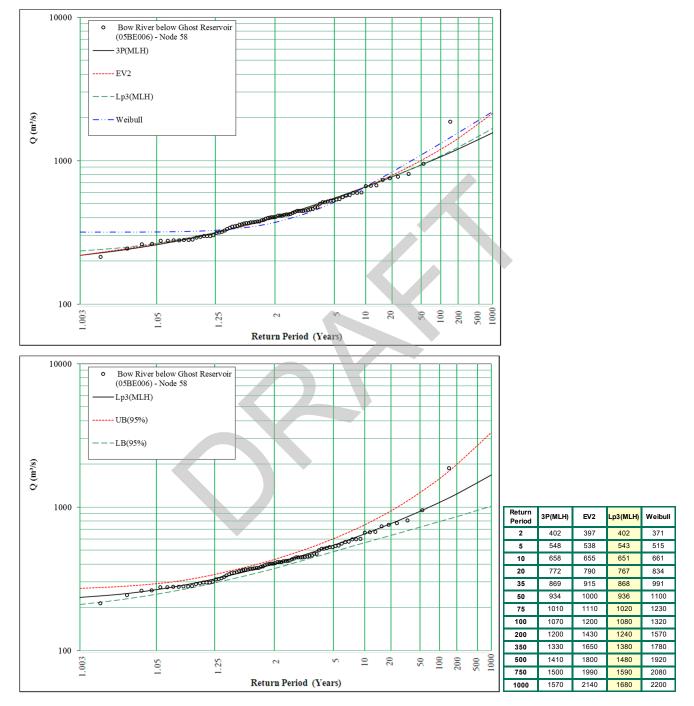
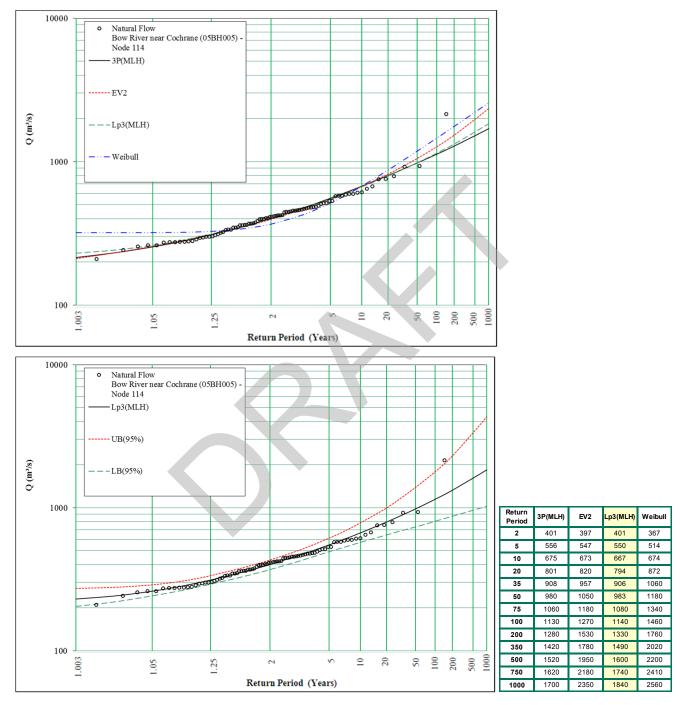

Figure C.1.7: Node 110, Bow River below Kananaskis

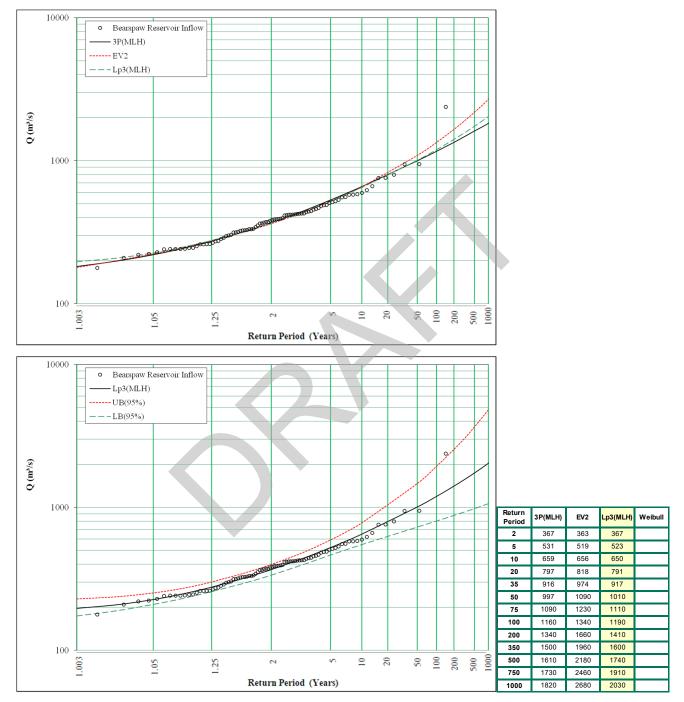
Figure C.1.8: 05BE004 / Node 111, Bow River near Seebe

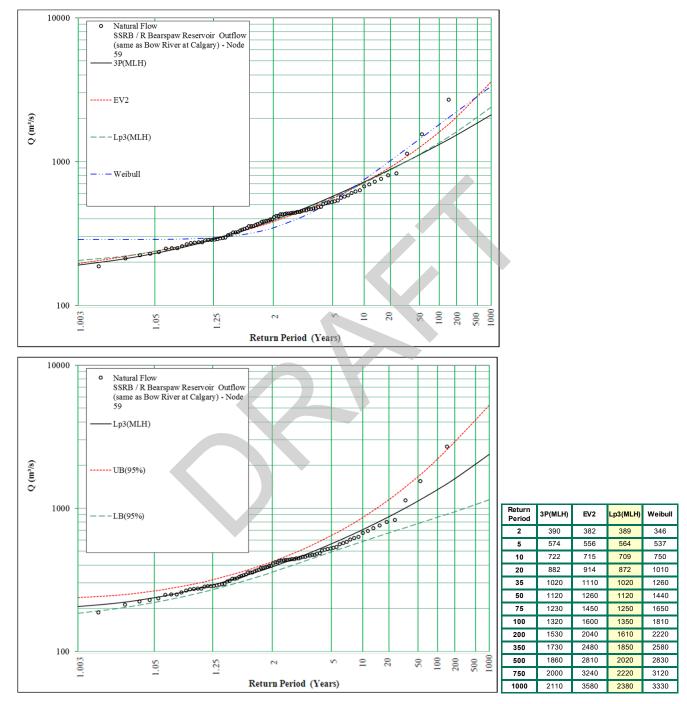


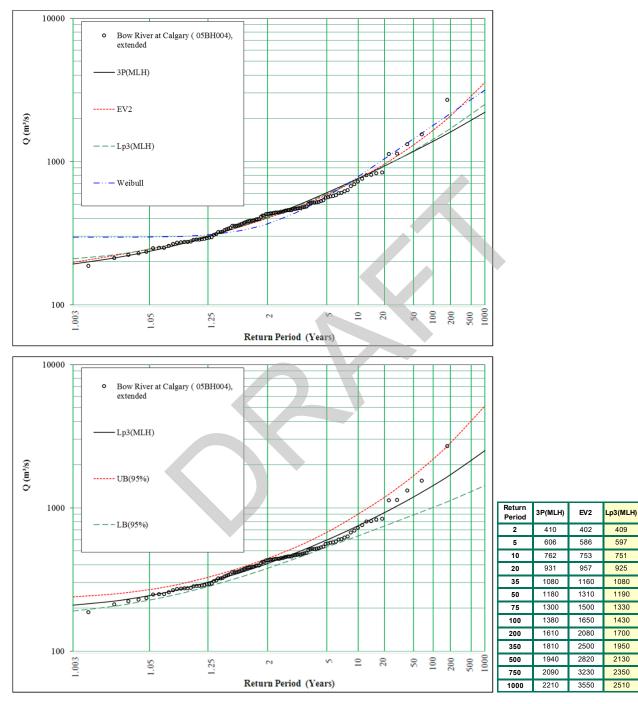
Weibull


Figure C.1.9: Node 318, Bow River above Ghost Reservoir


Figure C.1.10: 05BE005 / Node 58, Bow River below Ghost Dam (Ghost Reservoir Outflow)


Figure C.1.11: 05BH005 / Node 114, Bow River near Cochrane


Figure C.1.12: Node 302, Bearspaw Reservoir Inflow


Figure C.1.13: 05BH008 / Node 59, Bearspaw Reservoir Outflow (same as Bow River at Calgary)

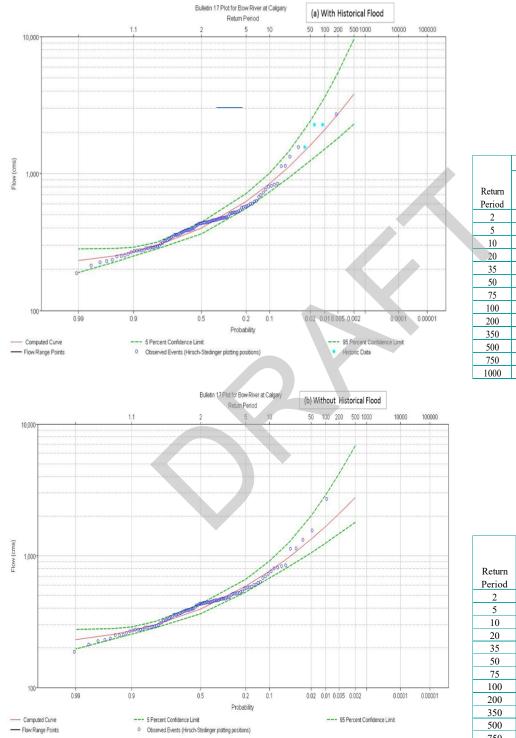
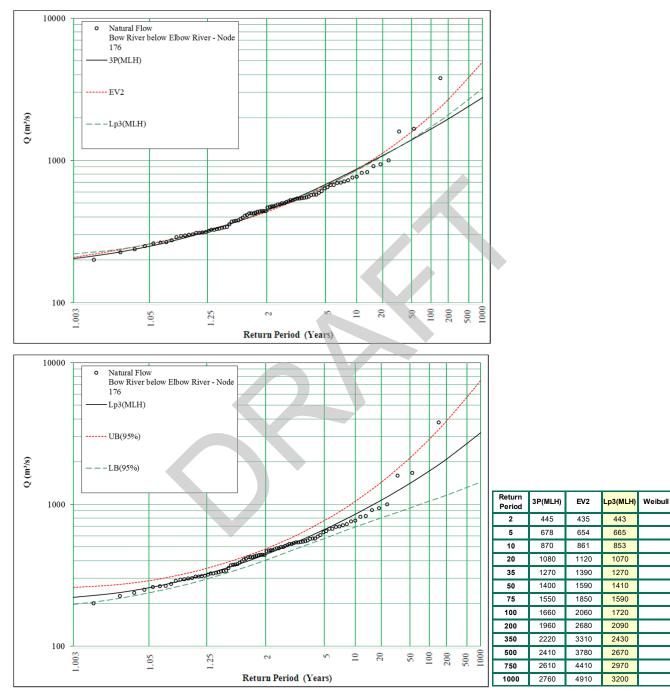


Figure C.1.14: 05BH004 / Node 59, Bow River at Calgary - extended

Weibull

Figure C.1.15 05BH004 / Node 59, Bow River at Calgary – Using Bulletin 17C Method


	Flood Estimates (m ³ /s)			
Return	With Historic	Upper	Lower	
Period	Flood	Bound	Bound	
2	401	442	364	
5	627	714	557	
10	845	1009	737	
20	1121	1450	936	
35	1398	1974	1114	
50	1606	2417	1238	
75	1875	3056	1391	
100	2091	3618	1507	
200	2709	5469	1817	
350	3330	7676	2103	
500	3794	9545	2303	
750	4397	12248	2550	
1000	4878	14630	2738	

	Flood Estimates (m ³ /s)		
	Without		
Return	Historic	Upper	Lower
Period	Flood	Bound	Bound
2	396	430	363
5	590	665	533
10	766	914	677
20	979	1272	830
35	1184	1682	964
50	1333	2018	1056
75	1522	2491	1167
100	1670	2898	1250
200	2082	4193	1468
350	2480	5672	1663
500	2769	6887	1798
750	3136	8598	1962
1000	3424	10071	2085

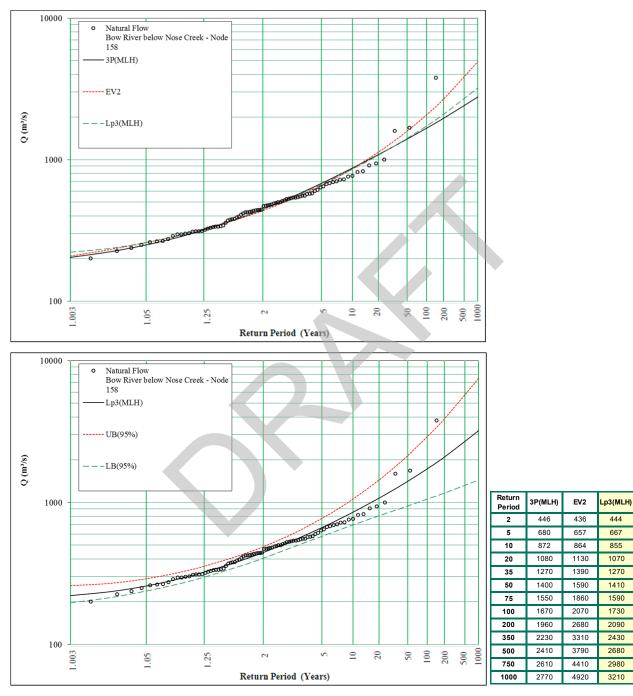
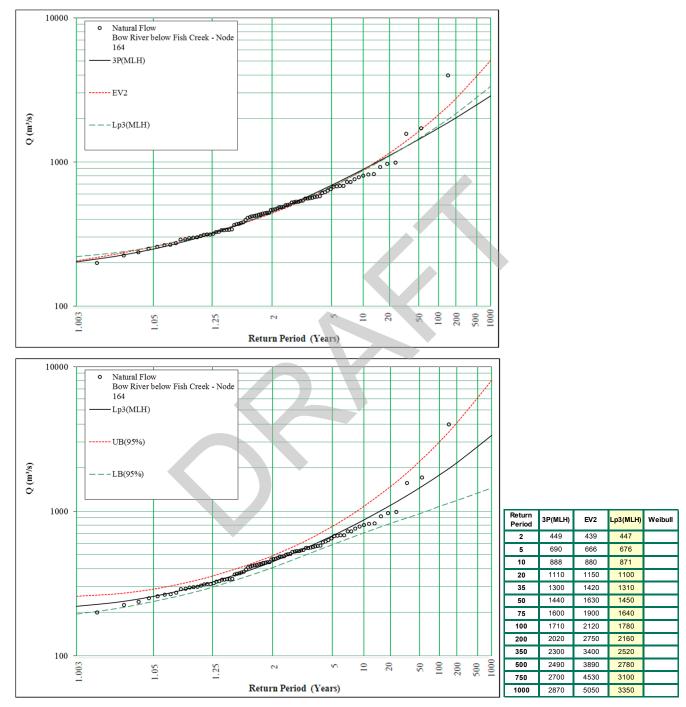
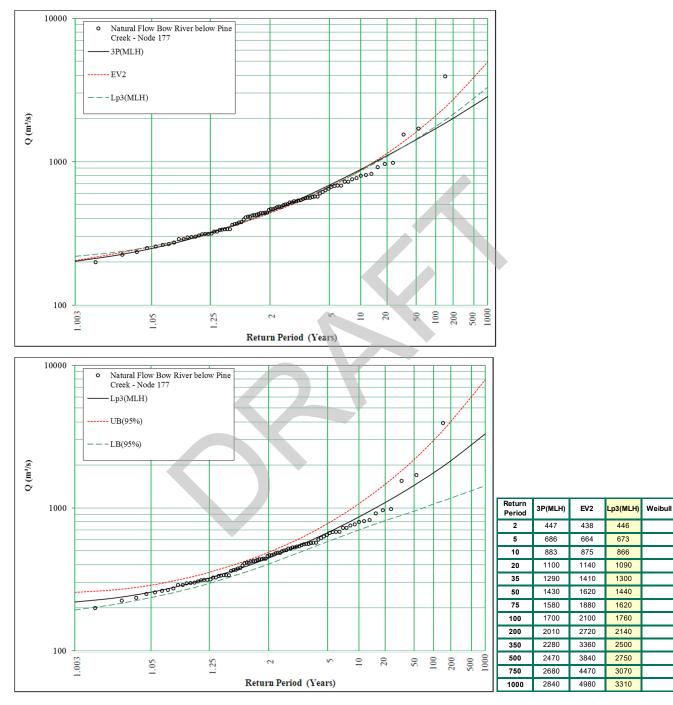
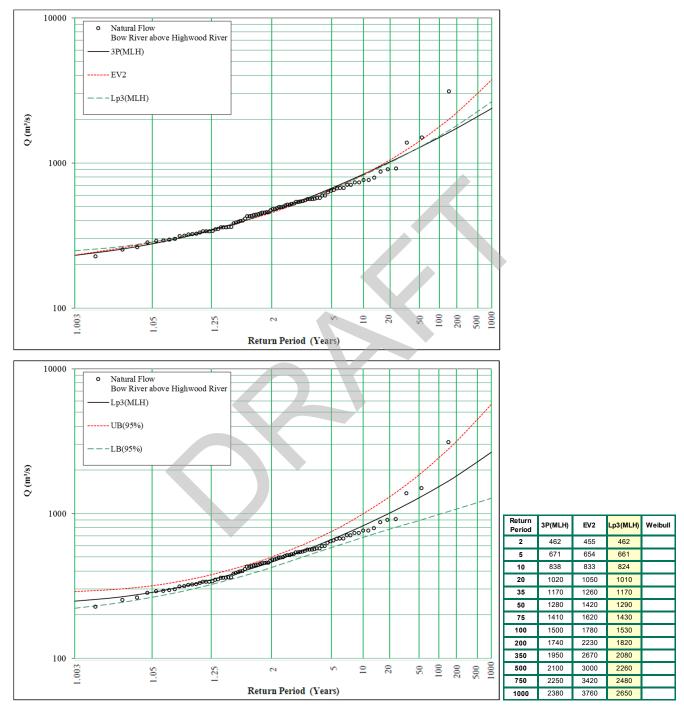

Figure C.1.16: Node 176, Bow River below Elbow River

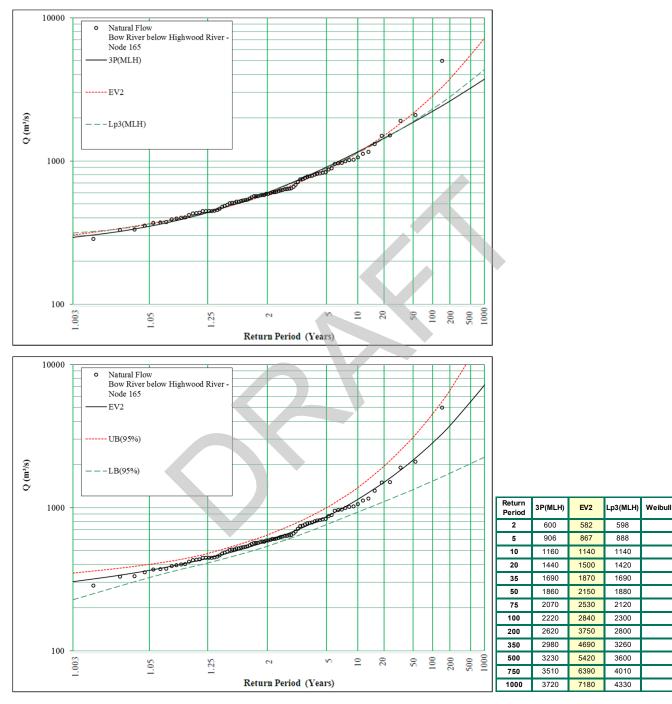
Figure C.1.17: Node 158, Bow River below Nose Creek



Weibull


Figure C.1.18: Node 164, Bow River below Fish Creek


Figure C.1.19: Node 177, Bow River below Pine Creek


Figure C.1.20: Node 331, Bow River above Highwood River

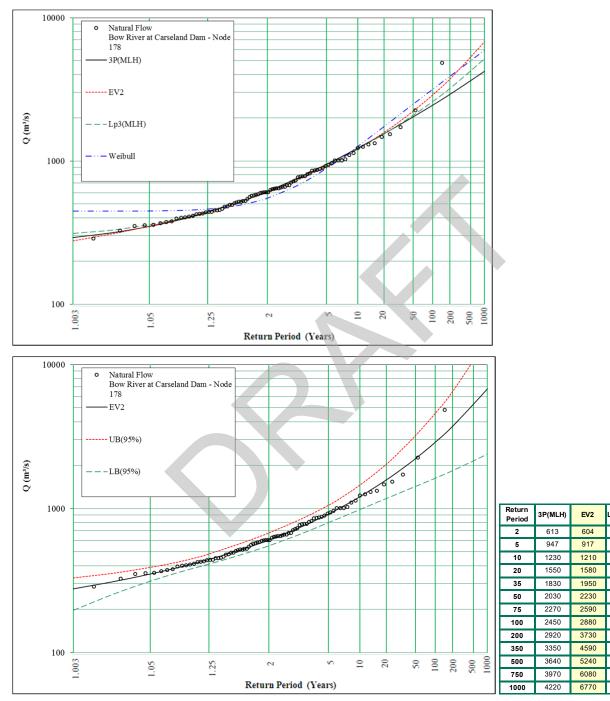
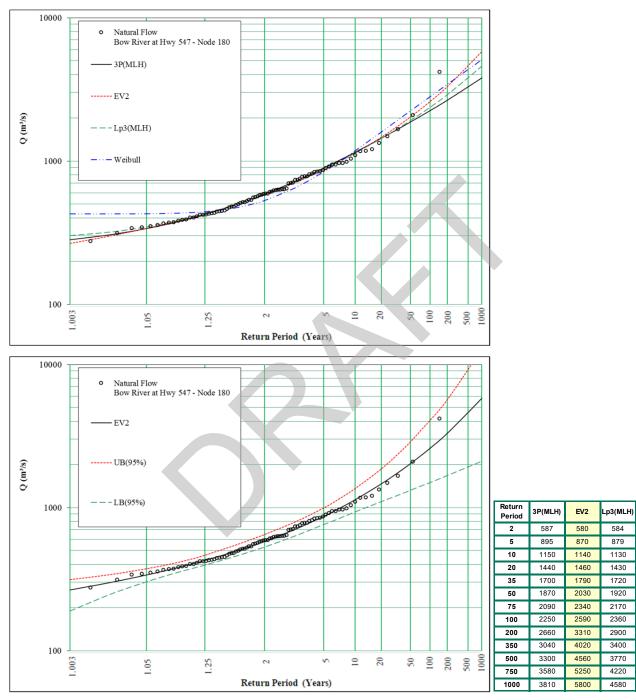


Figure C.1.21: Node 165, Bow River below Highwood River

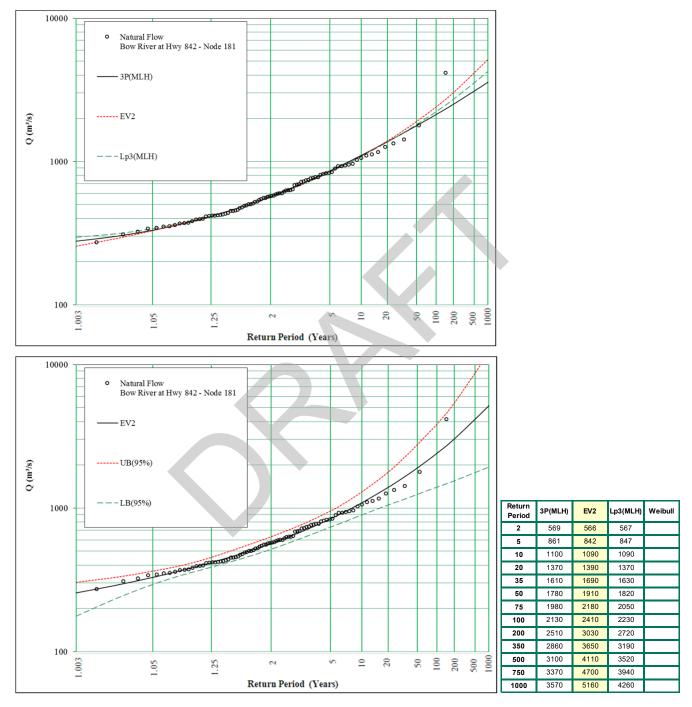
Figure C.1.22: 05BM002 / Node 178, Bow River below Carseland Dam



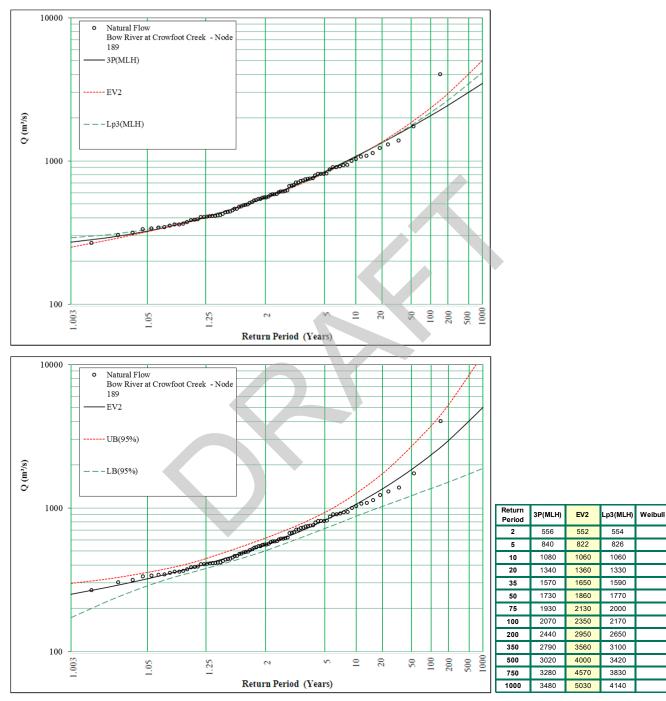
Weibull

.p3(MLH)

Figure C.1.23: Node 180, Bow River at Hwy. 547



Weibull


Figure C.1.24: Node 181, Bow River at Hwy. 842

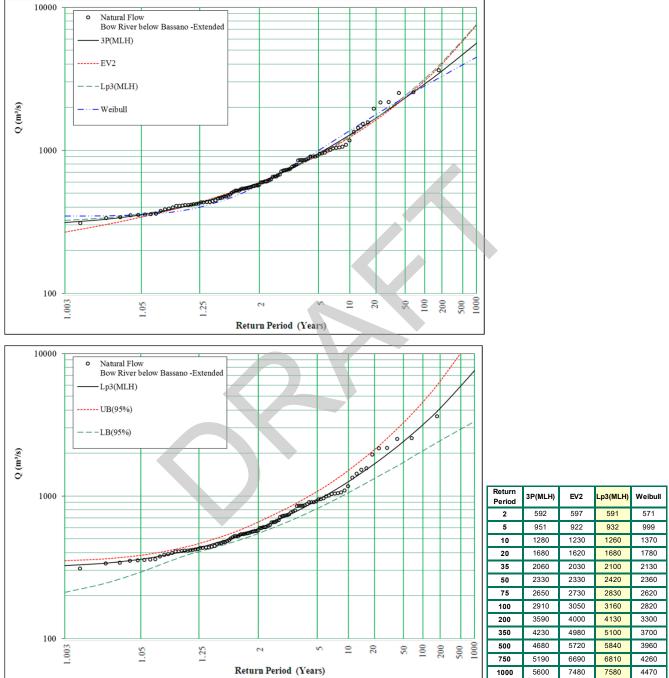
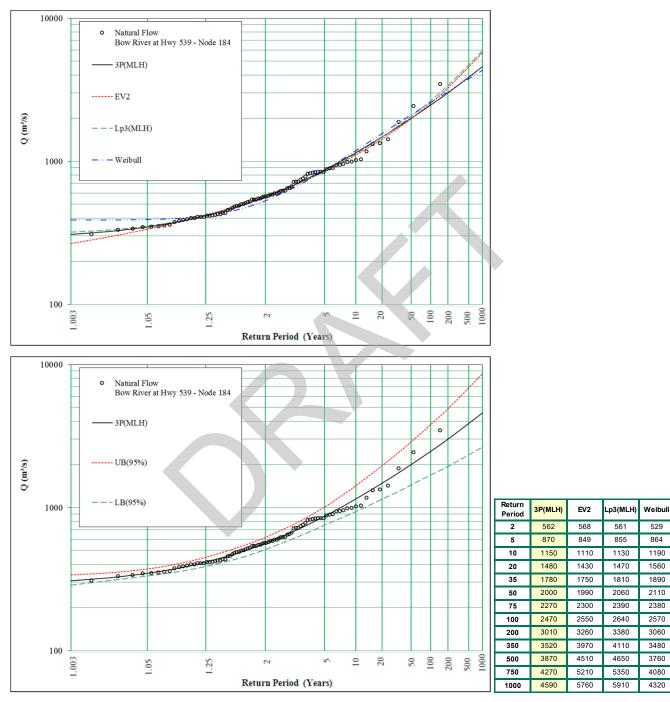
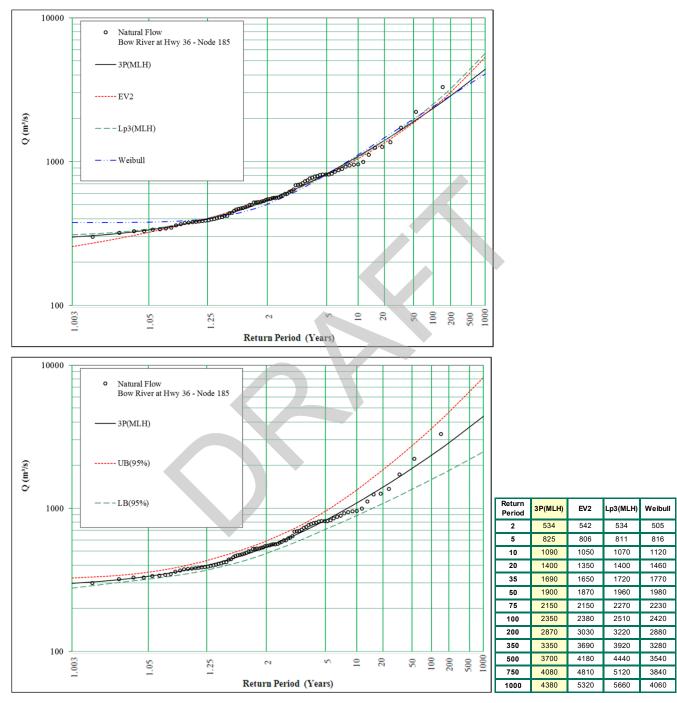


Figure C.1.25: Node 189, Bow River below Crowfoot Creek


Figure C.1.26: 05BM004 / Node 182, Bow River below Bassano Dam – extended

Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	592	597	591	571
5	951	922	932	999
10	1280	1230	1260	1370
20	1680	1620	1680	1780
35	2060	2030	2100	2130
50	2330	2330	2420	2360
75	2650	2730	2830	2620
100	2910	3050	3160	2820
200	3590	4000	4130	3300
350	4230	4980	5100	3700
500	4680	5720	5840	3960
750	5190	6690	6810	4260


Figure C.1.27: Node 184, Bow River at Hwy. 539

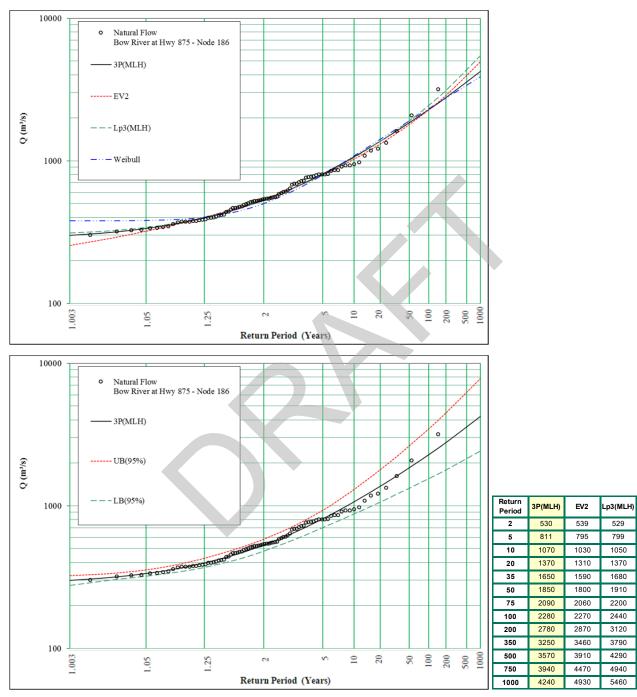
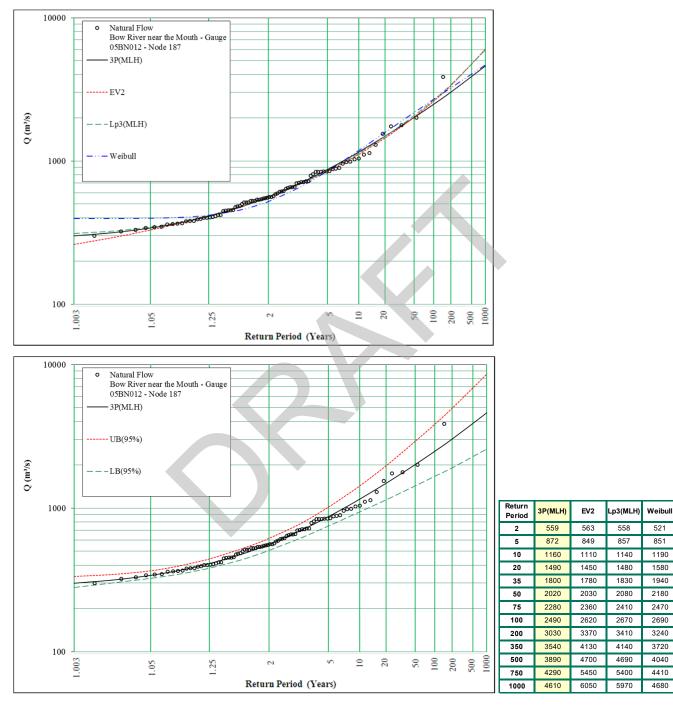

Figure C.1.28: Node 185, Bow River at Hwy. 36

Figure C.1.29: Node 186, Bow River at Hwy. 875



Weibull

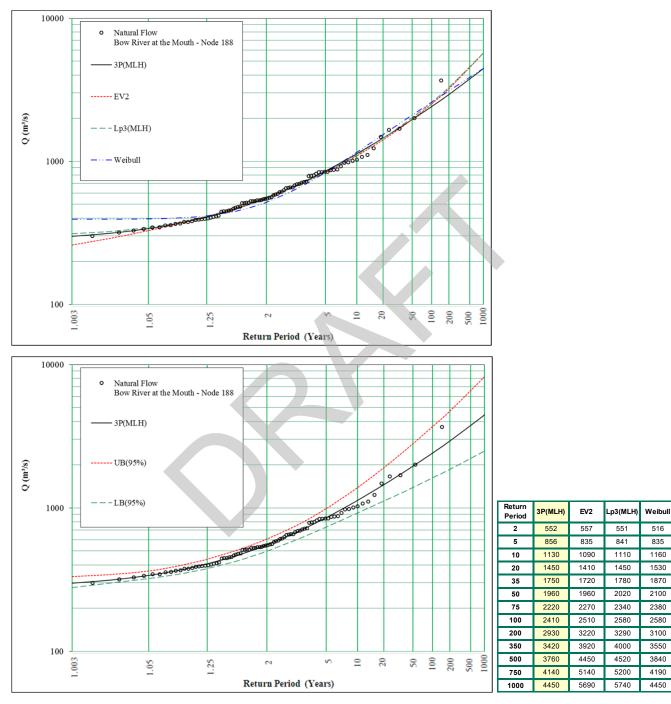

Figure C.1.30: 05BN012 / Node 187, Bow River near the Mouth

Figure C.1.31: Node 188, Bow River at the Mouth

BOW RIVER TRIBUTARIES

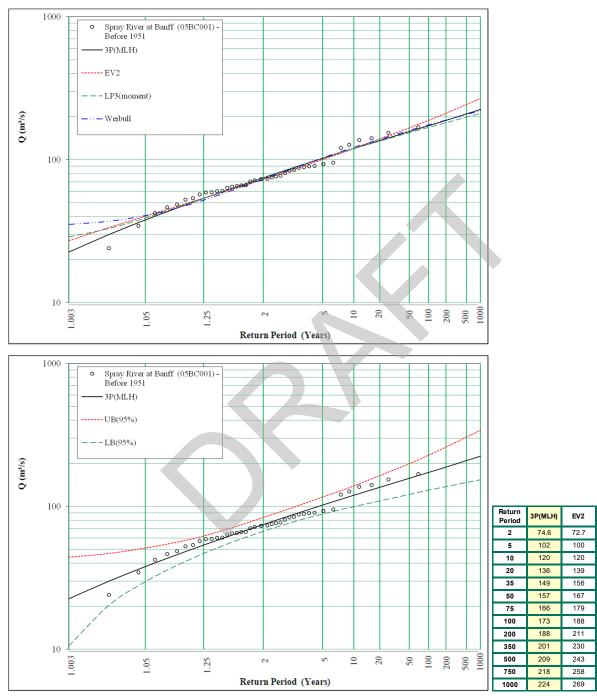


Figure C.1.32: 05BC001 / Node 106, Spray River at Banff - before 1951

LP3

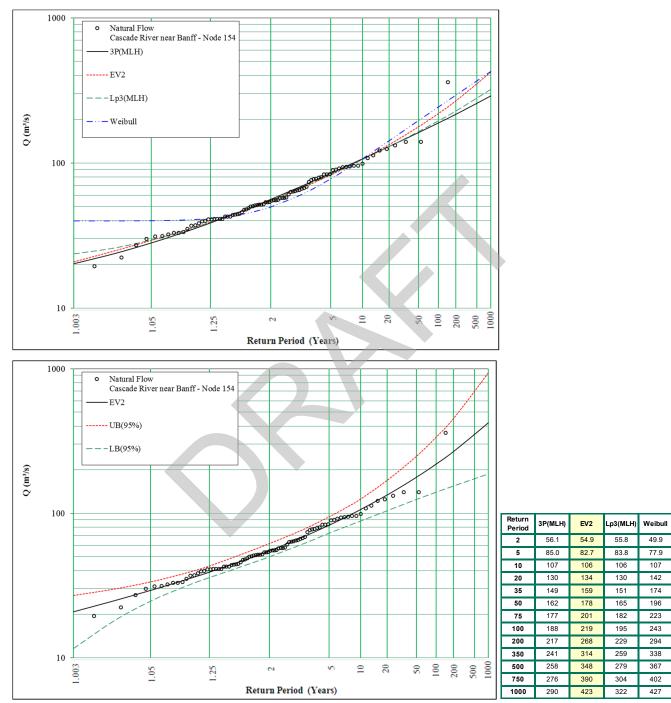
nome


75.00

Weibull

72.9

Figure C.1.33: 05BC001 / Node 106, Spray River at Banff


Weibull

64.0

99.0

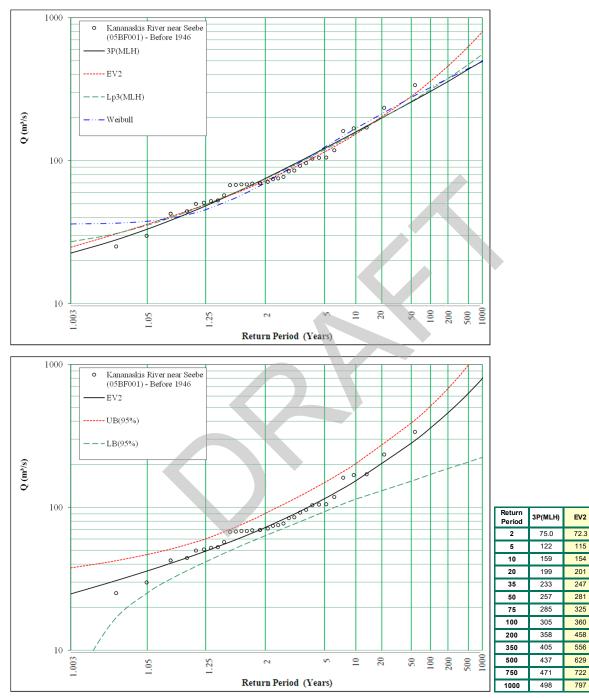
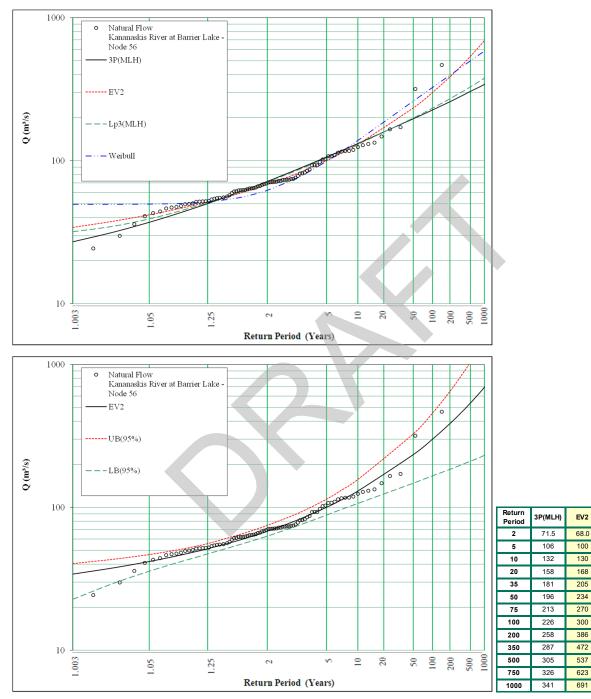


Figure C.1.34: 05BD002 / Node 154, Cascade River near Banff

Figure C.1.35: 05BF001, Kananaskis River near Seebe - before 1946


Lp3(MLH)

74.5

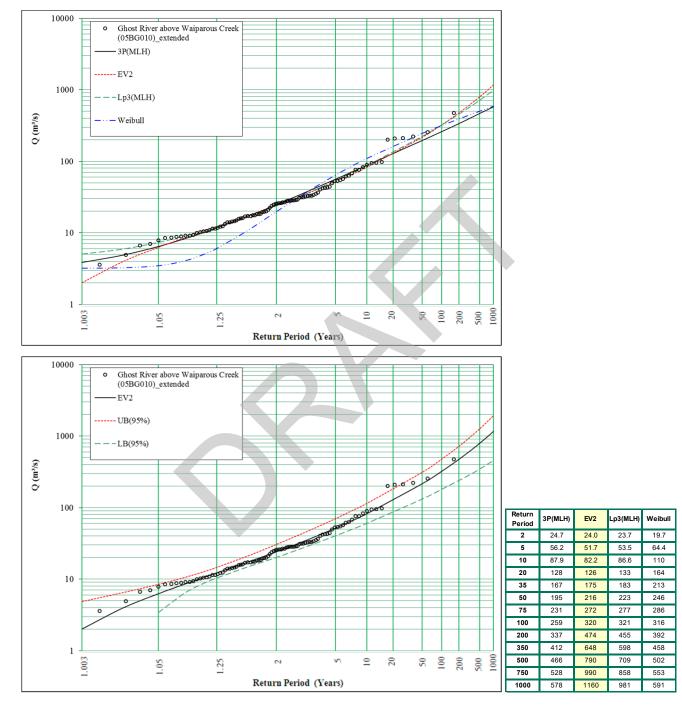
Weibull

70.0

Figure C.1.36: 05BF025 / Node 56, Kananaskis River below Barrier Dam

Lp3(MLH)

70.9


Weibull

62.0

99.0

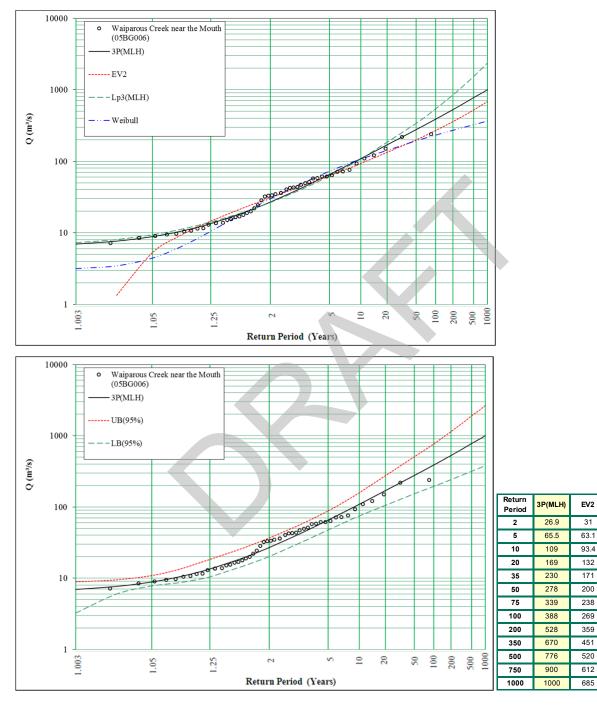
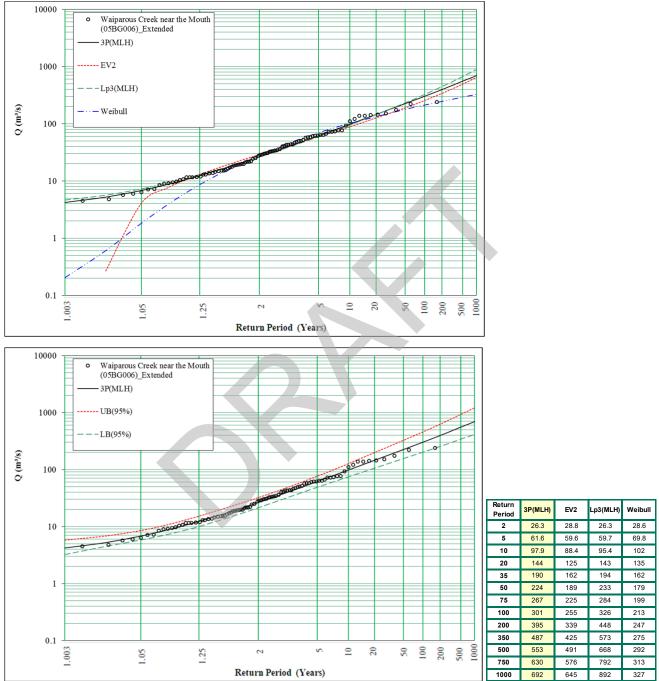

Figure C.1.37: 05BG010, Ghost River above Waiparous Creek - extended with diversion added

Figure C.1.38: 05BG006, Waiparous Creek near the Mouth

Lp3(MLH)

26.4


62.3

Weibull

29.9

72.7

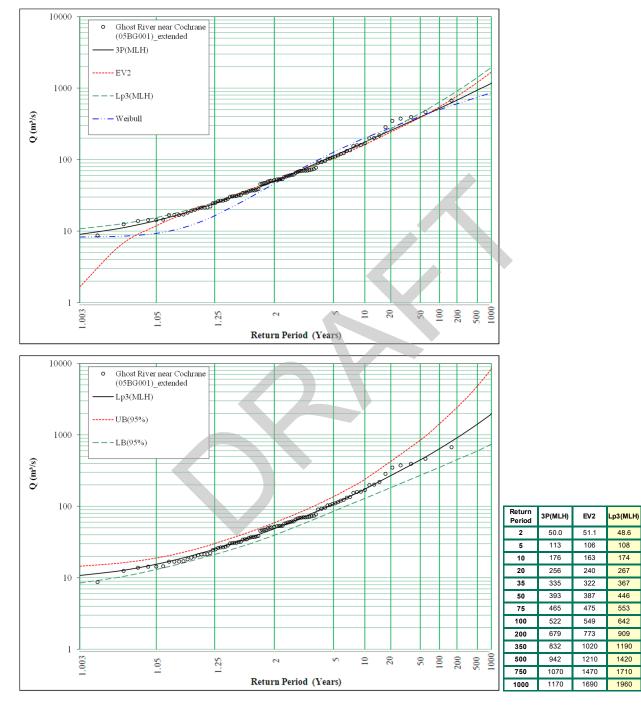
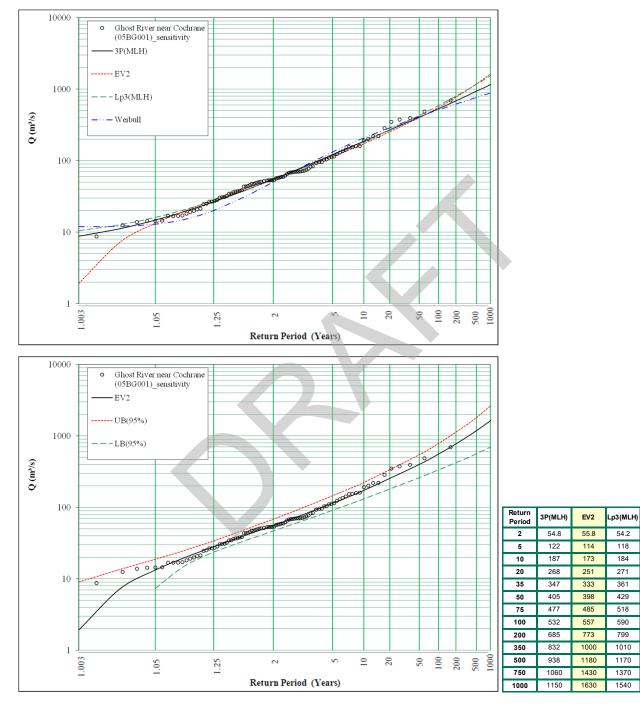


Figure C.1.39: 05BG006, Waiparous Creek near the Mouth – extended

Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	26.3	28.8	26.3	28.6
5	61.6	59.6	59.7	69.8
10	97.9	88.4	95.4	102
20	144	125	143	135
35	190	162	194	162
50	224	189	233	179
75	267	225	284	199
100	301	255	326	213
200	395	339	448	247
350	487	425	573	275
500	553	491	668	292
750	630	576	792	313


Figure C.1.40: 05BG001, Ghost River near Cochrane - extended with diversion added

Weibull

46.1

48.6

Figure C.1.41: 05BG001, Ghost River near Cochrane - sensitivity analysis

Weibull

50.2

132

208

292

366

415

472

515

620

709

767

835

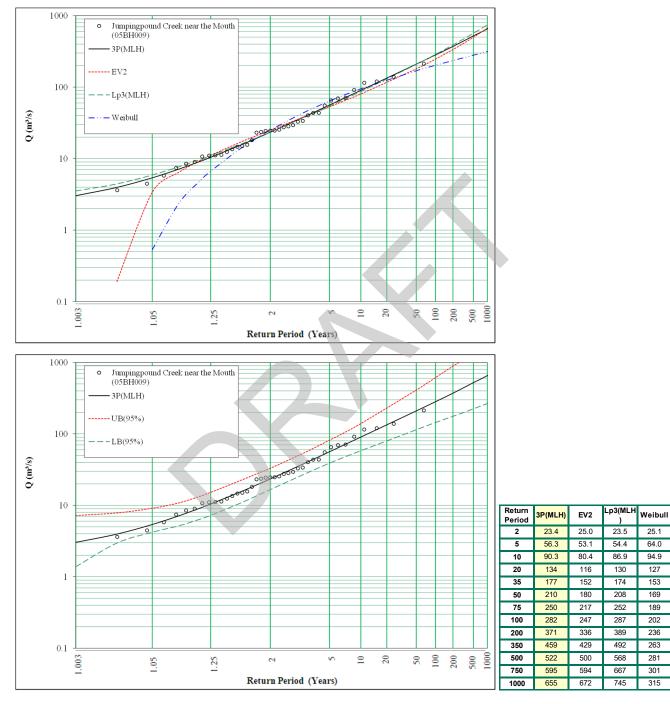
Figure C.1.42: 05BH015, Jumpingpound Creek at Township Road No. 252 – extended

Golder

Lp3(MLH)

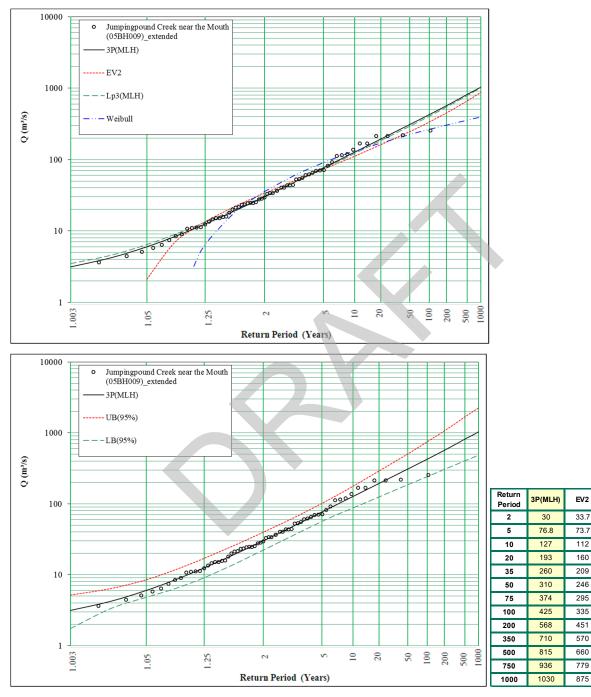
28.2

67.7


Weibull

32.6

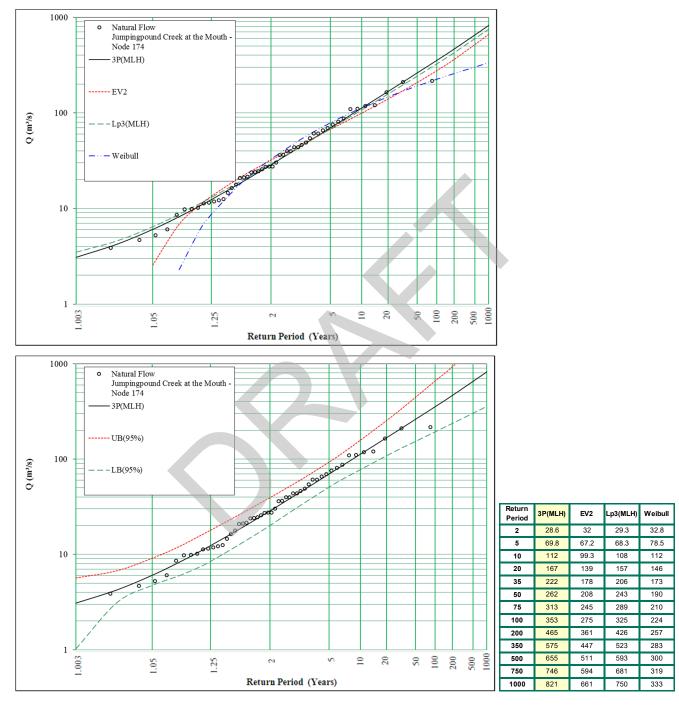
81.1



Lp3(MLH)

30.6

74.8


Weibull

35.6

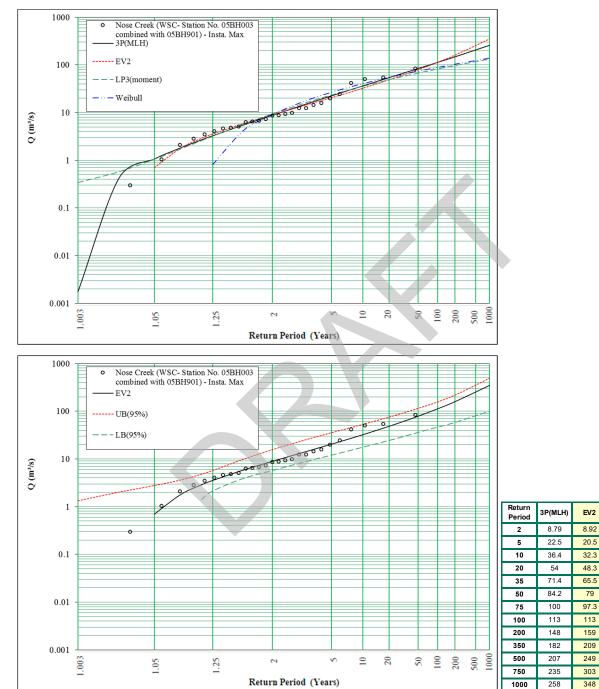

90.3

Figure C.1.45: Node 174, Jumpingpound Creek at the Mouth

Figure C.1.46: 05BH003 / Node 175, Nose Creek at Calgary – extended

Weibull

9.22

26.9

40.8

55.10

66.9

74.4

83.1

89.3

104

117

124

133

140

Lp3(MLH)

9.39

23.6

35.8

49.1

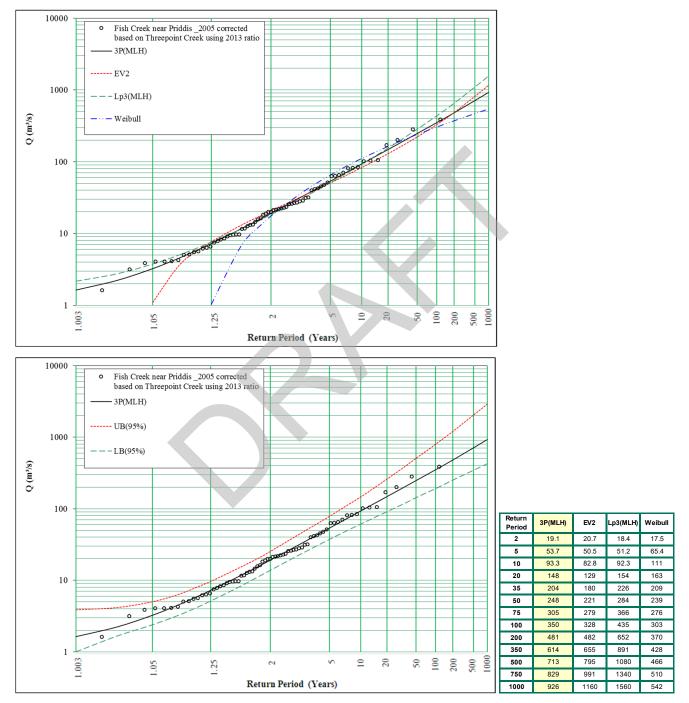
60.4

67.9

76.5

82.7

97.9


110

118

127

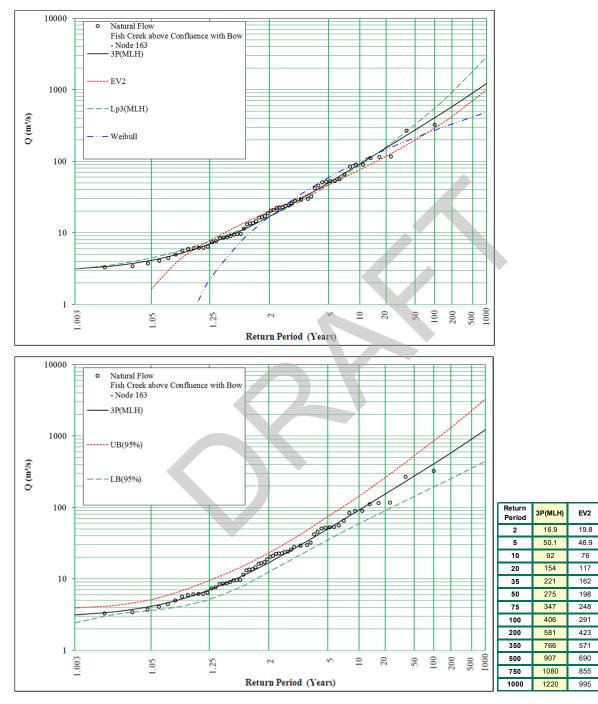

Figure C.1.47: 05BK001, Fish Creek near Priddis

Figure C.1.48: Node 163, Fish Creek at the Mouth

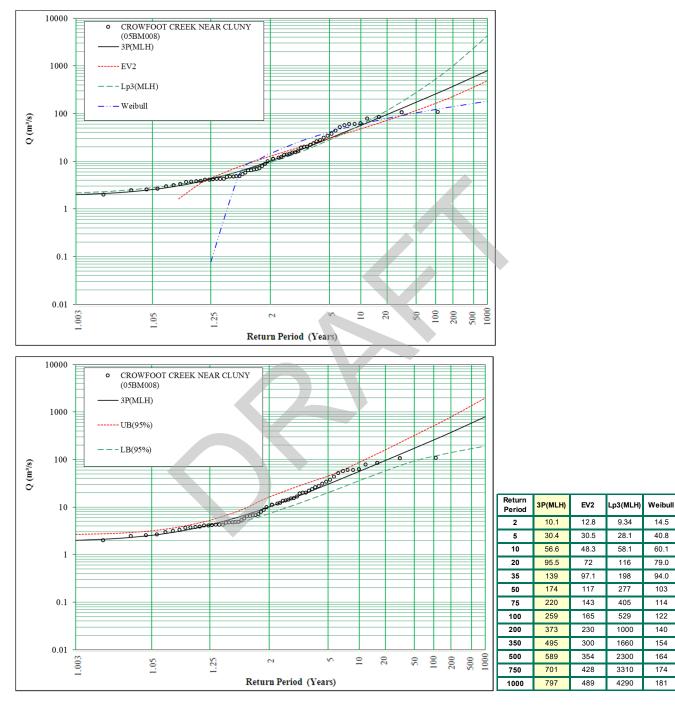
_p3(MLH)

16.6

46.4

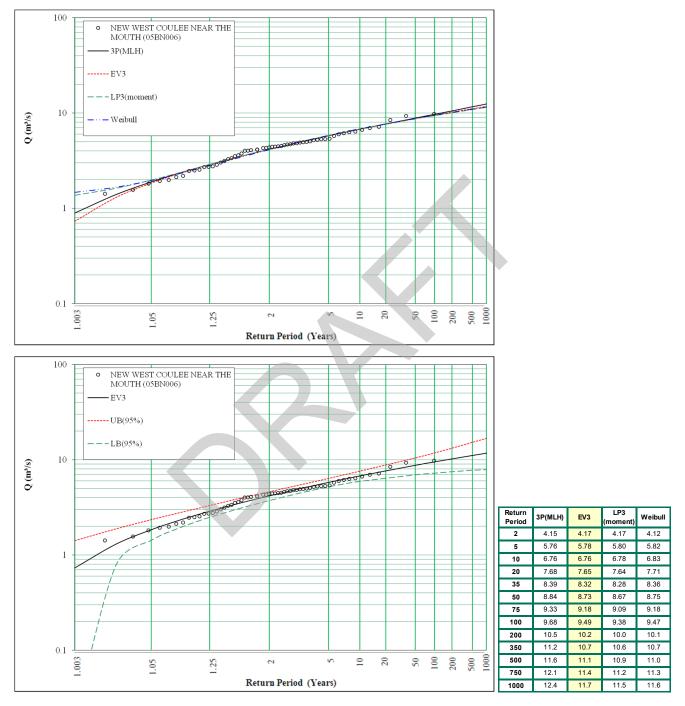
88.1

Weibull


16.8

59.2

99.6


Figure C.1.49: 05BM008, Crowfoot Creek near Cluny

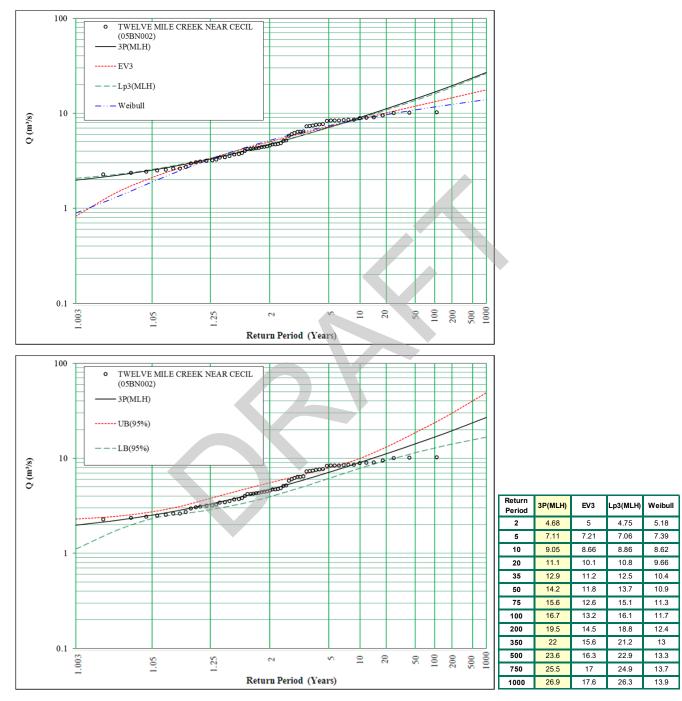


Figure C.1.50: 05BN006, New West Coulee near the Mouth

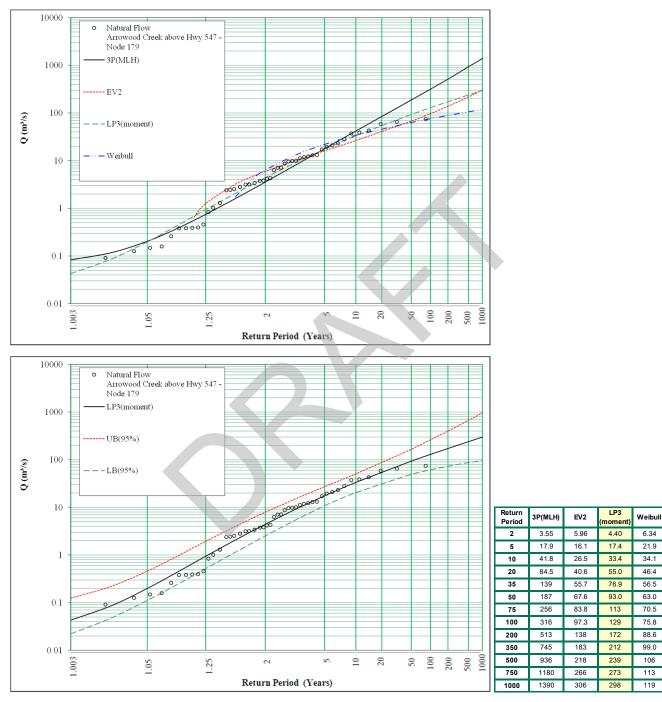

Figure C.1.51: 05BN002, Twelve Mile Creek near Cecil

Figure C.1.52: Node 179, Arrowwood Creek above Hwy. 547

ELBOW RIVER

05BJ004 o 3P(MLH) -- EV2 -Lp3(MLH) Q (m³/s) 200 1.003 1.05 1.25 Return Period (Years) 05BJ004 3P(MLH) -- UB(95%) -LB(95%) Q (m³/s) Return 3P(MLH) EV2 Period 62.3 63.1 -0 1.003 50 200 1.25 \$ 1.05 Return Period (Years)

Figure C.1.53: 05BJ004, Elbow River at Bragg Creek

Lp3(MLH)

Weibull

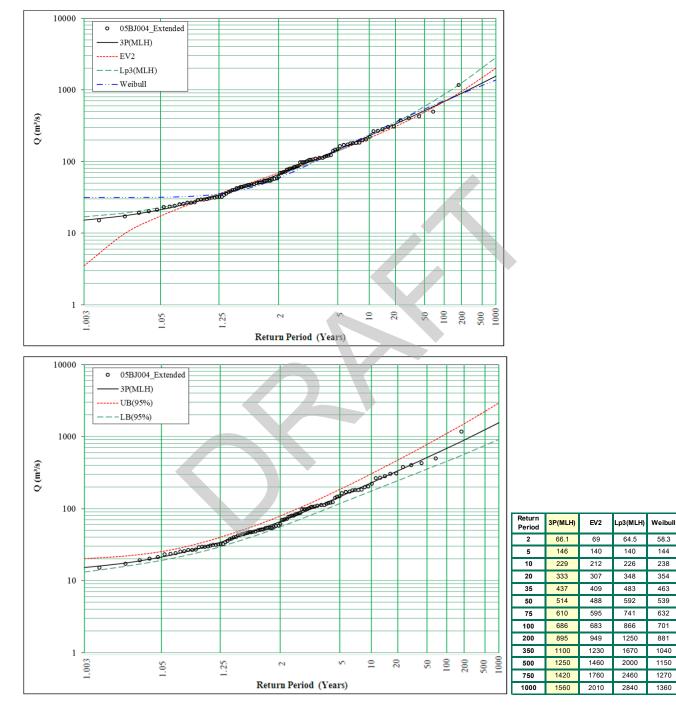
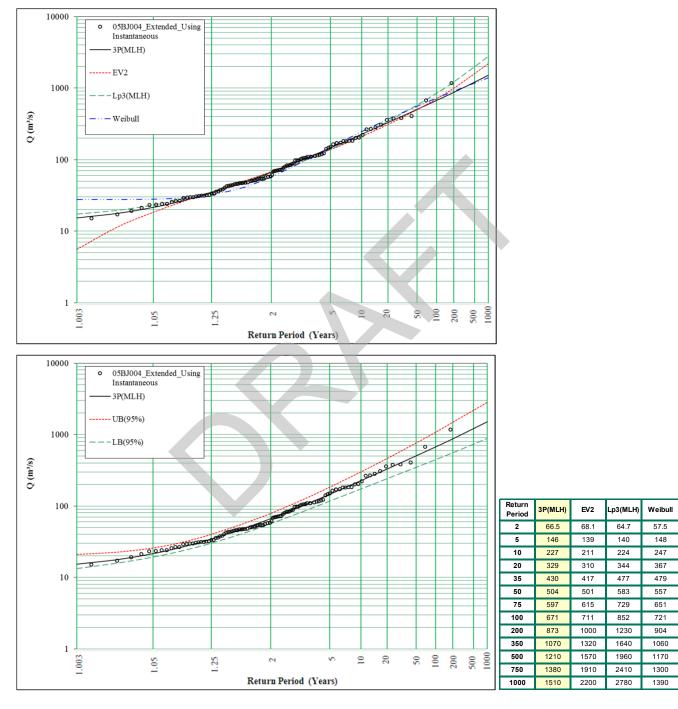
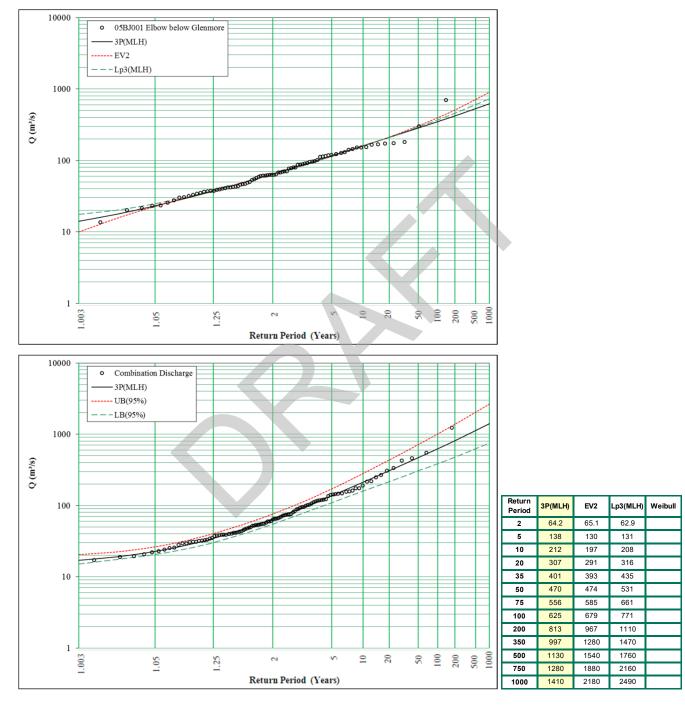
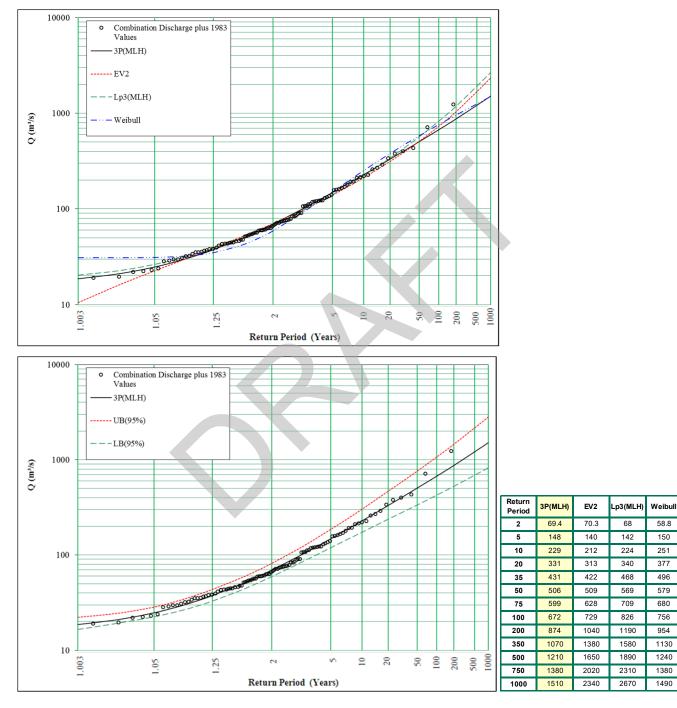



Figure C.1.54: 05BJ004, Elbow River at Bragg Creek – extended Using Annual Maximum Daily Series


Figure C.1.55: 05BJ004, Elbow River at Bragg Creek – extended Using Annual Maximum Instantaneous Series


Figure C.1.56: 05BJ010, Elbow River at Sarcee Bridge, same as Glenmore Reservoir Inflow - combined 05BJ001, 05BJ005, 05BJ010

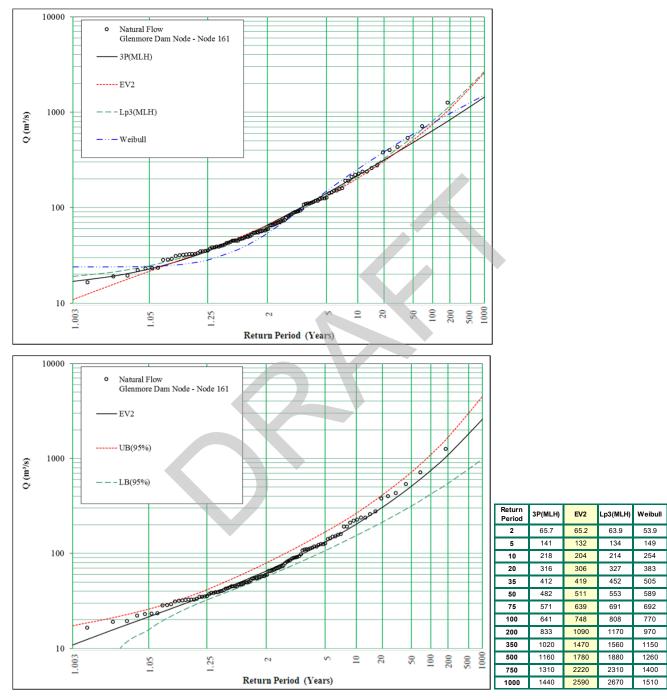
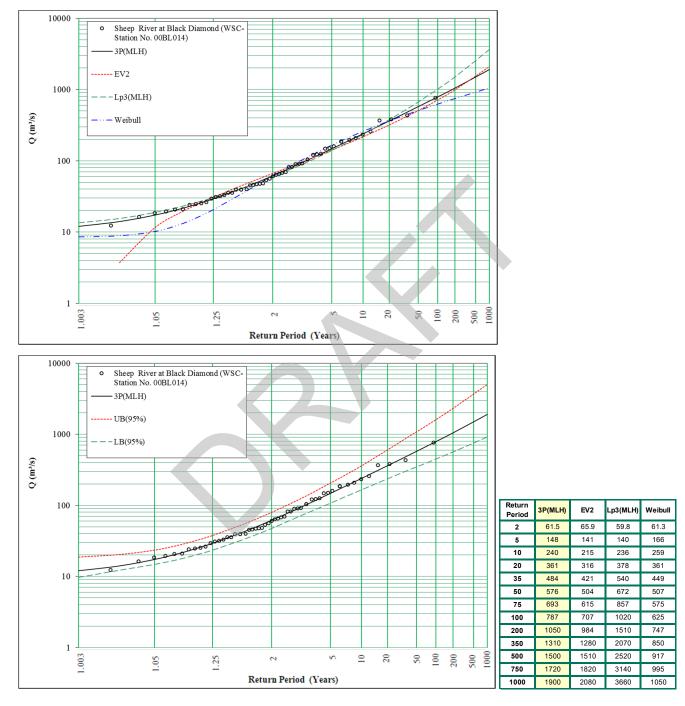
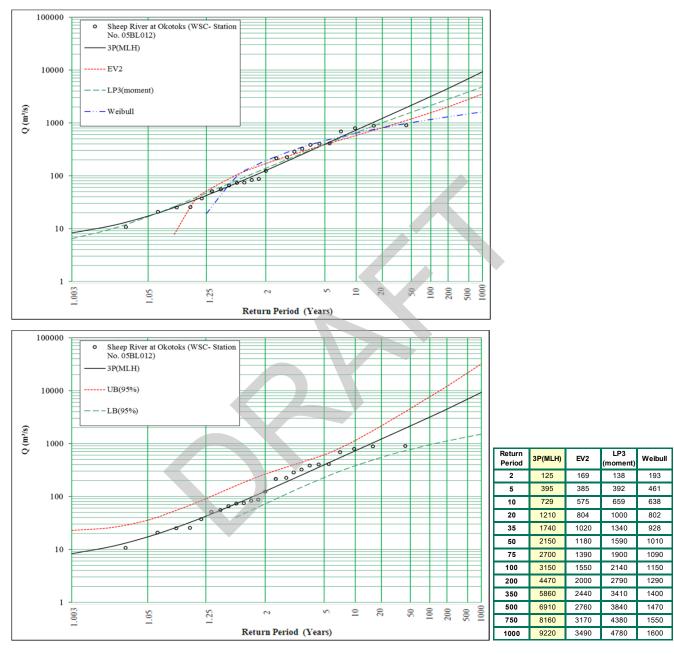


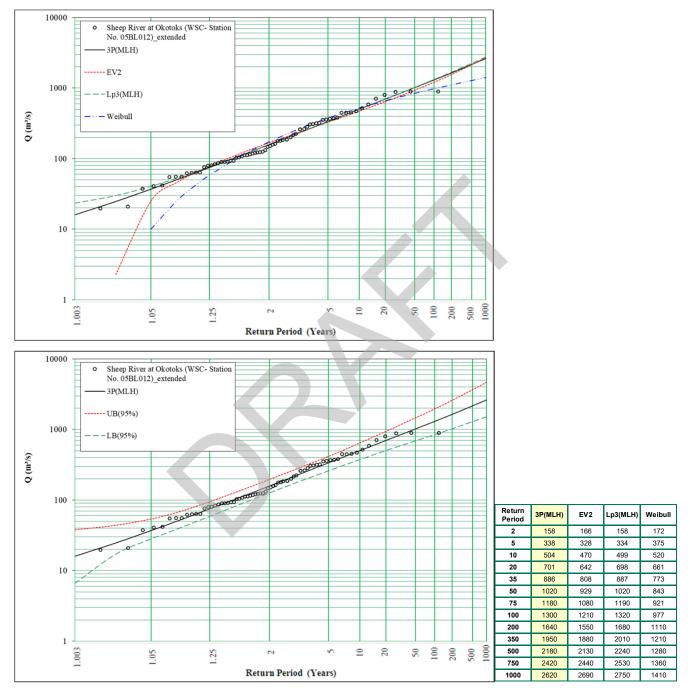
Figure C.1.57: 05BJ010, Elbow River at Sarcee Bridge, same as Glenmore Reservoir Inflow - combined 05BJ001, 05BJ005, 05BJ010 with 1983 values

Figure C.1.58: 05BJ001 / Node 161, Elbow River below Glenmore Dam



SHEEP RIVER AND TRIBUTARIES


Figure C.1.59: 05BL014, Sheep River at Black Diamond


Figure C.1.60: 05BL012, Sheep River at Okotoks

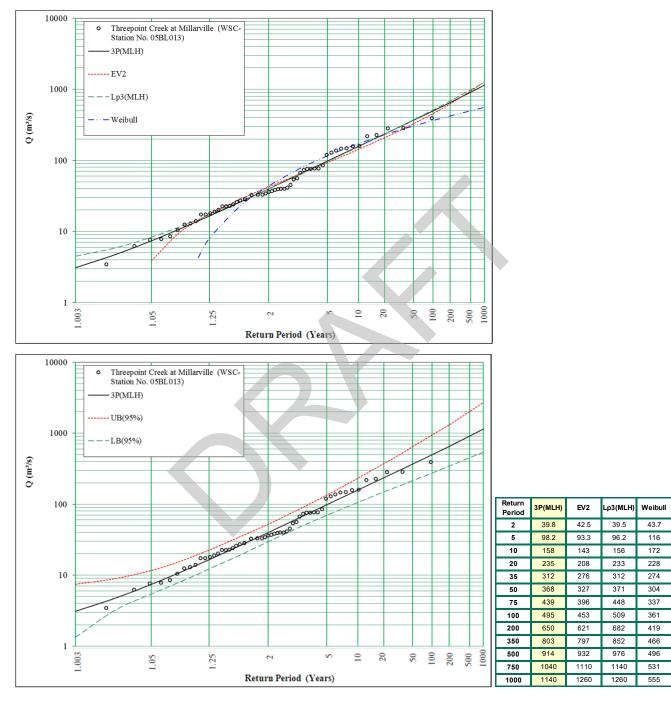
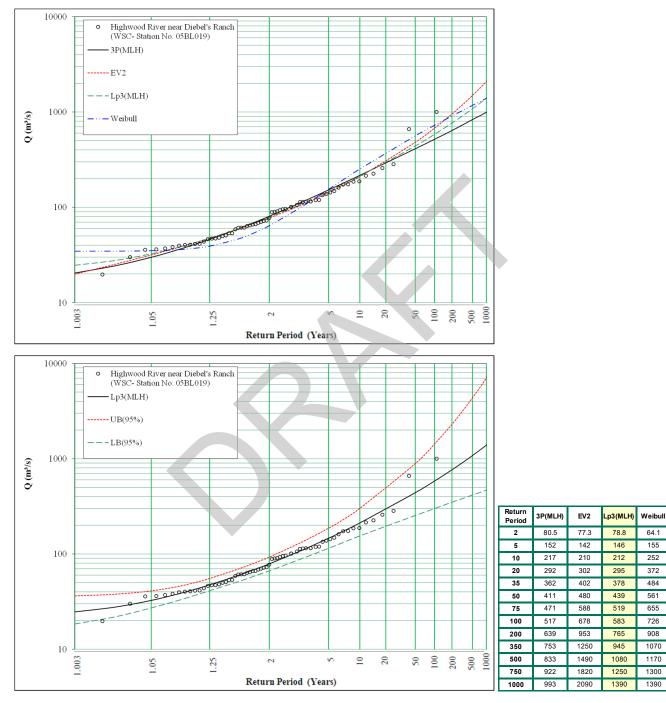

Figure C.1.61: 05BL012, Sheep River at Okotoks – extended

Figure C.1.62: 05BL013, Threepoint Creek near Millarville



HIGHWOOD RIVER AND TRIBUTARIES

Figure C.1.63: 05BL019, Highwood River at Diebel's Ranch

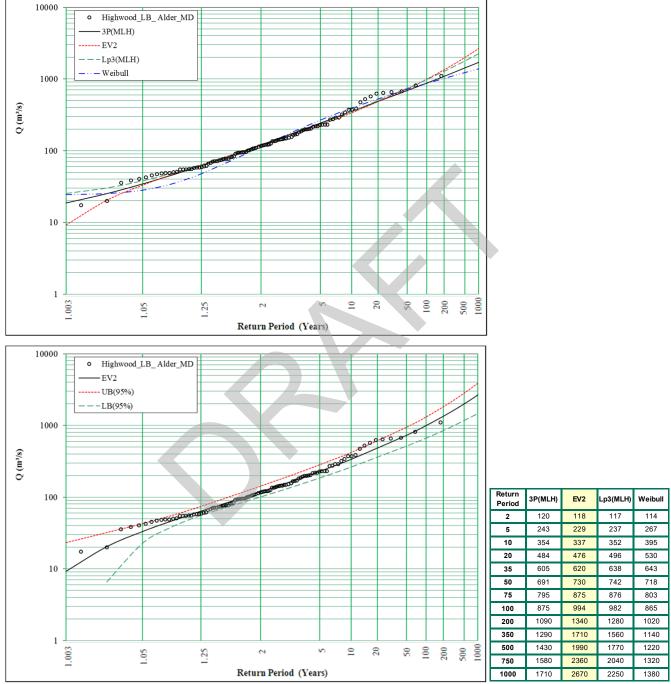
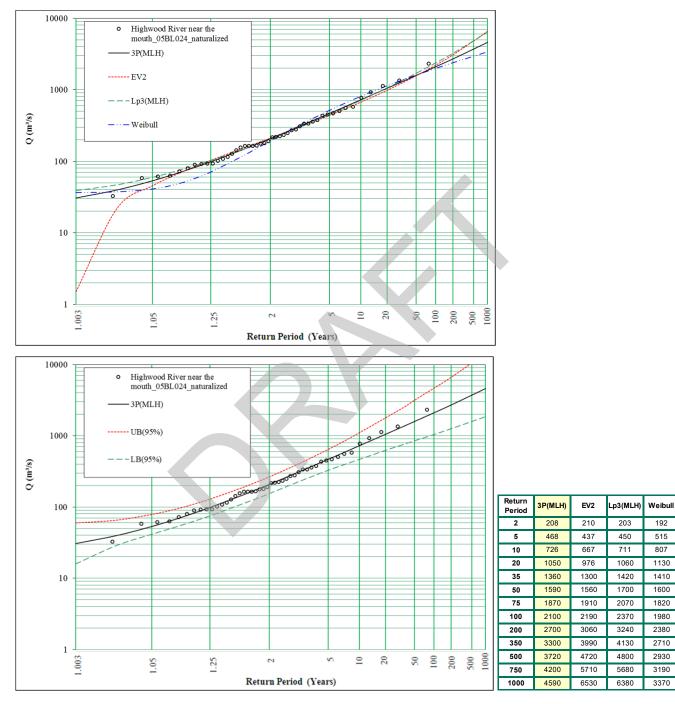
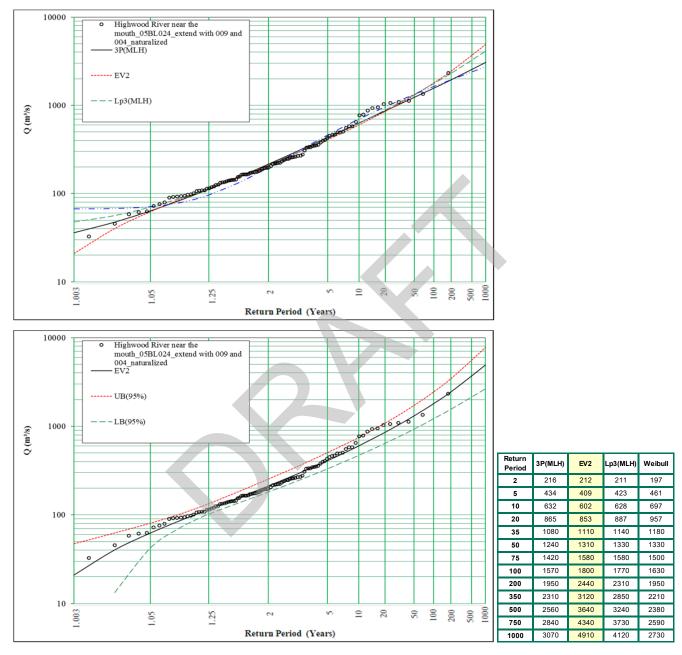
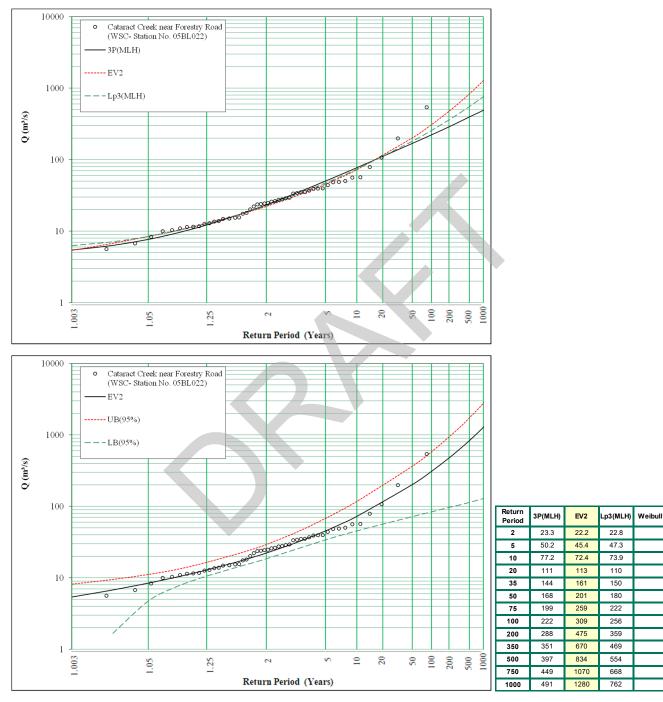


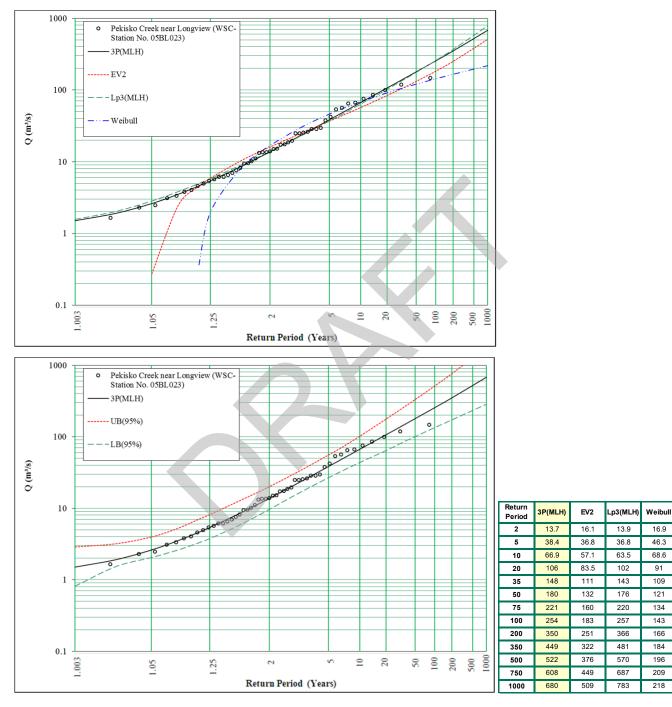
Figure C.1.64: 05BL004, Highwood River below Little Bow Canal

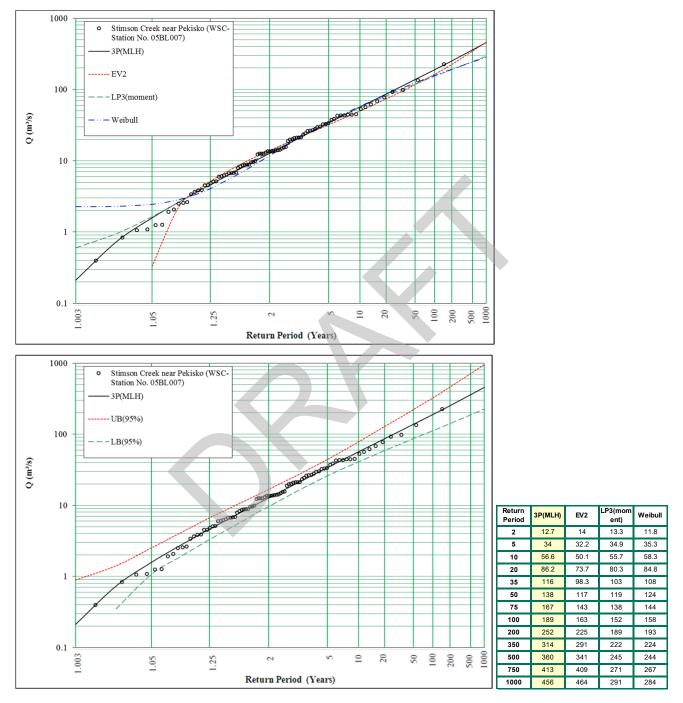

Figure C.1.65: 05BL004, Highwood River below Little Bow Canal – extended

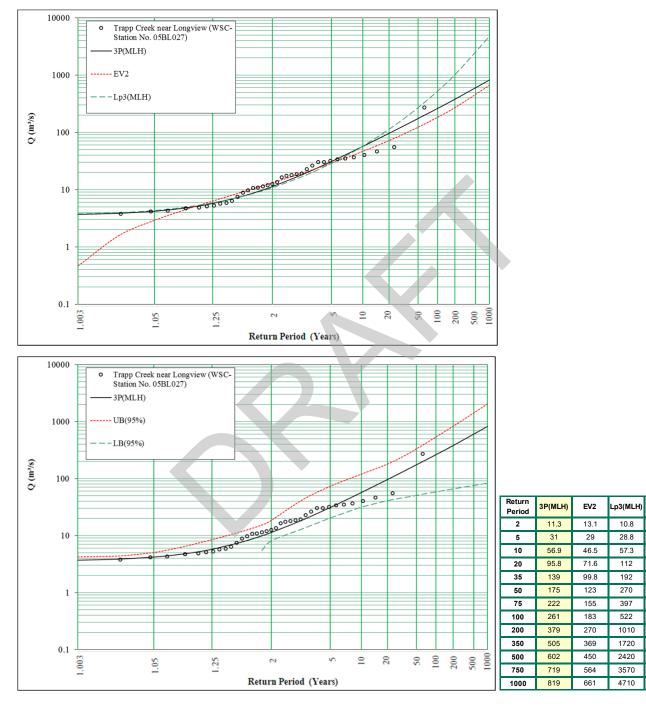
Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	120	118	117	114
5	243	229	237	267
10	354	337	352	395
20	484	476	496	530
35	605	620	638	643
50	691	730	742	718
75	795	875	876	803
100	875	994	982	865
200	1090	1340	1280	1020
350	1290	1710	1560	1140
500	1430	1990	1770	1220
750	1580	2360	2040	1320


Figure C.1.66: 05BL024, Highwood River near the Mouth


Figure C.1.67: 05BL024, Highwood River near the Mouth – extended


Figure C.1.68: 05BL022, Cataract Creek near Forestry Road


Figure C.1.69: 05BL023, Pekisko Creek near Longview


Figure C.1.70: 05BL007, Stimson Creek near Pekisko

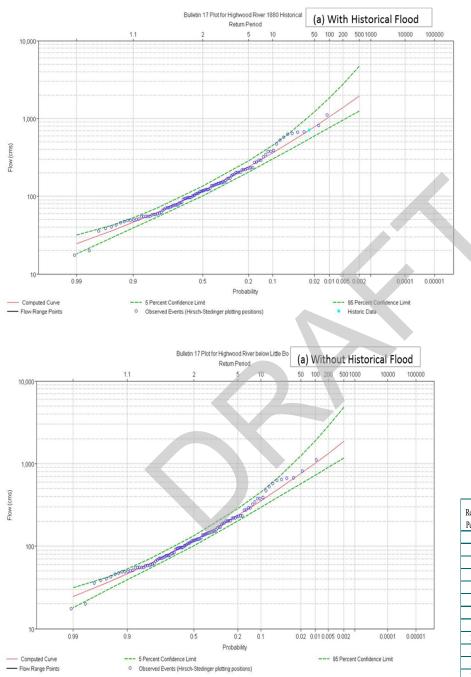


Figure C.1.71: 05BL027, Trapp Creek near Longview

Weibull

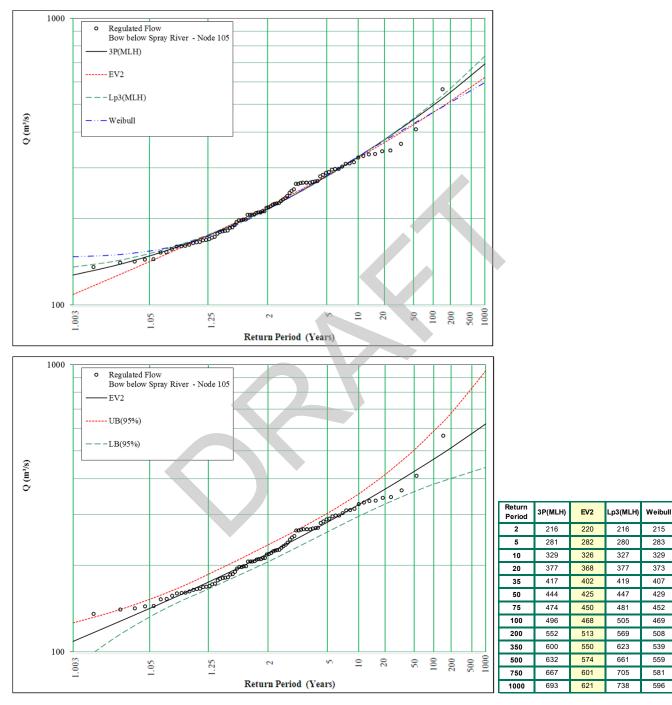
Figure C.1.72: Highwood River below Little Bow Canal – Using Bulletin 17C Method

Return	Flood Flow Estimates (m ³ /s)				
Period	With Historical Flood		Ratio		
2	117	117	1.00		
5	240	238	1.01		
10	361	355	1.02		
20	515	504	1.02		
35	669	651	1.03		
50	784	761	1.03		
75	932	901	1.03		
100	1050	1012	1.04		
200	1383	1326	1.04		
350	1712	1633	1.05		
500	1954	1857	1.05		
750	2263	2144	1.06		
1000	2507	2369	1.06		

https://golderassociates.sharepoint.com/sites/121016/project files/5 technical work/04 report revisions/1_hydrology/hydrology report rev1/appendices/appendix c.1_freuqency_plots_compiled_naturalized.docx

This document has a compilation of graphs and results from frequency analysis of

- recorded and regulated flows at selected assessment nodes, including extended datasets and historic floods, and each station will have the following graphs:
- frequency distribution graph all distributions;
- frequency distribution graph best fit graph with confidence interval; and
- flood estimates all distributions.



BOW RIVER

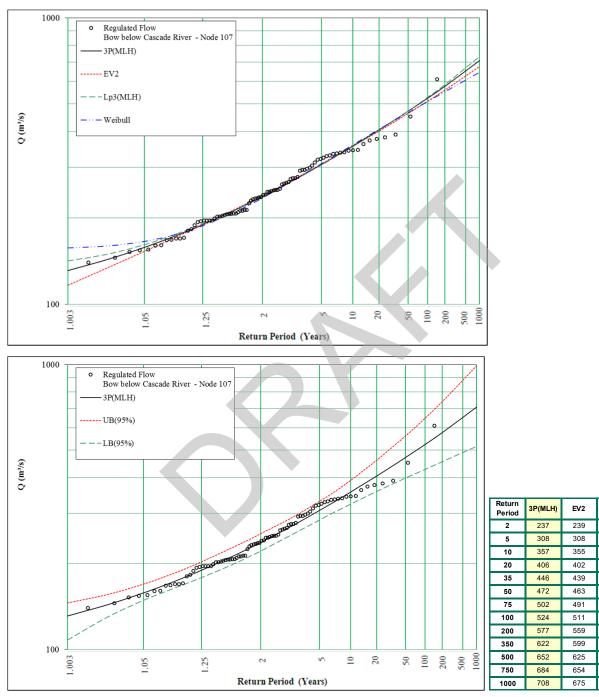
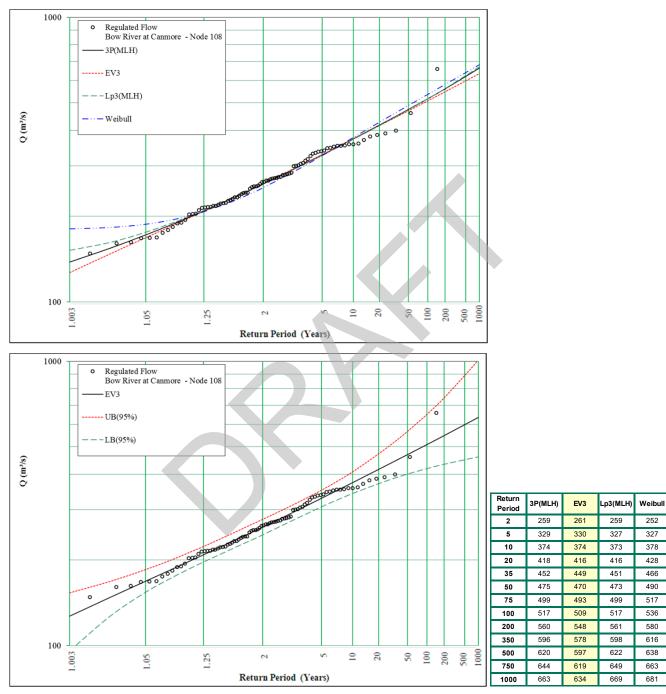
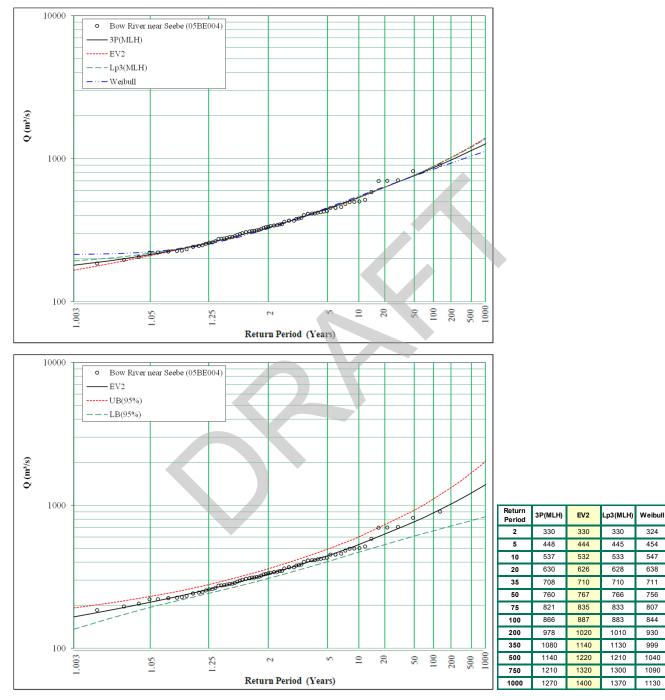

Figure C.2.1: Node 105, Bow River below Spray River

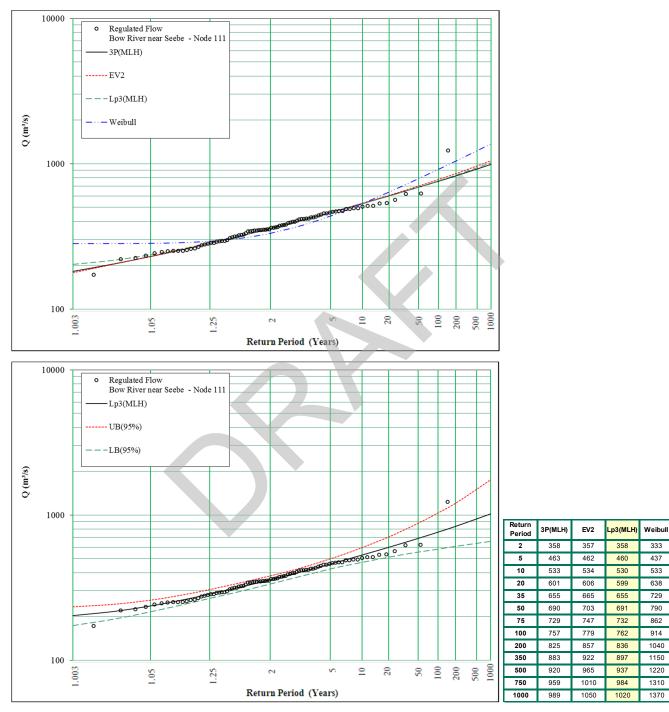
Figure C.2.2: Node 107, Bow River below Cascade River



Weibull

Lp3(MLH)





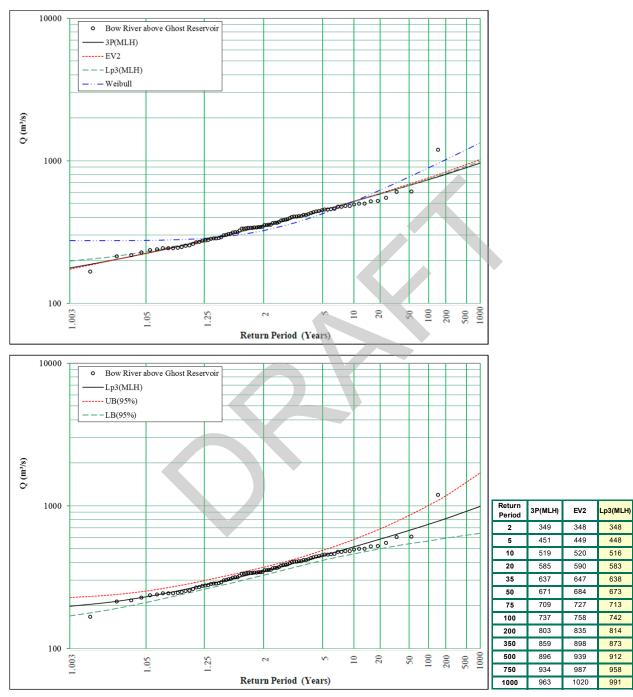
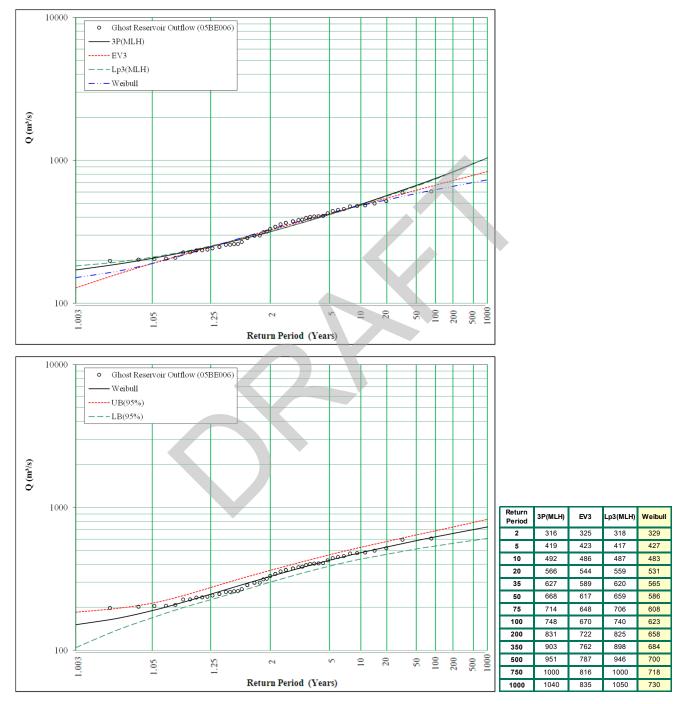

Figure C.2.5: 05BE004 / Node 111, Bow River near Seebe - regulated

Figure C.2.6: Node 318, Bow River above Ghost Reservoir



Weibull

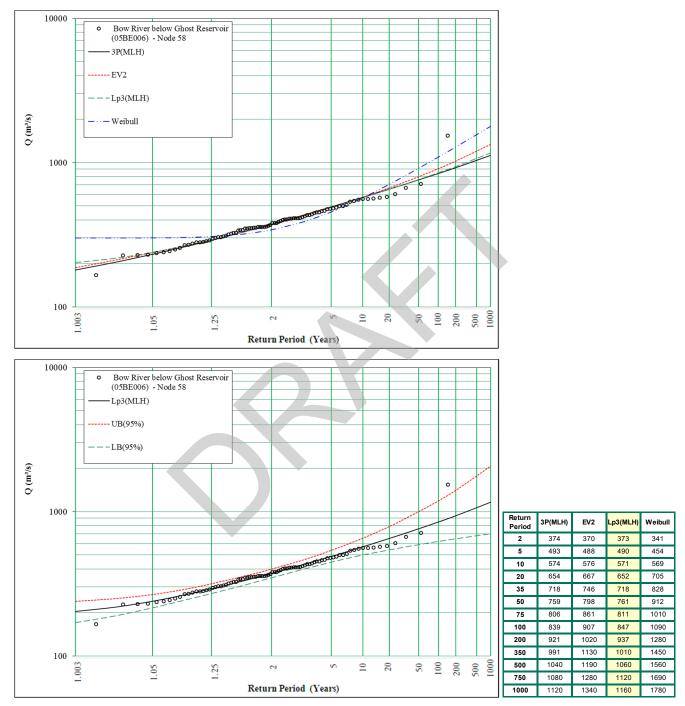
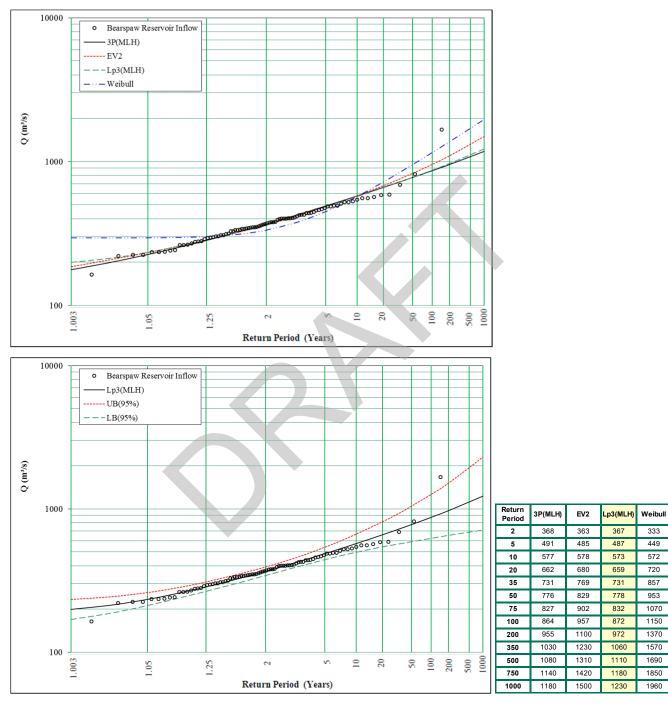


Figure C.2.7: 05BE006 / Node 58, Bow River below Ghost Dam (Ghost Reservoir Outflow) – recorded regulated

Figure C.2.8: 05BE006 / Node 58, Bow River below Ghost Dam (Ghost Reservoir Outflow) - regulated


Figure C.2.9: 05BH005 / Node 114, Bow River near Cochrane

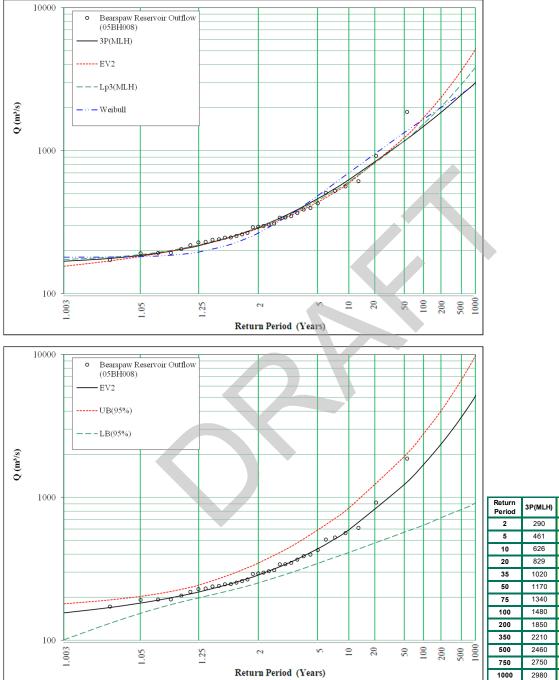


Figure C.2.10: Node 302, Bearspaw Reservoir Inflow

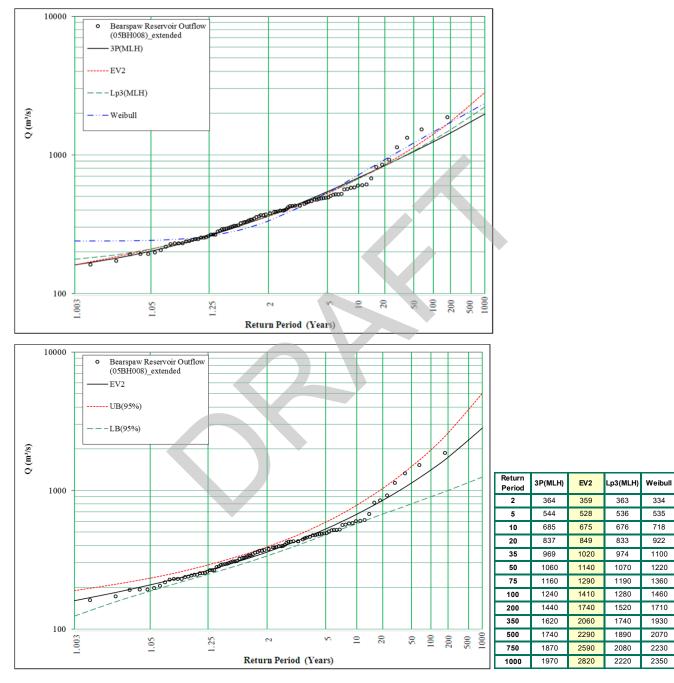
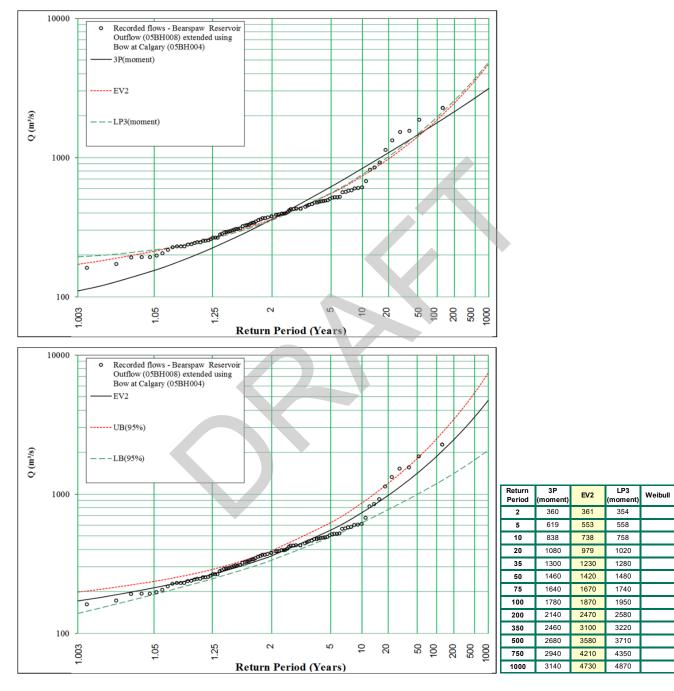
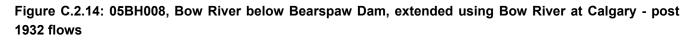


Figure C.2.11: 05BH008, Bow River below Bearspaw Dam – recorded regulated

Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	290	286	290	265
5	461	436	449	483
10	626	593	605	700
20	829	808	806	953
35	1020	1040	1010	1180
50	1170	1230	1170	1340
75	1340	1480	1370	1520
100	1480	1700	1540	1660
200	1850	2350	2030	2010
350	2210	3070	2530	2300
500	2460	3650	2910	2500
750	2750	4430	3410	2730
1000	2980	5090	3830	2900


Figure C.2.12: 05BH008, Bow River below Bearspaw Dam, extended using Bow River at Calgary - all flows



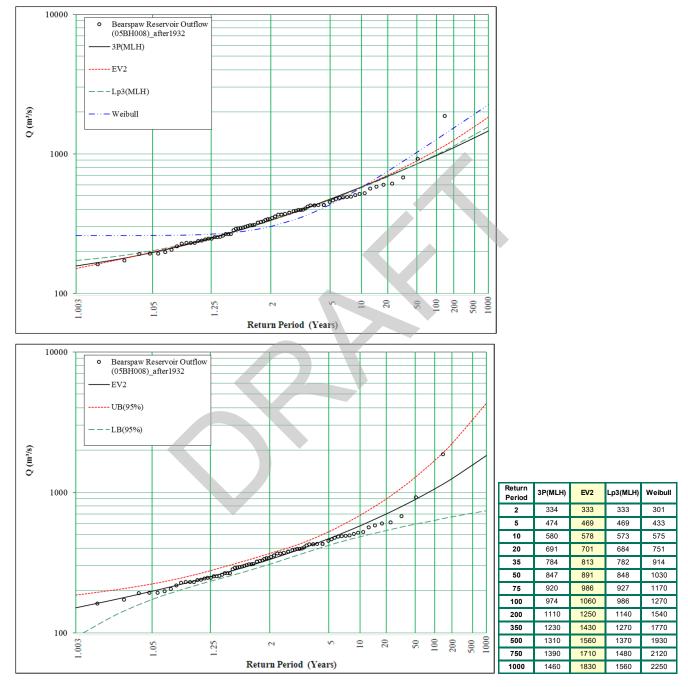
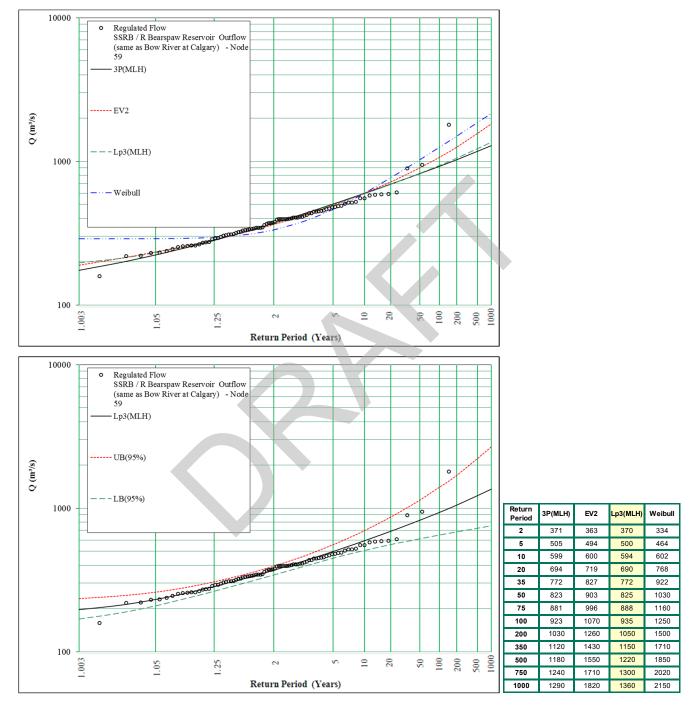
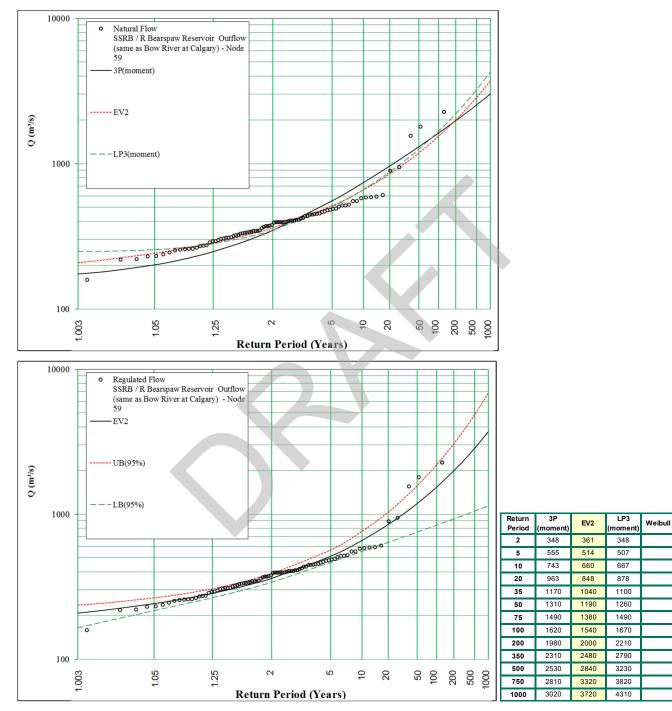
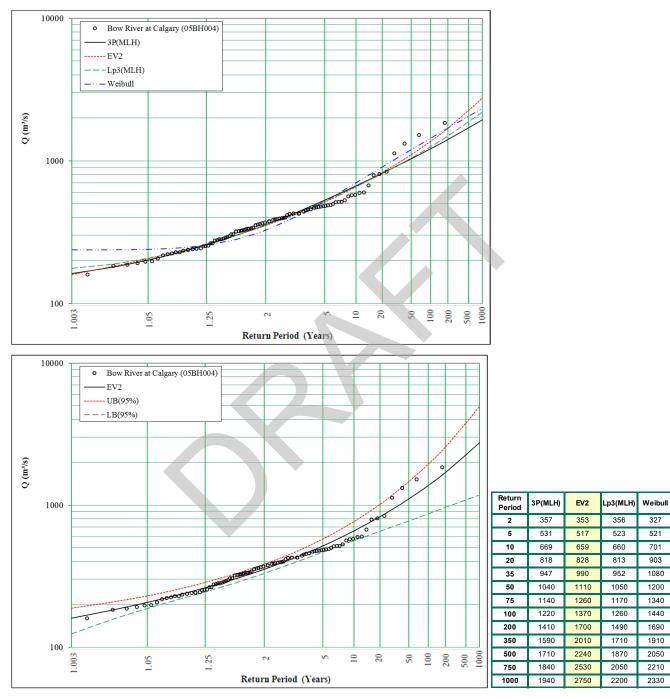
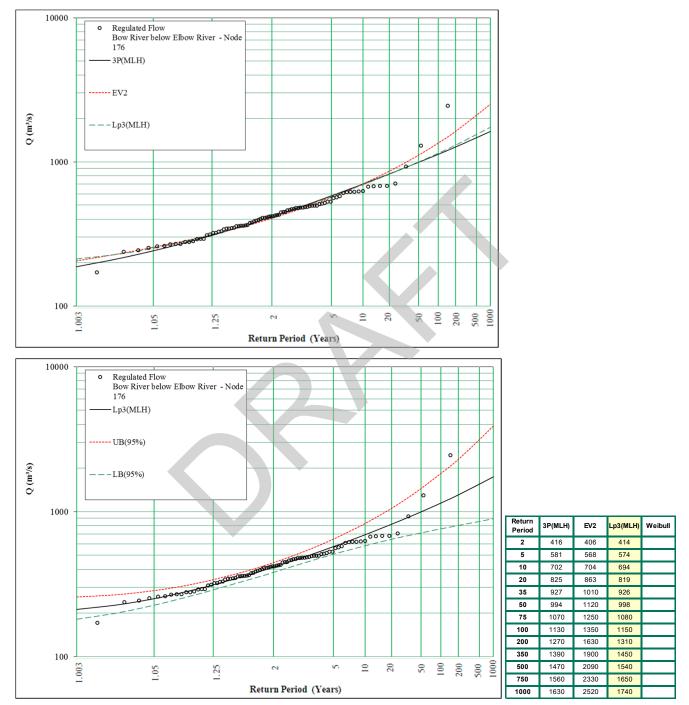


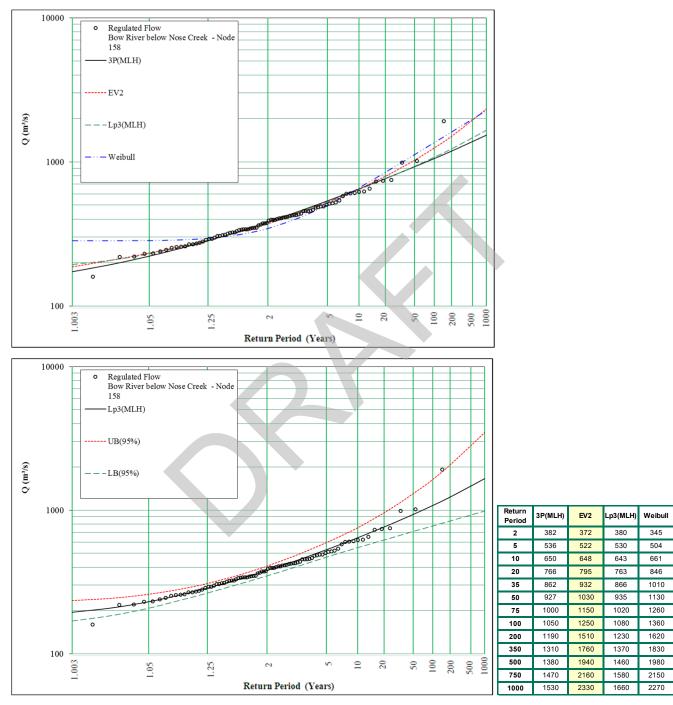
Figure C.2.13: 05BH008, Bow River below Bearspaw Dam, extended using Bow River at Calgary - all flows, historic




Figure C.2.15: Node 59, Bearspaw Reservoir Outflow (same as Bow River at Calgary) - regulated


Figure C.2.16: Node 59, Bearspaw Reservoir Outflow (same as Bow River at Calgary) – historic


Figure C.2.17: 05BH004, Bow River at Calgary – recorded regulated


Figure C.2.18: Node 176, Bow River below Elbow River

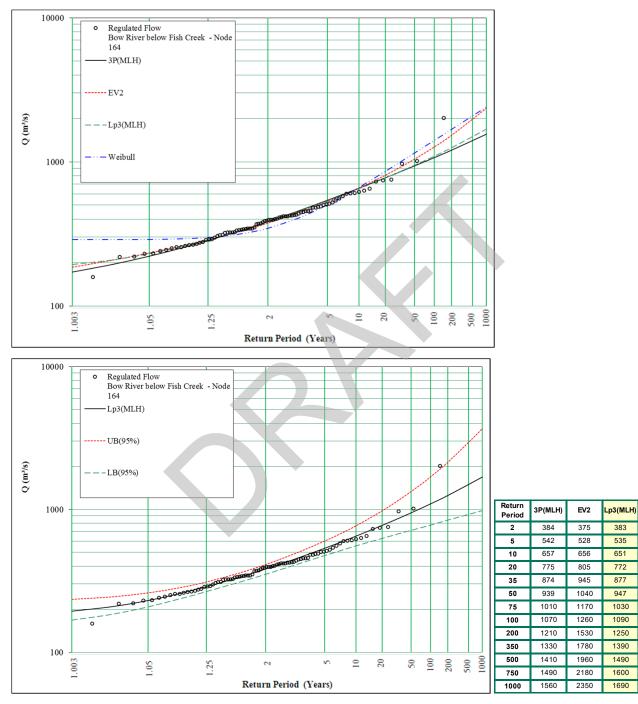
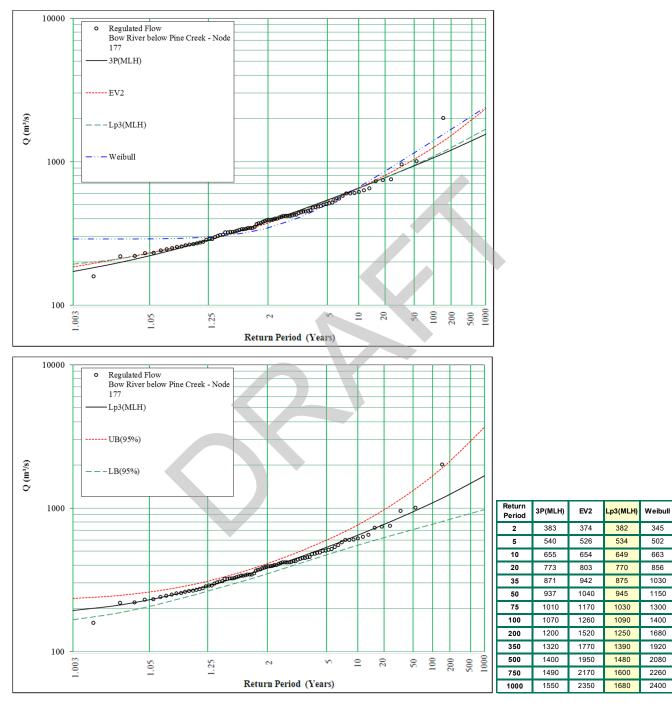
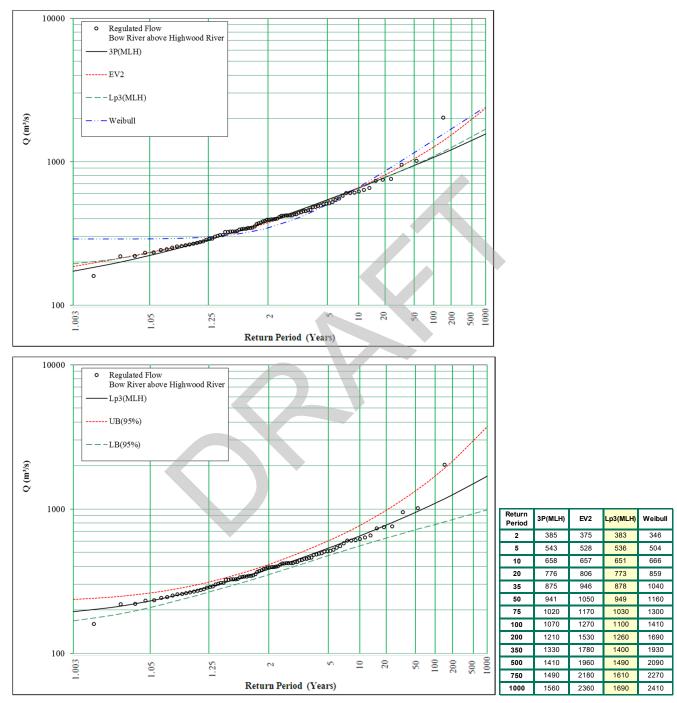
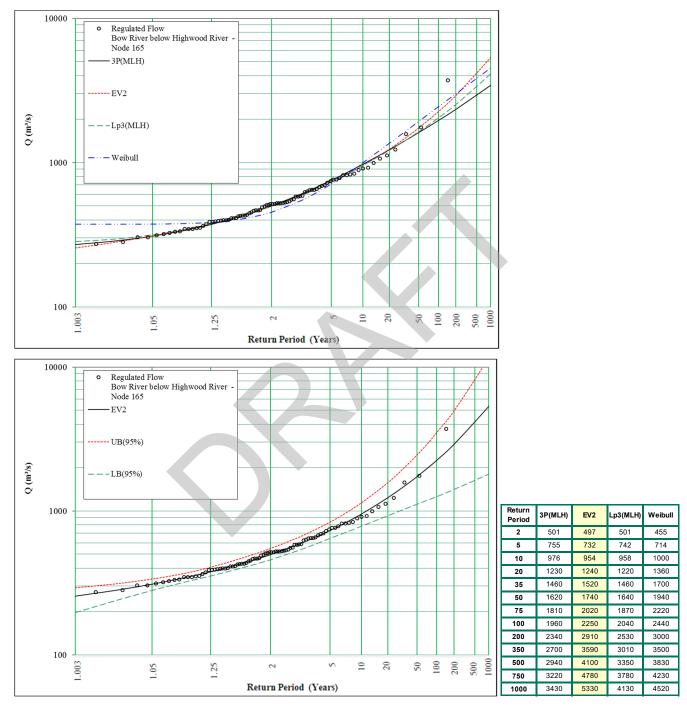

Figure C.2.19: Node 158, Bow River below Nose Creek

Figure C.2.20: Node 164, Bow River below Fish Creek



Weibull


Figure C.2.21: Node 177, Bow River below Pine Creek


Figure C.2.22: Node 331, Bow River above Highwood River

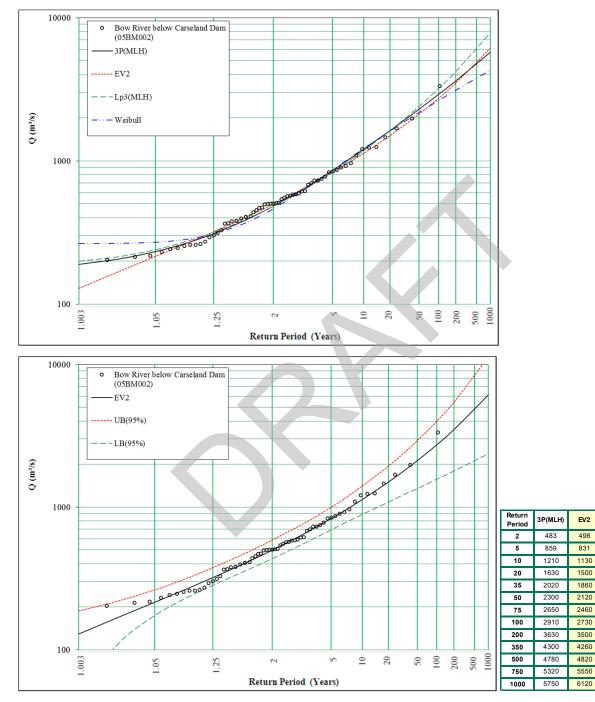


Figure C.2.23: Node 165, Bow River below Highwood River

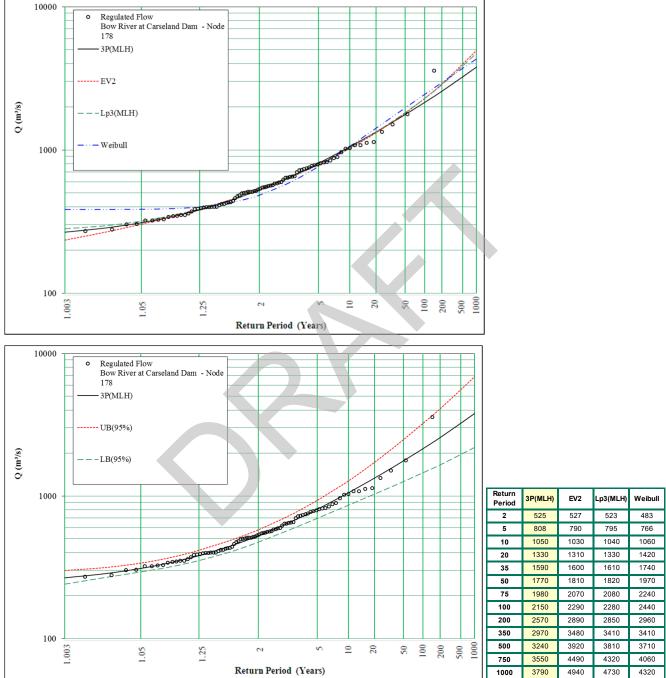
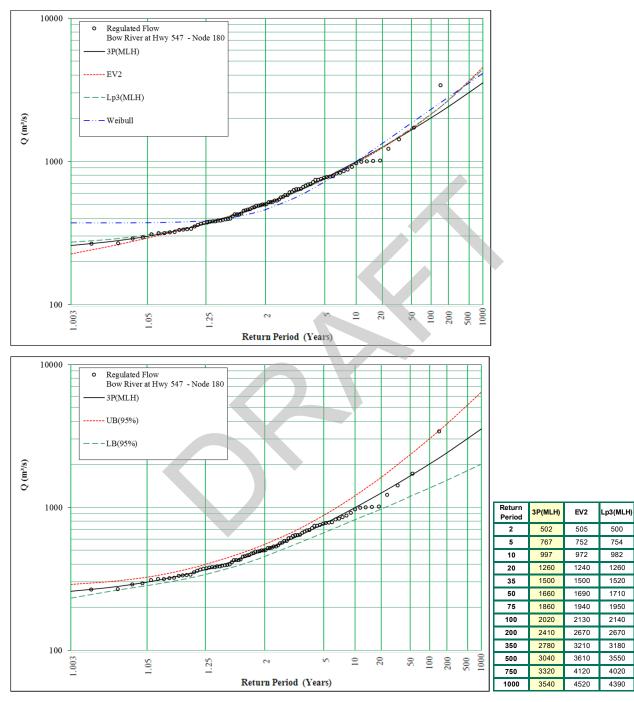


Figure C.2.24: 05BM002 / Node 178, Bow River below Carseland Dam – recorded regulated

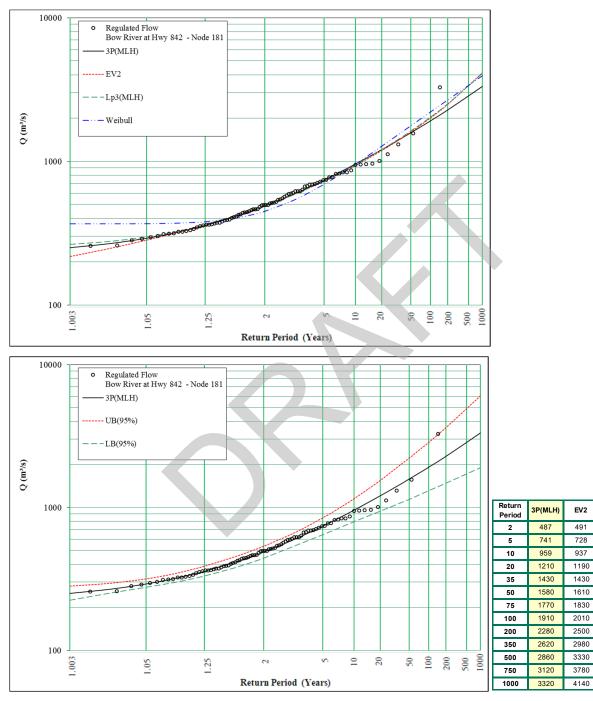
Lp3(MLH)

Weibull


Figure C.2.25: 05BM002 / Node 178, Bow River below Carseland Dam - regulated

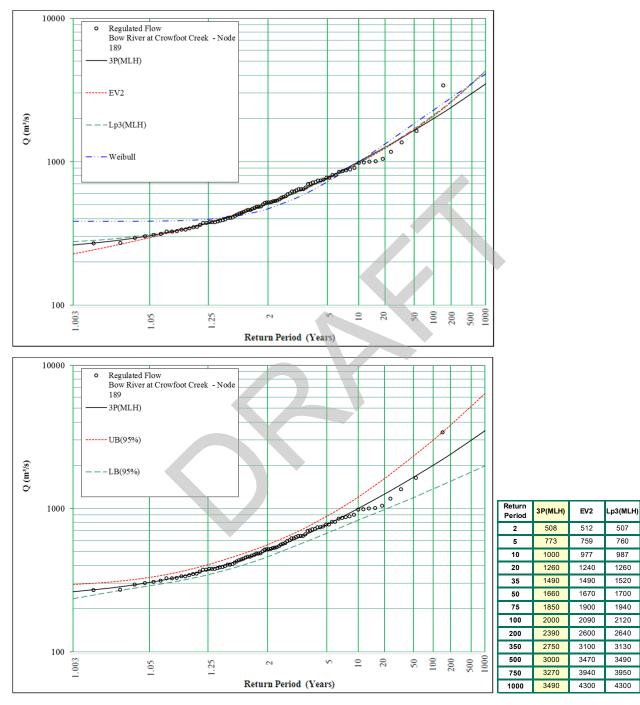
Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	525	527	523	483
5	808	790	795	766
10	1050	1030	1040	1060
20	1330	1310	1330	1420
35	1590	1600	1610	1740
50	1770	1810	1820	1970
75	1980	2070	2080	2240
100	2150	2290	2280	2440
200	2570	2890	2850	2960
350	2970	3480	3410	3410
500	3240	3920	3810	3710
750	3550	4490	4320	4060

Figure C.2.26: Node 180, Bow River at Hwy. 547



Weibull

Figure C.2.27: Node 181, Bow River at Hwy. 842



Lp3(MLH)

Weibull

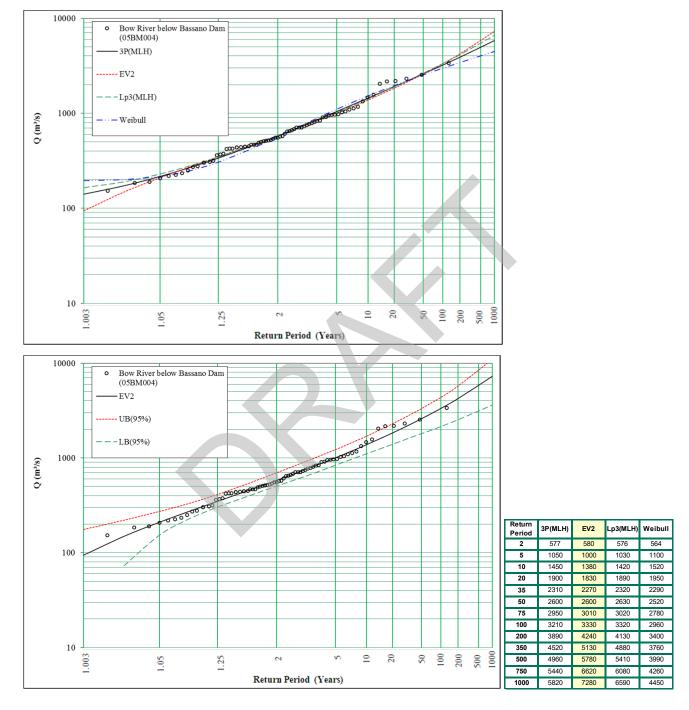
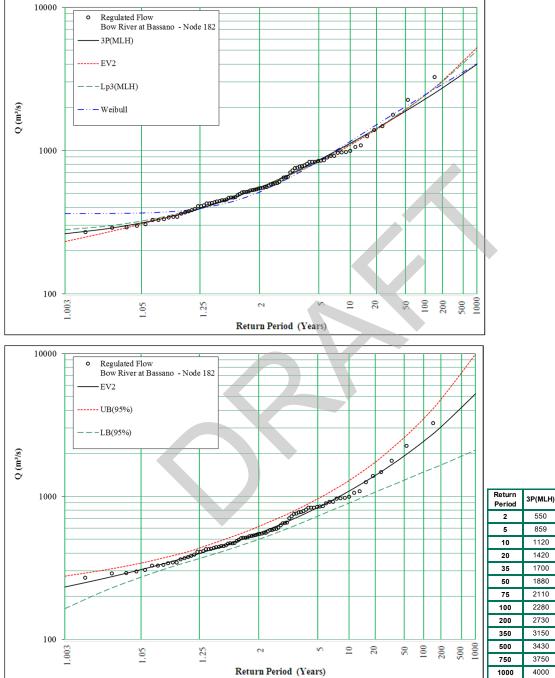
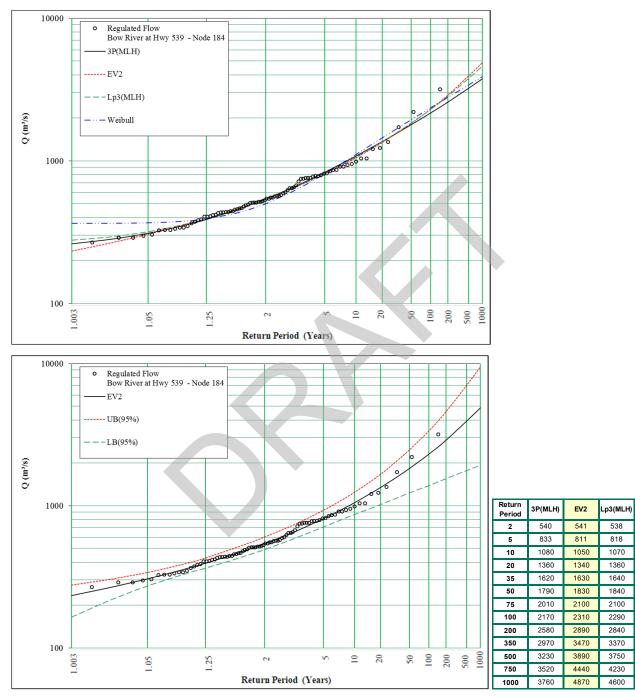


Figure C.2.28: Node 189, Bow River below Crowfoot Creek



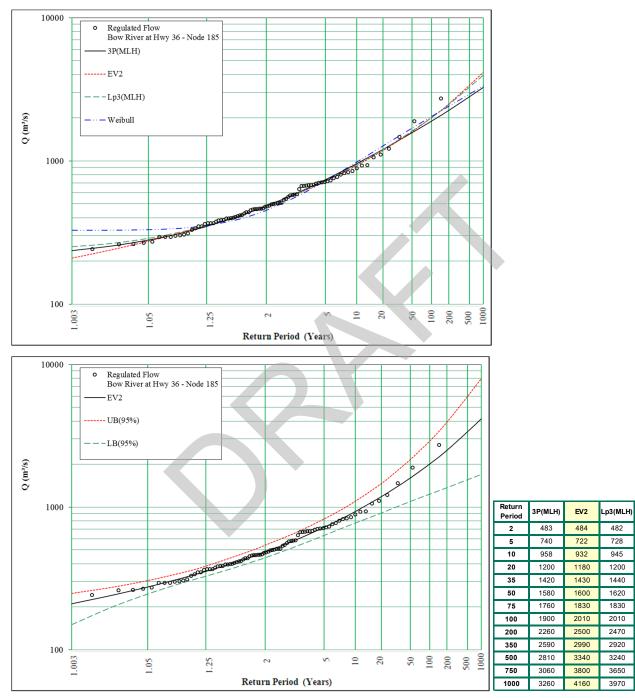
Weibull

Figure C.2.29: 05BM004 / Node 182, Bow River below Bassano Dam - recorded regulated


Figure C.2.30: 05BM004 / Node 182, Bow River below Bassano Dam - regulated

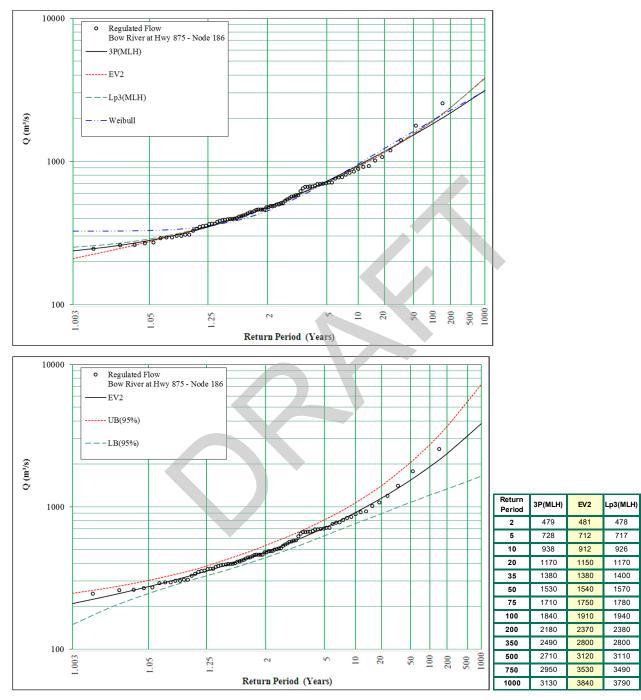
Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull
2	550	552	549	514
5	859	836	844	847
10	1120	1090	1110	1160
20	1420	1400	1420	1510
35	1700	1700	1720	1820
50	1880	1920	1940	2020
75	2110	2200	2220	2270
100	2280	2430	2430	2440
200	2730	3060	3030	2890
350	3150	3690	3610	3270
500	3430	4150	4020	3520
750	3750	4740	4550	3810
1000	4000	5210	4970	4020

Figure C.2.31: Node 184, Bow River at Hwy. 539



Weibull

Figure C.2.32: Node 185, Bow River at Hwy. 36



Weibull

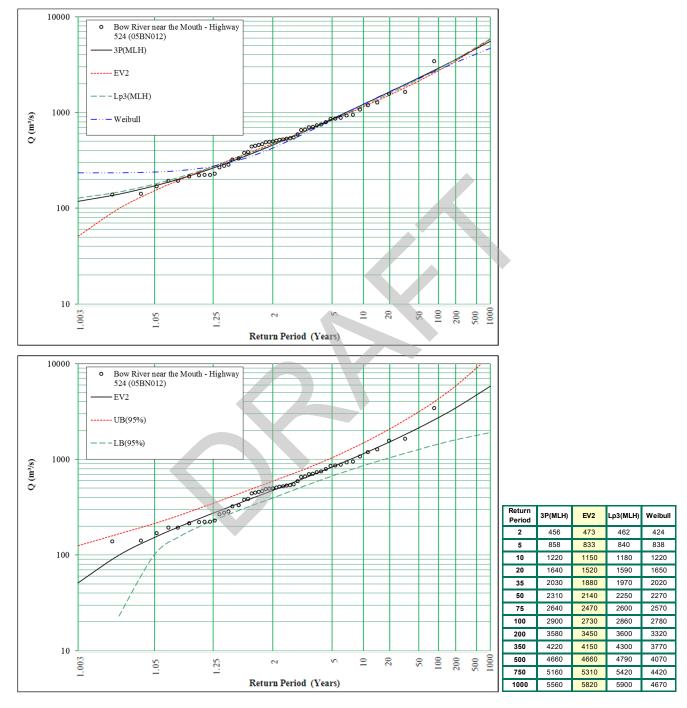


Figure C.2.33: Node 186, Bow River at Hwy. 875

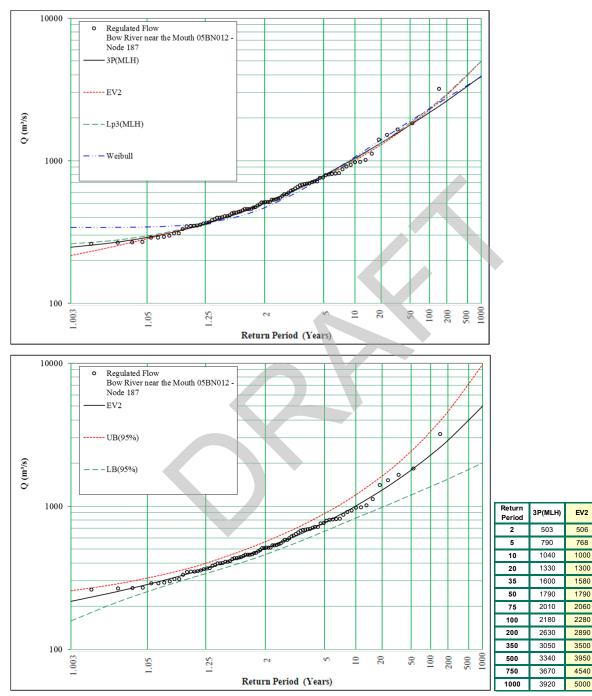
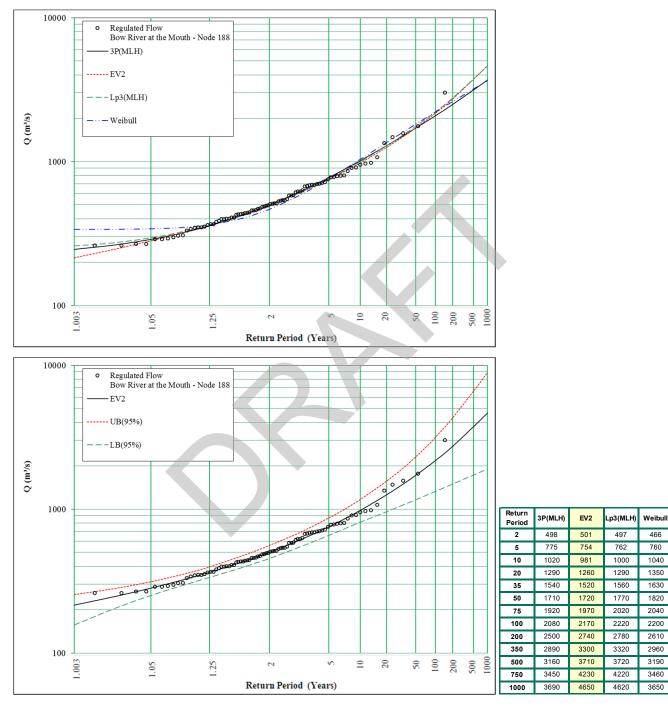

Weibull

Figure C.2.34: 05BN012 / Node 187, Bow River near the Mouth – recorded regulated

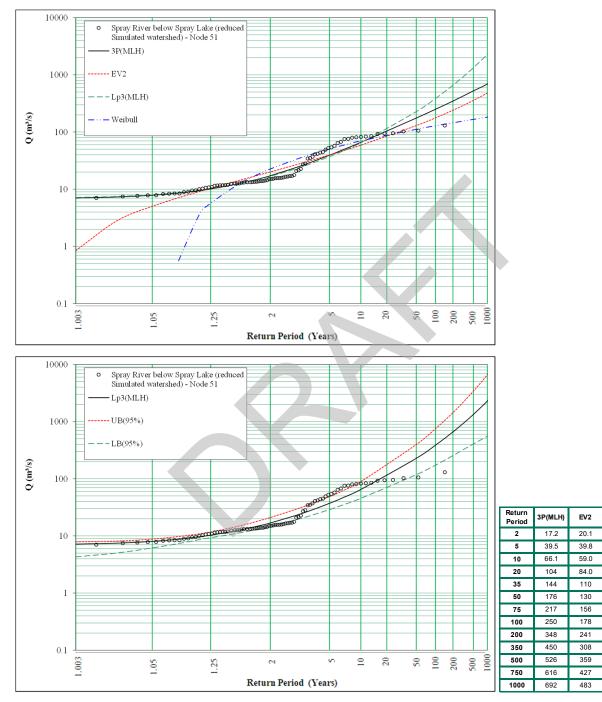
Figure C.2.35: 05BN012 / Node 187, Bow River near the Mouth - regulated



Lp3(MLH)

Weibull

Figure C.2.36: Node 188, Bow River at the Mouth



BOW RIVER TRIBUTARIES

Figure C.2.37: 05BC002 / Node 51, Spray River near Spray Lake - reduced simulated watershed

Lp3(MLH)

16.8

37.2

65.0

112

173

227

311

387

660

1340

1830

2290

Weibull

22.6

50.8

70.2

88.6

103

112

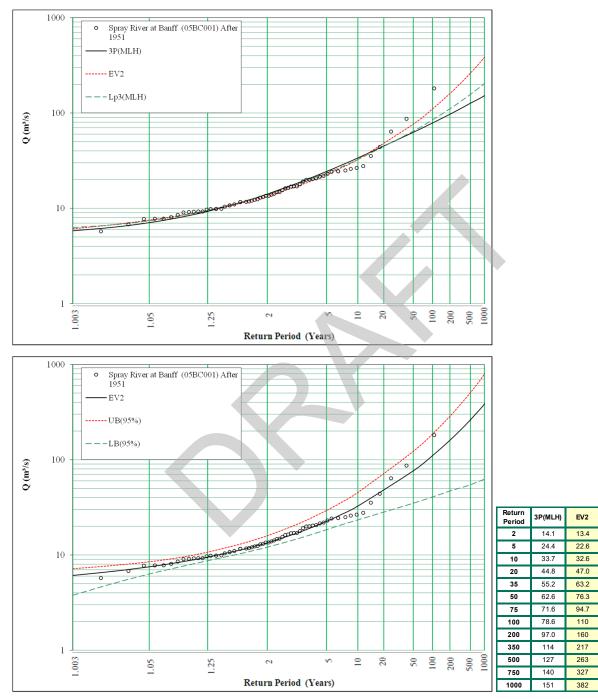
122

129

146

159

167


176

1763.6 Spray Lake End of Day Elevations Node 201 - 3P(MLH) 1753.6 ----- EV1 1743.6 LP3(moment) Water Level (m) 1733.6 1723.6 1713.6 1703.6 0 1693.6 1683.6 1673.6 500 ~ 2 20 20 8 200 003 1.25 0.05 Return Period (Years) 1763.6 Spray Lake End of Day Elevations -Node 201 0 LP3(moment) 1753.6 -- UB(95%) 1743.6 - LB(95%) Water Level (m) 1733.6 1723.6 LP3 Return 3P(MLH) EV1 Period moment 1713.6 1696.46 1694.40 1696.83 2 5 1697.89 1705.49 1697.88 1703.6 10 1698.64 1712.83 1698.25 1699.26 1719.87 1698.49 20 35 1699.69 1725.45 1698.63 1693.6 50 1699.95 1728.99 1698.69 75 1700.23 1732.98 1698.75 1683.6 1700.41 1735.82 1698.79 100 200 1700.84 1742.62 1698.86 350 1701.16 1748.10 1698.89 1673.6 500 1701.36 1751.60 1698.91 1000 Ś 2 20 20 100 200 500 1.003 1.25 9 750 1701.56 1755.57 1698.93 **Return Period (Years)** 1000 1758.38 1698.94 1701.71

Figure C.2.38: 05BC006 / Node 201, Spray Reservoir at Three Sisters Dam, End of Day Elevations (m)

Weibull

Figure C.2.39: 05BC001 / Node 106, Spray River at Banff - after 1951

Lp3(MLH) Weibull

14.0

23.4

32.5

44.1

55.7

64.4

75.7

84.8

111

137

157

183

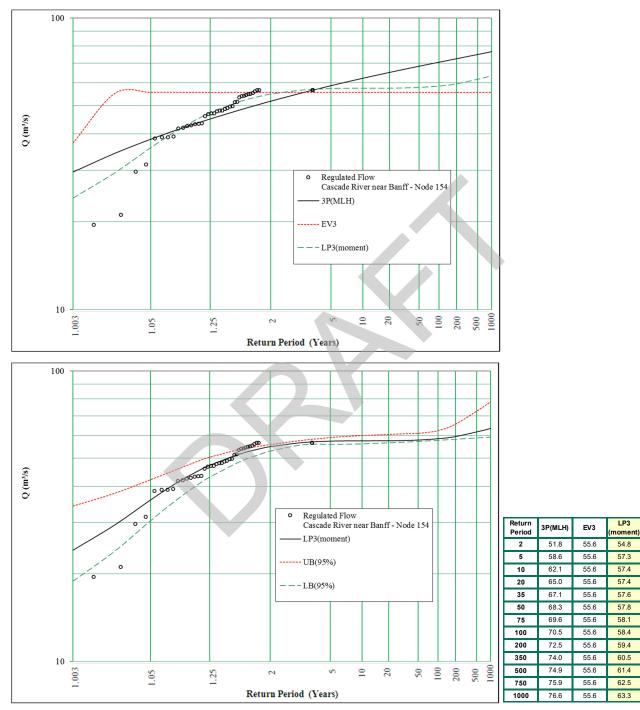
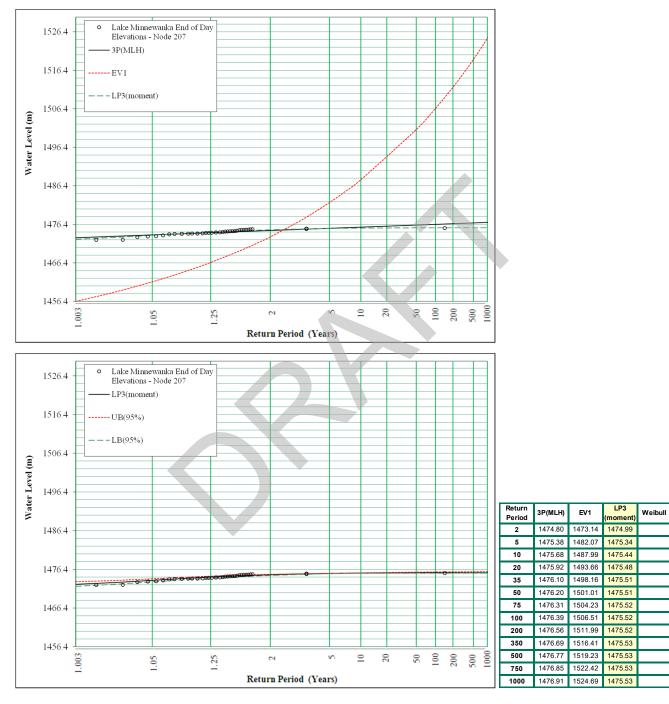
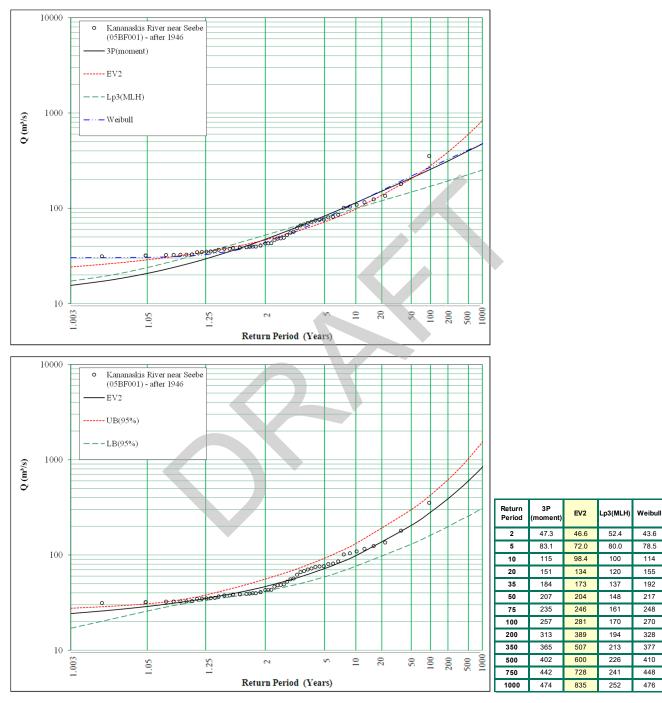



Figure C.2.40: 05BD002 / Node 154, Cascade River near Banff

Weibull


Figure C.2.41: 05BD003 / Node 207, Lake Minnewanka near Banff, End of Day Elevations (m)

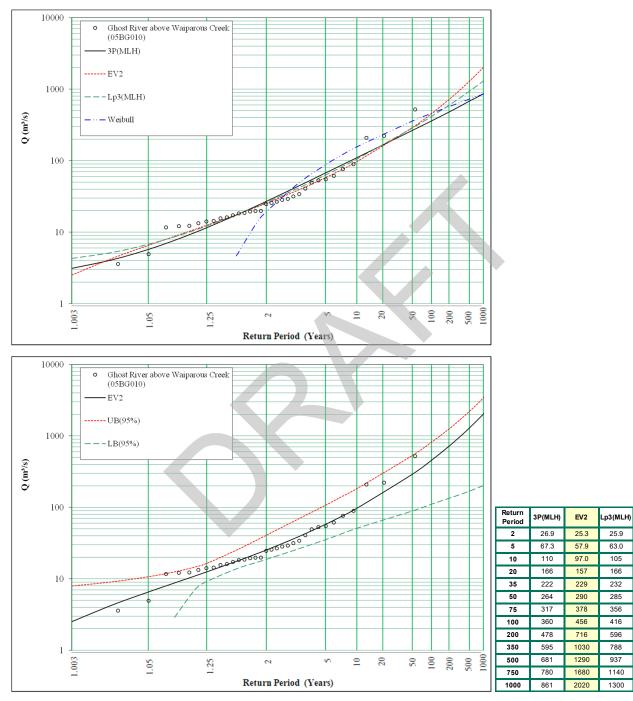
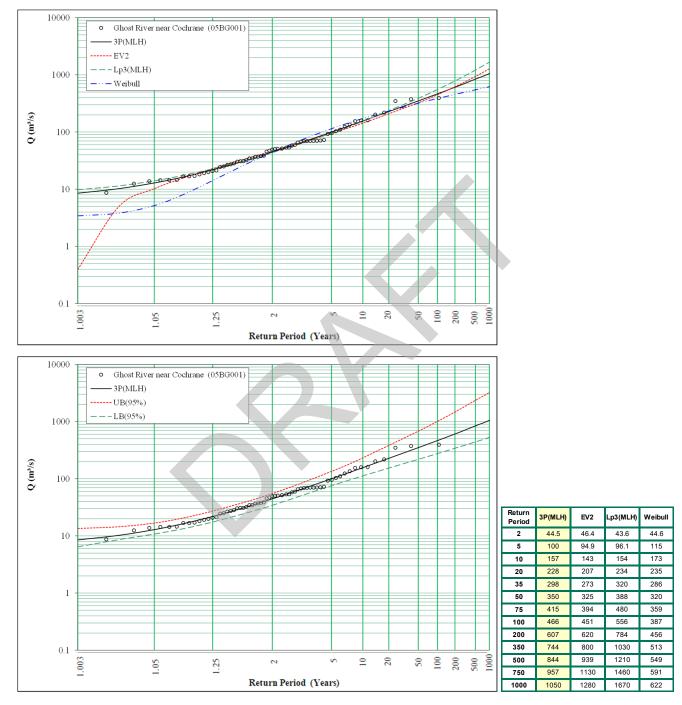

Figure C.2.42: 05BF001, Kananaskis River near Seebe - after 1946

Figure C.2.43: 05BG010, Ghost River above Waiparous Creek

Weibull

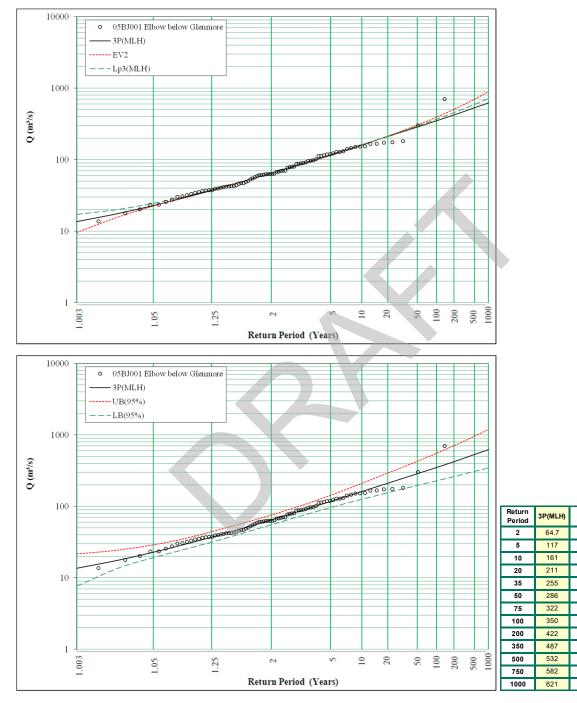
19.2


87.6

25.9

63.0

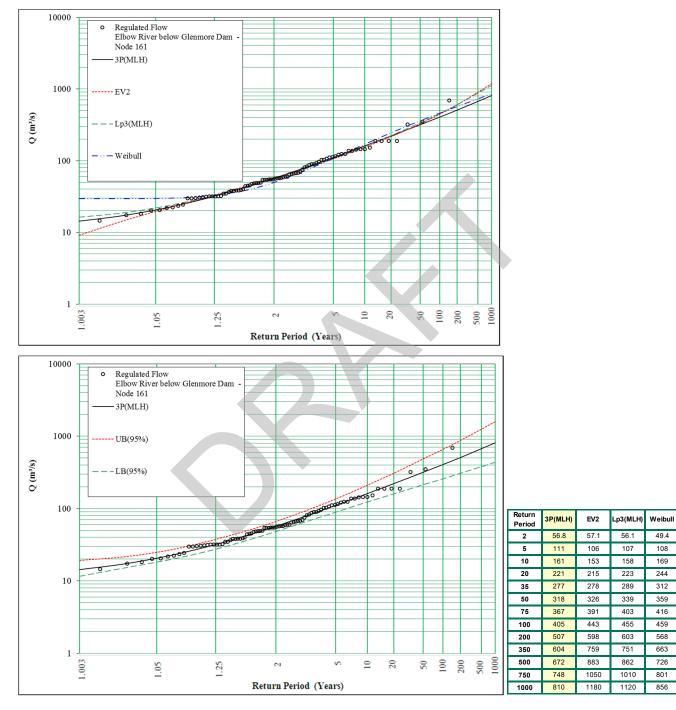
Figure C.2.44: 05BG001, Ghost River near Cochrane



ELBOW RIVER

Figure C.2.45: 05BJ001 / Node 161, Elbow River below Glenmore Dam – recorded regulated

EV2


64.5

Lp3(MLH)

64.2

Weibull

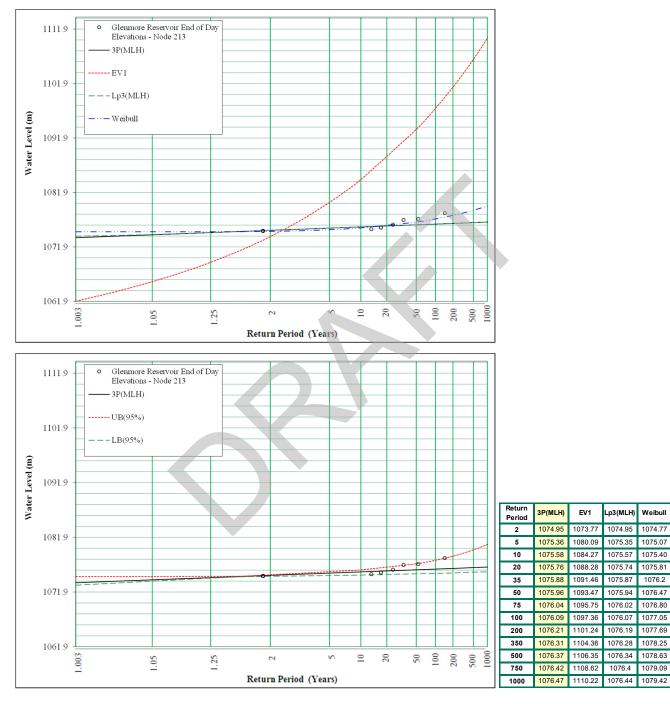


Figure C.2.46: 05BJ001 / Node 161, Elbow River below Glenmore Dam – regulated

1074.77

1075.07 1075.40

1075.81

1076.2

1076.47

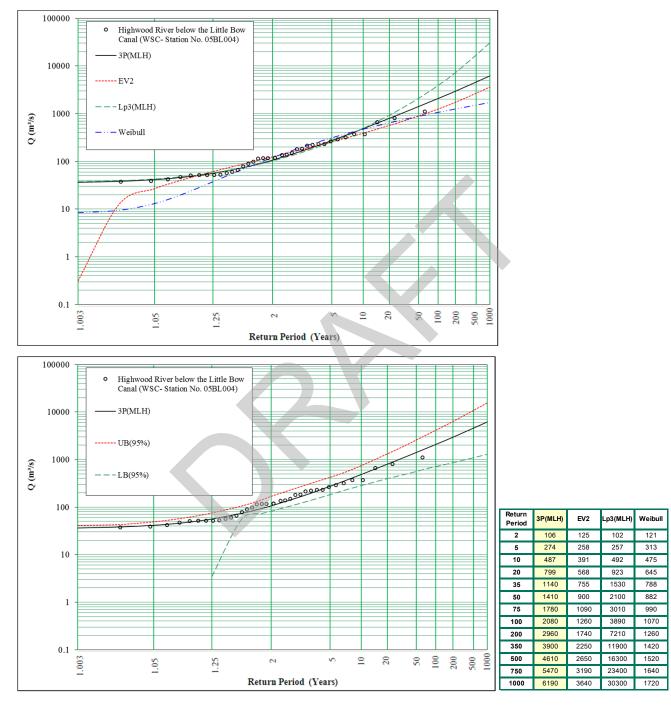
1076.80

1077.05

1077.69 1078.25

1078.63

1079.09



HIGHWOOD RIVER AND TRIBUTARIES

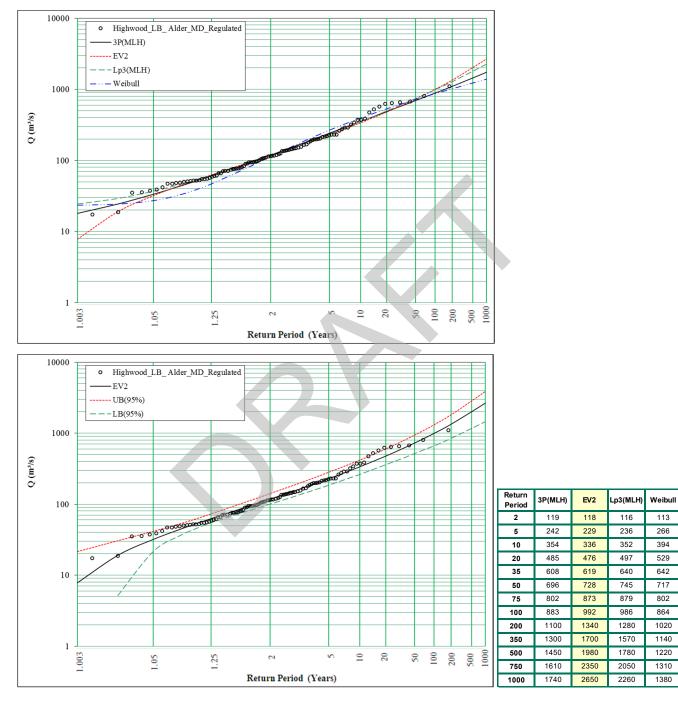
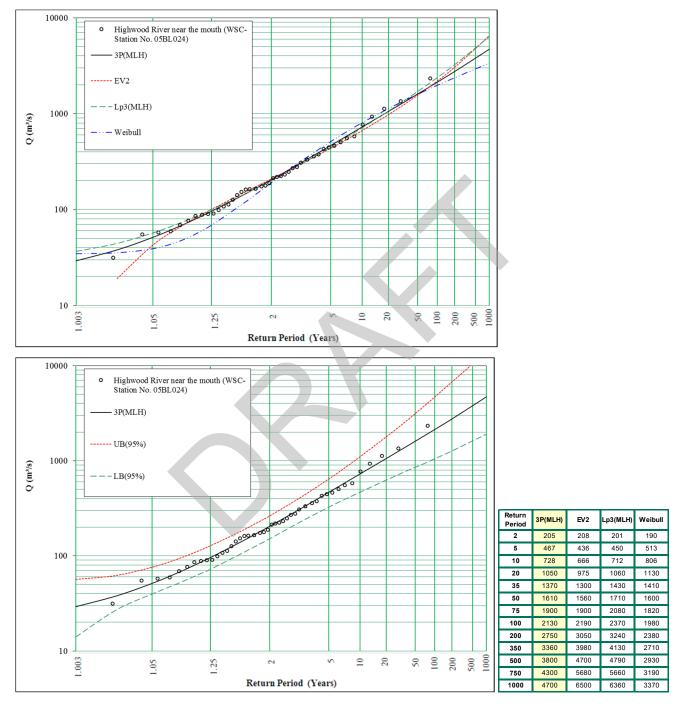


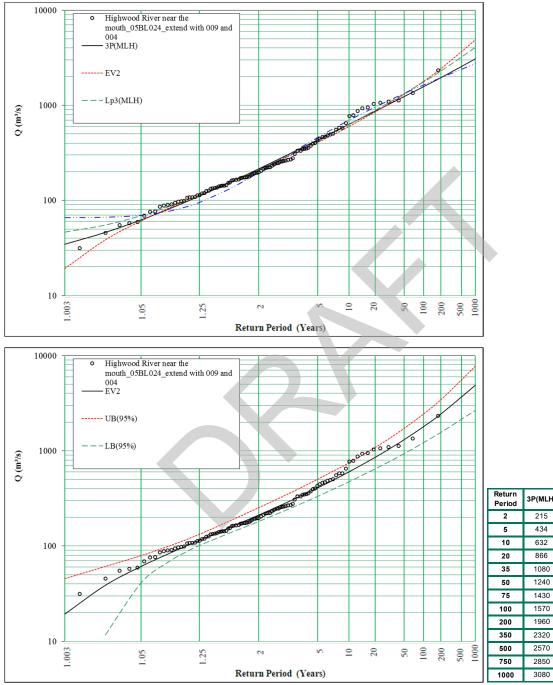
Figure C.2.48: 05BL004, Highwood River below Little Bow Canal

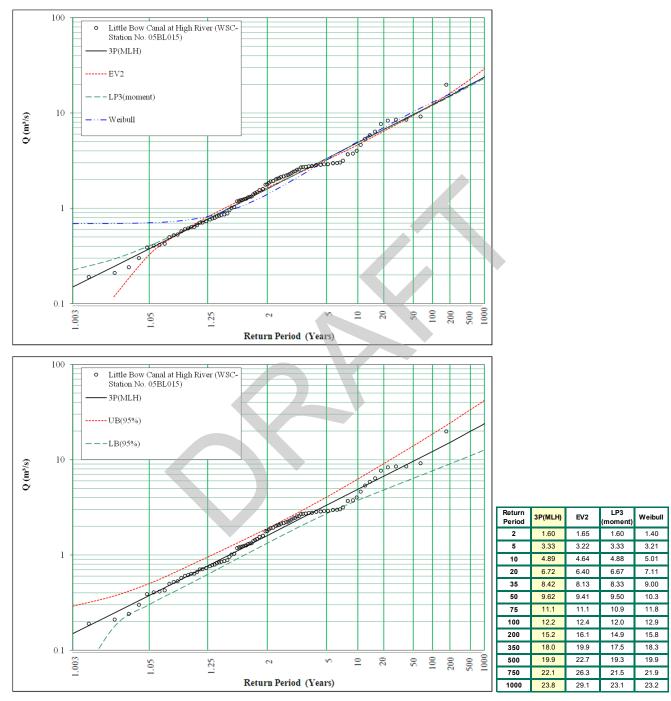
Figure C.2.49: 05BL004, Highwood River below Little Bow Canal – extended


394

529

642


Figure C.2.50: 05BL050, Highwood River near the Mouth



Return Period	3P(MLH)	EV2	Lp3(MLH)	Weibull		
2	215	211	210	196		
5	434	409	423	460		
10	632	602	629	696		
20	866	853	887	956		
35	1080	1110	1140	1180		
50	1240	1310	1330	1330		
75	1430	1580	1570	1500		
100	1570	1790	1760	1630		
200	1960	2440	2300	1950		
350	2320	3110	2820	2210		
500	2570	3630	3200	2380		
750	2850	4320	3690	2590		
1000	3080	4880	4070	2730		

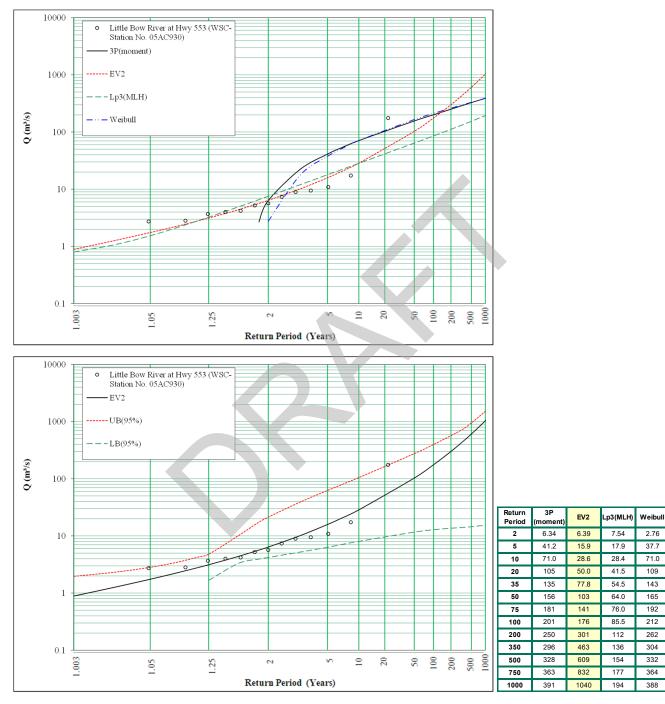

Figure C.2.52: 05BL015, Little Bow Canal at High River

Figure C.2.53: 05AC930, Little Bow River at Highway No. 533

ELBOW RIVER – INFLOW HYDROGRAPH ROUTING METHOD

• Water Levels are relative to the Crest of the Weir.

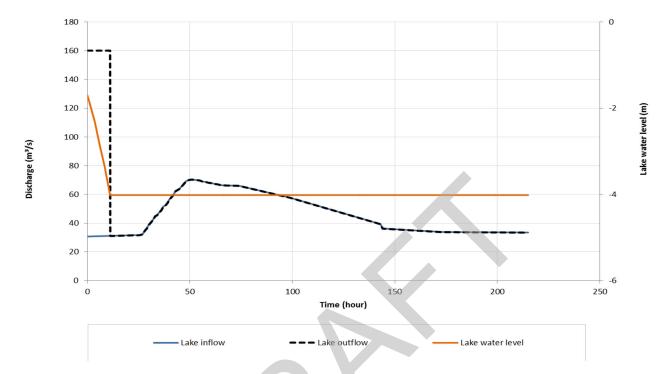
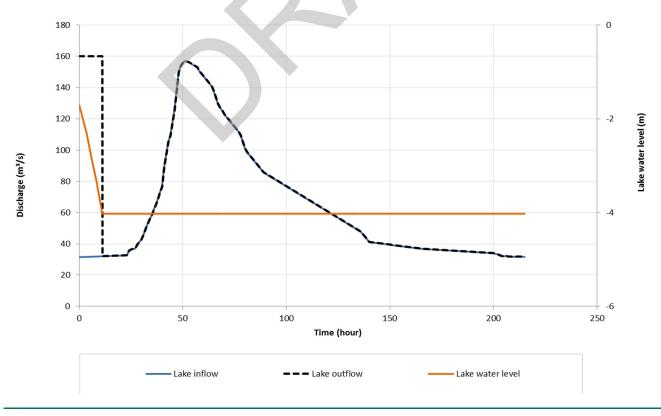



Figure C.3.1: Elbow River Inflow and Outflow Hydrographs and Water Levels – 2-year Return Period

Figure C.3.2: Elbow River Inflow and Outflow Hydrographs and Water Levels – 5-year Return Period

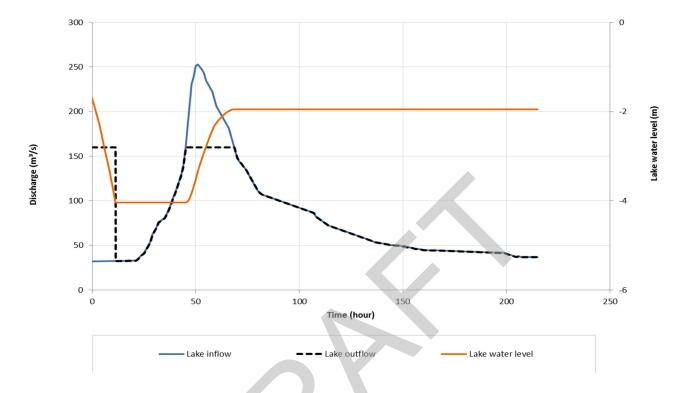
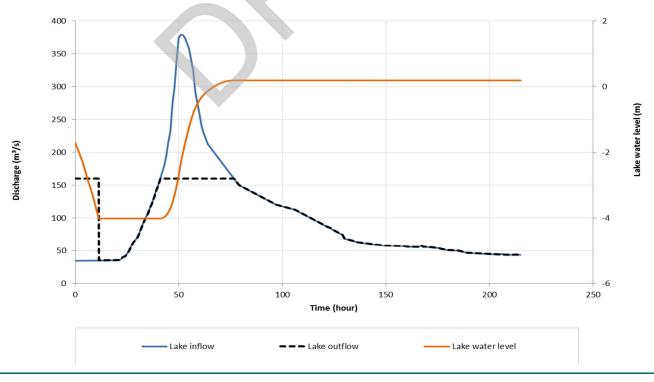



Figure C.3.3: Elbow River Inflow and Outflow Hydrographs and Water Levels – 10-year Return Period

Figure C.3.4: Elbow River Inflow and Outflow Hydrographs and Water Levels – 20-year Return Period

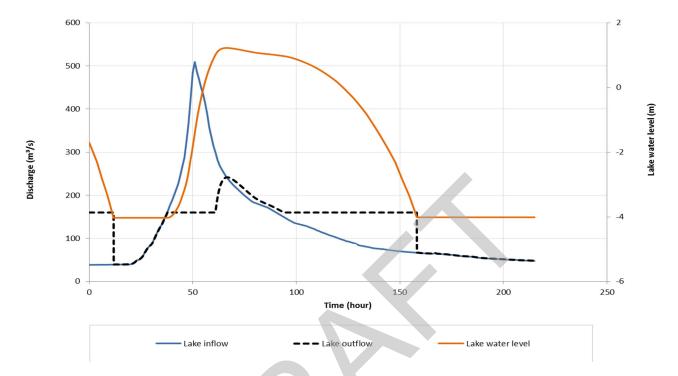
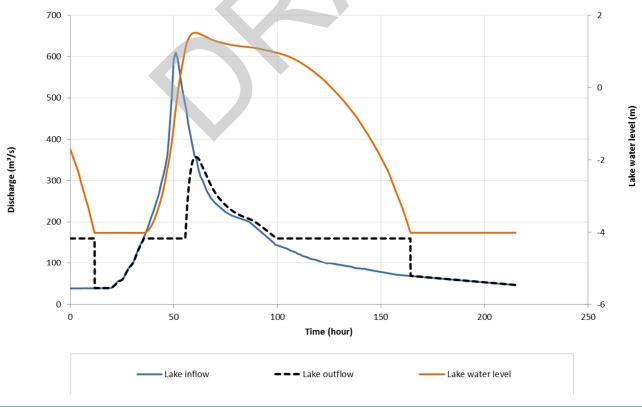



Figure C.3.5: Elbow River Inflow and Outflow Hydrographs and Water Levels – 35-year Return Period

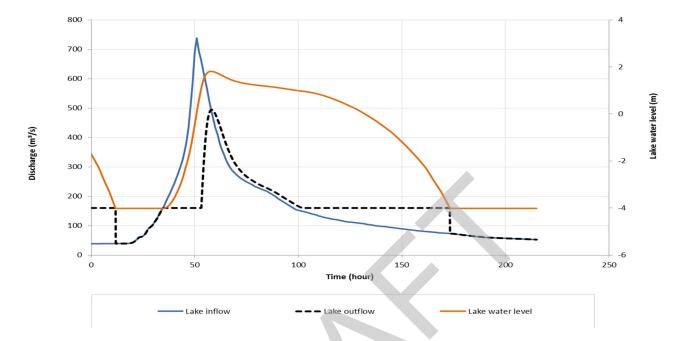
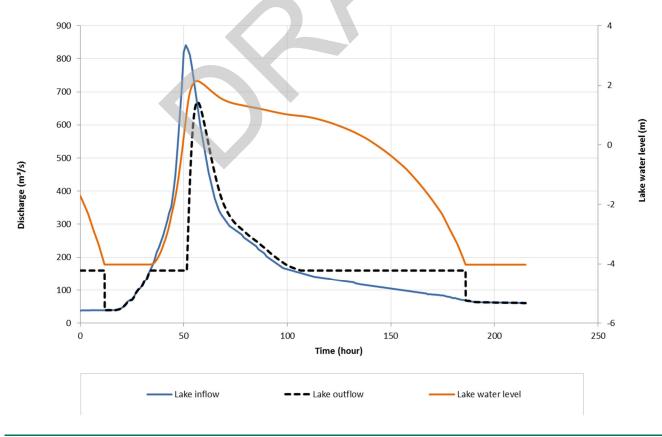



Figure C.3.7: Elbow River Inflow and Outflow Hydrographs and Water Levels – 75-year Return Period

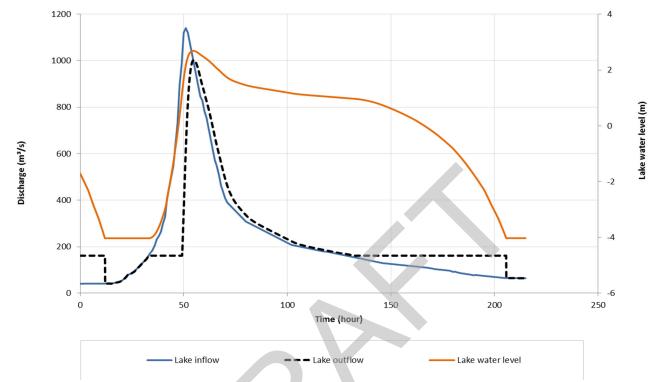
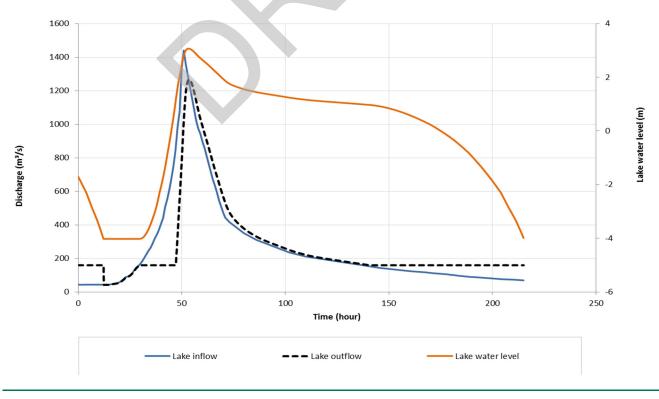



Figure C.3.9: Elbow River Inflow and Outflow Hydrographs and Water Levels – 200-year Return Period

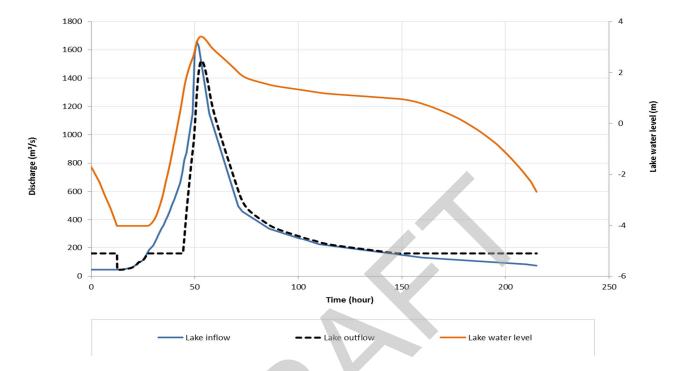
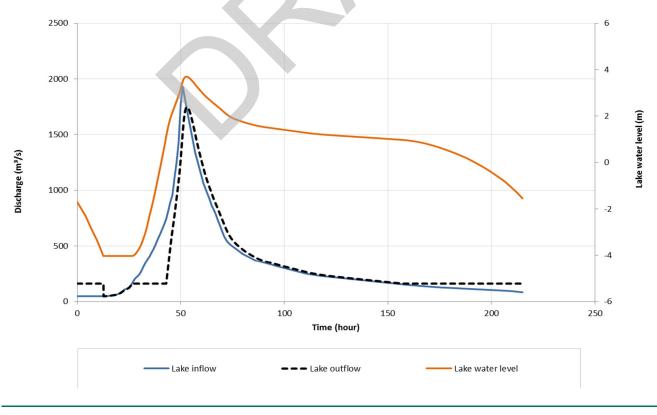



Figure C.3.11: Elbow River Inflow and Outflow Hydrographs and Water Levels –500-year Return Period

Figure C.3.12: Elbow River Inflow and Outflow Hydrographs and Water Levels – 750-year Return Period

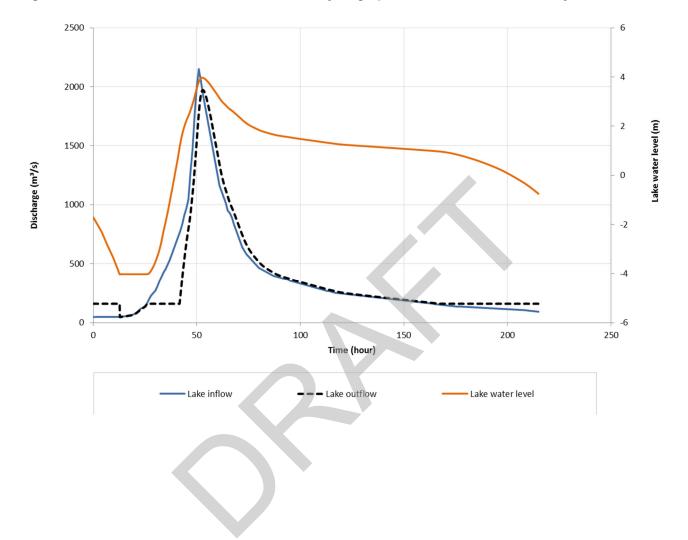


Figure C.3.13: Elbow River Inflow and Outflow Hydrographs and Water Levels – 1000-year Return Period

Table C.3.1: Water Survey of Canada Station used for Mountain Region

											Return Per	iod						
WSC Station Name or Location of Interest	WSC Station ID	Latitude	Longitude	Gross Drainage Area (km²)	Effective Drainage Area (km²)	1000-year	750-year	500-year	350-year	200-year	100-year	75-year	50-year	35-year	20-year	10-year	5-year	2-year
Cataract Creek near Forestry Road	05BL022	50° 17' 07"	-114° 35' 19"	165.5	165.5	491	449	397	351	288	222	199	168	144	111	77.2	50.2	23.3
Waiparous Creek near the Mouth	05BG006	51° 16' 58"	-114° 50' 18"	333.0	333.0	1020	913	787	679	534	391	341	280	232	169	109	65.3	26.7
Trapp Creek near Longview	05BL027	50° 28' 38"	-114° 25' 35"	137.0	137.0	661	564	450	369	270	183	155	123	100	71.6	46.5	29.0	13.1
Highwood River at Diebel's Ranch	05BL019	50° 24' 18"	-114° 30' 03"	774.0	774.0	1390	1250	1080	945	765	583	519	439	378	295	212	146	78.8
Elbow River at Bragg Creek	05BJ004	50° 56' 56"	-114° 34' 15"	791.0	791.0	1510	1380	1210	1070	873	671	597	504	430	329	227	146	66.5
Fish Creek near Priddis	05BK001	50° 53' 08"	-114° 19' 37"	261.0	261.0	926	829	713	614	481	350	305	248	204	148	93.3	53.7	19.1
Pekisko Creek near Longview	05BL023	50° 28' 27"	-114° 12' 26"	232.0	232.0	680	608	522	449	350	254	221	180	148	106	66.9	38.4	13.7
Threepoint Creek near Millarville	05BL013	50° 46' 16"	-114° 16' 44"	507.0	507.0	1140	1040	914	803	650	495	439	368	312	235	158	98.2	39.8
Jumpingpound Creek near the mouth	05BH009	51° 09' 16"	-114° 31' 42"	571.0	571.0	1030	936	815	710	568	425	374	310	260	193	127	76.8	30.0
Elbow River at Sarcee Bridge combined with Inflow to Glenmore	05BJ010	50° 59' 41"	-114° 09' 53"	1189.0	1189.0	1510	1377	1214	1071	874	672	599	506	431	331	229	148	69.4
Sheep River at Black Diamond	05BL014	50° 59' 41"	-114° 09' 53"	592.0	592.0	1900	1720	1500	1310	1050	787	693	576	484	361	240	148	61.5
Stimson Creek near Pekisko	05BL007	50° 25' 48"	-114° 10' 01"	236.0	236.0	456	413	360	314	252	189	167	138	116	86.2	56.6	34.0	12.7
Elbow River above Elbow Falls	05BJ006	50° 51' 20"	-114° 47' 37"	437.0	437.0	411	375	329	293	244	194	176	153	135	111	85.6	64.7	41.0
Sheep River at Okotoks	05BL012	50° 43' 26"	-113° 58' 25"	1494.0	1494.0	2620	2420	2180	1950	1640	1310	1180	1020	886	701	504	338	158
Sheep River at Buck Ranch	05BL018	50° 37' 20"	-114° 25' 40"	454.0	454.0	1390	1260	1100	969	783	595	528	443	376	286	197	128	62.8
Highwood River below Picklejar Creek	05BL021	50° 29' 55"	-114° 49' 02"	132.0	132.0	74.3	72.3	69.7	67.2	63.3	58.5	56.4	53.6	51.0	46.9	41.5	35.7	26.4
Willow Creek above Chain Lakes	05AB028	50° 11' 47"	-114° 12' 46"	162.0	162.0	134	128	120	113	102	88.3	82.6	74.6	67.6	56.6	43.4	30.4	14.0

Table C.3.2: Water Survey of Canada Station used for Foothills Region

		Return Period																
WSC Station Name or Location of Interest	WSC Station ID	Latitude	Longitude	Gross Drainage Area (km²)	Effective Drainage Area (km²)	1000-year	750-year	500-year	350-year	200-year	100-year	75-year	50-year	35-year	20-year	10-year	5-year	2-year
West Arrowwood Creek near Arrowwood	05BM014	50° 45' 51"	-113° 14' 11"	777.0	664	348	320	284	253	208	159	140	116	96.8	70.2	43.3	23.0	5.89
Rosebude River below Carstairs Creek	05CE006	51° 24' 57"	-113° 43' 40"	753.0	642	147	136	120	108	89.4	69.4	61.9	52.1	44.3	33.4	22.0	13.0	4.42
Trout Creek near Granum	05AB005	49° 58' 39"	-113° 41' 10"	441.0	441.0	329	300	263	233	190	143	126	104	86.5	62.8	39.2	21.5	6.17
Meadow Creek near the mouth	05AB029	49° 57' 15"	-113° 39' 49"	130.0	130.0	79.6	71.4	61.6	53.1	41.7	30.5	26.6	21.7	17.9	12.9	8.17	4.68	1.58
Prairie Blood Coulee near Lethbridge	05AD035	49° 57' 15"	-113° 39' 49"	224.0	224.0	103	101	96.9	93.0	86.1	76.2	71.6	64.8	58.4	47.7	33.8	20.2	5.30
Ray Creek near Innisfail	05CE010	52° 00' 04"	-113° 35' 59"	44.0	44.0	18.3	17.6	16.6	15.7	14.2	12.4	11.6	10.5	9.48	7.90	5.96	4.05	1.68

Table C.3.3: Water Survey of Canada Station used for Foothills Region

Return Period (Years)	Fish Creek near Priddis	Threepoint Creek near Millarville	Ln (Qf/Qt)	Power Factor		
2	14.1	26.7	-0.637	0.959		
5	38.0	64.8	-0.534	0.804		
10	64.4	104	-0.479	0.721		
20	100	154	-0.433	0.652		
35	136	204	-0.401	0.604		
50	164	241	-0.382	0.575		
75	200	287	-0.362	0.544		
100	229	324	-0.348	0.524		
200	310	425	-0.317	0.477		
350	391	524	-0.293	0.441		
500	452	597	-0.278	0.418		
750	522	679	-0.263	0.396		
1000	580	747	-0.252	0.380		

QFish Creek/QThreepoint Creek = (AFish Creek/AThreepoint Creek)^{Power Factor}

https://golderassociates.sharepoint.com/sites/121016/project files/5 technical work/04 report revisions/1_hydrology/hydrology report rev1/appendices/appendix c.3_wsc_for_regional_analysis.docx

Return Period (Years)	Bow River at Calgary ¹	Elbow River below Glenmore Dam ²	Bow River below Elbow River ³	Nose Creek at the Mouth ⁴	Bow River below Nose Creek ⁵	Fish Creek at the Mouth ⁴	Bow River below Fish Creek⁵	Pine Creek at the Mouth ⁶	Bow River below Pine Creek ⁵	Bow River above Highwood River ⁷
2	401	70.4	464	0.58	465	4.91	469	2.71	472	478
5	627	157	739	6.51	746	16.0	762	8.51	770	780
10	845	253	996	11.5	1007	29.5	1037	14.4	1051	1065
20	1120	379	1310	17.0	1327	50.4	1377	21.5	1399	1417
35	1400	509	1630	21.9	1652	75.6	1728	28.0	1756	1778
50	1610	610	1860	25.3	1885	97.2	1983	32.5	2015	2041
75	1880	738	2150	29.4	2179	129	2308	38.0	2346	2377
100	2090	841	2390	32.5	2422	157	2579	42.1	2621	2655
200	2710	1140	3050	40.4	3090	250	3340	52.7	3393	3437
350	3330	1440	3710	47.5	3757	363	4121	61.9	4183	4237
500	3790	1660	4190	52.3	4242	460	4702	68.3	4771	4833
750	4400	1930	4820	58.1	4878	602	5480	75.5	5555	5627
1000	4880	2150	5310	62.4	5372	728	6100	80.8	6181	6261

Table C.4.1: Flood Frequency Estimates for Bow River and Its Tributaries Through Calgary (Including Historical Floods) on Naturalized Flow Series

1. Historical information included based on Bulletine 17C method

2. Historical Adjusted Ratio Applied: Derived based on scaling the frequency analysis for Bow River at Calgary with and without historical floods (i.e., by applying a percentage multiplier to each return period)

3. Coincident: Estimates based on adding Bow and tributary flood flows (i.e., assume coincident instantaneous flood peaks)

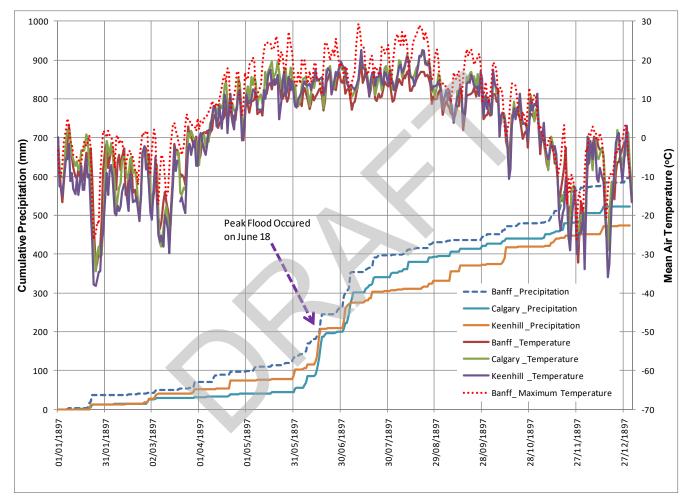
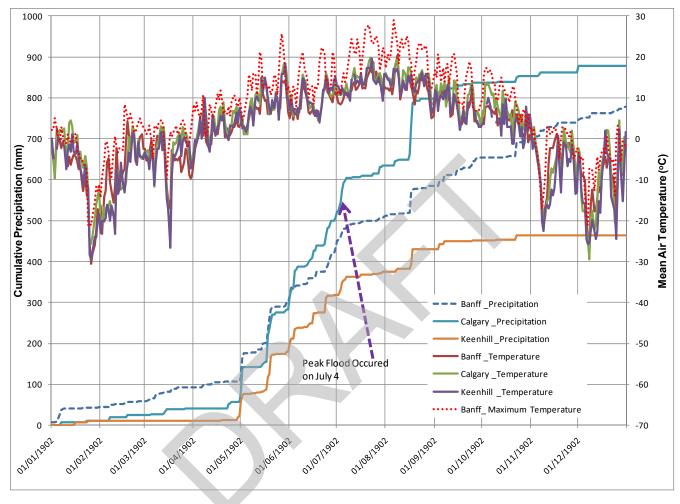
4. Flood frequency estimated taking daily discharge on the day when instantaneous flood occurred on Bow River

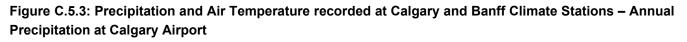
5. Estimates by adding flood frequency estimates based on daily flows from tributary to flood frequency estimates for Bow River above the tributary

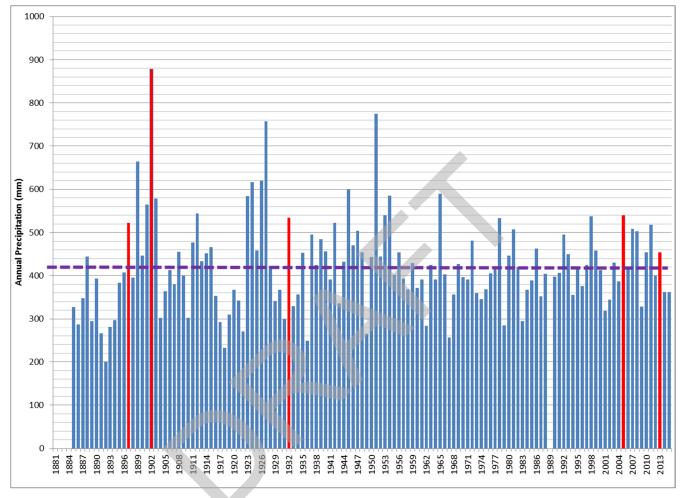
6. Fllod frequency estimates for daily flows were obtained by reducing the instantaneous flood estimates by peaking factor from regional station

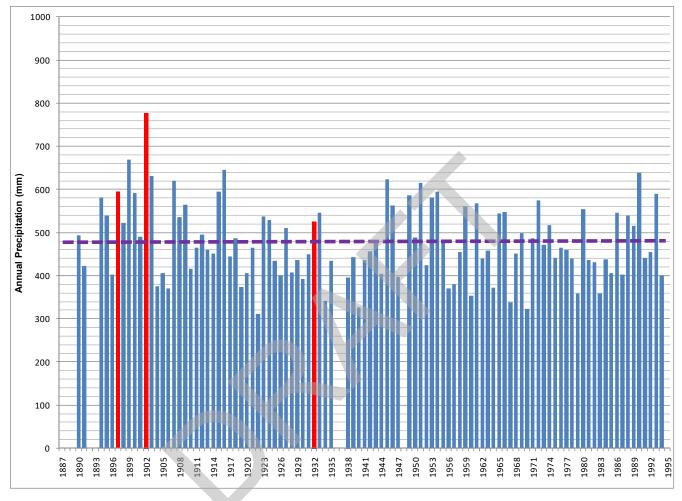
7. Prorated: Estimated by prorating flood flows for Bow River below Pine Creek by drainage area

Figures C.5.1 to C.5.4 provides precipitation and air temperature recorded at three stations in 1897 and 1902. Annual precipitation data recorded since 1884 at the Calgary Airport station shows that the precipitation patterns pre-1911 (i.e., period prior to beginning of the systematically record of flow data) is similar to precipitation patterns post-1911.




Figure C.5.2: Precipitation and Air Temperature recorded at Calgary and Banff Climate Stations – Year 1902



https://golderassociates.sharepoint.com/sites/121016/project files/5 technical work/04 report revisions/1_hydrology/hydrology report rev1/appendices/1532956_appendix c.5_precipitation

and air temperature data analyses.docx

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

+ 86 21 6258 5522

+ 61 3 8862 3500

+ 44 1628 851851

North America + 1 800 275 3281

Golder Associates Ltd. 102, 2535 - 3rd Avenue S.E. Calgary, Alberta, T2A 7W5 Canada T: +1 (403) 299 5600

