NATURAL RESOURCES CONSERVATION BOARD

0 SPRINGBANK OFF-STREAM RESERVOIR PROJECT
PROCEEDINGS

Votume 8
March 31, 2021
(Via videoconferencing)
1 Natural Resources Conservation Board Proceedings taken 2 virtually in Calgary and Edmonton, Alberta.

4 Volume 8
5 March 31, 2021
Walter Ceroici
9 Danie1 Heaney
10 William Kennedy
Fiona Vance
Laura Friend
Michael Iwanyshyn
Scott Cunningham
David Mercer
Luigi Cusano, Q.C.
Gino Bruni
L. Douglas Rae

Sara Louden

Chair
Commission Member
Commission Member
Commission Member
Commission Counsel
Commission Counsel
Commission Staff
MNP Technologies

For Alberta Transportation

For City of Calgary

For Calgary River Communities Action Group and Flood Free Calgary

For Stoney Nakoda Nation

1 Richard Secord
Ifeoma Okoye

THE CHAIR: hearing.

MR. KRUHLAK: that or not.

THE CHAIR:

Bob Williams

Scott Wagner
Lorelee Vespa CSR(A) CRR RPR Deanna DiPaolo, CSR(A)

For SR1 Concerned Landowners Group

For Calalta Amusements Ltd. and Calalta Waterworks Ltd.

For Scott Wagner
Official Court Reporters
(PROCEEDINGS COMMENCED AT 8:29 A.M.)
All right. Well, good morning, everyone. Welcome to Day 8 of the SR1 1701 application

Just to start off the morning, I'd ask if there's any preliminary or housekeeping matters anyone has?

Mr. Chairman, it's Ron Kruhlak.
As I briefly mentioned, we filed an undertaking response late yesterday, which provided responses to Undertakings $10,12,13,15,19,21--$ sorry, 21 and 23. I'm just going to check whether -- if you bear with me, Mr. Chairman, whether there was another one on

No, I think that -- it was 21, 22, and 23 , just to be absolutely correct, sir, and we provided those to my friends, and I would ask that perhaps that be marked as the next exhibit.

Thank you. So, Ms. Friend, what
number would that be?
MS. FRIEND:
The next number would be 386 .
THE CHAIR:
And no objections to those
filings?
MR. SECORD:
One correction, Mr. Kruhlak. I
think Dr. Fennell was hoping to get the response to the snow data undertaking, and I'm wondering -- we didn't think it would take long to get that put together. I'm just wondering if -- because I think Dr. Fennell might want to look at that, so..

THE CHAIR:
Mr. Secord, sorry to interrupt. The court reporter's just asking if you could raise your voice a bit. Thank you.

MR. SECORD:
Sure, sure. So I'm just wondering if that is close to being provided.

MR. KRUHLAK:
Mr. Secord, it's Ron Kruhlak. Let me just take that away, and I'll try to give you an update on that as quickly as I can.

MR. SECORD: Thank you.
THE CHAIR:
So that'11 be exhibit -- sorry,
Ms. Friend?
MS. FRIEND:
386.

THE CHAIR:
386, okay. Thank you.
Thank you, Mr. Kruh1ak.

EXHIBIT 386 - AT UNDERTAKING RESPONSES
TO 10, 12, 13, 15, 19, 21, 22, 23
THE CHAIR:
Any other matters for this
morning? Hearing none, we'11 start with
cross-examination of SCLG panel.
While unlikely, I'11 ask if Mr. Rae of
Stoney Nakoda, did you have any cross?
MS. LOUDEN :
Good morning, Mr. Chairman. This is Sara Louden. We do not have any cross.

THE CHAIR:
Thank you, Ms. Louden.
And Mr. Williams? He may or may not be online. Mr. Williams? Okay, hearing none.

And Mr. Wagner? Again, hearing none.
Ms. Senek, City of Calgary?
MR. MERCER:
Good morning, Mr. Chair. It's
David Mercer here from the City of Calgary. Ms. Senek's away today, and I'm stepping in.

The City of Calgary may have a few questions, if the Board so indulges. It would only be for probably five to ten minutes, and it wouldn't be for the entire pane1. It would be entirely directed at Dr. Fennell, if that's acceptable to the Board.

THE CHAIR:
It is. Please proceed.
MR. MORRIS:
Thank you.
A. LOCKE, J. FENNELL, D. KLEPACKI (For SCLG), previously affirmed

MR. MERCER CROSS-EXAMINES THE PANEL:
Q. Good morning, Dr. Fennell.
A. MR. FENNELL: Good morning, Mr. Mercer. How are you?
Q. Good. Thank you. The City of Calgary has a few questions. We expect a lot of the technical matters will be addressed by AT.

Our questions, in particular, relate to your presentation yesterday in relation to the beyond the 1 in 20-year protection offered by SR1. And, in particular, within your PowerPoint presentation yesterday at Exhibit 384, page 23, you stated that: (as read)
"The SR1 design does not address floods greater than the 2013 event, which was a 1 in -- approximately 1 in 200, which can be expected."

However, the City of Calgary's witness, Mr. Frigo, in his presentation, on behalf of the City of Calgary, he presented data that clearly shows the flood protection well beyond the 1 in 200 threshold, up to and including things like 1 in 500.

At this point, I would ask the document controller
to please bring up Exhibit 351 , Slide 11.
And this chart I'm about to show is also repeated in the City's main written submissions.

Are you familiar -- I'm not sure -- I don't see the table brought up yet. I was going to ask, are you familiar with this table?
A. MR. FENNELL: I'd have to see it just to --

THE COURT REPORTER: I'm sorry, Dr. Fenne11 --
THE CHAIR: Just one minute.
(DISCUSSION OFF THE RECORD)
MS. FRIEND:
Mr. Williams. Mr. Williams, your mic is on so we can hear this conversation. Please mute yourself.

THE CHAIR:
Thank you. Is everyone muted?
MS. FRIEND:
Thank you.
THE CHAIR:
Thanks.
Q. MR. MERCER: Thank you. It's the table on the bottom of the page here.
A. MR. FENNELL: Yeah, I recall that.
Q. So within this table, which was prepared by Golder \& Associates in 2020, they go through kind of the potential probability of a flood event, and they go well beyond the 1 in 200. And they show, if you look on the far right-hand columns, the net peak flow reduction. And even if you go as far as, say, 1 in

500, there's a 73 percent net flow reduction, and equivalent probability of Glenmore of 1 in 29 years. Would you not say that's a great benefit beyond the 1 in 200-year flooding event associated with the SR1 off-stream dry dam?
A. MR. FENNELL: Yeah. I think what you need to keep in mind is, you know, the context around that statement.

There is flood protection obviously for the City of Calgary beyond the 1 in 200. But the areas upstream of the Glenmore Reservoir aren't protected above that because that additional flow's going to be passed downstream, it will go into the G1enmore Reservoir, which will have some additional capacity to absorb that. But there are areas upstream in Elbow -Elbow Valley or Discovery where, you know, those -those particular parts of the Elbow River residents wil1 not be protected. So that was the context of that particular statement.

So I would agree that -- I would agree that this does provide, you know, maybe beyond a 1 in 200 for the City of Calgary, but certainly not the entire reach of the river upstream.
Q. Okay. So your comments yesterday were limited to those areas upstream of the Glenmore Reservoir, basically in
between SR1 and G1enmore Reservoir?
A. MR. FENNELL: Yeah, of course. And, really, you know, the whole purpose of this exercise is to protect people and property, and there are people and property that aren't protected by SR1.

You know, they -- you know, the 1 in 200 is -- or the 2013 design flood is what -- what this structure is being constructed to, or will be constructed to, but what we're saying is that, you know, the probability of some higher frequency or higher magnitude in floods in the future does exist.

And if you recall in my slides that I presented yesterday, I showed a flood return period where we were showing a shift in the frequency of the floods, you know, to -- to more frequent return periods.

What I actually didn't describe in that, which I would have liked to have described -- I just forgot -was that if you do take a flood of 1 in 100 or 1 in 200, you're going to see the magnitudes of those increase.

So what we're talking about is trying to design to a proper level of protection for these downstream communities.
Q. Just one follow-up question in relation to this chart.

If you see I would call them Columns 3 and 4,
which relate to flow peak into $S R 1$ and flow peak into Glenmore, if I understand correctly, you mention that you felt your statements relating to those communities and individuals in between SR1 and Glenmore, but does not this chart show that there would be a great reduction in flows for the 1 in 200 and 1 in -- sorry, in particular, for the 1 in 200 relating to those exact communities. So if we had a flood as we had in 2013, those communities would have some benefit?
A. MR. FENNELL: Of course, they'11 have some benefit, but they're still not going to be completely protected. And if the goal of flood protection for -for the Calgary region is to protect everybody, then the argument could be made that it isn't protecting everybody. It's certainly protecting the people downstream of the Glenmore Dam which is -- which is fine, but if we are -- if the goal of this exercise is to protect people and property, then I don't know why we wouldn't want to try to do that for everybody.
Q. Thank you for that. I believe that's all the questions for the City of Calgary for now.

I know -- I'm expecting AT will have a lot more in the technical-type nature questions, so thank you.
A. MR. FENNELL: Thank you.

THE CHAIR: Thank you, Mr. Mercer and

And so, Mr. Kruhlak, you mentioned that your colleagues were likely going to be -- okay. Mr. Fitch, it looks like you're up, do I have that correct?

MR. FITCH:
Yes, Mr. Chairman. It's
Gavin Fitch speaking.
So I will be beginning this morning by asking some questions of Mr . Locke, following which my colleague, Mr. Barbero, will have some questions for Dr. Fennel1 and Dr. Klepacki.

THE CHAIR:
And by my account, there was a clear request Alberta Transportation had some time for Topic 4, so you've got, you know, allocated about four hours, so that would take us probably to the noon hour.

So, just in terms of timing, not sure if you need that time or not, but that's been allocated, and the time is yours, so please proceed.

MR. FITCH: Thank you, Mr. Chair. And I can tell you I'm quite sure we won't need nearly all of
that time. I'm not sure how long Mr. Barbero will be, but I don't expect to be particularly long with Mr. Locke.

MR. FITCH CROSS-EXAMINES THE PANEL:
Q. So anyhow, to begin, Mr. Locke, are you with us?
A. MR. LOCKE: I'm here.
Q. Good morning. How are you?
A. MR. LOCKE: Yeah, I can.
Q. Good, thanks.

Mr. Locke, you acknowledge in your report and again in your testimony that Alberta Transportation has addressed much of the inherent uncertainties surrounding fish and fish habitat in the Elbow River and the potential project effects on fish and fish habitat. Do I have that right?
A. MR. LOCKE: That's correct, yes.
Q. Okay, good. And you also acknowledged in your testimony yesterday that Stantec's responses to your report that were filed as part of Alberta Transportation's reply submission were I think you said well taken; correct?
A. MR. LOCKE: That is correct, yes.
Q. Yeah. So all of that being the case, I just want to begin by trying to identify what are the remaining concerns that you have with respect to SR1.

And so sir, as far as we are able to tell, the only real substantive area is the release of water from the reservoir back into the river. Is that fair to say?
A. MR. LOCKE: That's my concern. My -- my number one concern is demonstrating that everything that can be done to keep the fish from being entrained would be my number one concern, to make sure that every possible option that might be feasible has been locked at to keep the fish from being entrained, yes -- and then the second one would be the release of the water back into the Elbow River, yes.
Q. Okay. Thank you. So with regard to the release of water back into the river, you state in your report, and you don't have to bring it up, but you state that: (as read)
"This is an area where the potential
effects to fish habitat resulting from changes to the frequency, duration or magnitude of flows can be mitigated."

Correct?
A. MR. LOCKE:

Correct.
Q. Right. And I think your point there is that there's not much you can do to change the flows into the reservoir, but you can manipulate -- depending on how
you operate the reservoir, you can manipulate how the water is released back into the river; correct?
A. MR. LOCKE: Correct.
Q. And I think it's a matter of record at this point that Alberta Transportation has assessed a, what we've called, a "late release" and an "early release" scenario; correct?
A. MR. LOCKE: Correct, yeah.
Q. Okay. And you note in your report that: (as read)
"The late and early release scenarios
have shown that there are differences with respect to impact to fish and fish habitat which will ultimately lead to trade-offs."

Correct?
A. MR. LOCKE: Correct, yeah.
Q. And that leads you to recommend that: (as read)
"The range of possible release scenarios to be evaluated should be expanded beyond a late and early scenario based on concepts of Environmental Flow science."

Correct?

A. MR. LOCKE: Right, yes, yes.
Q. And you refer to a criterion that you characterize a
the best-case scenario, and that criterion is: (as read)
"...a release that results in no more
than a 10 percent increase of the instantaneous flow in the Elbow River."
A. MR. LOCKE: Correct, yeah.
Q. Okay. And it's best case because, as you say in your report, it: (as read)
"...is considered to have a low
probability of detectable impacts to aquatic ecosystems"?
A. MR. LOCKE: Yes, correct.
Q. And the ecosystem we're talking about here, of course, is the Elbow River; right?
A. MR. LOCKE: Correct, yes.
Q. And so if I were just to call that criterion the "10 percent increase criterion," you'd know what I'm talking about?
A. MR. LOCKE: Yes.
Q. Okay. Sir, would you agree with me that the 10 percent criterion is effectively a late release scenario?
A. MR. LOCKE: Yes, it was -- it was close to that, yes.
Q. Okay. Sir, would you -- would you be surprised to learn that Stantec did a high-level look at the

10 percent criterion and found that meeting it would result in water remaining in the reservoir until December, assuming a flood in, you know, say, June. Would that surprise you?
A. MR. LOCKE: No, that would not.
Q. Okay. And I take it you understand that the -- that originally when the EIA was filed by Alberta Transportation, it was based on what we're now calling the "late" release scenario?
A. MR. LOCKE: Yes, I believe so.
Q. Right. And you understand also I'm sure that the "early" release scenario was something that was specifically asked for by the federal government and specifically the Impact Assessment Agency of Canada and the Department of Fisheries and Oceans?
A. MR. LOCKE: I think I may have missed that.
Q. Oh, okay. Document manager, if you could just pull up Exhibit 218, please.

So Dr. -- sorry -- Mr. Locke, this is -- this is a response by Alberta Transportation to information requests made by the federal government, and if we could turn to PDF page 19, please.

So we're looking, Mr. Locke, at Information Request 4-01, which you can see is titled "Project Operation - Release Scenarios." Right?
A. MR. LOCKE: Yeah.
Q. So, just to be clear, you didn't -- when you prepared your report, you didn't review this particular IR response?
A. MR. LOCKE: I'm going to -- can I...
Q. Take a moment and have a look at it if you'd like.
A. MR. LOCKE: Well, I've kept track of what I've reviewed. I know I was in excess of 3,000 pages, at some point, of documents, but I can...

So I'm just -- I have a very long document here of documents that I reviewed, so I'm not finding it.

So let's just go with the one that's up here.
Q. Okay. All right.
A. MR. LOCKE:

Sorry.
Q. No, that's fine, and I appreciate there's a lot of documents. It's not hugely shocking that you may have missed one.

Okay. So what I just want to draw your attention to, Zoom host, if we can just scroll down a little bit, please.

You'11 see there the context and rationale for the information request from the Impact Assessment Agency of Canada, and I'm just going to read part of that to you. It states: (as read)
"The EIS presented a release scenario
where floodwaters would be held in the reservoir until flows in the Elbow River return to below bank-full levels, (20 cubic metres per second) and then released. Federal authorities and Indigenous groups have raised many concerns regarding holding the water in the reservoir for an extended period of time, including potential effects from releasing dirty floodwaters back into the clear/low-flow river water, the effects to the fish entrained in the reservoir, and the effects of the settling of sediment on vegetation in the reservoir. Fisheries and Oceans Canada noted that the objective should be to return turbid water back to the system as quickly as possible while a turbid high flow scenario still exists in the river."

So you'd agree with me that DFO looked at the late release scenario, expressed concerns, and asked, in effect, Alberta Transportation to develop what we're now calling the "early" release scenario. Is that -- does that -- would you agree with that now?
A. MR. LOCKE

Yes. And I think I -- I -- I am recalling that there was obviously the request to do something other than I guess what's called the "late" release. Yes, I am -- I am aware of it, yes, yeah.
Q. And, of course, the reason why DFO asked for the early release scenario is, as just indicated in the passage I read into the record, they -- their view was that doing so would avoid all of the adverse effects associated with keeping water in the reservoir for a long time; right?
A. MR. LOCKE:

Right.
Q. And you'd agree with me that, at the end of the day, for this project to proceed, Alberta Transportation is going to have to get permits and approvals from the Department of Fisheries and Oceans?
A. MR. LOCKE: Yes, I am aware.
Q. Yeah, so they're going to have to ultimately bless this whole business and, I guess, make a determination on which release scenario is the best; is that fair?
A. MR. LOCKE: Yes.
Q. Okay, thank you.
A. MR. LOCKE: Yeah.
Q. Okay, then just to return to my first set of questions. So you mentioned that the only things, really, that -- the only concerns that really you have left at
this point are the release of water back into the river, which I think we've now dealt with; and then the second thing -- or, actually, it was the first thing you mentioned was that, everything that can be done to prevent entrainment into the reservoir should be done; right?
A. MR. LOCKE: Yes, yes.
Q. Okay, and you'd agree with me that, in your report, you made a suggestion of, I think it was some sort of a sonic device to try to essentially warn fish off entering the diversion channel?
A. MR. LOCKE: Yes, yeah.
Q. Okay. And you'd agree with me that in its response to your report, Stantec -- well, Alberta Transportation agreed that that would be something they'd be prepared to look at?
A. MR. LOCKE: Yes.
Q. And then I heard you say in your testimony yesterday a suggestion, I think it was of louvres?
A. MR. LOCKE: Yes.
Q. And, again, that's just a suggestion from you as to one additional mechanism that might be used to prevent entrainment; is that right?
A. MR. LOCKE: Yes, that's correct, yeah.
Q. Thank you. I think I'm done. I'm just going to check,

Mr. Chairman. One second.
Thank you, Mr. Locke. Those are all my questions. I'm now going to turn things over to my colleague, Mr. Barbero.

MR. BARBERO:
Mr. Chair, good morning, sir. I
hope you can hear me okay?
THE CHAIR:
No, we can't. It's pretty soft.
Sir, is that better now?
THE CHAIR:
A little bit, but you were much clearer, and your volume was louder the other day with your headset, so...

MR. BARBERO :
Give me one minute, sir. I'll disappear, but I'11 be right back, I promise.

Mr. Chair, we've made some adjustment, I hope it's coming across better?

THE CHAIR:
It is better, but it's still -Ms. DiPaolo, court reporter, can you hear him?

If you can just make sure your voice is up as much as you can, I guess. -- try another headset, okay.

MR. BARBERO:
Sir, they've given me a new headset. Is that any better?

THE CHAIR:
Maybe just pull the mic in front a bit more and keep your voice up and I think we're going to be close. Ms. DiPaolo figures she can get you transcribed, so --

MR. BARBERO:
To think --
THE CHAIR:
Oh, that's better.
MR. BARBERO:
And to think, sir, I thought my biggest problem today was going to be the answers I got. So here we go.

THE CHAIR:
Right. So, actually, it is
improving. If you pull that your mic closer in front. Thank you.

MR. BARBERO :
Very good, sir.
Let me start off by just apologizing to the document manager.

From the list that I forwarded yesterday, there's three additional documents that I might ask just to have pre-loaded, so I'11 do that now so we don't waste time.

Those are Exhibits 375 , 175, 110. They will all relate to my questions for Dr. Fennell.

But I'm actually going to start with Dr. Klepacki, so there's a few minutes before I'11 need those.

MR. BARBERO CROSS-EXAMINES THE PANEL:
Q. Dr. Klepacki, sir, are you there?
A. MR. KLEPACKI: Yes, sir. Good morning.

Good morning to the Board and Pane1 and all our other participants. Here we are again.
Q. Good morning, sir. It's nice to see you.

I only have a few very short questions for you this morning. So, hopefully, we can move through those quick1y.
A. MR. KLEPACKI: Yes, sir.
Q. I just wanted to start off, sir, by confirming that you are in fact a member of the Springbank Communities Landowners Group or SCLG; correct?
A. MR. KLEPACKI: Yes, I believe my name is on the list. To be honest, I haven't checked, but I suspect it is.
Q. I have, sir, and I can tell you you're 63 on the list if case you were wondering.
A. MR. KLEPACKI: Thanks .
Q. Now, sir, the SCLG, you would agree, is opposed to the approval of this project; correct?
A. MR. KLEPACKI: Yes, sir.
Q. And, sir, it's fair to say that SCLG is advocating for an alternative?
A. MR. KLEPACKI: I think that's a fair statement, sir.
Q. And, sir, is it fair to say that you're advocating for an alternative to SR1?
A. MR. KLEPACKI: Yeah, I -- yeah, the way I would answer that question is I believe, like some of the others, that an in-stream dam upstream from Bragg Creek
would be a more equitable flood solution for all of us who live along the river -- and I -- I don't want to get too far down this road, but I also think environmentally, it would be a better choice. Thanks.
Q. And, Dr. Klepacki, the SCLG submissions describes you as a technical expert in the areas of aquatics, flood frequency, and that you have special knowledge. I take it you knew that's how they described you, sir?
A. MR. KLEPACKI: In speaking the truth, no, I actually didn't. But I have deep interests in some practices in all of those areas that you mentioned.
Q. Sir, just building on that, I just want to quickly ask you a few questions about your educational background and your relevant work experience.

So to start with, sir, it's fair to say that you're educated as a geologist?
A. MR. KLEPACKI: I was educated as -- actually, really, it was more rock mechanics that my -- my doctorate was in, but I did do geology in the course of that in my two other -- pursuing my two other degrees, I also -- that -- those were more standard structural geology and geology lines of inquiry.
Q. Rock mechanics. It sounds much better than the note I have here for your PhD , which is geological sciences. I think I prefer "rock mechanics," that sounds more
interesting.
A. MR. KLEPACKI: We11, "tectonics" was the word that was in vogue back then.
Q. And your professional work and experience over the years, sir, as I read from your CV has mostly been for oil and gas and mining companies?
A. MR. KLEPACKI: Hmm, mining, yes, sir. Like I mentioned yesterday, I started off my degree with some work, actually for BC Hydro.
Q. And, sir, I just want to also understand that the areas that you're not particularly well-versed in, and one of them, sir, is you're not a hydrologist; correct?
A. MR. KLEPACKI: No, I have -- I have no -- I don't have an academic background in hydrology, other than aqueous geochemistry.
Q. And similar question, sir, with regards to engineering, you're not an engineer; correct?
A. MR. KLEPACKI: No, I am not -- I was never designated an engineer.
Q. Thank you, sir.

On Friday, you spoke quite well, sir, about your concerns regarding erosion associated with the 1ow-leve1 outlet works.

And we don't need to turn it up, but as you know, sir, there was an exhibit, I believe it was 264 , that
was some documents that you prepared on the issue of erosion and river bed integrity.

And, sir, I just want to make sure that I understand. Your concerns relate to the area of the Unnamed Creek and the Elbow River downstream from there; correct?
A. MR. KLEPACKI: Yes, sir.
Q. And correct me if I'm wrong, but I do believe that you acknowledged in your evidence on Friday that Alberta Transportation was, in part, addressing some of the erosion concerns that you had at the low-level out work (verbatim); is that correct?
A. MR. KLEPACKI: Yeah, it seemed to me that the -the methods of addressing that were going to -- to install energy baffles to -- to break up the flow as it was -- as it was going.

And I believe my recommendation or hope, or however I worded it, was for riprap downstream from the outlet to help control erosion of the Unnamed Creek between the outlet and the Elbow River.
Q. Right. Document host, could I please have Alberta Transportation Aid to Cross Number 3.

Sir, do you have that diagram on your screen?
A. MR. KLEPACKI: Yes, sir.
Q. So we submitted this to your counsel and the Board, I
believe, far too late in the evening on Sunday night, but we did circulate it, and I'm wondering, sir, have you had a chance to look at this?
A. MR. KLEPACKI: Yes, I did see it. I did see it at that time.
Q. Very good, sir, and I'm wondering --
A. MR. KLEPACKI: Go ahead.
Q. Right. So this version of the diagram, have you seen this before, sir, or was the first time you saw this when I, or Alberta Transportation, circulated it Sunday evening?
A. MR. KLEPACKI: Yes, that was the first time. I didn't see it in -- in the submission that we had gotten, you know, the final draft of December 2020, but --
Q. Right. Right.
A. MR. KLEPACKI: -- but this was the first time.
Q. And, sir, some of the other changes -- and document host, we can take that diagram down now -- some of the other changes, sir, that we talked about in relation to erosion protection, you understand that those are set out at Exhibit 138, being NRCB Round 2 IR response? Do you have any knowledge of that, sir?
A. MR. KLEPACKI: I -- I would have to see the diagram to actually have it -- have it click. I'm not
a lawyer. I don't think very well in exhibits and PDF numbers, so I'm sorry.
Q. I am a lawyer, and I don't think well in them either, sir, so no need to apologize.

Mr. Chair, might I ask that we mark that diagram as an exhibit, and that would be our Aid to Cross Number 3. I would ask that we mark it as an exhibit if possible.

THE CHAIR:
So it was not previously marked as an exhibit?

MR. BARBERO:
No, sir, it was not.
THE CHAIR:
Okay, thank you.
So, Ms. Friend?
MS. FRIEND:
That would be Number 387.
MR. SECORD:
Just a quick question.
So Aid to Cross Number 3, you asked Dr. K1epacki if he'd seen it before. So is it on the record somewhere else?

MR. BARBERO:
No, Mr. Secord, I don't believe it is, subject to me confirming that, but I don't believe it is.

MR. SECORD:
So I don't know how we could have seen it before, then, if it was just provided to us on Sunday.

MR. BARBERO:
That's what I meant, had he seen
it before today, sir.
MR. SECORD: Oh, okay. So between Sunday and today, I'm sorry.

MR. BARBERO: Thank you.
MR. SECORD: I have no objection.
MR. BARBERO: Thank you, Mr. Secord.
THE CHAIR: So, Ms. Friend, that's correct, 387?

MS. FRIEND:
Yes.
EXHIBIT 387 - AT AID TO CROSS NUMBER 3
Q. MR. BARBERO: Dr. Klepacki, sir, I think in your evidence on Friday, and correct me if I have this wrong, but I believe you said the flows from the low-level out work (verbatim) would be between 12 metres cubed per second and 20 metres cubed per second. Do I have that right?
A. MR. KLEPACKI: $\quad 20$ metres cubed per second is, of course, the maximum flow, from my readings of all of the dozens of pages; and when you look at the discharge graphs -- and I'm sorry, I don't -- I don't remember the exhibit and PDF numbers for those, but I'm sure somebody on your team does -- when you look at those discharge graphs, it looks like, mostly, they plan to release at about 12 or 15 cubes, and -- and then it tapers -- it continues at that almost same level for,
you know, 30 or 40 days, and then -- and then sudden1y tapers off to next to nothing when the reservoir drains.
Q. Sure. And, sir, maybe just to assist you, why don't we bring that up so you can see those diagrams. I believe you're referring, document host, to Exhibit 264. I would imagine it's PDF page 5 , if we could bring that up?

Dr. Klepacki, sir, are these the diagrams you were referring to a moment ago?
A. MR. KLEPACKI: No. Actually, it was -- it was some Stantec diagrams that showed in something that I guess what we were talking about with -- with Mr. Locke's cross, and that was the release -- the release volumes from the low outlet flow.

Let me see if I have them written down somewhere. So it's the release scenarios, and it describes the amount of flow that's going back into the Elbow from the dam -- these documents right here, Mr. Barbero, that is just the -- you know, annual hydrographs for Elbow River at Bragg Creek, you know, upstream, and it shows what the -- what the flow rates are.

So, you know, my concern, when I was talking about the discharge amounts, my concern was that the flow coming out of -- of the low-level outlet, you know,

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
could be as high as 27 cubic metres per second. What you can see is, if you look at where, you know, July and August might be, that's closer to 10,10 cubic metres per second, so that would be twice the flow of the river.

And -- and then the other planned outlet, which seemed to be more typical of what the discharge plans were, seemed to be somewhere around 12 or 15 cubes -is that me -- 12 or 15 cubes per -- per second, which basically is another Elbow River volume going into it. That was the point I was trying to take, Mr. Barbero.
Q. No, thank you for that clarification, sir.

Let me ask you this, then, sir: Are you aware that the annual average flood of the river in this reach presently, without SR1, is 70.9 metres cubed per second?
A. MR. KLEPACKI: Yeah, so in the fourchette, yeah, I am -- I am aware that it can get to be that high. You can -- you can look at this hydrograph right here, and you can see, you know, it's a lot of rhythmic scale on the Y axis, but you can see that it approaches 70 in 2002/2003, and, you know, probably about 60 or so in 2003/2004. Yeah, 50 to 80 cubes. For these years. Of course, it varies, depends upon which year you're sampling.
Q. Right. Of course, sir, you understand that SR1 will not operate every year; correct?
A. MR. KLEPACKI: Yes, I understand that.
Q. Document host, we can take that document down. Sir, just one more question on this point. I guess my question is this, sir: Are you aware that Alberta Transportation has assessed the impact to bedload on the Elbow River associated with SR1?
A. MR. KLEPACKI: Yeah, I did -- I believe some months ago, I read that. I'm trying to recall when it first came out. Perhaps it was in the 2017 or 2018 IR responses, and when they looked at bedload and TSS and some of the other water quality parameters. I do remember reading those things.
Q. Thank you, sir. And maybe just for the sake of helping the pane1, I can advise that that is found at NRCB Round 2 IR 23, which is Exhibit 138, and also at Appendix 23-1, which is Exhibit 140.

Sir, you said Friday, and I believe I read it in your materials, that there is significant risk, in your view, that the Springbank Off-Stream Reservoir is underdesigned for large events in the future. Is that a fair summation?
A. MR. KLEPACKI: Yeah, that's a fair summation.
Q. And I think, sir, that part of that premise or

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
conclusion, I guess, is that, in your view, Alberta Transportation should have considered flood events for years such as 1879, 1897, and 1902; is that correct?
A. MR. KLEPACKI: Yeah, that -- that's correct, although I think my points align pretty well with what Dr. Fenne11 was saying too, that it's important to include those tail events, especially when one looks into the future.
Q. Right, sir. And you and I can agree that there's, for lack of a better word, no data for those floods in relation to the Elbow; correct?
A. MR. KLEPACKI: I -- yeah, there's -- there's no measurement for those floods, yeah. I -- I -- that's a fair statement.
Q. And, in fact, sir, to be fair to you, you say as much in your report, Exhibit 263, or I guess, more accurately, your documents at Exhibit 263. Now, I'11 read it to you, sir, because, as I said, you were quite fair, and you said: (as read)
"There are no measurements for the flow rate of the 1879, 1897, and 1902 events for the Elbow River."

You then, though, again, sir, to be fair, go on to say: (as read)
"The flow estimates for these events

Cross-examined by Mr. Barbero
were calculated from high water marks on the CP Rail bridge over the Bow River."
A. MR. KLEPACKI: Yeah, that's for the 1897 event. The 1879, I think, is just entirely historical anecdota1.
Q. Right. And, so I guess, sir, my question rises -arising out of that is this: Do you have any evidence, sir, to show that Elbow -- or that every time there is a flood on the Elbow, there is a flood on the Bow; that every time there's a flood on the Bow, there's a flood on the Elbow. Do you have any evidence to corroborate that correlation?
A. MR. KLEPACKI: I know that -- I believe somewhere I read or saw a correlation from that.

This goes to a topic that -- that I think we've discussed in terms of the rainfall distribution in the Foothills area and the centroids, I guess is the word that Mr. Frigo used when he was describing the rainfall distributions.

I think one think to keep in mind when you consider the synchronicity of floods on both watershed systems, when you look at those -- and I did this -when you look at the -- the aerial distribution of those centroids going from 200 millimetres to 200 millimetres of the iso-precipitation contours, for

2013, those were 125. They send to be oval shaped, as opposed to circular, and it's 125 kilometres in the direction of the long access of that ellipse, and it is -- John Pomeroy also had 120 for 20 kilometres for the 2013. And the 2005 one was 180 kilometres in the long axis.

So the point being that likely, rainfall events on the Elbow or the Bow are going to have some effect in al1 the systems, but that effect, as was pointed out, is not going to be the same for both catchment areas. Sorry, that was a long-winded answer.
Q. No, no, it's quite helpful. Thank you, sir.

It does make me think of one particular scenario that I was wondering if you can help me understand and that is this: Would you agree, sir, that the Elbow River experienced a major flood in 1932? And I can take you to the reference in the material for that, but if we don't need to go there, I suppose can we just agree on that point, sir?
A. MR. KLEPACKI: Oh, yes, we can agree on that actually. Barbara Teghtmeyer who lives about 200 metres down the road here remembers that flood very well as a little girl.
Q. And sir, you'd agree with me that we don't have corresponding evidence of that flood on the Bow, do we?
A. MR. KLEPACKI: Let me just take a look.
Q. And in particular, sir, I was most interested in the tree ring graphs?
A. MR. KLEPACKI: Oh, yeah, no. There is a 1930 -is it 1933 or '32? I can't -- it's hard to see on my diagram. I don't know if (connection interrupted) -but if you go to the maximum --
Q. Dr. Klepacki, Dr. Klepacki, sir?
A. MR. KLEPACKI: Yes, sir?
Q. Sorry to interrupt you. My correction froze there. I don't know if the Chair and the court reporter lost you, but I lost you there when you held up that document, sir.
A. MR. KLEPACKI: So if you could go to -- if you could please go to Exhibit 263, PDF 2.
Q. Is that Figure 2, Dr. Klepacki?
A. MR. KLEPACKI: Yes, sir. And if you look at 1932, that's the question.
Q. Actually, sir, I don't know that it is. Is this the tree ring information, sir?
A. MR. KLEPACKI: No, this is the -- this is the measured discharge --
Q. Right.
A. MR. KLEPACKI: -- for -- for these areas here. Just a second. Actually I'm bringing up my spreadsheet

Cross-examined by Mr. Barbero
which I -- I'm not -- I don't want to -- I don't want to overkill this.

So I have -- Bow River 1932. I actually have quite a --

Yeah, Bow River max was 1,520 cubic metres per second for 1932.

So the river was a -- the Bow River was also in flood on -- on that year.
Q. Right, sir.
A. MR. KLEPACKI: This is the Alberta Environment.
Q. Right, but I guess I'm still wondering -- I'm still wondering about that tree ring data that I think you and others have put forward, sir. Would you agree with me that the tree ring data does not demonstrate a major flood in the Bow in 1932, and if there's a document, you can --
A. MR. KLEPACKI: I think we've covered this, the -yeah, I 'm looking for my tree ring, the tree ring data.

If you can go to also Exhibit 263, PDF 8, okay, and zoom in please, document manager. Can we look at the '30s a little closer, which is on the right-hand side. So it's -- it's difficult to see there, but you can see these are 25-year increments between the hashtags. And so 19 -- 1932 would be -- there's a small red bump in the middle of there. 1932 would be
on the inflexion point on the downward side of that -of that bump, as far as I could read it.

So yeah, there's not a distinct wet -- wet correlation in that data.
Q. Dr. Klepacki, sir, as somebody that reads transcripts late into the evening, it can be difficult. So for the sake of the transcript, can you describe exactly which diagram you're looking at of these?
A. MR. KLEPACKI: So -- so I am looking at -- I am looking at the third diagram down, which is the Bow River data. And if you look at 1925, and like I said, it's 25 -- so in the middle of each division is going to be 12 years, which is going to be about where the trough is. So it's -- like I said, it's going to be on the decreasing slope on the side of -- to the right-hand side of 1925 on the third diagram down.
Q. Right. And, as you say, sir, it's decreasing, isn't it?
A. MR. KLEPACKI: Yeah, in that case, it's going from a peak -- from a bit of a wetter spell in 1925 to what looks like -- if you -- if you could add 12 -1937 somewhere would be the trough in that diagram.
Q. Very good, sir.
A. MR. KLEPACKI: Third diagram down.
Q. Thank you, sir. That was -- that was helpful.

Sir, a moment ago you mentioned --
A. MR. KLEPACKI: So...
Q. I'm sorry, sir, did you want to add something?
A. MR. KLEPACKI: We11, yeah, and maybe I mean, I would say, you know, it is true that -- I mean, and I still certainly subscribe to the concept that climate drivers drive wet and dry periods, particularly as we talked yesterday, the concatenation of the Pacific Decadal Oscillation and El Niño Southern Oscillation. But there are other factors as, you know -- fires, as John had mentioned, previous forest fires creating, you know, higher percent of run-off in the wildfire zone.

So those are other factors that contribute to
flooding. Flooding's not entirely climate-driven, but, you know, and unfortunately, I don't have a percentage of what floods are -- are entirely climate-driven, but there are other parameters too.

THE CHAIR:
Sorry, just to interrupt. My apologies.

Ms. DiPaolo, did you catch that last -- okay, I can see -- in particular, if you're talking about extremely technical or new terms, if you could just go slowly during that piece, Mr. Klepacki or others, just to give our court reporter half a chance at that. So thank you very much.
A. MR. KLEPACKI:

I'm sorry. Yes, I did hear you saying to Ms. DiPaolo this morning about making sure that she catches the technical jargon. So I will do my best, sir. I apologize.
Q. MR. BARBERO:

Dr. Klepacki, sir, a moment ago, I believe you mentioned John Pomeroy; did I hear that right?
A. MR. KLEPACKI: That's correct, sir.
Q. And I'm going to come back to Dr. Pomeroy in a second, but I wanted to ask you this first: Is it your view or the view of SCLG that, with a warming climate, there will be larger floods at more frequent intervals?
A. MR. KLEPACKI: It is -- it is my view -- I don't know whether I actually have the crown of SCLG, but it certainly is my view -- and the physics of it are very straightforward, as Dr. Fennell mentioned yesterday. With a higher heat content in the atmosphere, there is a higher water capacity. And the bottom line is the sponge can carry more water. So when you squeeze the sponge, like in upslope weather conditions, you're going to get more rain.

So the atmosphere can hold more water, and if you follow some of the literature on -- on climate and weather events, I mean that's happening already.

These, quote unquote, super storms, such as the
rainfall event in Australia that we just experienced are -- are, in part, at least linked to this increase of humidity capacity of the atmosphere. And here we go.
Q. Sir, on Sunday, I circulated an additional aid to cross.

Document manager, if you could please bring that up now.

It was identified as Aid to Cross SCLG Number 2, and what it is is a paper prepared by Ms. Tesemma.

Dr. Klepacki, sir, have you had a chance to review, or to at least be advised, of this aid to cross that I circulated?
A. MR. KLEPACKI: No, I haven't had a chance to look at this paper yet.
Q. Were you alerted that I circulated it earlier this week?
A. MR. KLEPACKI: In -- in all honesty since I've affirmed, no, I didn't. This one -- this one slipped off the desktop.
Q. No problem, sir.

This paper, as I mentioned is authored by, among others, Ms. Tesemma, but I believe it's also authored by John Pomeroy. Do you see his name there?
A. MR. KLEPACKI: Yes, I see. He's the final
author.
Q. If we could scroll down to the executive summary, it notes here that: (as read)
"This report assesses the impacts of
projected climate change on the hydrology, including the flood
frequencies of the Bow and Elbow Rivers above Calgary, Alberta."

Do you see that?
A. MR. KLEPACKI: Yeah. Yes, sir.
Q. Thank you, sir. And it goes on, so about the third sentence: (as read)
"The study developed a methodology and
applied a case study for incorporating
climate change into flood frequency
estimates that can be applied to a variety of river basins across Canada."

Do you see that?
A. MR. KLEPACKI: Yes, sir, I see that.
Q. And I think in your materials, you spoke quite highly of Dr. Pomeroy, did you not, sir?
A. MR. KLEPACKI: Yeah, I think -- I think all of us who are involved in the water in Western Canada, he's recognized his -- his work, and his current position as head of the G1obal Water Forum, so...
Q. And not to belabour the point, sir, but you described him as, quote, "a world-renowned hydrologist." I'm sure he'd be happy to hear that --
A. MR. KLEPACKI: Hence, the Global Water Forum.
Q. Sir, my question for you is, in preparing your materials, I take it you've -- you did not review or include the findings or conclusions of this paper, did you, sir?
A. MR. KLEPACKI: That's a fair statement,

Mr. Barbero. Thank you.
Q. And, in fact, sir, as you said at the outset, you've not seen this before, have you?
A. MR. KLEPACKI: No, I haven't.
Q. Very good.

MR. BARBERO: Mr. Chairman, may I have this marked as the next exhibit, please?

THE CHAIR:
Yes. Ms. Friend?
MR. SECORD:
Just one -- just one --
THE CHAIR:
This is Mr. Secord, just for the court reporter.

MR. SECORD:
Yes, just one point here. You know, Dr. Klepacki hasn't seen this document, he hasn't reviewed this document. You've read two sections from an executive summary.
I'm just wondering, you know, what is the aid to
cross going in for? That he hasn't seen the document? MR. BARBERO: That's correct, Mr. Secord.

MR. SECORD: Okay. I guess on that basis,
Mr. Chair, I have no objection.
THE CHAIR: Thank you, Mr. Secord.

EXHIBIT 388 - SCLG AID TO CROSS NUMBER 2

MR. BARBERO: Mr. -- my apologies --

Dr. Klepacki, just one more question for you before I let you go, sir.

I just want to make sure that we're clear and that you have clarity on how the SR1 is intended to operate. Sir, you understand that SR1 wil1 not be flooded every five years for test purposes; correct?
A. MR. KLEPACKI: So that was something that I had read somewhere at least a year ago, and I haven't seen the operation manual now.

I -- I heard another statement -- and I'm trying to remember the source of that statement -- was that they can do the operational -- the mechanical testing of the equipment in a dry land state.

So this is the extent of my knowledge over the requirements of -- of the -- the requirements that the operators of SR1 will have to follow according to -according to whatever civil engineering standards are
present in Alberta.
So I'm -- I don't know what those requirements are right now, Mr. Barbero.
Q. So, sir, just so we're clear, you understand that there is no plan to flood SR1 once every five years for purposes of testing?
A. MR. KLEPACKI: What's the source of -- what's the -- I'm not questioning your authority, I'm just wondering what the source of that is. Is that -- that statement is -- is that something that was written in somewhere in the documents?
Q. Yes, sir. Perhaps I can assist with that.

Document host, could I have -- sorry, could I have Aid to Cross Number 1?

THE CHAIR: Mr. Barbero, I don't know if we actually heard Ms. Friend get an exhibit number for the last exhibit.

Ms. Friend, what was that?
MS. FRIEND: That number will be 388.
THE CHAIR:
Okay, thank you.
And we'll see where we go here and we'll see if Mr. Secord has any objections. Has this been entered, this aid to cross?

MR. BARBERO: It has.
Mr. Chair, just on that point, sir, yes, I've
circulated this aid to cross again on Sunday evening.
THE CHAIR:
Okay. So let's proceed, then. We'11 attach later, okay? Thank you.

MR. BARBERO: Thank you, sir.
Q. Dr. K1epacki, you were asking me the source of my question, and the source of my question is this news article from CTV News 2019.

If we scroll down, sir, I believe it would be PDF 3.

Just at the top there, sir: (as read)
"Retired Geophysicist, Dave Klepacki notes that the land would extensively be damaged..."

Quote -- and this is this next paragraph below:
(as read)
"When you release that water every five years, it's a large shallow reservoir and that water will likely have blue algae and so you'11 send all that downstream and cost the City of Calgary almost double."

Do you see that, sir?
A. MR. KLEPACKI: Yes.
Q. And then, I think, in the quote above it, sir, it says, "Every five years, they have to --" well, let me just

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
read it: (as read)
"When you flood it, it gets covered with mud and you have to flood it every five years to make sure that the off-stream reservoir system works."

Do you see that?
A. MR. KLEPACKI: Yes, I do.
Q. And, sir, I just want to make sure that there's no confusion. You understand that that's not the case; correct, sir?
A. MR. KLEPACKI: We11, Mr. Barbero, what I was wondering was -- I hear you telling me -- and don't get this wrong, I don't -- I don't -- I'm not questioning that, but -- so the operations plans -- I mean, can you tell me how they test them? How they're going to test that? And I agree it may not be five years, they may not have to do a wet test -- but I don't know what the requirements are by the -- whatever it is, the Canadian Dam Commission or in terms of the equipment testing, that's the point I'm trying to make.

At that time, I did -- someone had -- someone who I thought had authority in civil engineering had told me it had to be tested every five years when -- when that interview was done.

But I -- I need to be corrected in -- in

Cross-examined by Mr. Barbero
understanding the laws that apply to -- or the regulations that apply to equipment testing for a project like this --
Q. Right. So --
A. MR. KLEPACKI: $\quad-$ and I -- I need to come up to speed.
Q. Right, sir. No, that's fair. Unfortunately, given our system, sir, I can't give evidence, but perhaps that's something we can discuss or you can discuss with Alberta Transportation.

I won't belabour this point, sir. I think we've hashed it out.

Mr. Chairman, may I have one or two moments just to review my notes, and I may be done with Dr. K1epacki.

THE CHAIR:
This has not been entered as an exhibit. Mr. Secord, if you have no objection, we should have an exhibit number on this aid to cross.

MR. SECORD: No objection.
THE CHAIR: Thank you.
Ms. Friend.
MS. FRIEND:
This will be Number 389.
THE CHAIR:
Thank you.
EXHIBIT 389 - ALBERTA TRANSPORTATION
TOPIC 4 AID TO CROSS 1, CTV NEWS

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero

ARTICLE

THE CHAIR:
And please take a minute, Mr. Barbero.

MR. BARBERO :
Thank you, sir.
MR. KRUHLAK:
Mr. Chairman, it's Ron Kruhlak.
Perhaps I could just deal with a matter while Mr. Barbero's reviewing his notes.

THE CHAIR:
Please proceed.
MR. KRUHLAK:
Mr. Secord asked about having some interest in expediting the response on Undertaking 31, and I just want to advise him that -- that response has been sent a short time ago, so he should have that pertaining to the data he was looking for.

And we could either mark that now, the response to Undertaking 31, that has just been sent to Ms. Friend and copied to Mr. Secord, or I'm happy if he wants to have a chance to look at it first.

MR. SECORD:
Thank you, Mr. Kruhlak. I did get a communication from Ms. Singh, and I thank you very much for expediting that. We'd be happy to have it as an exhibit.

And I have forwarded it to Dr. Fenne11, obvious1y, just forwarded the email from Ms. Singh without any comment, I understand he's under cross. So he now has that should he wish to comment on it. Thank you.

Mr. Kruh1ak, that's been sent to Ms. Friend and Mr. Kennedy in advance? Thank you. Okay.

4 MR. SECORD: exhibit number.

THE CHAIR:
MS. FRIEND:
MR. SECORD:
MR. KRUHLAK:
THE CHAIR:
EXHIBIT 390 - AT RESPONSE TO
UNDERTAKING 31
MR. BARBERO: again.

THE CHAIR:
Yes, please proceed.
MR. BARBERO:
I have no further questions for Dr. Klepacki.

Sir, thank you very much for your time over the last few days and for answering my questions just now.
A. MR. KLEPACKI: Thank you, Mr. Barbero.

Can I just make a closing statement? Is it -- is that a possibility or something like that?

MR. BARBERO:
Dr. Klepacki, Chair, I would say not at this time.

MR. SECORD: No.

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero

1 THE CHAIR:
agree. Thank you.
MR. SECORD: I would agree, also. Thank you.
MR. KLEPACKI:
THE CHAIR:
Mr. Klepacki.
So, Mr. Barbero, next up?
MR. BARBERO :
Dr. Fenne11, sir.
THE CHAIR:
Thank you. We'11 just give Mr. Wiebe one second. Thank you, Mr. Wiebe.
Q. MR. BARBERO: Dr. Fenne11, good morning?
A. MR. FENNELL: Good morning, Mr. Barbero.
Q. Sir, yesterday you gave a very passionate direct. I have a few questions arising from that.

Sir, I take it from your evidence yesterday that you are opposed to SR1?
A. MR. FENNELL: I'm - I'm certainly for a project that is going to provide protection for all people and property.
Q. So, sir --
A. MR. FENNELL: And I understand that flood mitigation is important, obviously, for the city of Calgary and the region.

So I would say that, you know, I'm neither for or against. I'm actually for a project that's going to
provide the highest level of protection possible.
Q. So, sir, just so I understand, you're neither for or against SR1? Is that your position?
A. MR. FENNELL: Yeah, I'm for a project that is a well-conceived project that's going to protect as many people and property as possible.
Q. Sir, you make reference to MC1 in your materials. You know MC1 is not a reviewable project before this Board at this time?
A. MR. FENNELL:

I understand that, yes. I mean, early on in the process, Mr. Barbero, it was an option that was being reviewed. Obviously, it was not the one that was advanced. But reading the Opus report, it does have some significant merits to it.
Q. But you understand it's not a reviewable project in this proceeding?
A. MR. FENNELL: I understand that, yes.
Q. Sir, I have a few questions regarding your CV, which is Exhibit 362 -- I'm sorry, 262.

I don't believe we need to turn it up, sir, but you can tell me if you feel we do.

I just want to confirm my understanding that you are a hydrologist and a geochemist. Is that a fair statement?
A. MR. FENNELL: No, there's one correction,

Mr. Barbero. I'm a hydrogeologist and a geochemist.
Q. Hydrogeologist and geochemist. Thank you, sir.
A. MR. FENNELL: The difference being that hydroge is a marriage of geology, fluid flow, and chemistry, and biology. And hydrology is more the study of surface water flows and dynamics.
Q. Thank you for that correction, sir. That's helpful.

And I perused your very extensive work experience, and it struck me that you've had positions largely as a petroleum geologist, senior hydrogeologist, principal hydrogeologist, and a geochemist. Is that a fair summary of most of your professional work?
A. MR. FENNELL: Yes, I would say most of the work has been related to the water side, as opposed to the oil and gas side. But I am well-versed in both.
Q. Sir, you do not hold any degrees in atmospheric science, do you?
A. MR. FENNELL: No, I don't.
Q. Sir, you are not a geotechnical engineer, are you?
A. MR. FENNELL: I'm not a geotechnical engineer, no.
Q. Nor are you a structural engineer?
A. MR. FENNELL: No.
Q. Very good, sir.
Sir, you'd also --

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
A. MR. FENNELL: If I can, I'd like to say that, you know, I do have a general knowledge in these areas just through my work experience, but I'm not an expert in this at all.

But, you know, as a hydrogeologist, we have to understand the -- the geotechnical natures to some degree when we're talking about stress fields and pore pressures. So that is something that we do study. Just wanted to make that clear.
Q. Thank you, sir.

In that same vein, though, sir, you'd agree that you are not an expert on human health?
A. MR. FENNELL: No, I'm not a toxicologist, so I don't -- I don't have that background.
Q. Sir, you're not --
A. MR. FENNELL: I have been involved in some human health and ecological risk assessments, so I have -I'm familiar with the process.
Q. Well, sir, I've searched your CV, and I could only find one reference to health, and that was assistance you offered in the development of assessment programs to generate Tier II criteria in support of human health. Is there some other experience that I missed?
A. MR. FENNELL:

I've been involved in a number of risk assessments in the oil sands. You know, looking
at the risk to receiving bodies, water bodies, you know, and aquatics on a broad level. Although I don't have the expertise in those areas, I have been working with teams of people. So I've kind of osmosed some of that -- you know, some of that information and -and -- and how that's rolled out in a -- in a risk assessment.

But I'm not a professional risk assessor or toxicologist, no.
Q. Sir, you're also not an expert in air quality; correct?
A. MR. FENNELL: No. Not air quality, no.
Q. Sir, are you a member of the Canadian Meteorological and Oceanographic Society?
A. MR. FENNELL: No, I'm not. But I will say -and I know where this is going, obviously, it's -- your questioning -- but I have to say that, you know, the information that's -- that's being used, the atmospheric information, all of this data is provided by reputable organizations and has been vetted through those organizations, and that information gets used; and as a practitioner in the water field, I have to understand the drivers of the climate, precipitation, you know, and things like run-off.

And so all of those things -- and Alberta Transportation would be the same way, I don't think
they have particular experts in those areas either. So what we're doing is we're working with information that we trust from these organizations and assessing according1y.
Q. Sir, yesterday, you presented a PowerPoint, I believe that's Exhibit 384. We may want to bring it up in a few moments, but it's not necessary right now.

Sir, I just want to confirm, the PowerPoint contains new information and opinion that is not found in your report filed at Exhibit 261; correct?
A. MR. FENNELL: I think you'd have to point me to where that is.
Q. Sir, where in your report at Exhibit 261 is there any mention of MC1 or McLean Creek?
A. MR. FENNELL: That, I don't know. I'd have to go back and have a look --
Q. Sir, can you --
A. MR. FENNELL: Subject to check, I will -- I will say you're probably correct.
Q. Okay, thank you. Document host, could we have Slide 2 of the PDF presentation Exhibit 384.

Sir, with regards to the first bullet, you state that:

Climate change, including the impacts from extreme flood and drought
conditions and how that might affect the safe and efficient operation of SR1..." ...are a major concern. Do you see that, sir?
A. MR. FENNELL: I do, yes.
Q. Sir, you'd agree, you're not qualified to speak to dam safety issues, are you, sir?
A. MR. FENNELL: No, I'm not.
Q. Sir, you'd agree that you are not qualified to speak to dam operations issues, are you, sir?
A. MR. FENNELL: No.
Q. Sir, at the bullet on the next slide, Slide 3, last bullet, you state --
A. MR. FENNELL: If I could -- if I could just make a comment before you move on, if we could go back.

What that -- what that bullet is meant to identify is that the impacts from extreme flood and drought will have some implications for the operation of SR1.

And the fact that climate change is going to be a factor to be considered, that point is meant to say that, it is a concern, and it needs to be acknowledged, and it needs to be addressed accordingly to ensure the safe and efficient operation of SR1.

So if we do have some floods of higher magnitude that are coming down, this can have some implications for operations. And we've heard earlier on, you know,
diversion rates of anywhere from 480 to 600 , and when things, you know, exceed 600, then other -- other -other operations are going to have to occur.

So that's all that's meant to -- to high1ight.
Q. Sir, we agree, you're not qualified to speak to dam operations; correct?
A. MR. FENNELL:

Correct.
Q. Sir, on S1ide 3, last bullet: (as read)
"SR1 does not increase the water
security for the City of Calgary as
stated by Alberta Transportation."
Do you see that, sir?
A. MR. FENNELL: I do.
Q. Sir, you'd acknowledge that you are not familiar with all the details of the operation of G1enmore Reservoir; correct, sir?
A. MR. FENNELL: Not the excruciating details.

Only what I've heard through the hearing and what I've read in the documentation.

I understand that the level is adjusted accordingly to address any -- any particular events that may be coming at the city.

But the point here is that -- and I didn't really understand the logic, and it wasn't very well explained to me as to why it would increase the water security

AMICUS
for Calgary in a period where water security from a drought situation, which I referred to in my -- later in my slides, that reservoir would be operated very differently; and during an extended drought scenario, the flows would be arguably much lower than what would occur in a flood situation.

So SR1 doesn't provide drought -- or water security from an extended drought because it won't be operational because the risk of a flood is lower.
Q. Sir, we remain agreed you're not qualified to speak to dam operations?
A. MR. FENNELL: We've already covered that.
Q. Thank you, sir.

Bullet one on page 3 or slide 3 , sir, you state that: (as read)

> "SR1 design has not considered the
> likely magnitude of floods that have occurred in the past."

Do you see that, sir?
A. MR. FENNELL: I do, yes.
Q. Sir, are you aware the factors of safety have been applied to the SR1 dam design included a 25 percent increase to the diversion channel capacity and over -over what is needed to achieve design base? Do you understand that, sir?
A. MR. FENNELL: I understand that was in the testimony, correct --
Q. Sir --
A. MR. FENNELL: -- I will say that that's -let's focus on that 25 . What if we have a situation where we're above the 25 ? I don't believe there's a design consideration for that.
Q. We're going to get to that, sir.

Sir, are you familiar with the fact that the provincial standard for flood hazard identification program is the 1 in 100-year flood?
A. MR. FENNELL: I understand the design flood in Alberta is 1 in 100, that's correct.
Q. Sir, you agree that the 2013 flood was larger than a 1 in 100-year event?
A. MR. FENNELL: The statistics that have been provided indicate that it was in excess of the 1 in 100 on the Elbow, yes.
Q. A11 right. So, therefore, sir, you'd agree that SR1 exceeds the provincial standard as it is built to be greater than 1 in 100?
A. MR. FENNELL: It's built to the 2013 design flooding. Yes, that was above the 1 in 100.

What I would like to also say is that the engineering community is certainly reassessing that

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
particular design criteria, and we have neighbouring provinces that have adjusted their design floods with climate change in mind.

And if you recall, I talked about our neighbouring province of Saskatchewan who has -- who has decided to become fairly cautious and go to the 1 in 500 design flood.

And we also have $B C$ to the west of us that is now, you know, brought in the 1 in 200 as their standard.

And so we're starting to see the engineering community in Canada change in the paradigm of how we manage floods in our country, and this is taking into consideration climate change.

Now, I know that each province is its own jurisdiction as to how they want to address that, but we're starting to see a change, and I think it's a positive change because it is acknowledging that we don't understand everything that could happen in the future, and we need to design accordingly with a -with a -- if you wanted to use the term, a "no regrets" policy.
Q. Well, sir, let's deal with that right now.

Document host, can I have Exhibit 375, please. PDF page 13, PDF page 13, the paragraph we can focus in on starts with the words: (as read)
"Some responses have referred to the
2013 flood -- "
A. MR. FENNELL: If it would be possible, document host, if you could increase that a ittle bit. My aging eyes are -- thank you.
Q. Sir, this is Annex 1, CEAA IR Round 1, Part 3, it's dated August 21, 2019. Have you reviewed this document prior to giving evidence in this matter?
A. MR. FENNELL: I haven't. This is the first time I've seen this document.
Q. Sir, you understand that the federal government has a 1 in 100-year standard as wel1; correct?
A. MR. FENNELL: We11, you know, I -- what I understand from flood management in Canada is that each province has its own jurisdiction over that.
Q. Sir, it states here that: (as read)
"With a 12 percent increase in peak flow
rate by 2050, as estimated from the
climate change projections, the project's design flood flow rate of

1,240 metres cubed will change to
1,389 metres cubed."
Do you see that?
A. MR. FENNELL: Yes, I do.
Q. Further down, sir: (as read)
"Provisions for climate change are captured in Alberta through factors of safety in engineering design. The project -- being SR1, sir -- includes a 25 percent factor of safety in the design diversion rate and a 10 percent increase in the reservoir storage volume from what is needed to meet the project's intended purposes."

Do you see that?
A. MR. FENNELL: Yes, I do.
Q. Thank you, sir.
A. MR. FENNELL: I will -- I will say that this doesn't take into consideration a flood of higher magnitude, which is possible.
Q. Document host, can we scroll down, please?

Sir, you see the next sentence, "Should climate change increase the frequency." Do you see that?
A. MR. FENNELL: Yeah, at the bottom, yes.
Q. Yeah, so I think it does, sir, doesn't it? It does include or it does talk about issues with increased frequency?
A. MR. FENNELL: It doesn't say to what degree though. That's the challenge with that statement.
Q. That's okay, sir.
A. MR. FENNELL: Yeah.
Q. Document host, could we return to the PowerPoint, S1ide 3, please?

Sir, at S1ide 3, you state: (as read)
"SR1 design has not considered the 1ike1y --"
A. MR. FENNELL: I'm sorry, I can't -- I can't see the slides up on my screen.

THE CHAIR: Just one minute.

Ms. Cundliffe, do you have the right -- do you have the exhibit number?

MS. CUNDLIFFE: No, sir. Could they repeat the exhibit number they're asking for, please?

MR. BARBERO:
Exhibit 384.
THE CHAIR: Thanks, Mr. Barbero. Yeah, Slide 3, I think that's correct?

MR. BARBERO: Correct, Mr. Chair. Thank you.
A. MR. FENNELL: There, I see it now.
Q. MR. BARBERO:

Dr. Fennell, we've heard a lot from Dr. Klepacki and Mr. Dowsett, and now I think it's fair to say yourself, sir, that large floods occurring on the Bow River during wet periods were not captured in the Elbow River records before -- or, sorry, after 1908. You'd agree with that, sir? That's your position?
A. MR. FENNELL: They certainly haven't been measured on the Elbow because the period of record isn't long enough. It doesn't extend far enough back in time.
Q. Right. Yet, sir, you think they are a relevant consideration?
A. MR. FENNELL: We11, certain1y there was some events happening in the area at the time, and, you know, from Dr. Klepacki's recent answers to your cross-examination when he was discussing the centroids and the size of these storms, some of these storms can be very large in size and go across basins.

So it's not a far stretch to think that flooding could have been occurring on the Elbow at the same time it was occurring on the Bow. We just don't have a documented record of that, and that's what makes these things very difficult.
Q. Right.
A. MR. FENNELL: And when you don't have a documented record, you can be led to believe that you have actually captured the period of record in your designing with enough safety in mind when, unfortunately, that may not be the case. And under a precautionary principle, you would want to consider the fact that you might not have all the information.
Q. Well, sir, let's drill down on that a little bit further.

So I believe you and Dr. Klepacki have repeatedly pointed to flood events on the Elbow of 1879, 1897, and 1902; is that correct, sir?
A. MR. FENNELL: There were -- there are no documentations of floods because the records on the Elbow do not go back beyond the early 1900 s.

So I think what you're referring to is the documented historical floods on the Bow River, the 18 -- the late 1800s and the early 1900s.
Q. Well, sir, I guess that's my confusion. I had read or understood you and Dr. K1epacki are suggesting that those events should somehow be considered in SR1, right?
A. MR. FENNELL: Those events should be recognized as -- as major events that occurred in the region, and from my -- my opinion, need to be considered when you're -- when you're trying to understand the extreme events that could occur. I know they weren't documented on that river; that doesn't necessarily mean that they didn't happen.
Q. Right, sir, but you'11 recal1 that Mr. Wood, severa1 times, has suggested that it's not appropriate to -- I think the language he used was to assume that floods
that occur on the Bow River occurred with the same severity on the Elbow. Do you recall him saying that?
A. MR. FENNELL: I do -- I do recall him saying that.
Q. And do you agree with that?
A. MR. FENNELL: I don't totally agree with that, and the reason why is because this -- if you're just working with the period of record, you can be -- you can be lulled into a false sense of security that you're actually capturing the magnitude of events that can occur. And under more of a precautionary principle, you would probably look to in excess of a 25 percent increase. You might want to consider something larger because the possibility is there that it has occurred in the past, and the possibility is certainly there that it could occur in the future.

And all this information needs to be pulled together to provide a -- you know, a level of safety that is going to ensure the goals here, which is protecting people and property, all people and property.
Q. Right, sir, but you need also to have quantifiable information, don't you, sir?
A. MR. FENNELL: Certain1y, but sometimes you need to extrapolate.

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
Q. Okay, sir. Well, bear with me then, and let's try to extrapolate.
A. MR. FENNELL: And I will certainly say that anything that has to do with flood statistics, to some degree, is extrapolation.
Q. Right. So let's try this, sir.

You would have heard Dr. Wood -- I'm sorry, Mr. Wood and Dr. Luzi say that, with regards to paleo data, that they are indicative of trends but not necessarily representative of discrete flood events?
A. MR. FENNELL: That's correct. And that information was not presented as such to the indicating particular flood events. But it's true that the risk of floods is higher during extended wetter periods than extended drier periods.
Q. Right.
A. MR. FENNELL: That's just a logical conclusion.
Q. Right. And Dr. Luzi and Mr. Wood, you wil1 recal1, also said that these tools of paleo data, you know, sir, they do not provide engineers with the flow rates and volumes that are needed to design something like SR1. Do you recall them saying that?
A. MR. FENNELL: And I -- yes, I do recall that. And I understand that that limitation and the challenge that -- that the engineering community have with that.

What I'm suggesting is -- is that in order to capture the bookends, to use that vernacular of Mr. Wood, sometimes you need to step out of convention, and that's something that can be difficult because you don't have documented data.

And this is why, as a geologist and a geoscientist, we have these -- these paleo records -these paleo records and proxies that we could use to give us an indication of trends, and then we can use our imagination to then give ourselves an idea of what we could expect.

It may not be exactly what you can expect, but what you could expect.

And I know in the engineering community, the standard practice is to -- to add a factor of safety, but you have to ask yourself, is that factor of safety good enough to address what the bookends could be.
Q. All right, sir, well let's talk about that a ittle further.

> Sir, there are tools that professional hydrologists use to transpose floods from one watershed where a flow rate was known to a watershed where there is no such data; right, sir, that's what you're talking about?
A. MR. FENNELL: Yes.
Q. And you're familiar with some of those methods?
A. MR. FENNELL: I'm familiar with them, yes.
Q. And we can agree, sir, that they're based on a ratio of drainage area; correct?
A. MR. FENNELL: Yes, yeah. They're based on a ratio of drainage area and a number of other factors.
Q. And, sir, if I told you that the drainage area for the Bow River has at Calgary 7,870 kilometres square, would you accept that or agree with that, sir?
A. MR. FENNELL: Yeah, I -- I agree that's probably about right.
Q. And I can tell you, sir, that those numbers came from the Water Survey of Canada publically available data.

Sir, if I told you that the drainage area of the Elbow River upstream of Glenmore was 1,190 kilometres squared, would you agree with that?
A. MR. FENNELL: Sounds about right.
Q. And sir, with reference to your S1ide 3-- I may have that wrong, sir. But anyways, there is a slide, I think it is Slide 3 , that shows the estimates of the magnitudes of those flood events on the Bow River.
A. MR. FENNELL:

THE CHAIR:
I correct?
A. MR. FENNELL: Was it showing the comparison of the Bow and the Elbow with the flood events?
Q. MR. BARBERO: Yes, sir, that's the one.
A. MR. FENNELL: I think it -- does it precede this or is it after this?
Q. I believe it's Slide 4. Apologies, sir. I get confused between your initial PowerPoint and the revised PowerPoint that went in. Sorry.
A. MR. FENNELL: Yeah, no problem.
Q. As I was saying, sir, though, with reference to this slide --
A. MR. FENNELL: Yes.
Q. -- this shows the estimates of the magnitude of floods, flood events on the Bow River, right?
A. MR. FENNELL: Yeah, I believe the Bow is on the left-hand side, and the Elbow is on the right-hand side.
Q. Right.
A. MR. FENNELL: If we could bump that up a ittle bit more, that would be very much appreciated.
Q. And, in fact, if we could focus in on the left-hand side on the gate 1897. I'm most interested in that one.
A. MR. FENNELL:

Okay.
Q. So, sir, looking at this 1897, you would agree with me, sir, that based on your slide here, the flood peaked at

2,265 metres cubed per second. Do you see that?
A. MR. FENNELL: I do see that, yes.
Q. And that's your number right, sir, from wherever you got this document?
A. MR. FENNELL: This is, yeah, from the City of Calgary. This was from their website. I found these. I know that there's been a lot of different graphs flying around over the last few days and months, but this is what I -- I had at hand --
Q. Now, sir --
A. MR. FENNELL: -- for comparative purposes.
Q. Now, sir, if I told you that using a direct ratio, the flow of the Elbow River in 1897 would be estimated to be 342 metres cubed per second, extrapolating from the numbers we just looked at here, would you -- would you agree with that, sir?
A. MR. FENNELL: If you're just doing the straight math, that would be correct; but, you know, there's other factors that could come into play here.
Q. Of course, sir, of course. But if we're just staying with that number, sir, 342 metres cubed per second for the 1897 event on the Elbow, you'd agree with me -- and I'm taking this, sir, from the Golder report that Dr. Klepacki submitted -- you'd agree with me that that rate is approximately a 1 in 20-year flood, isn't it,
sir?
A. MR. FENNELL: If you say so. I haven't done the actual calculations, so I'11 have to agree there.
Q. Very good, sir, thank you.

Sir, are you aware that, with regards to Exhibit 235 -- and we don't have to turn it up, it's a broad question, sir -- but are you aware that Golder performed a flood frequency analysis that adjusted peak flows utilizing the same pre-gauge history from the Bow River floods that you, Mr. Dowsett, and Mr. Klepacki have mentioned? Did you know that, sir?
A. MR. FENNELL: No, I'm not aware of that.
Q. Sir, could we -- I'm sorry, document host, could we bring up S1ide 7, please?

Dr. Fenne11, sir, what are we looking at on the table on the left?
A. MR. FENNELL: On the graph? That is a chart showing the projected change in precipitation from the 1975 to to 2005 baseline under two different climate change scenarios: One being the RCP 4.5, which is shown in grey, and the other in RCP 8.5 which is showing in red.

It's showing that change from the baseline with the values or the lines that follow above the dotted line, which is at zero percent change from baseline,
being an increase, and the -- the lines falling below the line being a decrease.
Q. Sir, yesterday you described RCP 8.5 as the, quote, "worst-case scenario." Do you recall that?
A. MR. FENNELL:

Yeah, it's the scenario where there is no -- no mitigation to -- to greenhouse gas emissions or global warming. So it is what is considered to be the worst-case scenario.
Q. And, sir, it's difficult to see on this table or graph, but I'm going to put it to you, sir, that, in May and June, under the RCP 8.5 condition, the projected increases are, call it, 6 percent for June and maybe 12 percent for May? Would you -- would you have any reason to disagree with that?
A. MR. FENNELL: No, I wouldn't disagree with that, and I would also point that the changes are -- the maximum changes are occurring earlier in the year in around April, which is consistent with the projections for how the shortening of the winter season will occur. And so what we're seeing is, we're seeing a shift in when that precipitation is being received. That's the point here is that we're seeing a shift.

We're seeing a compression of the amount of moisture that's received in the -- in the late winter, early spring season that is, you know, projecting to
increase stream flows more so than they are today.
MR. BARBERO:
Mr. Chair? Mr. Chair?
THE CHAIR:
Yes, Mr. Barbero. Sorry, a little
slow on the mute.
MR. BARBERO: Sir, I just wanted to ask you if you had any views on when to take the morning break as I'm at a good point in my notes to do that now if it was convenient, sir.

THE CHAIR:
That works, actually. Thank you, Mr. Barbero.

MR. BARBERO:
Thank you, sir.
THE CHAIR:
So let's break til1 10:30 then, thank you.
(ADJOURNMENT)
MR. BARBERO: Mr. Chair, thank you, sir, and before I start, just to alert you, sir, I might be another 45 minutes, I think?

THE CHAIR:
Yeah, okay. Thank you.
MR. BARBERO:
Thank you, sir.
Q. Dr. Fenne11, thank you, sir, I think before we broke, you were discussing Figure 13 at Slide 7 , which was a chart, or a table, I suppose, more accurately.
A. MR. FENNELL:

Yeah.
Q. And, sorry, sir, it's been a long couple of days, just remind me if you could, what is that figure speaking
to? In particular, you were make comment about the April/May period.
A. MR. FENNELL: Okay. So that figure is speaking to the change in the precipitation as projected from the baseline under two different climate scenarios, RCP 4.5 , and RCP 8.5.

And we showed a dotted line at zero, which was indicating -- you know, anything above that line is above average -- or, sorry, above the baseline, period, anything below is less than or -- or a decrease in precipitation.

And so what it was showing is that, you know, upwards of about an increase of 30 percent or so occurring more so in the earlier in the year around the April/May period than the May/June period, and that's a function of the shifting of the -- of the winter season to -- to a more protracted situation.
Q. Sir, you'll recall that I put a paper to Dr. Klepacki during his cross-examination. I put it to him in relation to whether or not he was aware of it.
A. MR. FENNELL: Yes.
Q. Document host, if we could bring that up. That's Exhibit 388.

And, sir, while we're waiting for that to come up, I'd just like to ask you whether or not you were
provided with that aid to cross in advance of today?
A. MR. FENNELL: Yes, I think it came in quite late on -- on Sunday evening, but I did have a chance to have a quick -- I mean, a quick review, it's a fairly large document on Monday morning, and then, of course, I haven't had a chance to go through it in excruciating detail, but I have gone through it.
Q. Sir, I don't believe you referenced this paper in your report; is that correct?
A. MR. FENNELL: No, because it was not provided to us at the time.
Q. And in your own study or experience, you'd not come across it?
A. MR. FENNELL: No.
Q. No. Document host, could we go to PDF page 86, please?
A. MR. FENNELL: And if we could bump that up a bit, that would be great, thank you.
Q. I'm most interested in -- well, I guess, technically, first full paragraph, but what appears to be the second paragraph, "A nove1 way..." and, sir, why don't you take a moment to just to review that paragraph, if you wouldn't mind.
A. MR. FENNELL: Sure. Okay.
Q. And, sir, the reason I brought you here was something that you said just for the break, and I hope I haven't
misunderstood it, but I think you were talking about those increases, or projected increases, in March and April as being important because of the interplay between rain and snow. Did I hear that right?
A. MR. FENNELL: What that chart was referring to was precipitation. I would imagine that includes both rain and snow because both are precipitation.
Q. And, sir, I guess, this last sentence: (as read)
"Increased rainfall-runoff was unable to compensate for reductions in snow-based runoff processes for this flood event." That would sort of be at odds with what you were suggesting might happen in an April or March time frame based on that earlier chart, or am I wrong on that? Are we talking about the same processes?
A. MR. FENNELL: I think this is -- this is talking about the interplay between rain and snow, and, obviously, that's a complex interrelationship. It's certainly a function of the temperature and the moisture conditions, all of that kind of stuff, the warmth of the rain -- there's a lot of things that come into this, so I'd have to delve into this a little bit more to understand exactly what they're saying here, and the -- and the sequence of events that led to this.
Q. Sir, it might be on my end, I just -- when you were
talking before the break I thought this twigged.
But, document host, we can take this down.
If we could return to Dr. Fennell's PowerPoint, Exhibit 384, Slide 9, please.

Sir, this slide is entitled, "Risks Posed by Prolonged Drought." And I'm not clear, are you suggesting that these are risks associated with SR1 or are these risks with drought generally?
A. MR. FENNELL: Well, these -- these risks are in the context of the SR1 project, and so when you look at the, you know, the risks that have been identified, they're in particular reference to the SR1.
Q. So, sir, just so that I'm clear, you're saying that, in prolonged drought circumstances, these risks you anticipate to occur at the SR1 site or be associated with the SR1 site?
A. MR. FENNELL: They would be associated with the project. So they're obviously occurring in different places.

If you talk about, for example, the windblown dust, that would be a function of the dust being blown out from the sediment accumulated in the reservoir itself when it's dry.

Certainly, algal blooms and insects, any residual water that may be in the SR1 at any given time, whether

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
it's left over from the capture of flood and release of the water, and some of the water -- the residual water being left behind, because it doesn't completely drain from what I understand, there is a ittle bit left behind because of the way the outlet is designed, it sticks up a bit so sediment isn't pulled directly in, so there's going to be some water left behind. So, that -- you know, that plus some nutrients and some warming could lead to development of some algal blooms.

Ground cracking, obviously, if you have something that's been wet and drys out, it can crack; if the water table drops beneath the SR1 reservoir footprint, you could have cracking.

And, certainly, the wild fire is something that would be happening up -- upstream of the SR1 itself, but that has ramifications for the types of peak flows that one could experience.

So when you have a -- you know, a large burn area, that changes the run-off characteristics of that area, so you could get more -- higher yields coming out of those areas because there's less retention, there's hydrophobic soils that don't accept the water in now, and so you get -- your run-off coefficients change, which will effect your peak flows. And so that's important to keep in mind, that the peak flows can
be -- can be adversely affected by having these types of large -- large fires.
Q. Sir, you agreed with me earlier, you're not an expert in air quality, are you, sir?
A. MR. FENNELL: No, I'm not an expert in air quality, but I am familiar with, you know, the concepts of PM 2.5 and the health implications that they can have -- I've been through enough oil sands hearings to listen to the experts talking to understand what the ramifications of these things are.
Q. Right. Okay, sir.
A. MR. FENNELL: But I'm not an expert -- I'm not an expert in that. But I don't think breathing fine dust is -- is healthy.
Q. Sir, I'd like to take you to Slide 13.

If I understand correctly, sir, on S1ide 13 of your presentation, you're stating that only three hydraulic conductivity field tests were completed; is that correct?
A. MR. FENNEL: That's correct.
Q. Document host, could we have Exhibit 175, page 102, please. And, again, that was page 102, specifically Table 12. If you can zoom in, please, document host. Sir, Table 12, it's entitled "Summary of CPT Pore Pressure Dissipation Tests." Do you see that?
A. MR. FENNELL: I do see that, yeah.
Q. Sir, are you able to tell me, are CPT pore pressure dissipation tests field tests or are they lab tests?
A. MR. FENNELL: I believe those are done in the field. It's a cone penetration test, but I think it's -- what's important, there's an important distinction that needs to be made here.

A CPT test is very different than the types of tests that I 'm referring to. A hydraulic conductivity test that is done in a-- in a monitoring well where an amount of water is evacuated or -- and the water level is allowed to recover is giving you a very good indication of what the local hydraulic conductivity is of the materials.

As far as a cone penetrometer test, you're getting different information than what you would get from a field test doing a drawdown test in a monitoring well.

So you're comparing apples and oranges in this case.
Q. Go to the PowerPoint presentation, Exhibit 384 and Slide 14, please.
A. MR. FENNELL: It's also important to understand that when you're doing a CPT test, you're testing a very small interval of the sediment, but with a hydraulic conductivity test, you're grabbing a lot more
of the formation, so you're getting a better idea of what that formation is able to yield, as opposed to a point measurement. So it's more of a vertical averaging, so you're getting a much better representation.
Q. Right, sir. We're going to come back to that in a moment.

On S1ide 14 here, sir, can you describe for me what you mean by the statement in the lower left-hand side of the side where it says: (as read)
"No sand and gravel was added for the Unnamed Creek."
A. MR. FENNELL: Sure. So what I meant there is, in the previous slides, it did indicate in some of the other exhibits and statements were made acknowledging the presence of a - of sand and gravel deposit in the Unnamed Creek valley that -- that ranged from 1 to 7 metres thick. So that -- that's a fairly significant finding.

The problem here is that it's not explicitly shown in the model there. So it's not accommodated in the model there. So that is something that's missing.

If a feature like that, which is -- is, arguably, a permeable feature that could convey groundwater, is not included in a model layer, then that model layer is

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
not complete.
And so this is what this statement means is that no sand and gravel was added to address that deposit that's been acknowledged by Alberta Transportation existing in the Unnamed Creek valley.

And so that leads to a concern regarding how the groundwater pathways have been dealt with in the model itself.
Q. Zoom host, could I have Exhibit 110, PDF page 39, please. PDF 39. Thank you.

Sir, this is Figure 3-6 entitled "Isopach Map of the Basal Silt, Sand and Gravel." Do you see that, sir?
A. MR. FENNELL: I certainly do, yes.
Q. Yes. You'd agree, sir, that this figure, which comes from the geological model of the area, indicates that this unit can be found in the area of the Unnamed Creek. Do you see that, sir?
A. MR. FENNELL: I think this is where the confusion occurred in -- in yesterday's cross-examination.

This is the basal sand. This is the sand that's sitting on top of the bedrock, which is down anywhere from, you know -- it's deeper down in the section. This is -- this is probably in Layer 4 or 5.

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero

The sand and gravel that I'm referring to is the one that's acknowledged by Alberta Transportation as being in the Unnamed Creek valley close to surface and covered by a thin veneer of glacial material.

This is deep down in the section. I'm not arguing that this has been accommodated in the mode1; this has absolutely been accommodated in the model. The shallower sand has not. And that's a concern, certainly with respect to pathways that would be occurring underneath the earthen damn itself, how the water's going to be moving underneath the -- the footprint of the reservoir itself, how water is going to leak through the base of the structure when it's full into that sand and where that sand is -- is going to take that water, that's what I'm talking about.

That is not explicitly identified in Layer 1 or 2 of the model. If you want to go back to those figures and convince yourself, we can do that again.
Q. Actually, let's go back to Slide 14 if we can.
A. MR. FENNELL: You need to recognize that a deposit like a sand and gravel deposit is -- is going to be a linear feature, like something that's in a channe1.

And so what I would have expected to see is some sort of a linear feature running roughly consistent
with where the Unnamed Creek would have been running underneath the footprint of the reservoir.
Q. Right.
A. MR. FENNELL: And that's not apparent.
Q. Okay, but back to S1ide 14 , sir. You've high1ighted two conductivities, I think they are, in the upper left corner?
A. MR. FENNELL: Yeah.
Q. Why did you do that?
A. MR. FENNELL: The point of that is that -- and you'll also see in there that I've identified where the clay is and where the till is. So the clay is identified in more the purple colour, and the till is identified in the -- in the more the turquoise colour. And so there was confusion as to how the model layer has been attributed with a hydraulic conductivity. So if we know that the clay is the purple area, and the purple in the legend -- or to the left, is showing 7.2 times 10 to the minus 8 metres per second, when you actually go back to the previous slide that shows the model layers and how the hydraulic conductivity is attributed, that purple should be 5.1 times 10 to the minus 6, according to that table.

So there's a discrepancy. I think they might have got the numbers switched.

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
Q. Dr. Fenne11, might I suggest that the confusion is in the slide? Have you confused the clay and the till?
A. MR. FENNELL: No. If you could go back maybe a slide or two.
Q. Zoom host --
A. MR. FENNELL: Yeah, one more back. Keep going. There we go.

So this is Slide 11 I see. Okay. So this is showing the map where the clay deposits are -- the glacial lacustrine clay. So the image on the left is the isopach. So that's basically the thickness. But it's showing where that clay is. Those blue lines are showing that it runs roughly through the centre of the reservoir footprint, and it could be upwards of 5 metres thick, so it ranges in thickness.

The image on the right-hand side is showing a side view looking basically from east to west, and you can roughly see where the outline of the reservoir footprint is as well as the diversion channel.

The swath of brown material that's running through the middle of the reservoir footprint is clay. So it's showing that that's -- that's the -- that's where the clay is. That's the purple area that's shown in Layer 1 of the mode1.
Q. Let's try it a different way, sir.

Zoom host, can I have Exhibit 375. Zoom host, my apologies, don't lose this document, but I'm wondering if we could just take one step back and go to S1ide 14. Actually, no, my apologies, the other slide we were looking at a moment ago.
A. MR. FENNELL:
Slide 11?
Q. Slide 11.
A. MR. FENNELL: Yeah.
Q. Sir, did you create this image based on something in the filed material?
A. MR. FENNELL:

Absolutely not. You can see it's from Exhibit 110, PDF page 47 and Exhibit 110, PDF page 50.
Q. And you extracted it yourself, sir, and inserted it here?
A. MR. FENNELL: Yes. Hasn't been altered. This is -- this is.
Q. Oh, no, sir. I, by no means, am implying that anything was altered, sir; not at all. I was just wondering if there might have been an error in transposition or something.
A. MR. FENNELL: No, no. I mean we could go to Exhibit 110 and verify.
Q. No.

MR. BARBERO:
If I could just have a moment,
sir, or Mr. Chair?
THE CHAIR:
Yes. Please proceed.
MR. BARBERO
Mr. Chair, thank you for that, sir.
Q. Dr. Fenne11, I do apologize. I'm just -- I'm getting quite confused here.

So if you look at the image, S1ide 11 on the right, so the one that's green and brown.
A. MR. FENNELL: Correct.
Q. I want you to keep that image in your mind's eye because I don't think it's accurate when we look at Slide 14. And I'm going to ask that, sir, I want you to tell me, is what you're representing at Slide 11 on the right side, side view of deposit --
A. MR. FENNELL: Yeah.
Q. -- accurately reflected in the image on S1ide 14 that you've coloured?
A. MR. FENNELL: It appears to be.
Q. Are you sure?

MR. SECORD: Just to -- just -- Richard Secord here.

Just a clarification, Mr. Barbero. You're saying that Dr. Fennell coloured the slides on PDF page $14 ?$

MR. BARBERO: No, no, I'm saying he labelled them "clay" and "till."
have been coloured by AT.

1 MR. SECORD: "coloured."

MR. BARBERO :
MR. SECORD:
Q. MR. BARBERO: yes. sir? PowerPoint?

You added the words "clay" and "till"?
A. MR. FENNELL: Not that I can see.
A. MR. FENNELL: Yes, I do.

Yeah. You used the word that he Apologies.

Just to be clear, these slides

MR. BARBERO: Yes, yes, but not labelled. I guess that's where I'm getting confused.

Right, Dr. Fennell, I'm right.
A. MR. FENNELL: I added the clay and the till,
Q. Right. So sir, having regard to the image on Slide 11 and having regards to the image on the upper left corner of Slide 14, is there any discrepancy there,
Q. Right. Hmm. Okay, sir, apologies for taking you down that tangent. It must be my misunderstanding. Sir, can I take you to S1ide 17 of your Sir, do you have Slide 17 in front of you there?
Q. Sir, I can't find anywhere in your report calculations regarding the seepage rate estimate of a hundred thousand metres. Did you prepare calculations?
A. MR. FENNELL: I did a calculation, yes, in my -in my submission that -- that the leakage would likely be orders of magnitude higher, and that's based on the fact that the hydraulic conductivity that's -- that's been used in the model is lower than it should be.
Q. Yes, but those calculations are not in your report, are they?
A. MR. FENNELL: No, they're not.
Q. Sir, going to S1ide 20 of your presentation, you highlight two model simulation results; correct?
A. MR. FENNELL: Yes. These were selected as examples.
Q. And, sir, what model is this?
A. MR. FENNELL: I -- I believe this is the modelling that the geotechnical team did to understand changes in pore pressures and failure modes.

I don't -- I'm not familiar with the models; I'm just working off the information that's provided.
Q. I see. So you've titled it "Geotechnical Concerns", and it looks like a geotechnical diagram to me. Are we agreed, sir, it's a geotechnical diagram?
A. MR. FENNELL: These are geotechnical diagrams that were prepared by Alberta Transportation.

The context here is with respect to pore pressures and how pore pressures change when a loading is placed
on the landscape.
Q. Right.
A. MR. FENNELL: That's just basic knowledge in hydrogeology is the total stress is affected stress plus pore pressure. So...
Q. But you've also --
A. MR. FENNELL: The meaning of this slide is to point out that things do change, and that -- and that things can have failures, and it speaks to whether or not there has been sufficient enough testing of the sediments at particular higher risk intervals to identify whether or not that risk exists.
Q. Right. And you have some text below. Do you see the text below, sir?
A. MR. FENNELL: Yes, I do.
Q. Right.
A. MR. FENNELL: I highlighted that because, I think, as the text says: (as read)
"In addition, effects on pore pressures
were in fact examined under the most conservative scenario, where the complete external loading due to the 'weight of the water' impounded in the reservoir was applied directly to the underlying bedrock, assuming that none
of this external load would be borne by the overlying clays/tills."

The point of putting that statement there was to -- was to indicate that the assessment was being done down in the bedrock while -- and that's important, too, to understand if there's going to be failures in weak areas of the bedrock deposits, mud stones, and things of that nature. But it does not look like this was applied to the shallower intervals, the glacial, lacustrine material, and the tills, and the interface between these.

And so I guess, in cross-examination yesterday, Mr. Back was -- was explaining what had been done is -with respect to the testing of the sediments, but it does not appear that the interfaces between these had been tested explicitly.

And so these can represent higher risk horizons because you have different types of deposits on top of each other, and that can be a plane of weakness. And when pore pressures build up, that can -- that can increase that risk of shear slip, and so that did not appear to be explicitly looked at.

The other aspect of this is that some of these soils have a notable content of what's called montmorillonite clay. So this is a smectite clay, this
is a swelling clay, and when it hydrates, it loses its cohesion, and you could get slippage.

And so it just seemed to me that this might be something that possibly got missed. And so this is why I pointed it out. I'm not a geotechnical engineer, I'm just trying to point out, you know, areas that we need to perhaps consider.
Q. Sir, you -- you understand that the figures on the top do not relate to the text on the bottom?
A. MR. FENNELL: The figure on the top is indicating the change in pore pressure that would be expected when the dam has been built.

And as you can see, there's a pore pressure buildup underneath the dam itself. Not so much underneath the area in the -- in the black hatching, which is the reservoir when it's full, and -- and the weight of the water. So that's -- that is showing that, you know, Alberta Transportation has modelled that pore pressures will change.

What I didn't completely understand on that diagram is that we're showing -- in the -- in the legend -- if we could just bump that up a bit in magnification, document host, thank you. Thank you, that's good.

So we see water pressure in the legend on the --
on the right-hand side. If we look on the -- the right-hand side of the dam itself, the area that -- in the top image, it's an area in blue, and you see the -just underneath the black hatching, the left side of the -- of the toe berm on the dam itself, you see a pore pressure of anywhere from 0 to 20 kPa , that's that blue colour. I think it's 0 to 20 or 20 to 40.

What I find very interesting with this -- and I didn't quite understand it, maybe it could -- be explained to me at some point -- but we have a head of about 20 to 24 metres of water, and so every metre of water is roughly about 10 kPa . So 24 metres of water would be 240 kPa , and that's not being reflected in this image. So that's something I don't understand, and maybe it could be explained to me.

So -- but certainly underneath the dam itself, you can see the pore pressures increasing upwards of 200 to maybe 240 kPa .
Q. Sir, did you prepare this slide deck yourself?
A. MR. FENNELL: I did.
Q. And did you include the highlighting on the text at the bottom, sir?
A. MR. FENNELL:

Yes.
Q. And, sir, you understand that Exhibit 178 are geotechnical diagrams, and I put it to you, sir, that
the text below is not in any way related to the geotechnical, but that is from the groundwater modelling, sir.
A. MR. FENNELL: That's fine. We're talking about pore pressures.
Q. Right, but --
A. MR. FENNELL: Whether it's -- whether it's a geotechnical application or hydrogeological application, pore pressure is pore pressure.
Q. Well, sir --
A. MR. FENNELL: The (crosstalk) -- there shouldn't be.
Q. Right. Well, you understand that the approach to examining the effect of external loads on pressure in the bedrock aquifer has nothing to do with the geotechnical models depicted in this slide; correct?
A. MR. FENNELL: Well, this is where I was confused because we have the internal load of the weight of the water being impounded, placing that on the underlying bedrock, I don't understand how that addresses what's going on in the more -- in the clay and the tills.
Q. Okay, sir.
A. MR. FENNELL: So -- and one of the -- one of the -- one of the comments that I believe I might have made in my submission is that it would have been useful

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
to have been provided with some -- some -- some information from the groundwater model that would show how the pore pressures would change in some simulated hydrographs, how would those pore pressures adjust in time, and that was not provided.

And, as well, nothing was provided under the sensitivity analysis which would have been very useful to have -- to do some more verification.

So these types of things would have been helpful, that's all I'm saying.
Q. Thank you, sir. That's interesting --
A. MR. FENNELL: I'm glad it's interesting, but it's a fact.
Q. Yes, thank you. Mr. Chair, I'm mindful of the time, so I'm going to pick up the pace here, sir.

Can we quickly go to S1ide 23.
Sir, at Slide 23, you write: (as read)
"MC1 is a superior option given its
ability to manage higher magnitude
floods (up to the PMF)."
Do you see that?
A. MR. FENNELL: I do.
Q. Yeah. Who has provided -- or where, sir, is the source for that claim that MC1 can manage a PMF?
A. MR. FENNELL: That has been communicated

SCLG TOPIC \#4 PANEL
Cross-examined by Mr. Barbero
throughout this -- these proceedings.
Q. Right, sir. So what is the source --
A. MR. FENNELL: It is designed to address the PMF.
Q. Right, sir. So what is the source that you relied on for that?
A. MR. FENNELL: I've relied on -- I looked at the Opus reports, I've looked at the documents that have been provided, I've come to that -- I've come to that -- that's my opinion, that it is a superior option.

And it's not just with respect to addressing higher magnitude flood, which is likely to occur in the future given what we've been talking about, it does protect al1 downstream communities, not just downstream of the G1enmore Dam.

It also has the ability to store water. It holds 3500 dam cubed at any given time, and it has the ability to store more water.

So if you really want water security for the city of Calgary, that provides a much better option because SR1 is not designed to contain water currently or for long periods of time.

And so, to me, that's why I use the word "superior," but that's my opinion.
Q. And so you will agree that, at no place in your report
filed at Exhibit 261, have you carried out a technical or detailed assessment of MC1?
A. MR. FENNELL: No, I haven't. Other people have done that, and I've read their materials, and I've taken it at face value. And this is the materials that have been submitted by Alberta Transportation throughout this whole journey.
Q. Mr. Chair, if I could have one moment to review my notes, I may be done.

THE CHAIR:
MR. BARBERO:
Mr. Chair?
THE CHAIR:
MR. BARBERO:
THE CHAIR:
Q. MR. BARBERO: bit more, please. A bit further. A bit more, please. And if we could centre that image such that the legend is in view, as well, thank you.

So sir, what we're looking at here is Exhibit 375, PDF page 48, Figure 17-1.

Sir, would you agree that this figure presents hydraulic conductivity values assigned in the upper layer of the mode1?

And if you need to see the title, sir, please just advise the Zoom host.
A. MR. FENNELL: Yeah, if we can just verify that that's layer one.

MR. SECORD: Yeah, I -- Richard.
MR. BARBERO:
Mr. Secord's been using this document a fair amount, I believe.

THE CHAIR:
Mr. Secord, you were weighing in?
MR. SECORD:
Yeah.
MR. BARBERO:
Mr. Secord, sir, you seem to be cutting out.

THE CHAIR:
Yes.
A. MR. FENNELL: Is there -- is there a title below?

THE CHAIR:
Mr. Secord, I think he's trying to speak. He's on mute right now. Let's just him weigh in. Mr. Secord, were you trying to address? Looks like he's frozen.
A. MR. FENNELL: We11, I can't verify if this is layer 1 or layer 2 or layer 3.
Q. MR. BARBERO: We'11 just wait for your counse1 Mr. -- or Dr. Fennel1.

THE CHAIR:
Mr. Wiebe, is he -- does it appear that he's still online?

MR. WIEBE:
Yeah, it appears that he's still
on1ine. I have him pinned up right now. So if he can hear us, I would just suggest that he stops his video and restarts it.

THE CHAIR: Perhaps, Mr. Kennedy or Ms. Vance, you could give him a call if he has his cell just to see if he's able to reconnect. We may have to break.

MR. KENNEDY: I'11 give him a call.
THE CHAIR:
Thank you.
A. MR. FENNELL: Maybe in the meantime, if we could scroll back to show the legend, and I can just have a look at the...

THE CHAIR: Yeah, it looks like Mr. Secord may have been dropped. He maybe tried to re-sign back in.

Mr. Barbero, maybe it would be a good idea to wait if we can for a couple of minutes.

MR. BARBERO:
THE CHAIR:
Yes, Mr. Chair.
Thank you.
MR. WIEBE:
And I'11 let him in immediately when I see him.

THE CHAIR:
Thank you.
MS. FRIEND:
Excuse me, Mr. Chair. This is Laura.

THE CHAIR:
Yes?
MS. FRIEND: Excuse me, Mr. Chair. This is Laura. Mr. Secord just phoned me, that he got dropped
out, and he's trying to reconnect, to get back into the hearing.

THE CHAIR:
Okay. Thank you, Ms. Friend. Well, we haven't had a lot of glitches, so if this is the first one on day 8 , that's not too bad.

Spring break. Perhaps bandwidth is being used up by gamers.

Do we have just a phone-in option only, Mr. Wiebe?
MR. WIEBE:
Yes, there is that available as well. I won't be able to spotlight him, though --

THE CHAIR:
That'11 stil1 work though, get us by for now.

Perhaps if we forward him, Mr. Friend, or whoever has that number, if we can get Ms. Friend or Mr. Kennedy to give to Mr. Secord.

MR. WIEBE:
Yeah, I'11 get it to her right now.

MR. KENNEDY:
I'm going to suggest it might be important for him to --

MR. WIEBE:
Oh, I think we hear him.
THE CHAIR:
Yeah, we'd like to wait,
Mr. Kennedy. I would agree? Mr. Secord.
MR. SECORD:
So can you hear me now?
THE CHAIR:
Yeah, we can, but if you could just speak up a bit, that would be great.

MR. SECORD:
Great. So I don't know what happened there, but I just -- I just wanted to see the bottom of the slide, that was all.

MR. BARBERO:
Mr. Chair, maybe I could try to reorientate us and ask the question?

THE CHAIR:
Yes. Thank you, Mr. Barbero.
Q. MR. BARBERO:

So, sir, I've brought you to this Exhibit 375, page 48, Figure 17-1, which I understand, sir, is a figure that presents the hydraulic conductivity values assigned in the upper layer of the mode1.

If you wanted to, sir, I could take you to PDF page 46 where there's a bit more of a discussion about the figure, but I'm in your hands, Dr. Fennell.
A. MR. FENNELL: Yeah, I mean it's -- I'd like to confirm that that is Layer 1.
Q. So if you see at the first bullet there, and the second and third bullets. So 17-1, it's identified in the second bullet, sir, as the initial and final calibrated horizontal and vertical hydraulic conductivities. Do you see that?
A. MR. FENNELL: Yeah, it doesn't identify a layer, though. I don't know what layer that is. Is it -- is there some way of verifying that that figure that you showed is Layer 1 of the model?
Q. Well, sir, you have me at a disadvantage. I was just trying to ask a quick question so I don't know.
A. MR. FENNELL: Sorry, I just want to make sure I'm clear on what I'm being asked.
Q. Sir, why don't I do this? Why don't I pose the question, understanding your caveat and then your qualification, and if you tell me, sir, that you require that information to answer the question, then we can take it at that. And if you say you can answer the question without knowing that specifically, then great, we can try that too. Okay?
A. MR. FENNELL: Well, let's see. Yeah.
Q. So if we go back to page 48 there. I'm just -- what I'm trying to get at, sir, is this: You see that there is -- and we can zoom in a little bit just above the B with the apostrophe beside it, if we can zoom in on that area. Do you see that purple outline, sir, that purple shape?
A. MR. FENNELL: Yeah.
Q. You'd agree with me, sir, that's the dam structure; right?
A. MR. FENNELL: It appears to be, yeah.
Q. And you can see there's a green squiggly line kind of --
A. MR. FENNELL: Yes.
Q. -- flowing into the dam, clearly the diversion structure; right, sir?
A. MR. FENNELL: Correct, correct.
Q. And just -- can you confirm, looking at this diagram, sir, that the hydraulic conductivity value for the 1ight blue regions denoted as clay is $5.1 \mathrm{E}-06$ (verbatim). Do you see that, sir?
A. MR. FENNELL: I do, yeah.
Q. And sir, these regions represent the lacustrine clay unit found at ground surface; right, do you understand that?
A. MR. FENNELL: It looks to be, yeah.
Q. So sir, if we go back to your presentation, Exhibit 384, and if we go to S1ide 13, is the value that we were just talking about, sir, consistent with the value of the clay identified in Table E.1-2 as presented?
A. MR. FENNELL: It looks consistent, yes.
Q. Thank you, sir.

Dr. Fenne11, thank you for your time today.
MR. BARBERO:
Mr. Chair, I have no further questions for Dr. Fenne11.

THE CHAIR:
Thank you, Mr. Barbero,
Mr. Fenne11. Sorry, is some -- yes.
So I think we will have some questions from staff
and Pane1 members.
Ms. Vance?
MS. VANCE: Thank you, sir. I actually have no questions for this panel.

THE CHAIR:
Mr. Kennedy?
MR. KENNEDY:
And, in fact, I, too, have no questions. Thank you.

THE CHAIR:
Mr. Ceroici?
MR. CEROICI:
Yes, I have a couple of questions for Dr. Fennel1.

MR. CEROICI QUESTIONS THE PANEL:
Q. Dr. Fenne11, in your presentation, you had one slide that talked about the characterization of groundwater chemistry in shallow and in the bedrock suggesting that, in reality, they're fairly similar. But I just want to, you know, confirm that, in fact, they are a bit different in that you'd expect the shallower groundwater to be, you know, calcium bicarbonate type and possibly more mineralized, given it's a fine grain material --
A. MR. FENNELL: Correct.
Q. -- than the bedrock?
A. MR. FENNELL: Yes. I mean there is -- there are differences for sure, but there's similarities, and I think it depends on where you are.

So if you look at -- obviously the water in the till, the clays, has more contact time. So, you know, by extension, it should have a higher TDS, but it doesn't always.

There's quite a variability actually in the TDS values within the clays and tills, anywhere from 1,000 up to 2,000 miliigrams per litre TDS.

Certainly in the upper part of the bedrock, we're seeing higher concentrations of TDS which speaks to the interaction between the overlying materials and the upper part of the bedrock. As you get deeper down in the bedrock, it sees to be more of a freshening trend.

What -- this is meant to be geochemical evidence that there is some connectivity between the two.
Q. Al1 right. Okay, thanks.

Another question on the -- you estimated the seepage at a hundred thousand I think cubic metres per day, I think it was, versus the Stantec of 483 --
A. MR. FENNELL: 426 I think it was.
Q. 426 , right. So that's roughly three orders of magnitude.

So does that imply in your calculation you're using hydraulic conductivity two layers of magnitude higher?
A. MR. FENNELL: Yes. I mean I've taken the
hydraulic conductivity values that have been provided by -- by Alberta Transportation for the model for the clay and the till. And I actually took -- I just took a geometric average of the two to give me something that would be roughly, you know, in the middle. And then I applied, you know, a -- you know, the vertical hydraulic conductivity averaged over the thickness times the gradient.

So the gradient is, effectively, where is the water table and where would the head of water be in the reservoir? So if we've got, you know, 24 metres over, you know, 2 metres, that's -- that's -- or 12 -- I should say maybe an average of 12 , let's say, instead of taking worst-case scenario, that would be a gradient of 6 and then applying that calculation to an area of about 4.5 million square metres which is roughly the 1 in 100. And that's where I came up with that value. It's in excess of that actually.

But I know it's a back-of-the-envelope type approach, but I would have thought I would have got closer to their number.
Q. Right, what hydraulic conductivity did you use in that, I guess, it would be a Darcy flux calculation type?
A. MR. FENNELL: Yeah, I think it was in the order of, somewhere like 5 times 10 to the minus 7 metres per
second or something like that. So it was kind of in between the 5.1 times 10 to the minus 6 and the 7.2 times 10 to the minus 8.
Q. And would you feel that that hydraulic conductivity is representative of the we'11 call it the lacustrine deposit in the till, fractured or unfractured?
A. MR. FENNELL: I'd say that's probably consistent with a fractured type of media. But again, I think, you know, depending on the actual properties of the lacustrine clay and the --

You know, as you know when lacustrine deposits are laid down, you can have clays and silts and clays and silts and they can be rhythmically distributed. And so you can have some higher hydraulic conductivity associated with the, you know, the coarser fraction of that type of lacustrine deposit.
Q. I just have one last question.

Also in your presentation, you did talk about, we'11 call it contaminants. You mentioned uranium, selenium. I think you possibly mentioned pathogens and maybe some others.

So, obviously, these materials under -- in the subsurface behave in different ways. Could you maybe comment on the mobility of those constituents, given the relatively low conductivity of the materials at
this site? Like, what processes would limit their movement?
A. MR. FENNELL: Well, I'm -- you know, we're talking about pathways, and certainly that's -- this is how contaminants will move through the subsurface through pathways, whether it be a fracture or a sandier higher permeable interval. And so they'11 be conveyed along with the groundwater.

Certainly not everything acts the same. Some things are quite conservative and will actually move at roughly the rate of groundwater flow. Others may be subject to attenuation. They may associate with the -with the mineral surface through absorption-type reactions. They can also be just hydrodynamically dispersed or mixed and concentrations can change that way. So there's a number of things that can happen. Now, it's important, particularly with things like trace elements, you know, such as selenium or uranium, it really depends on their oxidation reduction state. And it will -- it will dictate their mobility characteristics. They're positively charged, or they're negatively charged. And that's the function of the pH of the system; you know, the acidity or the alkalinity of the system, and the redox or the -- the reduction potential of the system.

And so the diagrams that I showed in my -- in my submission provide an example for selenium and uranium, showing the types of species that would be expected at the assumed and documented pH conditions and estimated redox conditions.

And it does show that these are in a mobile state to some degree. They could be subject to some attenuation, but the work would have to be done to assess that. This is why, you know, it was pointed out that there hadn't been any transporter fate-type assessment work done which would have been useful.

Having said that, you know, if we've got some more direct pathways, like a fracture, for example, the water could transit through that much faster than a clay itself or a till itself or a silt horizon.

So there are some complexities here, but there are, you know -- hopefully that's at least helpful with the -- with your question.
Q. Right. But I guess in the end, it's fair to say that these natural attenuation mechanisms will cause contaminant movements to differ for --

Like, for something that's conservative, like chloride, will move much quicker than something that might be absorbed at the source. So not all contaminants will move at the same rate or the same distance?
A. MR. FENNELL: No, each contaminant has its own mobility characteristics and toxicity characteristics, and that'11 be dictated by the form it's in.
Q. And things like pathogens, of course, to a fine-grain material will be even possibly more movement constrained because of biodegradation or pore size, et cetera?
A. MR. FENNELL:

Yes. I mean there is a half life to these pathogens, as we know. But again, if it gets into the right -- into the right pathway, I mean things can move. It's a question of rate and time.
Q. Okay. Thanks very much, Dr. Fennel1. That's all my questions.

THE CHAIR:
Thank you, Mr. Ceroici.
Ms. Roberts?
MS. ROBERTS:
I have one question for Mr . Locke if he's available.

MS. ROBERTS QUESTIONS THE PANEL:
MR. LOCKE:
Hello.
Q. Good morning, Mr. Locke.

THE CHAIR:
That was very quick. Thank you.
A. MR. LOCKE: I got the right button.
Q. This is more curiosity than anything else, Mr. Locke.

I understand that when the fish survey was done in

2020, it had to align with restricted time periods, so it was done in the fall. But our floods don't typically happen in the fall; they more happen in June?

So I'm just curious, would the fish population at the site be much different in June than what was discovered in the fall when they actually did the survey?
A. MR. LOCKE: Yes, anything's possible. It could be the same or it could be different. Looking at whatever population numbers that they had or presence/absence that was done in I'm going to say it was in August, sorry, I forget, 2020. You know, there is other information on the - on the Elbow River for maybe not population numbers but presence/absence, and I think it's pretty safe to say that whether it's spring or summer or fall, that the fish will be distributed up and down through the -- through the Elbow River.

And so I don't know how you precisely would take a number from August and apply it to June, but for the purposes of how I look at the potential impact for this project, I think it's safe to say that potentially fish are going to be there.
Q. Thank you, Mr. Locke. It was more than anything, a curiosity on my part.

That's it for my questions, Mr. Chair.
THE CHAIR:
Thank you, Ms. Roberts.
Dr. Heaney?
MR. HEANEY:
Yeah, question for Dr. Locke.
MR. HEANEY QUESTIONS THE PANEL:
Q. When you were reviewing the entrainment as a proportion of the fish population in the Elbow, would you consider those to be conservative in the sense that they are on the high end of what would be expected?
A. MR. LOCKE: So -- so I've done no calculations with respect to entrainment.

I have read what the proponent has done for -- for calculations, and I believe in the EI -- one of the EIA documents, they -- they used a surrogate. They said that, "We11, if 80 percent of the flow is being diverted down the diversion channel, perhaps we could assume that 80 percent of the fishes are going down the diversion channe1." That's a reasonable surrogate.

But then subsequent to that, they did a detailed calculation based on the work of Dr. Post (phonetic). And I guess for myself, I would view that as a - I don't know what to call it, conservative or that would be the low number for fish.

I think the -- I think it's virtually impossible to calculate with any great degree of precision the
number of fish. Unfortunately, it's, you know, most of this is just -- you know, we're doing the best calculations we can. And I think in my submission, I think that, you know, the number is probably somewhere between the Dr. Post calculation and the original 80 percent. I think it's somewhere in between.
Q. Okay, thank you.

And just sort of a follow-up question, it's the same idea with survival rates. Just do you think that they were conservative in the sense that they erred on the side of the lower -- you know, they expected lower survival rate than what might be possible or the other way around?
A. MR. LOCKE: I guess I didn't look at the survival rate information that closely.

If -- so -- and I wouldn't consider myself an expert in this, in terms of survival rates, but clearly -- and are you meaning once the fish are --
Q. Entrained?
A. MR. LOCKE: -- into the reservoir, entrained, yeah. Well, I think without question there's going to be some sort of mortality associated with it, but I don't know if their calculations would be considered conservative or not. But I think -- I think it's safe to assume there will be mortality, despite the best
efforts for rescuing the fish and getting them back to the river.
Q. And you would agree that the mortality would increase with time in the reservoir?
A. MR. LOCKE: From -- from -- yes, from the information that I've looked at, I think that the sooner the fish go back to the river, the better it is for the fish, yes.
Q. So, you know, you talked about prevention of entrainment and, you know, it's the fence at the top of the cliff, rather than the ambulance down in the valley but -- as the old poem goes, but would you have any further recommendations for improving survival in the reservoir, in particular, things like, you know, would oxygenation be useful, those kinds of things?
A. MR. LOCKE: Yeah, I think if -- if --if -through whatever happens with the release scenario, if both fish and water are retained in the reservoir, and I think the information was that the oxygen would be dropping the longer it's in there, then yes, anything that could be done to keep the oxygen levels up, you know, should be investigated to see if it's feasible.
Q. Okay, thank you, Mr. Locke.

MR. HEANEY: Those are my questions, Mr. Chair.
THE CHAIR:
Thank you, Dr. Heaney.

Mr. Locke, my question may be to you, but it may not be, so I'11 1et Mr. Secord or others decide.

THE CHAIR QUESTIONS THE PANEL:

Q. And it's a bit of -- this question may be a bit out of place, and it's only because of when you folks are up on the panel that made some sense for me to ask this perhaps. But there's been a lot of talk by interveners in particular about alternatives, so we covered that primarily in Topic Area 1, but it's come up even here in some of the cross-examination and some of the evidence provided by I think Dr. Fennell and others.

So my question is, you know, if this has been a viewpoint of interveners that drought mitigation should have been part of the project plan, as opposed to strictly flood mitigation, has anybody asked you or have you looked at the potential for the Elbow to support drought mitigation in any event?

So if drought was to be the primary objective of a reservoir or off-stream reservoir just as an example, were you asked to look at that, the potential for the Elbow to support quantities of water on an annual basis being diverted for drought mitigation?

And if not, would you have an opinion on that, wondering if you have done some of that in-stream work versus in the past?
A. MR. LOCKE: No, I've not looked at any aspect of drought management with this project. I've just looked at the project as presented and the release scenarios as presented.

I'm not -- I'm not sure I can provide a -anything, in terms of drought management. Any time you apply a water management structure, of course, you can solve some problems, but potentially you create other problems.

So I guess that's how, you know, I would approach it is, well, what are the various parameters, things that we would be concerned about. And, you know, my -my assumption would be there would be pluses for some things, and there would be minuses for other.

But I just -- no, I have not thought about the drought side of it at all.
A. MR. FENNELL: Mr. Chair, it's Jon Fennell here. I'm wondering if I could maybe add a quick comment there to help out.

Obviously the reservoir was built -- the Glenmore Reservoir was built where it was because it was on the Elbow River, and the Elbow River has the ability to fill it.

And so I think right there, that speaks to the fact that, you know, that there can be enough water
flowing into it to fill it probably a number of times in a year 'cause there's always flow going out of it.

So it would really depend on the year, right, but I would think that if we were in a low rainfall/snowfall year, I mean obviously the flow coming down the Elbow was going to be much, much less, and the city of Calgary is going to want to hold that water and capture that water because they're going to need it because they won't have it later in the season.

But I think the fact that there is a reservoir there kind of speaks to it.
A. MR. KLEPACKI: Mr. Chair, I did some calculations.

THE COURT REPORTER: Sorry, who's speaking?
A. MR. KLEPACKI: Hello?

THE COURT REPORTER: Sorry, who's speaking?
MR. SECORD:
Identify your voice.
A. MR. KLEPACKI: Yeah, this is -- yeah, you bet.

This is Dave Klepacki I did some calculations awhile ago about the ability -- start me video, yeah. I don't know, my bandwidth is pretty limited here, but I'll give it a go.

MR. SECORD:
A. MR. KLEPACKI: hydrograph, Manley's 2006 hydrograph for the

Elbow River flows, was that the Elbow River could -could fill a 70,000 dam reservoir four times in the course -- located at MC1 four times in the course of a year.

Now, of course, that's not practical because you have the environmental requirements downstream, and you have the city of Calgary's water requirements which are one quarter of the flow of the Elbow River.

So it's realistic to expect you could actually fill a reservoir twice in the -- in the course of a year. Yeah, that's what I did anyway, just simple -simple flow calculations.

THE CHAIR: Right, but there would be a number of other, as Mr. Locke has pointed out, considerations.

So my question is really, you know, this Panel fully understands that it's SR1 in front of us; it's just that because it has been brought up so often, I was wondering if someone with the expertise in looking at what requirements would be required for drought, in terms of water, and whether or not the Elbow would support it any way if it was done. And it doesn't sound like that was considerable to any of you folks at 1east. So that I mean, essentially, answers my questions. Thank you very much.

Thank you, Panel. That is all of the questions
from the Board staff and the Panel.
Mr. Secord, did you have any redirect?
MR. SECORD: I think just two items, and for some reason, Mr. Chair, I don't have any video, so hopefully you can hear.

THE CHAIR:
MR. SECORD:
Yes.
My video doesn't appear to be working, so after the break, I will 10 g off and maybe get this fixed.

MR. SECORD RE-EXAMINES THE PANEL:
Q. But for Dr. Fenne11, and I'm not sure that it's redirect, but with the -- with the permission from my friends, Mr. Kruh1ak, I did send you Exhibit 390 which was the snow data. I expect you haven't had a chance to look at it. Okay, so that's crossed off my list.

And then Dr. Locke, are you there?
A. MR. LOCKE: Yes, Mr. Locke is here.
Q. If he can be brought up?
A. MR. LOCKE: Dr. Locke, Mr. Locke, sorry. I'm sorry, Mr. Locke.

You were having a discussion with Mr. Fitch, and did I hear you correctly saying that -- that under a late release scenario, the fish could be held in the reservoir from June to December.
A. MR. LOCKE: I -- I think the late release is
that water would not come out for a period of time so that fish potentially would be in the reservoir longer, yes.
Q. And that could be as long as -- they could be in there until December of the calendar here; did I hear that correctly? I'm just not sure. Is there anything -I'm not sure that I was clear on your discussion with Mr. Fitch, if you wouldn't mind just clarifying that?
A. MR. LOCKE: I think the question was if we were to do the late release and try to adhere to a 10 percent criterion, that water would continue to be released until sometime in December I think was the question from Mr. Fitch.

And he asked me if -- did I understand that, and I said yes, I understood that it would be -- the water would be held or being released until December, yes.
Q. And is there any -- any other -- any other clarification you need to make with respect to this moving from a late to an early release scenario?
A. MR. LOCKE: Yeah, I think the -- well, the early release scenario would be better. And it was pointed out to me, and I -- I actually did review that document, but for some reason, the paragraph about having the fish -- or sorry, having the release earlier to -- would be beneficial. And yes, and it would be

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord
beneficial.
And I have followed up with that and just said that -- and perhaps they've already done it to come up with the early release is that releasing perhaps a higher volume of water earlier to release what would be turbid water to match the turbid water that would be in the Elbow River may not be suitable for -- for flood purposes in the sense that you may still be over bank, down below, so that would be considered, but then you could maybe fine-tune the release, you know, from, let's say, down to bankful, and then from bankful down. Just looking at what I would consider to be tweaking the early release scenario is what I think would be beneficial.
Q. And then just to be clear, the exhibit that Mr. Fitch referred you to that you said you hadn't reviewed, in fact, you had reviewed that document?
A. MR. LOCKE: Yes. Out of the 50 pages I was expected to review, the -- yes, so I -- and I'm sorry, I don't know the exhibit number, but I call it SIR Package 4 Technical Review Round 2, March 2020. It turns out that, yes I did, and for some reason, I missed that paragraph. But I did not flag any of it as I thought it was all positive, that that was happening.

And I guess my only general observation is that

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord
the -- there was a lot of communication between the regulators and the proponent over a number of years where the regulators were asking these sorts of questions and that the proponent did answer them and provide the, you know, detailed technical information.

MR. FITCH:
Mr. Chair, it's Gavin Fitch.
Just for the record, the witness said he couldn't remember the exhibit number. It's Exhibit 218.

THE CHAIR:
Thank you, Mr. Fitch.
MR. SECORD:
Thank you, Gavin. And that's all of my redirect, sir. Thank you.

THE CHAIR:
Thank you, Mr. Secord, and thank you to the panel on this topic. Much appreciated. Sorry?
A. MR. FENNELL: Thank you, Mr. Chair, and pane1.

THE CHAIR:
Thank you. It's close to lunch break, and we may be able to get through a couple items before we get to potential rebuttal here.

Mr. Williams, did you have any questions for the pane1?

MR. WILLIAMS: No, I didn't.

THE CHAIR:
Okay, well, thank you, and because I don't recall you being online previously. So in terms of direct evidence on Topic 4, Mr. Williams, did you have anything to submit? Sounds like we've got a

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord
bit of a --
MR. WILLIAMS: Yeah, sorry, I think I got rid of it now. Can you hear me?

THE CHAIR:
Yes, that's much better. Thank you.

MR. WILLIAMS: Yeah, okay, sorry about that.
I've got the desktop going with the phone here.
No, I just -- I guess my question on the direct is with evidence that was filed as information, but we -we -- there was some information on water licenses that was filed by AT on Monday, the 22nd, and then a further email on the morning this last Monday at 4:55 a.m.

This information -- this email was sent to us, we can't find it as -- as exhibits in the information. So our belief is that AT won't use any of this information that they sent by email to us, Bill Kennedy and Laura.

I don't need to discuss it in any length. I guess my only question would be to AT is is the intention to use that?

They've already identified our franchise agreement which has this information in it. I just want to know this before we leave Topic Area 4 on water because it's water licenses, because of the opportunity to use this information for us in our closing arguments.

THE CHAIR:
Mr. Williams, was this an

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord
undertaking, Mr. Fitch, or Mr. Kruhlak?
MR. KENNEDY:
Perhaps before Mr. Fitch comes --
COURT REPORTER: Sorry, who's speaking?

MR. KENNEDY:
-- I've had some discussions and --

COURT REPORTER:
Sorry, who's speaking?
MR. KENNEDY:
-- exchanged some emails with Mr. Williams offline and he was -- he wanted to tender documents, licenses and other documents that were identified in aids to cross that were circulated by email by Alberta Transportation, and I could not recall whether they were -- were entered as exhibits, and I directed Mr. Williams perhaps to check the transcript records. And I assume, from his comments now, that they were not used by Alberta Transportation as aids to cross. And my advice to Mr. Williams was those documents then do not become exhibits if they're not actually used as an aid to cross and presented to the hearing.

MR. KRUHLAK:
Mr. Chairman, it's Ron Kruhlak. Perhaps I can also assist as I was -- I submitted those documents, and Mr. Kennedy's recollection's correct. I had a number of aids to cross. I asked Mr. Williams questions, determined it was not needed to put those additional documents to him. And the sole document

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord
that we -- we did mark was the AUC decision pending the franchise agreement because that document was referenced to and discussed at some length. So the balance of those documents are not in evidence.

MR. WILLIAMS:
Okay.
THE CHAIR:
No need for further actions, Mr. Williams.

MR. WILLIAMS:
No, that's perfect. That's all
the requests I had. So I have no other direction.
THE CHAIR:
Thank you, Mr. Williams. Thank you, Mr. Kruhlak and Mr. Kennedy.

Mr. Wagner, do you have any direct on Topic Area 4?

MR. WAGNER:
I do not, Mr. Chair.
THE CHAIR:
Okay, thank you, Mr. Wagner.
So Transportation, do you have rebuttal evidence, and if so, would it be better after a break or before? So first, I guess, is do you have rebuttal?

MR. BARBERO:
Mr. Chair, Michae1 Barbero here. We have no rebuttal evidence.

THE CHAIR:
Okay.
We11, I think, then, before we get started on the next topic area, it is a good time for the break, and it's pretty close to noon, so let's come back at one o'clock and start on Topic Area 5. Thank you.

Re-examined by Mr. Secord

1	(PROCEEDINGS ADJOURNED AT 11:51 A.M.)
2	
3	PROCEEDINGS ADJOURNED TO 1:00 P.M.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	$\frac{1}{1}$ reporting grour

SCLG TOPIC \#4 PANEL

Re-examined by Mr. Secord

1 Volume 8
2 March 31, 2021
3 P.M. Session

5 (PROCEEDINGS COMMENCED AT 12:59 P.M.)
6 THE CHAIR:
on1ine for document management this afternoon?
MS TAYLOR: Good afternoon, Mr. Chair. Yes, I'm available.

THE CHAIR:
Thank you. Any prelim matters before we get started?

MR. SECORD:
Yes, one preliminary matter.
Mr. Chair, I had a conversation with Mr. Barbero and Mr. Kruhlak over 1unch. I was contacted by Dr. Fenne11, and he had a correction that he wanted to make to the evidence that he gave to Mr . Barbero.
A. LOCKE, J. FENNELL, D. KLEPACKI (For SCLG), previously affirmed

MR. SECORD RE-EXAMINES THE WITNESS:
Q. So, Dr. Fenne11, are you there? And perhaps you could just speak to the correction that you would like to make to the record.
A. MR. FENNELL: Yes, I am. Thank you, Mr. Secord.

Mr. Chair, Panel members, I did make an error in
one of my statements.
When Mr. Barbero was taking me through I believe it was my slide deck, Exhibit 384 , PDF page 14 , when we were discussing on length about the -- where the clay and where the till were located, and then he took me to the newly filed Exhibit 375, PDF page 48, and identified where -- where the units were located there.

I went back, and I checked my data, and I actually saw that where I labelled on my slide where clay and till were -- had been shifted. And so I was inaccurate in where I was saying -- where I had labelled things, where those labels had fell. So, in actual fact, they do align.

This doesn't change anything in my original submission for the SCLG back in February, but in my testimony today, it does change some of that and some of my testimony yesterday.

Noting that change, it doesn't actually make any material difference to the findings of my study with respect to the absence of the near-surface sand and grave1 deposits located in the Unnamed Creek which were not included in that model error, as well as the seepage estimates.

So I just wanted to make sure that that was on the record. I do apologize for that oversight. I do
apologize to Mr. Barbero for the confusion and to Alberta Transportation as well.
Q. And, Dr. Fennell, you're going to file a revised Slide 14, and you'11 provide that to me for -- so that we can get it uploaded as an exhibit; is that correct?
A. MR. FENNELL: That is correct, yes.
Q. And would you also, when the transcript comes out, would you also just check the transcript exchanges with Mr. Barbero and provide us with corrections to any of the questions and answers that might be changed as a result of this new information. Is that agreeable?
A. MR. FENNELL: Yes, I'11 undertake to do that.

UNDERTAKING - TO HAVE MR. FENNELL CHECK
THE TRANSCRIPT EXCHANGES WITH
MR. BARBERO AND PROVIDE CORRECTIONS TO ANY OF THE QUESTIONS AND ANSWERS THAT might be changed as a result of the new INFORMATION PROVIDED

MR. SECORD:
And, Mr. Chair, as I mentioned to Mr. Kruhlak and Mr. Barbero, if they do have questions about this, we're certainly prepared, subject to, of course, your permission to provide Dr. Fennell at some point in time, if they have additional questions as a result of this change.

THE CHAIR:
Right. Mr. Barbero, do you have a
redirect at this moment?
MR. BARBERO: No, Mr. Chair, nothing at this moment.

THE CHAIR:
Okay. Thank you. And thank you, Mr. Secord. Thank you, Dr. Fennell.
(WITNESS STANDS DOWN)
MR. SECORD: Thank you.
And just one other preliminary matter. We did get Exhibit 31 from Mr. Kruhlak today, and it does look like I'm going to have questions on this document. And I think what we're going to do is prepare an aid to cross and provide that to Mr. Kruhlak, and I expect that I will have questions for Alberta Transportation tomorrow morning on that aid to cross resulting from Exhibit -- I shouldn't say Exhibit 31, Undertaking 31 that's been marked as Exhibit 390. So just a heads up on that.

And I suppose, at the same time, tomorrow would be also probably a good time to have any questions on the outstanding undertakings. So hopefully if we have any additional questions on the answers to undertakings, we can get them dealt with tomorrow, tomorrow morning.

THE CHAIR:
Agreed. And, Ms. Vespa, that
was -- Mr. Secord, you kind of faded. When you referred to exhibit number, that was 390 . Is that

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

1 right?
2 MR. SECORD
THE CHAIR:
Thank you. And welcome this afternoon, Ms. Vespa.
Okay. Any other preliminary matters before we start?

So Alberta Transportation, we have you down for 30 minutes for direct under Topic 5: Air, Human Health, and Terrestrial. I thought Mr. Kennedy indicated you might have a request for time; is that correct?

MR. BARBERO:
That's correct, Mr. Chair. If possible, we anticipate needing something more in the order of 45 minutes to maybe even an hour for our direct.

I can tell you, sir, we will endeavor to reduce correspondingly in our cross-examination so as not to affect the overall time for this topic, sir.

THE CHAIR: Okay. I was going to remind Mr. Secord, I think he owed me 25 minutes or so. So you might be doing a horse trade here anyway.

Thanks, please proceed.
MR. BARBERO:
Very good, sir, thank you.
We11, good afternoon, Mr. Chair, members of the Pane1. As you know, my name is Michael Barbero with

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Alberta Transportation.
Sir, I'11 be introducing the Alberta
Transportation panel for Topic 5, air quality, human health, and terrestrial.

Sir, as with prior panels, what I will do is, after having the witnesses sworn or affirmed, I will introduce each witness, have them speak to their involvement in this matter.

Following that, Mr. Hebert, Mr. Reid, and -- I'm sorry, Mr. Person, and Ms. Noble will deliver opening remarks.

I can advise that Mr. Person will have a PowerPoint presentation for his portion of his remarks. This has been circulated to counsel and to the NRCB document manager.

Sir, I'11 start off by having those members of what we've been referring to as the "common panel" just confirm that they remain under oath at this time. Starting with Mr. Hebert.

M. HEBERT, M. SVENSON, W. SPELLER, D. BRESCIA, M. WOOD,

J. HALLSON, T. NOBLE, N. DE CARLO, E. TERRY, I. WHITSON, R. PERSON, D. BUCHANAN (For Alberta Transportation), previously sworn, sworn/affirmed

Examined by Mr. Barbero

1 MR. BARBERO EXAMINES THE PANEL:
2 Q. Mr. Hebert, sir, are you there?
3 A. MR. HEBERT: Yes, I am.
4 Q. Can you please acknowledge that you are still under 5 oath?

6 A. MR. HEBERT: Yes, I acknowledge I remain under 7 oath.

8 Q. Thank you, sir.

Mr. Speller, are you there, sir?
A. MR. SPELLER: I am. Good afternoon.
Q. Good afternoon. Can you acknowledge that you still are under oath.
A. MR. SPELLER: Yes, I am.
Q. Thank you, sir.

Mr. Brescia, are you there?
A. MR. BRESCIA: Yes, I am.
Q. Sir, can you acknowledge you are still under oath?
A. MR. BRESCIA: Yes, I do.
Q. Mr. Brescia, I noticed a bit of feedback with your microphone. I don't know if it was just me or not.
A. MR. BRESCIA:
I'11 try to fix that.
Q. Thank you, sir.

Mr. Wood, can you kindly acknowledge that you are still under oath, sir?

Mr. Wood, I don't think I caught that. Again, I

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

don't know if it's just me.
THE CHAIR:
I did not hear Mr. Wood.
Q. MR. BARBERO:

Mr. Wood, are you there?
Mr. Chair, I think I gave Mr. Wood my headset from this morning.
A. MR. WOOD: Testing, testing.
Q. There you are. Mr. Wood, sir, I can hear you now. Can you acknowledge you are still under oath?
A. MR. WOOD: Yes, I am still under oath.
Q. Thank you.

Mr. Svenson, can you acknowledge that you are still under oath, sir?
A. MR. SVENSON: Yes, I am still under oath.
Q. Thank you.

MR. BARBERO:
Mr. Chair, we're also bringing back two witnesses from prior panels to sit on this pane1. Those two witnesses are Ms. Hallson and Dr. Buchanan.

Ms. Hallson, are you there?
A. MS. HALLSON: Yes, I am.
Q. Can you kindly acknowledge that you are still under oath?
A. MS. HALLSON:
Yes, I am.
Q. Thank you.

Dr. Buchanan, are there, sir?
A. MR. BUCHANAN: Yes, I am.
Q. Good afternoon, sir. Can you acknowledge that you remain under oath?
A. MR. BUCHANAN: Yes, I'm still under oath.
Q. Thank you.

MR. BARBERO:
With that, I would ask Madam Court Reporter, please proceed to have the new witnesses sworn or affirmed as per their preference.

Madam Court Reporter, I'11 go through them one at a time.
(DISCUSSION OFF THE RECORD)
Q. MR. BARBERO: I'd like to start with Mr. Person. Sir, can you please confirm that your curriculum vitae has been filed as part of Exhibit 336 at PDF page 79?
A. MR. PERSON: Yes, that's correct.
Q. Thank you, sir. And can you confirm that you work at Stantec as a principal and senior air quality engineer?
A. MR. PERSON: Yes.
Q. Sir, can you speak your education and relevant experience, please?
A. MR. PERSON: Sure.

THE CHAIR:
Sorry, Mr. Person, sorry to interrupt. Ms. Vespa, can you hear Mr. Person?

THE COURT REPORTER: It's very soft. Moving your mic a little closer might help. Thanks, Mr. Person.
A. MR. PERSON:

Try this again. Can you hear me now?

THE CHAIR:
It's a little better. Stil1, pretty soft.

THE COURT REPORTER: If you can keep your voice up, it wil1 help.

THE CHAIR: Just elevate your voice if you could, thank you.
A. MR. PERSON: I completed a bachelor of environmental engineering at the University of Regina in the year 2000, as well as a master's of environmental engineering at the University of Calgary in 2007.

I've worked on air quality assessments, including emission inventories, meteorological and dispersion modelling, and I've led the air quality assessment of -- the air quality assessment components of environmental impact assessments on a number of projects over the past 21 years.

I have appeared as an expert witness at prior regulatory hearings.
Q. Thank you, sir. And what was your role in this application, including involvement or preparation of any records, responses to SIRs or the like?
A. MR. PERSON: I've worked with the air quality

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

assessment team on this project since 2016 to complete the emission inventory, complete dispersion modelling, and write the air quality assessment sections of the EIA.

At the initial stages of the project, my involvement was primarily as a technical advisor and quality reviewer. After submission of the EIA in 2018, I took over as the air quality discipline lead, and I have been responsible for authoring the air quality-related SIR responses and hearing submissions.
Q. Thank you, sir.

Ms. Noble.
A. MS . NOBLE: Yes.
Q. Good afternoon. Can you please confirm that your CV has been filed at Exhibit 336 , page $84 ?$
A. MS. NOBLE: Yes, I can.
Q. And can you confirm that you work at Stantec as a senior principal and senior risk assessment specialist?
A. MS. NOBLE: Yes, I do.
Q. Thank you. And can you speak to your education and relevant experience, please.
A. MS. NOBLE: I completed a bachelor of science in engineering at the University of New Brunswick in 1994, as well as a master's of engineering at the University of New Brunswick in 2004.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

Since 1997, my professional experience has been primarily in the fields of human health and ecological risk assessment and water resources. I've assessed a wide range of contaminants at sites across Canada as well as United States.

I've supported human health risk assessment components of multiple environmental impact assessments since 2003.
Q. Ms. Noble, thank you. I might just add, it's sometimes helpful for the court reporter if you could speak a little slower. I can see her working quite diligently there on the screen.

THE CHAIR:
Mr. Barbero.
Q. MR. BARBERO: Ms. Noble, let's continue on. What was your role in the application, in particular, preparation of any reports, responses to SIRs or the like, and also are there any errors or corrections you'd like to speak to at this time?
A. MS. NOBLE: Yes. I have been involved with the health assessment for the EIA since 2014, providing senior technical support and quality review of the human health risk assessment and public health sections of the EIS.

I have been responsible for authoring human

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

health-related supplemental information request responses and hearing submissions.

While preparing for Topic 5, I found an error in the spreadsheet that was used to generate the maximum predicted concentrations and frequency of occurrence reported in Table 3-9, Exhibit 327, page 188. The error primarily affected the one-hour PM 2.5 concentrations.

There were no changes to the risk metrics, exposure ratios, reported in Tables 3-1 to 3-8, the identification of affected receptors, nor the characterization of the maximum frequency of occurrence as less than 1 percent of the time for one-hour exposure and less than 4 percent of the time for 24-hour exposure.

As a result, there's no change to the conclusion that predicted fugitive dust emissions will not result in significant adverse effects on ambient air quality or human health.
Q. Thank you, Ms. Noble.

MR. BARBERO:
Mr. Chair, we have circulated the revised table to counsel earlier this week. I guess I'm just wondering, sir, if it makes sense that that be brought up now and marked as an exhibit so that we have it moving forward or if there's a preferred alternative

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

approach to that.
THE CHAIR:
I think it does make sense. Let's do that now.

MR. BARBERO: Document manager, if you could please bring that up.

This does not appear to be the correct document.
MR. SECORD :
It's the SR1 errata.
THE CHAIR:
So has that been sent to
Ms. Taylor, Ms. Friend? It will not have an exhibit number; correct?

MR. BARBERO: I believe it was sent to Ms. Friend; but, no, it has not been entered as an exhibit.

THE CHAIR:
Ms. Taylor may not have it quite yet.

Ms. Friend?
MR. BARBERO :
If it's of any assistance, it went in with my correspondence providing Mr. Person's PowerPoint presentation and the opening statement for today's topic. They were all sent together at the same time.

MS. FRIEND:
This is Laura. Maybe she's found it.

MR. BARBERO:
That's the one, thank you.
Q. So, Ms. Noble, is this the errata that you were

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

1 referring to a moment ago?
A. MS. NOBLE: Yes, it is.
Q. And if we scroll down, ma'am, to the next page.

This is the table that's been corrected?
A. MS. NOBLE: Yes, that's right. The values that have changed are shown in blue.
Q. In blue. Thank you, ma'am.

MR. BARBERO:
Mr. Chair, I'd ask we mark this as the next exhibit, sir.

THE CHAIR:
Thank you.
Ms. Friend, the next exhibit number would be?

MS. FRIEND:
THE CHAIR:
MR. BARBERO:
EXHIBIT 391 - ERRATA 1 FOR EXHIBIT
327 - REVISED TABLE BLUELINED
Q. MR. BARBERO: Dr. Whitson, sir, are you there?
A. MR. WHITSON: Yes, I'm here.
Q. Good afternoon, sir. Can you confirm that your CV has been filed as part of Exhibit 336 at PDF page 37 ?
A. MR. WHITSON:
Yes.
Q. And, sir, can you confirm you are director of an independent consulting company in I Whitson Innovations Inc. and are a subcontractor to Stantec Consulting Ltd. for the SR1 project?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

A. MR. WHITSON: Yes, I am.
Q. And, sir, what is your education and relevant experience?
A. MR. WHITSON: I have a bachelor's degree in agriculture, specializing in soil science, and a PhD in environmental biology and ecology, both obtained at the University of Alberta.

I'm a senior soil scientist with more than three decades of soil survey experience conducted in forest, rangeland, and agricultural landscapes.

I have experience in several aspects of soil science in addition to soil survey, soil reclamation, soil water interactions, nutrient transport, and soil quality assessment involving both boreal and prairie soils.
Q. Thank you, sir. And what was your role in this application? Did you prepare reports, responses to SIRs or the like, sir?
A. MR. WHITSON: I conducted the assessment of project effects on soil quality and capability, starting in 2016.

I've been part of the project team since then, contributing to information requests, responses, and preparations for this hearing.
Q. Thank you, Dr. Whitson.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

Mr. De Carlo, are you there, sir?
A. MR. DE CARLO: Yes, I'm here.
Q. Sir, you can confirm that your CV has been filed as part of Exhibit 336 at PDF page 74 ?
A. MR. DE CARLO: Yes, I can.
Q. Thank you, sir. And you can confirm that you work at Stantec as a senior vegetation ecologist?
A. MR. DE CARLO: Yes, that is correct.
Q. And, sir, what is your education and relevant experience?
A. MR. DE CARLO: I completed a bachelor of science in ecology at the University of Calgary in 2000, and I have worked on multidisciplinary environmental impact assessments for approximately the past 20 years.

I have experience working on all aspects of projects from preliminary planning to reclamation and post-reclamation monitoring.

I have assessed potential effects to vegetation in wetlands from various types of projects including roads, flood management, rail, oil and gas, wind energy, and urban development.
Q. Thank you, sir. With regards to this application, what was your role and what involvement did you have in preparing reports and responses to SIRs?
A. MR. DE CARLO: I am the lead vegetation ecologist

Examined by Mr. Barbero

for the vegetation and wetland assessment. I started the work in March 2018. I supervised the revised submission of the EIA and authored supplemental information request responses, and the vegetation monitoring and revegetation pl an.

I am also familiar with the EIA and take responsibility for the vegetation and wetland assessment portion.
Q. Thank you, sir.

Mr. Terry, are you there?
A. MR. TERRY: Yes, I am.
Q. Good afternoon, sir. Can you confirm that your CV has been filed, and that it is correct, as part of Exhibit 336 at PDF page 32 ?
A. MR. TERRY: Yes, I can. But I note that there is a typo in the introduction to my CV. It currently says I have over 20 years of professional work experience. It should say I have over 30 years of professional experience.
Q. Thank you, sir.

And, sir, you can confirm that you work at Stantec as a senior wildiffe biologist?
A. MR. TERRY: That's correct.
Q. Thank you, sir. Now, what is your education and relevant experience?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

A. MR. TERRY:

I completed a bachelor of science in wildiffe biology from the University of Guelph in 1984 and a master of science from the University of British Columbia in 1994.

I have over 30 years of professional work experience. I have provided environmental consulting services to a number of sectors, including government, mining, forestry, oil and gas, oil sands, hydroelectric transportation, and municipal infrastructure.

My area of expertise focuses on wildififerelated issues associated with environmental impact assessment, mitigation, and monitoring.

In addition to consulting, I have eight years of post secondary teaching experience where I taught at Lethbridge College, School of Environmental Sciences.
Q. Thank you, sir. And with regards to this application, can you advise as to your role and what involvement you had in preparing any reports or responses to SIRs?
A. MR. TERRY:

I was the technical advisor for the wildiffe component of the EIA. I provided technical review of the wildiffe information presented in the EIA and prepared the SIR responses and other technical deliverables through this regulatory process.
Q. Thank you, sir.

MR. BARBERO:
Mr. Chair, at this time, I would

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

invite Mr. Hebert, Mr. Person, and Ms. Noble to provide an opening statement with respect to this topic.

Sir, I can advise that the statement has been provided to counse1 and the Board and can be found at Exhibit 380.

Mr. Hebert.
A. MR. HEBERT: Thank you, Mr. Barbero. Good afternoon, Mr. Chair, members of the Board, Board staff, Board counsel, members of other parties, and members of the public watching this afternoon on YouTube.

Alberta Transportation is aware of the communities' concerns regarding air quality, human health, vegetation and impacts to wildilfe and biodiversity, and takes these considerations very seriously.

Alberta Transportation has worked to assess these impacts so as to ensure that a clear and robust understanding of each is achieved.

As discussed in my Topic 4 remarks on Monday, Topic 5 also focuses on environmental impacts and mitigation. And it is important to emphasize the approach taken by Transportation in the assessment of SR1.

The environmental assessment process addresses

AMICUS

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

both project-related and cumulative environmental effects and follows a standardized framework for each valued component.

While I will not repeat all those steps today, the approach comprehensively assesses impacts, considers and confirms mitigations that respond to the significance of the impact, and outlines monitoring efforts that support potential responses.

Transportation's environmental assessment process includes engagement with stakeholders and Indigenous groups to inform the development of mitigation and monitoring plans. This includes a commitment to a community liaison to ensure that impacts felt by the community can be raised and dealt with by

Transportation or, later, Environment and Parks through the life of the project.

Transportation is confident that the work undertaken to date has resulted in a complete and detailed assessment of these issues, and Transportation acknowledges that monitoring and active mitigation measures may be required to ensure the concerns of local residents, Indigenous groups and other stakeholders are properly assessed and, as needed, mitigated.

In a moment, I will ask Mr. Person and Ms. Noble

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

with Stantec to speak to the issues of air quality and human health respectively; however, I would like to take this opportunity to speak to some important matters and considerations that have been advanced by the Stoney Nakoda Nation and others under the topics of wildiffe and vegetation.

We have heard concerns raised by the elders of the Stoney Nakoda Nation on Thursday, and during our consultation prior to the hearing, in relation to the movement of elk in the area of the project site.

The Stoney Nakoda have asked that we consider construction of a wildiffe overpass as a means of ensuring the uninhibited movement of elk between the lands on the east and west of Highway 22.

Transportation has considered this issue in detail and previously discussed with the Stoney Nakoda Nation their view that an overpass over Highway 22 is needed to reduce animal-vehicle collisions and maintain wildiffe movement.

Although Transportation acknowledges that a wildiffe crossing structure, such as an overpass, can be beneficial to reduce animal-vehicle collisions and to facilitate wildlife movement, Highway 22 is a designated highway within the province's high load corridor network which must be able to have the

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

overhead utility lines raised to accommodate loads up to 9 metres high.

The clearance height requirement of 9 metres within the high load corridor coupled with the wildife overpass on top, would make a wildiffe overpass an extremely large structure and presents a feasibility constraint related to the construction.

Moreover, it is important to recognize the potential animal-vehicle collisions on Highway 22 are related to existing conditions in the area and will not be the direct effect of constructing the project. Nonetheless, Alberta Transportation has incorporated design features into the Highway 22 bridge over the diversion channel to facilitate wildife movement, including open span dimensions of 10 metres height by 24 metres width, and a vegetated channel bottom.

This open-span bridge or underpass will provide suitable conditions for ungulates, such as elk and deer as well as other wildlife, to cross, based on recognized practices in previously reported wildiffe use of large underpasses.

The effectiveness of the underpass to facilitate wildife movement will be monitored as part of the remote camera monitoring program discussed in the draft wildife mitigation and monitoring plan.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

I would like to take this opportunity to address the work Transportation will do in a post-flood scenario to address sediment and deposition.

I recognize that the surrounding community is very concerned with the potential impacts of dust generated following the operation of the project, and I will outline Transportation's proposed response. Ultimately, monitoring and adaptive management will be key.

The primary monitoring related to management of post-flood sediment are air monitoring, revegetation monitoring, and soil monitoring.

Transportation will conduct ambient monitoring after a flood event to monitor potential effects associated with windblown sediment. Monitoring for TSP and PM 2.5 at a location near the east PDA boundary will be conducted for 16 months after a flood event; that is, from the time of the flood event ending to the end of the fall season the following year.

The ambient air quality monitoring location will be determined post-flood once sediment deposition areas are visible.

Importantly, whether it is necessary to employ monitoring longer than 16 months will be determined in consultation with stakeholders and regulatory agencies.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

Further, it is important to identify the goals for sediment management and revegetation. And Transportation has four specific goals in this regard: First, safety and operations; second, erosion control; third, weed control; and finally, revegetation. These are outlined in the environmental impact assessment at Exhibit 20 and elsewhere in the materials, such as erosion control measures discussed in the response to Round 1 NRCB supplemental information request at Exhibit 94.

Efforts related to the activities to meet these goals are linked to the amount of sediment deposited in the reservoir.

Alberta Environment and Parks, as operator, will commence work on air monitoring and Goals 1 and 2 at the first available opportunity post-flood release.

It is important to note that the time periods described below are estimates only, and the steps associated with each time period will be advanced at a pace needed to manage the site. In other words, should some of the steps need to be implemented sooner, that will be done.

Specifically, within two weeks of a post-flood release, the following steps will be implemented. There are four: One, surveys of the area will be

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

undertaken to assess for trafficability.
Given the nature of the surface in a post-flood release scenario, one or more combination of tracked equipment, rig matting, geocell installation, or other tools, may be required to ensure access.

Two, surveys of the area will be undertaken to assess for signs of wind erosion or weeds, and each will be responded to as needed. Survey efforts for these items will continue with regularity at no less than two-week intervals.

Three, evaluation will be made of the area for soil moisture to determine if a cover crop can be sown, including consideration for the application of such items such as compost or biochar, as required, to ensure viability of the cover crop.

And, finally, the fourth item. If certain areas of erosion risks are identified and conditions are considered unsuitable for revegetation, alternative erosion control methods will be instituted, including application of tackifier.

Efforts in furtherance of Goals 3 and 4 will commence shortly thereafter and, in any event, no later than between Weeks 2 and 4 post-flood release.

These activities will be conducted at the same time and in association with the efforts discussed in

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

relation to Goals 1 and 2.
By the Week 4 mark, sediment is expected to be dry and, therefore, more prone to wind erosion. At this point, ongoing survey work will be undertaken for any signs of wind erosion, and to assess the status of cover crop growth, natural revegetation, and the presence of weeds.

Any efforts needed to help bolster cover crop will be undertaken, as will efforts to assist natural regrowth. If weeds are detected and found to be above acceptable targets, response options will be considered and applied.

Work will continue at six weeks post-flood release, including ongoing survey of areas for signs of wind erosion, cover crop growth, natural revegetation, and the presence of weeds.

Any areas of concern, whether it be in relation to erosion, growth, or weeds, will be immediately and properly addressed through either further application of tackifiers, reapplication of cover crop, or other appropriate methods.

By eight weeks post-flood release, it is anticipated there will be very few areas prone to wind erosion or where cover crop has not grown. However, should there continue to be areas of concern,
intensified mitigation efforts are available and will be implemented. For example, application of hydroseeding or use of additional tackifier are options that can be implemented.

Ongoing application and monitoring of wind erosion and revegetation will occur over winter months as needed and appropriate. By the following year, likely April or May, work will again intensify with ongoing efforts to survey and identify areas of wind erosion, assessing the status of crop growth, assessing the actual revegetation and monitoring for the presence of weeds.

The various measures that have already been spoken of above, such as hydroseeding or application of tackifier, can be re-implemented and used if necessary.

The sediment management approach described above will be continued as needed until revegetation is successful.

Transportation is prepared to consider the addition of shelter belts at select areas of the PDA or at the request of adjacent landowners.

I will reemphasize that AT recognizes the concerns of the potential impacts in relation to post-flood sediment, and that AT will undertake the work required to minimize these risks.

The issue of weeds in the periods both post-flood release and between flood events has been raised. I would like to say a few words about weed control, as it will be an important aspect of revegetation activities.

A comprehensive weed management plan will be prepared prior to construction. Weed control, at a minimum, will follow the Alberta Weed Control Act regulations, and prohibited weeds will be removed and noxious weeds controlled.

Transportation and the operator AEP will work with Rocky View County on identified suitable weed control measures and acceptable noxious weed levels for inclusion in the vegetation and wetland mitigation monitoring and revegetation plan.

Details on the proposed weed control program are presented in Section 7.5 of the draft vegetation wetland mitigation monitoring and revegetation plan at Exhibit 124.

I now invite Mr. Person to provide his remarks.
MR. BARBERO :
Mr. Chair, it's Michael Barbero here.

As mentioned, Mr. Person has a PowerPoint presentation.

Document manager, if we could please bring that up.
A. MR. PERSON: Good morning. My name is Reid Person. I am a principal and technical leader for air quality with Stantec, and I've been actively involved in this project on behalf of Alberta Transportation since 2016.

I was involved in conducting the initial air quality modelling that is discussed in the environmental impact assessment that has been filed.

I have also reviewed the report prepared by Dr. Zelt on behalf of the SCLG and have sought to address his comments in my responding technical memorandum, which has been filed as part of this proceeding as Appendix I to Exhibit 327.

I would like to take this opportunity to briefly speak to the technical memorandum. As with any modelling exercise, there are always challenges in quantifying and representing real-world conditions that are anticipated to exist at a moment in time. This is particularly true in the case of a project like this which will be operated very infrequently.
Consequently, uncertainties are inherent in the modelling just as uncertainties are inherent in the modelling undertaken by Dr . Zelt.

In an effort to account for uncertainties, a number of conservative assumptions are used. These

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

conservatisms have the intended effect of creating a more robust model and analysis but one which also tends to overpredict modelled scenarios.

As a further means of accounting for uncertainties and ensuring that modelling presents a fulsome picture of what may be expected in relation to a project, a number of sensitivities were conducted. The sensitivities evaluated included considering the effect of the size of sediment and sediment particled size distribution on model predictions. In short, the objective of these sensitivities is to modify certain parameters so as to better understand the implications to air quality should predicted events occur.

For example, one of the criteria that was selected and deselected in various sensitivities outlined in the attached memorandum was the nature of the sediment particles that are anticipated. In certain of the sensitivities, the particles were considered to be more coarse, while in other sensitivities, the particles were considered to be finer. This is an example of how the model can be modified to provide a further level of understanding or nuance to the issue.

MR. BARBERO: Mr. Person, Mr. Chair, my
apologies for interrupting. I have not seen the slides advance. I'm not sure if --
A. MR. PERSON: We're not at the slides yet

Mr. Barbero.
MR. BARBERO :
My apologies.
MR. SECORD:
Exhibit 380.
A. MR. PERSON: We're almost there.

THE CHAIR:
left for now then?
A. MR. PERSON: It can stay up.

THE CHAIR:
Okay, good, thank you. Thank you,
Mr. Barbero.
A. MR. PERSON: As is set out in the environmental impact assessment, and more specifically, in the technical memorandum, our revised sensitivities and modelling do indicate the potential for exceedances of air quality standards on a limited basis and in specific circumstances.

As is further discussed in our environmental impact assessment and technical memorandum, the story does not end with the modelling. Rather, it is important to note that the monitoring will be conducted and, as needed, mitigation employed to address any exceedances.

At this time, I would like to take you to a PowerPoint presentation that I have prepared to help

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

simplify the issues and the conclusions reached.
Good morning. This presentation provides an overview of information submitted in the environmental impact assessment and the March 12th reply submission, included responding to some of the comments provided by the SLG (verbatim).

As stated, I will present an overview of the post-flood windblown dust assessment that addresses the fundamentals of dust emissions, the key assumptions, prediction bias, model results, monitoring and mitigation, and the overall assessment conclusions.

Next slide.
Fugitive dust occurs through a complex physical process controlled by wind speed, soil characteristics, surface roughness, vegetation and frequency or time since disturbance of the soil.

Now soil texture and structure are important as they describe the relative size and proportion of the different sized mineral particles and how they combine or adhere into aggregates. Soil moisture is important as it increases soil cohesion and resistance to wind erosion. And fugitive dust occurs when there is a strong enough wind, a susceptible soil surface, and a lack of surface protection by vegetation or other roughness elements on the soil.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Examined by Mr. Barbero

Next slide.
Soil texture is an important controlling variable for estimating fugitive dust emissions. Sandy soils tend to be most susceptible to wind erosion while finer textured soils tend to be more resistance to wind erosion. Soils with a greater amount of fine grain sizes, while they have a greater reservoir of finer particles that are potential source of fugitive dust, are in fact more resistant to wind erosion, and the texture properties of soils is an important input into fugitive dust emissions.

However, it is important to realize that the relationship between soil texture and emission rate is complex, resulting in considerable uncertainty in the estimate of fugitive dust emission rates.

Next slide.
Now, wind provides the driving force to initiate and control fugitive dust emissions. As wind moves over the ground, the surface exerts a drag force upon the moving air, resulting in the vertical wind speed profile shown in this figure. In simple terms, wind speeds are lower close to the ground and higher further above the ground, and this drag force or shear force is expressed as the friction velocity or what we call u^{*}.

Now, the roughness of the surface is described by
what is called the "surface roughness length" or " Z_{0} " or "Z nought" on the figure.

Next slide.
Surface roughness is important as it controls which areas or types of surfaces have higher or lower wind erosion risk. Surface roughness is also one of the variables that affects friction velocity. Surfaces with low roughness lengths such as those that are relatively flat and unvegetated exert a weak drag force on the moving air, which allows for faster near-surface wind speeds.

Low roughness surfaces are susceptible to wind erosion, and surfaces that are rougher, such as those with vegetation, exert a stronger drag force and reduce wind speeds along the surface. High roughness surfaces are much less susceptible to wind erosion.

This is why we have modelled dust from the sediment areas with deeper sediment which are expected to cover vegetation, and this is why we have not modelled dust emissions from the entire reservoir where we expect vegetation to not be materially affected.

This surface roughness versus wind erosion relationship was shown in Figure 3.1 of Exhibit 67 of the EIA at PDF page 376. We don't need to look at the figure; I 'm just mentioning that for the record.

Next slide.
In case you're wondering why I'm subjecting you to an overview of meteorology and physics, it's because the ENVIRON/RMC method that was used to calculate dust emissions is controlled by surface roughness and friction velocity. And when friction velocity exceeds what is called the threshold friction velocity which we show as the leftmost blue line on the figure, that's when fugitive dust emissions start.

Emissions then increase exponentially as a function of increasing friction velocity. This emission method includes separate emission equations for different soil textures. In the post-flood assessment, emissions have been calculated using equations for silty sand and sandy silt.

Now, this surface roughness length has been a point of disagreement with the SCLG's air quality expert, and I'11 explain why Alberta Transportation's assumption is reasonable and where I think SCLG's air quality expert has erred.

Surface roughness length can be defined in different ways depending on how it's used. Specifically there are important differences in how it should be defined spatially when used as an input to a dust emission calculation versus when it's used as
input to a meteorological model. The surface roughness length value uses input to a fugitive dust emission calculation should be the microscale soil surface roughness length.

Now, this is because this value is used to describe the transfer of energy from the wind to the individual soil particles that govern the initiation of dust emissions. This is what Alberta Transportation has done, and that's described in detail in our March 12th reply submission.

Now, SCLG has not followed this approach and rather has applied a larger macroscale roughness length appropriate as input to a meteorological mode1. This macroscale surface roughness length describes the roughness properties averaged over a larger surface -- or larger surface area or distance. Use of a macroscale roughness length is not appropriate for the fugitive dust emission calculation and results in an overestimation of emissions.

Next slide.
So another one of the important assumptions in the model is estimating the fraction of total particulate matter that's composed or comprised of the more important smaller particles, specifically what we call PM 2.5 or particles with an aerodynamic diameter less

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Examined by Mr. Barbero
than 2.5 microns.
Alberta Transportation adopted a PM 2.5 to TSP ratio of 0.075 or 7.5 percent, and that was based upon conventional US EPA emission inventory guidance for wind erosion.

Now, SCLG has argued that this is not appropriate, and specifically, SCLG has argued that this factor is only representative of an industrial worksite. Mr. Chairman, that's not correct. The US EPA guideline and the references cited in that guideline clearly indicate that the factor is in fact representative of open area wind erosion emission sources for a variety of different soil types and also representative of the ratio measured in dust concentrations over a dry lake bed. So Alberta Transportation has followed an acceptable approach.

Next slide.
So in summary, Alberta Transportation has modelled dusts from the sediment areas with sediment depth greater than 10 centimetres to represent areas where sediment is at risk of erosion, and Alberta Transportation has adopted a surface roughness length in the calculation that is appropriate for quantifying fugitive dust emissions. And these are both realistic assumptions.

Next slide.
Mr. Chairman, SCLG's assumptions result in an overprediction bias. Now, to demonstrate, I have provided a table that compares the calculated fugitive dust emission rates using the assumptions adopted by Alberta Transportation in the first column to the assumptions adopted by SCLG in the second column at a hypothetical or example wind speed of 40 kilometres per hour. The percent difference in calculated emissions is shown in the last column.

Now, what this tells us is the SCLG assumptions result in TSP emissions that are more than 140 percent larger than Alberta Transportation, but much more significantly, the SCLG assumptions result in PM 2.5 emissions that are more than 640 percent larger than Alberta Transportation.

So SCLG has adopted unconventional and non-guideline assumptions that result in significant overprediction bias.

Next slide.
So, in addition to the aspects of methodology we've just discussed, you know, it is important to understand that the post-flood dust assessment incorporates a number of other conservative assumptions. These include assessing high magnitude,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

low-recurrence flood events, such as the design in 1 in 100 floods; using sediment areas and texture estimates from the late release scenario; not accounting for the natural dust control benefit of rainfall; assuming sediment consists of a disturbed sediment surface rather than a more erosion-resistant, crusted or aged surface; and, lastly, not accounting for the influence of the dam structure which sits between the sediment and nearby receptors.

Next slide.
Mr. Chairman, assessing air quality effects associated with fugitive dust is challenging. The sediment properties change over time and meteorology is variable. There is uncertainty in terms of the estimates of sediment area, texture, and uncertainty with the emission estimation methods themselves.

So, in the context of this uncertainty, the post-flood dust assessment evaluated four different scenarios as a sensitivity analysis to consider a range of scenarios with both smaller and larger sediment areas and sediment textures containing higher and lower quantities of finer or fine sediment.

The results for all four of these cases are detailed in the March 12th reply submission. However, for this presentation, I've circled Cases 1 and 4 on

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

this figure, as these two cases represent the ones with the highest and lowest predicted air quality impacts respectively.

Mode1 predictions for Case 1 and 4 will be presented on the next few slides to summarize the impacts on air quality and the sensitivity of the model predictions to these different assumptions.

Next slide.
The two figures on this slide represent maximum predicted one-hour PM 2.5 concentrations for the application case and for the design flood.

The application case means that it represents emissions from the project, combined with emissions that are already in the existing study area.

The Case 1 figure, which represents the smaller sediment area and more coarse sediment, is shown in the left pane, and indicates maximum one-hour average PM 2.5 concentrations are less than the Alberta ambient air quality guideline throughout the entire study area.

The Case 4 figure on the right pane represents the scenario with a larger sediment area and more fine sediment. This figure shows higher predicted PM 2.5 concentrations and indicates the potential for maximum one-hour concentrations to exceed the Alberta guideline in an area adjacent to the PDA.

The area with predicted concentrations that exceed the guideline extends to approximately less than 1 kilometre from the PDA.

In both figures, the overall maximum predicted concentration occurs on the PDA boundary and decreases as you move away from the PDA.

Next slide.
Now, when a maximum predicted concentration is greater than an air quality objective or a guideline, one of the important metrics to consider is the frequency or likelihood of an exceedance to occur and how that likelihood varies spatially over a study area.

In the context of the one-hour PM 2.5 predictions for Case 4, the predicted frequency results indicate a maximum probability occurrence on the east side of the PDA boundary, and the predicted frequency of occurrence or probability of an exceedance decreases appreciably as you move further away from the PDA boundary.

The contour lines shown in this figure represent different levels of likelihood or probability of occurrence. The outermost three contour lines for context represent one-hour, three hours and ten hours of predicted exceedance in a single year following a design flood.

Next slide.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

Similar to the one-hour figures, these two figures on the slide represent the maximum predicted 24 -hour PM 2.5 concentrations, again, for the application case, and, again, for the design flood.

The Case 1 figure on the left pane indicates maximum predicted 24-hour concentrations are approximately equal to the air quality objective right on the PDA boundary but are below the objective beyond the boundary.

The Case 4 figure on the right pane shows higher predicted PM 2.5 concentrations and indicates the potential for maximum 24-hour concentrations to exceed Alberta's air quality objective in an area that's generally to the east of the PDA and extends out to a little less than 5 kilometres from the PDA boundary.

In both figures, again, the overall maximum predicted concentrations occur on the project boundary and decrease as you move away from the PDA.

Next slide.
Again, it's important to consider the frequency or likelihood of exceeding the air quality objective, and that's what's shown in this figure.

In the context of $\mathbf{2 4 - h o u r ~ p r e d i c t i o n s ~ f o r ~ C a s e ~ 4 , ~}$ the predicted frequency results indicate a maximum probability of occurrence in exceedance that occurs on

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

the PDA boundary.
And, again, the contour lines indicate different levels of probability or likelihood of exceedance with the outermost -- outer three most contour lines on the figures representing one day, two days, and three days of predicted exceedance in a single year following a design flood.

Next slide. Despite the uncertainties associated with the fugitive dust modelling, what the air quality model results do tell us is that fugitive dust has the potential to impact air quality and that mitigation monitoring and adaptive management are important to ensuring that there are not unacceptable impacts, and to this point, Alberta Transportation has committed to implementing mitigation to achieve vegetation and control dust. There are a wide variety of effective methods available to control dust.

Alberta Transportation has committed to ambient air quality monitoring near the PDA following a flood, to measure impacts on air quality, and Alberta
Transportation has committed to adaptive management and the implementation of additional mitigation as necessary if excessive TSP or PM 2.5 concentrations are measured.

Next slide.

So, in conclusion, based upon the low recurrence of significant floods, infrequent, and localized risk of elevated particulate matter concentrations, a commitment to implement mitigation, air monitoring and adaptive management, the overall conclusion of the assessment is that post-flood, fugitive dust emissions are not anticipated to have significant adverse effects on ambient air quality.

Thank you.
MR. BARBERO:
Thank you, Mr. Person, and my apologies for interrupting you there.

I believe, Ms. Noble, do you have some remarks to make as well?
A. MS. NOBLE: Yes. Thank you.

MR. BARBERO:
Document manager, I suggest perhaps we should take down the PowerPoint. Thank you.
A. MS. NOBLE: My name is Tania Noble. I'm a human health risk assessment specialist with Stantec.

I've been involved with this project since 2014.
I was also involved in the preparation of the environmental impact assessment, Section 15 entitled "Public Health."

As part of my work with this project, I have had the opportunity to review the air modelling that was prepared in 2017, and to look at the most recent
sensitivities that, as Reid has commented, are set out in the technical memorandum. Consequently, I have provided additional comment and analysis, which is also found in the technical memorandum at Section 3.

As noted by Reid, the modelling and sensitivities, in certain circumstances, do identify potential exceedances of air quality standards. However, an exceedance of an air quality standard or objective, in and of itself, does not necessarily give rise to a human health concern.

Ultimately, it's important to keep in mind that when speaking of possible air quality concerns associated with the project, modelled exceedances of air quality standard or objective are expected to be infrequent, and short in duration as, we know, operation of the project is itself an infrequent occurrence. The meteorological events and conditions that would give rise to air quality concerns are also likely to be infrequent occurrences.

Furthermore, there are proven and effective dust control methods that, when properly applied, can control fugitive dust with a high degree of effectiveness and improve air quality to a point where it meets air quality standards.

Taken together, these considerations, duration,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

frequency, adaptive mitigation, coupled with the proposed monitoring that will guide the adaptive mitigation measures, leads me to have a high degree of confidence that potential effects to human health are not significant.

I will now invite Mr. Hebert to make further comment.
A. MR. HEBERT: Thank you, Mr. Person, Ms. Noble.

As I previously stated, ultimately monitoring and adaptive management will be key, with the primary monitoring, related to management of post-flood sediment, are air monitoring, revegetation monitoring and soil monitoring.

On the issue of monitoring, there have been a number of statements suggesting that Alberta Transportation is simply relying on future monitoring to mitigate the effects of SR1.

In fact, where adverse effects have been predicted in the EIA, Transportation has identified specific measures to proactively mitigate those effects. Draft monitoring programs have been developed for several valued components to verify the effectiveness of planned mitigation measures, and to allow for continued improvement through adaptive management. Monitoring programs are an important tool to reduce uncertainty in

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

outcomes. Monitoring also allows for response to actual as opposed to assumed events. Transportation has advanced a number of monitoring plans and is committed to finalizing them with input from regulators and stakeholders.

Additionally, and, as mentioned, a community liaison will serve as a point of contact with stakeholders and be able to provide interested parties information on air quality monitoring results as requested and to raise concerns with the project's environmental impacts. As I've previously stated, Transportation continues to be quite open to meeting and discussing concerns about the project with adjacent landowners. Alberta Transportation and Environment and Parks will implement the community liaison role during project construction and operations, respectively.

In closing, Transportation, once again, acknowledges the concerns raised in relation to these very important issues. Transportation is committed to constructing and operating the project in a manner that prevents impacts, to ensuring the same, through robust and expansive monitoring, and, when necessary, through use of well-established and proven mitigation measures.

Transportation's commitment to this is not limited to project construction, but rather, is a commitment

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Examined by Mr. Barbero

for the entirety of the project's operational lifespan. Mr. Chairman, before I conclude, this is Transportation's final opening statement.

On behalf of the Transportation witness pane1, I want to thank and acknowledge the professionalism of the Board's support staff, the court reporters, the Zoom manager and document manager. Appreciating this is a hearing under fairly unique circumstances, I'd say 99.9 percent of the time has gone very well, so we appreciate that.

On that note, Mr. Chairman, that concludes my remarks.

THE CHAIR:
Thank you, Mr. Hebert. And I know that our staff and all the support staff will appreciate those comments, so thank you very much.

MR. BARBERO :
Mr. Chair, I see we've tipped over the one hour by a few minutes. We will adjust our cross accordingly, sir, I promise.

And with that, sir --
THE CHAIR: You were pretty close.
MR. BARBERO: With that, sir, that concludes the direct evidence of Alberta Transportation on Topic 5, air, human health and terrestrial.

Sir, this panel is now available for cross-examination.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Examined by Mr. Barbero

```
1 THE CHAIR:
Thank you, Mr. Barbero.
MR. SECORD:
Mr. Chair, we should mark that
PowerPoint as an exhibit.
THE CHAIR:
I was just ready to do that,
Mr. Secord. Thank you.
I was just going to ask if that hasn't been marked as an exhibit, we ought to do that, so.
MS. FRIEND: So this is Laura Friend. The next number would be 392 , and that's the Reid Person PowerPoint.
THE CHAIR: Yes, thank you.
EXHIBIT 392 - REID PERSON POWERPOINT
THE CHAIR:
Thanks, Mr. Secord.
Calgary River Community Action Group. Mr. Cusano, any questions for this panel?
MR. CUSANO
No questions, thank you, sir.
THE CHAIR:
Thank you. Mr. Mercer, City of Calgary?
MR. MERCER: No questions from the City of Calgary at this time, sir.
THE CHAIR:
Thank you.
Ms. Louden -- I think it's still Ms. Louden with Stoney Nakoda, do you have some questions?
MS. LOUDEN:
Good afternoon, Mr. Chairman.
Yes, this is Sara Louden. We do have a couple of
```

REPORTING GROUP

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

questions for this panel.
MS. LOUDEN CROSS-EXAMINES THE PANEL:
Q. I propose to proceed sort of as we have done generally, just ask the question to the panel broadly, and you all can determine who is best suited to respond.

Is it correct that to date, Alberta has not built any overpasses over provincial highways and that the intent is to build the first such overpass over Highway 1 east of Canmore?
A. MR. HEBERT: Mr. Chairman, Mr. Svenson will provide a response.
A. MR. SVENSON: Good afternoon, Mr. Chair. This is Mark Svenson speaking.

While I don't know the specifics, I am aware that yes, the province is looking to build an overpass over Highway 1.
Q. And why does Alberta Transportation consider an overpass appropriate over Highway 1, but not appropriate over Highway 22?
A. MR. SVENSON: I believe Mr. Hebert discussed that during his direct, in that some of the circumstances along Highway 22, including the high load corridor, preclude a wildifife overpass from being a feasible option, and we also consider other options for wildlife passage, including underpasses, as feasible.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

Q. So I take it, then, based on your reference to the high load corridor network, that Highway 1 is not designated as a high load corridor roadway; is that correct?
A. MR. SVENSON: I can't confirm if all areas of Highway 1 are not considered the high load corridor, but the portion west of -- or towards Canmore, so west of Calgary, is not considered in the high load corridor.
Q. Is all of Highway 22 designated within the high load corridor network; more specifically, is the segment of Highway 22 between Highway 1 and Highway 8 currently designated within the high load corridor network?
A. MR. SVENSON: Yes. That section of Highway 22 is designated as high load corridor.
Q. So I've recently had a look at the government of Alberta's website regarding high load corridors, and that segment of Highway 22 between Highway 1 and Highway 8 specifically is not currently listed as a route segment in service under the network.

I understand there was a proposal in 2018 regarding adding that particular section to the high load corridor network. Are you able to provide any insight as to why that may be?
A. MR. SVENSON: Just a minute, Mr. Chair.
A. MR. HEBERT: Mr. Chairman we'11 undertake to

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

provide that response through a formal undertaking. UNDERTAKING - TO ADVISE WHY THERE WAS A PROPOSAL IN 2018 REGARDING ADDING THE SEGMENT OF HIGHWAY 22 BETWEEN HIGHWAY 1 AND HIGHWAY 8 TO THE HIGH LOAD CORRIDOR NETWORK
Q. MS. LOUDEN: And if it is determined that it has been added to the high load corridor network, if you could also add in that undertaking when that occurred.
A. MR. HEBERT: We'11 add that component to the question to the undertaking.

UNDERTAKING - IF IT IS DETERMINED THAT
THE SEGMENT OF HIGHWAY 22 BETWEEN
HIGHWAY 1 AND HIGHWAY 8 HAS BEEN ADDED
TO THE HIGH LOAD CORRIDOR NETWORK, TO
ADVISE WHEN THAT OCCURRED
MS. LOUDEN:
Mr. Chair, if you could just give me a moment to review my notes here.

THE CHAIR:
Yes, please take a moment.
Q. MS. LOUDEN:

Can you explain what the purpose of a high load corridor is?
A. MR. SVENSON: Mr. Chair, this is Mark Svenson.

A high load corridor is a designated route for oversized loads to make their way to different

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

destinations within the province of Alberta.
Q. What is the east-west equivalent, I suppose, of the high load corridor? Which route goes east-west for that purpose?
A. MR. SVENSON:

There are different sections of highways throughout the province that run both north-south and east-west that are designated under the high load corridor. One such segment is Highway 14 east of Edmonton.

MS. LOUDEN:
Mr. Chairman, I believe for now, that concludes my questions.

THE CHAIR: Thank you, Ms. Louden. Thank you, pane1.

Mr. Secord, SCLG has a couple of questions for the pane1.

MR. SECORD:
At least two, at least two.
I should, to give you a roadmap, my partner Ms. Okoye will be asking Pane1 5 questions about vegetation, wildiffe, and biodiversity. She tells me that she thinks she has a couple hours of cross, and I expect that will probably, with the afternoon break, probably take up the balance of the afternoon.

Should she miraculously finish ahead of schedule, then I will have questions for Mr. Person and for Mr. Hebert relating to air quality, soils, and terrain.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

I expect to have over an hour of questions, perhaps more, depending, of course, on the answers I get and whether the questions are answered the first time or whether I have to repeat them three times makes a difference.

So I expect, though, in any event, that I would finish up on Thursday morning. And as I did mention to you, I expect to have some questions on answers to undertakings, so I would propose to do that as soon as I finish up my regular questions.

And just a question in relation, I'm assuming Mr. Wood is on the panel. He's a regular, so I think there won't be any issue about -- about having the right people there. So, that's the roadmap for this afternoon.

THE CHAIR:
Okay. So, Mr. Barbero, in terms of splitting your panel into this afternoon and tomorrow morning, that will present no challenges for having your panel members here both this afternoon and tomorrow morning?
MR. BARBERO:
Yes, Mr. Chair, no issues. Our panel is here today and tomorrow, sir.
THE CHAIR:
Okay. So, Mr. Secord, sounds good. And we can then -- I have a note here for us to kind of clean up the documented undertakings. Perhaps

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

sometime before noon tomorrow we can do that. We don't have to time that, but as long as we get to that tomorrow, of course.

And the floor is yours, Ms. Okoye.
MR. KRUHLAK: Sorry, Mr. Chairman, it's Ron Kruhlak. Just before Mr. Secord commences, I just wanted to perhaps propose that -- maybe see where we go at the afternoon break, but it might be a possibility, if the Panel is prepared to consider sitting longer this afternoon, we endeavor to complete the cross by SCLG, recognizing that perhaps we just come back in the morning to -- with respect to undertakings. I think we're planning to try to provide Mr. Secord with the balance of the undertakings later today. So that might be a target.

It may be premature to float it more formally right now, depending on how, as Mr. Secord says, things unroll. But I at least wanted to raise that now, and perhaps we can consider whether it has merit at the midafternoon break.

THE CHAIR:
At the break, sure.
MR. SECORD:
I would just like to say one thing on that, and I am firmly opposed to sitting after 5:00. I have found the hearing schedule from 8:30 to 5 very challenging and exhausting. Quite frankly, I don't

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

know how the four Board Pane1 members can absorb all of the information that comes in over such an extended period of time. So I would say in -- under no uncertain circumstances am I prepared to sit beyond 5 tonight.

And in terms of tomorrow, there is a small agenda tomorrow. We have my friends, the Stoney Nakoda, with apparently half an hour of examination in chief, and I note we might hear from Ms. Louden on that. But generally speaking, you know, that is not a big time factor.

And then the only other issue is the SCLG Panel 5, that is scheduled to be an hour. So we have maybe hour and a half of examination in chief, perhaps Mr. Wagner has five minutes.

So I think, I just don't see any issue with finishing in a reasonable time tomorrow, and I see no need to extend the sitting hours beyond 5:00 this afternoon.

THE CHAIR: Well, let's see where we're at. I mean we will be -- if we went even till -- well, okay, so $5: 30$ would give us two hours, plus a little bit, but we'11 have a break. You would need -- you had about four hours, just over four hours, Mr. Secord, so that would take us to at least 10:00 tomorrow and then your

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

examination, your direct. And Transportation has slotted 300 minutes, so that's well over -- that's about 5 hours.

Now, I don't know. Do we expect them -- I mean, we should hear from Transportation, but it would be good to -- if we're going to break until Tuesday, we could hold some over to the next week and then have finals, but it would be nice to finish up tomorrow for sure.

MR. SECORD:
Yeah, I don't think --
Transportation has never used their allocations up, and I can't imagine they have 300 minutes of cross. But I'm sure Mr. Kruhlak -- if we do have 300 minutes of cross from AT, I would be very surprised.

MR. WILLIAMS: Mr. Chairman, if I could interrupt. It's Bob from Calalta. We will have some cross questions for Alberta Transportation on Area Topic 5.

THE CHAIR:
And how long are you looking for,
Mr. Williams?
MR. WILLIAMS:
Probably ten minutes.
THE CHAIR:
Okay. Thank you.
Mr. Kruh1ak?
MR. KRUHLAK: Wel1, Mr. Chairman, I appreciate Mr. Secord's comments, but I trust this rests with the

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Louden

Board's decision for you to make when you see how the afternoon unfolds.

We will probably not be using our entire time, but I still remain concerned about -- I think it's probably in all parties' interests to see if -- to ensure the matter can try to be concluded on the evidentiary side by the end of day tomorrow.

So with that, I'm quite prepared to see where we stand at the mid-break.

THE CHAIR:
Thank you, Mr. Kruhlak, and we are committed to concluding by close of day tomorrow. And Mr. Secord, that might mean a later day tomorrow, if necessary. But Mr. Kennedy?

MR. KENNEDY:
I was simply going to say, it's the Panel is the best judge of whether it's capable of working through long days of evidence, and it is common practice for the Board to extend its days where appropriate. I think Mr. Secord has been involved in many proceedings that have gone into, frankly, the late evening hours, and these hearings have turned out to be productive for the Panel and productive for the participants.

So perhaps when we revisit it in the afternoon, we'11 have a better idea as to where SCLG is in its cross, and we might spend five minutes just kind of
running out the time forward so that we can complete the evidentiary portion of the record by end of day tomorrow.

THE CHAIR:
Yes, I can -- Mr. Kennedy, thank you. I can assure you that the Pane1 meets at the end of each day and we do a recap and summary, and we take no issue with sitting longer if necessary.

Okay. Thank you. Ms. Okoye.
MS. OKOYE:
Thank you, Mr. Chair.
Can you hear me all right?
THE CHAIR:
Yes, I can. Thank you.
MS. OKOYE:
Perfect.
MS. OKOYE CROSS-EXAMINES THE PANEL:
Q. Good afternoon. Good afternoon, Pane1, and good afternoon, AT pane1. My name is Ifeoma Okoye. I'm one of the counsel for SCLG.

Mr. Hebert, can you confirm for me that, in relation to soil -- for soil Dr. Whitson will be speaking to that. And for wildiffe and vegetation, I have noted down Nick De Carlo, and wildiife, Mr. Terry. Do I have those correct?
A. MR. HEBERT: You are correct, and certainly we'11 direct traffic if we reach any moments where things get crossed.
Q. Very well. Thank you.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Okay. So starting first with Mr. De Carlo. In Exhibit 325, PDF 58, paragraph 206 -- paragraph 206(iv) -- and you don't need to bring that up but if you do need, fee1 free to ask for it -- AT states that: (as read)
"In an effort to reduce weed dispersal,
mitigation measures, such as
vehicle-cleaning stations, will be used
to limit the potential for the
introduction of new weeds to the PDA
during construction and post-flood
operations."
Can you confirm that the vehicle-cleaning stations are to be used to limit the introduction of new weeds to the PDA?
A. MR. DE CARLO: Mr. Chair, that sounds correct.
Q. Does AT not intend to clean vehicles when they leave the PDA to prevent the spread of weeds outside of the PDA?
A. MR. DE CARLO: Currently, the focus is, first off, on ensuring that vehicles arrive clean to the PDA to prevent the introduction of weeds to the project. And in addition to cleaning of vehicles, currently there has not been a -- any discussion on ensuring vehicles are cleaned leaving the PDA as well.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Q. Okay. Thank you. So in relation to the location of the cleaning station, has that been determined where the cleaning stations will be placed?

So, specifically I'm trying to find out whether AT intends to place the cleaning stations at exit and entry points of the site?
A. MR. DE CARLO: The locations have not been determined at this point. However, it makes most sense to have cleaning stations located at least at the entrance or very close to the entrance and exits of the site.
Q. So would every vehicle accessing the site be required to report at these cleaning stations upon arrival and when leaving?
A. MR. DE CARLO: At a minimum, all vehicles will be required to be inspected when they arrive at the site to ensure that they are clean and free of debris, and if they are not clean and free of debris, that they are thoroughly cleaned before further entering the site.
Q. So, can you explain how AT intends to monitor compliance with the required level of cleaning -- first of all, can you tell me what is the level of cleaning that is required to be undertaken on vehicles and equipment at the cleaning station?
A. MR. DE CARLO: So the details have not been

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

finalized or worked out at this stage. However, typically, vehicles would have to be completely free of mud, plant debris, and they would be visually inspected.

An environmental inspector would probably be on site to ensure that the vehicles are clean and documentation to record that the vehicles have been inspected are sufficiently cleaned and, if not sufficiently cleaned are -- or are sufficiently clean are cleaned.
Q. So will the ideal requirement to have certain vehicles steam washed and perhaps apply -- perhaps a bleach solution applied to that as part of the cleaning process?
A. MR. DE CARLO: As I indicated, the details of the cleaning station have not been determined at this point. Those are methods that could be included, but we have not selected those measures yet.
Q. Okay. So, we've talked about having the cleaning stations available for use during construction.

So my next question is will those cleaning stations be available for use by operators accessing the site during maintenance and also during flood operations?
A. MR. DE CARLO: Those decisions have not been made

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

at this point. Again, I'd say that, at the minimum, all vehicles would have to be clean before they arrive at the site. During operations, I believe there will be more limited construction -- or vehicle traffic to the site. So it's probably much easier to ensure that vehicles are clean prior to leaving their main facilities, and before arriving on site.
Q. So, but will those cleaning stations -- so you finish your construction, you pack up your construction equipment, and then the construction crew goes.

Now, the question is, so, say, five years, ten years down the road, you then have to do some maintenance work, will there still be cleaning stations available for use at that time or is that -- that hasn't been considered?
A. MR. DE CARLO: I wouldn't say it hasn't been considered; it's not been finalized. And like I say, I'm not aware of much in the line of operation work that would occur five or ten years down the road where there would be multiple vehicles and a cleaning station would be required.

I think, again, it would be simpler to ensure that vehicles and have an inspection at the main site where vehicles are demobilizing from and documentation to ensure that they are clean before they leave their

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

site.
Traffic would be on -- anticipated would be on main highways and they would not be travelling down dirt roads, but if that was the case then, yes, I think there would be the need to consider cleaning vehicles before they do arrive on site.
Q. Okay. So if I hear you correctly, so you have one maintenance or one inspector -- maintenance inspector going into the site to look at the project infrastructure.

So you're saying that AT will require that maintenance inspector to, first of all, make sure that his vehicle is very well cleaned, according to whatever plan you have in place, before they get onto the site?
A. MR. DE CARLO: Yes. I can't confirm that that is in the plans to date, but it is a reasonable measure to help manage the potential for weed introduction to the site.
Q. So weed introduction to the site can also occur through construction materials, example grave1, riprap, lumber, imported to the site and the workers walk here. Do you agree with this proposition?
A. MR. DE CARLO: Yes, I agree with that position.
Q. So does AT -- and perhaps this question is for Mr. Hebert, does AT commit to sourcing and using only
weed-free construction materials, example, riprap, gravel, at the site?
A. MR. HEBERT: One moment, Mr. Chairman.

Mr. Chairman, I'm informed that it is not possible to confirm weed-free aggregate, but I believe the question also addressed other supplies or resources. Alberta Transportation will take that away as an undertaking to provide a written response.

UNDERTAKING - TO ADVISE IF AT WILL
COMMIT TO SOURCING AND USING ONLY
WEED-FREE CONSTRUCTION MATERIALS AT THE

SITE

Q. MS. OKOYE: Thank you, Mr. Hebert. So going back to you, Mr. De Carlo.

I don't know, my voice seems to be breaking up here and there.

So one of the mitigation measures identified by AT as a reduction to potential effects on vegetation and wetlands is to restrict all construction activities to the approved construction footprint. And that was identified in Exhibit 31, PDF 42. Do you recall that?
A. MR. DE CARLO: Subject to confirmation, but that sounds correct.
Q. So how does AT define construction footprints? Is that within the PDA?
A. MR. DE CARLO: Just one moment.

I would direct you to Exhibit 31.
Q. Perhaps we can have that pulled up on the screen, please.

Document manager, if you could pull up Exhibit 31, please.
A. MR. DE CARLO: And then PDF page 23 of 67.

So this figure here illustrates the construction footprint. The figure shows both the project construction area and the major components.
Q. Okay. So is the construction footprint all within the PDA shown by the black lines on that figure?
A. MR. DE CARLO: That is my understanding, yes.
Q. So any construction occurring or any movement of vehicles outside of the PDA is outside of the construction footprint; is that correct?
A. MR. DE CARLO: I'm not quite sure I understand the question.
Q. So my question is if there is any movement of vehicles outside of the area identified in black on Exhibit 31, PDF 23, that would be outside of the construction footprint and outside of the PDA. Is that your understanding as well?
A. MR. DE CARLO: Yes, as well, though, within the black line, we have the hatched area as well. So
vehicle movement outside of that hatched area but still within the black line would also be outside of the construction footprint.
Q. That's fine. Thank you.

Document manager, you can put the document down, please.

So in Exhibit 20, PDF 86, Item 3.3.1.3, AT states -- and if you need that brought up, that can be brought up as well.

Perhaps I think we will bring it up, but I'11 read to you what that particular reference I'm referring to, what it says. So it says, in quotes: (as read)
"Excavated material will be trucked from
the diversion channel using the base of
the channel and a haul road on the
southeast side of the channel. Spur
roads will connect to the channel base
with the parallel haul road, which will
connect to the local road network."
So my question is if we go to PDF 81-- and, document manager, you can pull up Exhibit 20 - so if we go to PDF 81.

So if you look at that page, I think at the bottom, it says those are permanent access roads. Figure 3-11; correct?
A. MR. DE CARLO: Could we increase the magnification of the figure, please?

And your statement again, could you repeat it, please?
Q. Sorry, I haven't asked the question. I'm just trying to confirm that the figure we have on the screen is Figure 3-1 in relation to the permanent access roads that will be on the site.

So now, in relation to what I have read earlier, that excavated material will be trucked from the diversion channel using the base of the channel and also a haul road. I believe that's the haul road shown in green on that figure; is that correct?
A. MR. DE CARLO: I think that question is better answered by somebody else on the panel who is more familiar with the details on this figure.
Q. Mr. Hebert, who would that be?
A. MR. WOOD: Mr. Chair, Ms. Okoye, it's Matt Wood here. I can attempt to answer the question.

Ms. Okoye, if you wouldn't mind, would you mind please repeating it? I'11 just take my mask off.
Q. So the reference that I have read earlier, from PDF 86, same exhibit, 20 , indicated that excavation material would be trucked from the diversion channel using the base of the channel and the haul road on the southeast

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye
side of the channel.
And the question is if the haul road we're talking about is the line shown on this figure in green?
A. MR. WOOD: Ms. Okoye, Mr. Chair, yes, I believe that that is the case, recognizing that, towards the end of construction, they may be upgrading that to serve a bit more as a maintenance access road from what may just be a road passing under for large haul trucks.

So, as was mentioned, the haul will happen in the bottom of the channel and also on the south side of the channe1. And that green line does follow the south side of the channel, although, during construction, there may be very small deviations from that line, but generally in that direction, yes.
Q. Thank you. So if a haul truck is filled with excavation material from the diversion channel and that haul truck needs to get to the floodplain berm that is at the south end of the PDA, which local road network will that truck take?
A. MR. WOOD: Mr. Chair, much of the material to construct the floodplain berm is being sourced locally there. It is possible that material would need to move around the site down 22; however, it is not the bulk of that material.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

Q. Okay. So reference to what I had read before was that the intention is to take material from the diversion channe1, move it down to the south end of the project to use in constructing the floodplain berm.

And if I hear you correctly, you're saying that the haul truck filled with that excavation material wil1 take the Highway 22 and go south and then get to the floodplain area; is that correct? Sorry, floodplain berm area.
A. MR. WOOD: Mr. Chair, this is Matt Wood. That would be the route that it would need to take if it were to move -- if the contractor were to need to move material from that location, from the channel location to the floodplain berm.
Q. So in terms of distance, are you able to speak to the distance that the truck will go from that diversion channe1, join Highway 22 southbound, and then cross -- cross I think there's -- Elbow River -- I think it's an overhead bridge there that the truck will take, cross that bridge, and then go all the way down to the south where you have the floodplain berm.

So can you tell me what the distance is from the diversion channel to the berm?
A. MR. WOOD: Mr. Chair, I don't have the specific number, but in reference to this figure and

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

recognizing that the roads -- the horizontal roads there are separated by about a mile, it appears to me that it would be approximately a mile and a half to two miles to do that route.
Q. Okay. And in kilometres, that's about 2 to 4 kilometres? Sorry, I work in kilometres, not miles.
A. MR. WOOD: So do I. I just know that the sections and quarter sections are in miles, so I was just trying to do that math there. But I don't have that handy; I could do the math.
Q. That's fine. All right. Thank you, Mr. Wood.

So can you confirm for me that that south portion of Highway 22 going towards the south end of the PDA is not within the project's footprint and is not within the project development area? Any of you can confirm the map? Mr. Wood or Mr. De Carlo?
A. MR. WOOD: Mr. Chair, it's Matt Wood. I can confirm, as shown in the figure, that area on the road is not considered within the PDA.
Q. Thank you. So when a truck filled with excavation material from the diversion channel is moving down to the south portion where the floodplain berm is, will that truck be covered in any form or shape? So will the excavation material be covered?
A. MR. WOOD: Mr. Chair, it's Matt Wood. If I

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

may have a moment to briefly caucus.
A. MR. SVENSON: Good afternoon, Mr. Chair, this is Mark Svenson again.

Yes, I believe it is required that loads be covered when they are being transported on local and provincial roads.
Q. Thank you, Mr. Svenson.

So in terms of cleaning the haul trucks, so before the truck leaves that PDA, I'm still looking at the figure on the screen, before the haul truck leaves the PDA and joins Highway 22, will that truck be cleaned before it leaves the site?
A. MR. DE CARLO: Mr. Chair, Nick De Carlo here.

I think it is a reasonable measure that would be implemented to manage the issues of weeds dispersing off the project.
Q. So Mr. De Carlo, do you agree that it's likely that weed can actually disperse off of the project area?
A. MR. DE CARLO: I can agree that without mitigation, weeds can disperse off of the project, yes.
Q. So in AT's reply evidence, Exhibit 325, Document manager, could you please take the document down. Thank you.

So in AT's reply evidence, Exhibit 325, PDF 57, paragraph 205, it indicates that : (as read)

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

"...AT agrees that a robust and comprehensive weed management plan is needed for the project..."

And then it goes on to state some elements of that weed management plan.

I would like to refer you to Exhibit 273, which is Dr. Osko's report at PDF 27, and I'11 read to you some of the recommendations in relation to some preventive measures that Dr. Osko had indicated should be included in the weed management plan. And I'd like to get whether AT agrees to that proposition or not.

So Dr. Osko says that, and this is PDF 27, if you want to look at it: (as read)
"A dispersal disruption framework for
the SR1 project would be more
comprehensive than just listing these two strategies."

I think it's towards the lower part, yeah, hang on, I'11 just pull up my screen. Can you just increase the size, please? Thank you. Just give me a second, I'll pull up mine. I can tell you exactly where that is.

So sorry, that's actually the second paragraph, I'm sorry. And somewhere in the middle, sorry, PDF 27 , second paragraph, Appendix U. Do I have that wrong?

Yeah, that's it. So towards the middle of that

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

sentence, you see where it says: (as read)
"A dispersal disruption framework for the SR1 project would be more comprehensive than just listing these two strategies. It would flesh out the details of how cleaning vehicles and equipment would be achieved, including where to locate wash stations and how to design them, cleaning procedures, how to manage potential weed transport by commuting employees..."
And so on: (as read)
"It would identify the source of all incoming materials, the weed risk associated with them, and identify the dispersal barriers to employ. The framework would assess and prioritize all of the possible vectors by which weeds could be transported on and off the project area and identify appropriate prevention actions."

Does AT commit to including all of these components in its weed management plan?
A. MR. HEBERT: Mr. Chairman, it's Matt Hebert.

I think it would be premature to commit to

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye
specific details at this time. Certainly the items that have been identified in this report could be taken under consideration when the apprehensive weed management plan is finalized at the time it would be required to be finalized.
Q. So you're saying, Mr. Hebert, that AT cannot commit at this time to how cleaning of the vehicles and the equipment will be done? I believe those are some general propositions; there's no detail in that. Maybe you may want to take a look at the area that I referenced.
A. MR. HEBERT: Mr. Chairman, as I said, and as our reply submission indicates, Transportation is prepared to consider these varying steps within the comprehensive plan. Maybe it's possible I misunderstood the question, but Transportation is prepared to consider those items as part of the development of a plan at the stage that that plan is required to be finalized and committed for the construction of the project.

Just Transportation is not in a position at this time to comment or confirm specific detailed plans on each of the items mentioned in this report.
Q. That's fair enough, I understand that. Thank you.

So in developing the weed management plan, does AT

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

commit to working with and seeking input from local stakeholders such as the members of SCLG and the municipality of Rocky View in the development of the plan?
A. MR. HEBERT: One moment, Mr. Chair?

So, Mr. Chairman, certainly AT would seek to engage with Rocky View County. I would suspect that adjacent landowners would have an interest in providing input and understanding plans in this regard. And Transportation also expects that the appropriate technical advice or support would be involved in the finalization of such a plan.
Q. So perhaps I may rephrase that a little bit. Will AT seek input from residents and members of the SCLG, should they wish to express such an interest, would AT seek input from them in the development of that weed management plan?
A. MR. HEBERT: Certainly if local stakeholders or area residents wish to provide input on weed management plan, I would not see a scenario where Transportation would reject that input.
Q. So has AT commenced any work on this plan or not?
A. MR. DE CARLO: Mr. Chairman, Nick De Carlo speaking. We have not commenced work on the plan to date.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

Q. So does AT commit to making the completed plan publicly available and accessible?
A. MR. HEBERT: Mr. Chairman, I am just conferring to understand what we typically do in these circumstances.

I don't see any reason why it wouldn't be shared. I would expect that the function of the community liaison would be to have the finalized mitigation plans at their disposal prepared to share with interested parties.
Q. So if an interested party request AT for a copy of the plan, will AT provide that?
A. MR. HEBERT: We would, yes.
Q. Thank you. So in Exhibit 325, PDF 59, paragraph 207, Roman numeral (ii), AT states that: (as read)
"AT does not accept that released water,
the source of which is the Elbow River,
will be an additional source of weed seed distribution when returned to the Elbow River. Released water will likely contain weed seeds when diverted."

Now, in your opening statement, Mr. Hebert, you indicated that weed control would, at a minimum, follow the Alberta Weed Control Act regulations and that prohibited weeds would be removed and noxious weeds

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

controlled.
Is it your understanding -- is it AT's
understanding that the Alberta Weed Control Act
propagates the use or movement of anything that, if used
or moved, would spread a noxious weed or prohibited noxious weed?
A. MR. HEBERT: One moment, Mr. Chairman.

THE CHAIR: Ms. Okoye, we'11 be looking for a break maybe $3: 15$ or $3: 20$, if you can kind of get your break in the question in there that would work. That would be great, thank you.

MS. OKOYE: Definitely will do. Thank you, sir.
A. MR. HEBERT :

Mr. Chairman, Mr. Brescia will
provide a response.
A. MR. BRESCIA: Hi, Mr. Chairman, it's Mr. Brescia here.

What I would say we do understand that is what the Weed Contro1 Act says.

As a function of the project, natural floodwaters which may contain weed seeds would be diverted into the reservoir and then would again be released upon -- upon passing of the flood as per the project operations.
Q. So does AT agree, based on the Weed Control Act, that it is prohibited from releasing from the Elbow River

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

any diverted water that contains weed seeds, including noxious and prohibited weed seeds and plant parts?
A. MR. BRESCIA: Mr. Chairman, I don't know that I can comment specifically on the legal terms of the Act. But what I can say is Alberta Transportation has committed to a comprehensive weed management program to minimize a weed development and spread.
Q. Thank you. And I wasn't asking you to do a legal interpretation; just trying to understand AT's understanding of the Act.

MS. OKOYE:
Okay. Mr. Chairman, we can probably break here and I will continue with the rest of my questions after the break.

THE CHAIR:
Good. Thank you, Ms. Okoye.
Let's return at 3:15.
(ADJOURNMENT)
THE CHAIR:
Mr. Wiebe, I think we're ready to go.

So just before you start, Ms. Okoye, I've gone through the timing for the remainder of directs and crosses. And if SCLG is at 270 , started at 300 , which I think is what we've agreed to, and the Board, I think we likely need 30 minutes or no more. But that would leave for Transportation tomorrow and all of the rest of the directs and that. But that would essentially

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

leave Transportation with 115 minutes for
cross-examination and for rebuttal evidence, if you have any, which might be a little shy. That's much less than what you've asked for.

So I'm not sure if you can respond to that now or not, but if not, then I would suggest that we perhaps sit until 5:30, gain at least 30 minutes. We can probably skim a little bit at lunch, and then we might be pretty close. But otherwise, we'11 be either going a little bit late tonight or quite a bit potentially even later tomorrow night.

So, Mr. Kruhlak? Mr. Secord? Others?
MR. SECORD: Mr. Chair, if my partner finishes before 5, and subject to the court reporter, I'm certain1y prepared to go to 5:30.

I know Mr. Kennedy talked about the old days. I should mention in the old days, we had one hearing where we lost a court reporter because she quit because we sat so late.

So as long as Ms. Vespa is prepared to carry on, then I'm certainly prepared to go to 5:30.

THE CHAIR:
Ms. Vespa, you're good for 5:30?
Thank you.
Transportation? Others?
MR. KRUHLAK:
Mr. Chairman, it's Ron Kruhlak.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

We've canvassed our pane1 in advance. We're certain1y prepared to remain as 1 ong as the Board and the court reporter are prepared to continue.

As I said, we're anxious to try to ensure we had an adequate cushion for tomorrow. So if it's 5:30 or 6 or longer, we're certainly prepared to remain.

THE CHAIR:
I think 5:30 should work. If we can finish by 5 tomorrow, great, but if not, we may need to run a bit later tomorrow.

Ms. Vespa and Ms. DiPaolo, you'11 be available past 5 tomorrow if necessary?

Thank you. And hopefully our document sharers don't quit on us because they work for us.

Okay. Thank you very much, everyone. Ms. Okoye, please proceed.

MS. OKOYE: Thank you, Mr. Chair.
Q. So following -- so in Exhibit 325, PDF 59, paragraph 207, and again, this is the reply evidence, AT states that -- AT states: (as read)
"...the implementation of infiltration
systems smal1 enough to address weed seeds would have serious adverse effects to the mobility of fish seeking to exit the reservoir on release."

So I'd like to put this proposition to you,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

Mr. De Carlo, and let me know if you agree with that: The vast majority of the off-stream reservoir's existence will be in times of non-flood or post-flood drained condition during which the risk of seed weeds and plant parts entering the Elbow River via the low-level outlet will continue. Do you agree with that?
A. MR. DE CARLO: Mr. Chair, I think that's dependent on the conditions in the PDA and how vegetation and weeds are being managed.
Q. Okay. So I'd like you to focus your attention to the reservoir area. So can you tell me if you agree that in dry operation or non-flood conditions, the reservoir can contain seed weeds and plant parts deposited there by floodwaters and the rooted soil from the off-stream dam or soil material deposited by the ephemeral tributaries within the reservoir?
A. MR. DE CARLO: Mr. Chairman, and that's specific to post-flood. So yes, following a flood event, sediment and material could be deposited within the reservoir.
Q. And also in dry operations. So during periods in between events, in between flood events, do you agree that, you know, that weed seeds can also be present and continue to move through the tributaries and probably into the low-level outlet?
A. MR. DE CARLO: Mr. Chair, I agree there are various factors that could disperse weed seeds and propagules to the reservoir in dry operations.
Q. So can you confirm that the tributaries within the reservoir are not fish-bearing?
A. MR. DE CARLO: I cannot confirm that personally. I am not a fisheries biologist.
Q. I'11 refer you to Exhibit 29. I apologize, document manager, I don't think I had included that. But in Exhibit 29, if we go to PDF 23, it actually says there that: (as read)
"The tributaries to the Elbow River in
the LAA appear to be ephemeral
(seasonal) in nature and are unlikely to contain sensitive or life stage dependent fish habitat."

Do you disagree with that?
A. MR. DE CARLO: Could we bring up the document in question, please?
Q. That is Exhibit 29, PDF 23. So PDF 23. That's towards I think it's the second to the last, yeah. Second-to-the-1ast paragraph, just at the bottom. Second-to-the-1ast paragraph, if you read that, Mr. De Carlo.
A. MR. DE CARLO: Yes, I'm reading that, and it does
look -- it looks as what you've stated.
Q. Okay. And so since we agree that the tributaries are not fish-bearing waters and there will be no harm to fish that would result from operating the low-level discharge filtration during non-flood operation, do you agree with that?
A. MR. DE CARLO: One moment, I'd just like to caucus.
A. MR. SPELLER: Mr. Chairman, Ms. Okoye, it's Wayne Speller.

I think it's helpful to point out in the exhibit that we're talking about, Exhibit 325, at Point 2, about an installation of a filtration system and what we're talking about in terms of fish.

So we're not discussing fish that are currently in any of the watercourses within the PDA; we're talking about a post-flood event where there is an expectation that some fish may get entrained.

Those fish need to be able to be released with the water out the low-level outlet. That's my understanding of when we point -- when we say a filtration system small enough to address weed seeds would have serious adverse effects to the mobility of fish to exit the reservoir on release. It's those potentially entrained fish we're discussing; it's not

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

fish that are there right now.
Q. Thank you, Mr. Speller, for that clarification.

So other than -- so outside of post-flood events, is there a likelihood that any of those tributaries within the reservoir can have fish in them naturally?
A. MR. SPELLER: Mr. Chair, subject to check, no, we're not expecting post-construction that there would be fish.
Q. Thank you. So, then, if a weed -- what did we call it again? If a weed filtration system is attached to the low-level outlets and allowed to operate only in non-flood conditions, is that something that AT will agree to consider and implement as a way to prevent the dispersal of weeds from the reservoir to other areas?
A. MR. HEBERT: Mr. Chairman, as we've described, it's anticipated the project will have some form of weed control framework.

As such, we would not view it as necessary to install a weed filtration device at the low-level outlet.
Q. So can you explain to me, then, what AT plans to do in order to control the spread of seed weeds, and I'm not talking about the weeds that have already come up and are already a form of vegetation but actually the seeds themselves, how you pl an to control that from leaving
the reservoir area and getting into the low-level outlet and then into Elbow River?
A. MR. HEBERT: Mr. Chairman, I will redirect one of my colleagues, just one moment.

Mr. Chairman, Mr. De Carlo will respond to the question.
A. MR. DE CARLO: Mr. Chair, Nick De Carlo speaking.

The intent of the weed management pl an is to control weeds that are on the project and not to control weeds that are present off of project lands that could disperse to the area propagules and then get further get down into the Elbow River. This is already occurring and will continue without the project.
Q. So isn't the reservoir a part of the project?
A. MR. DE CARLO: Yes, the reservoir is part of the project, but as I've explained, the intent is to control the weeds on the project. Weeds seeds that are dispersing to the site are dispersing from activities and presences in the surrounding lands, and AT cannot be responsible for managing surrounding properties.
Q. So let's forget about surrounding properties and just focus on the reservoir area.

Are you saying that when the floodwater is diverted from the Elbow River and then it gets into the reservoir area, that there will not be any seed weeds

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

included in that diverted water?
A. MR. DE CARLO: Mr. Chair, no, that is not what we've stated. We've stated that there may be, and likely is, weed propagules in the water that would be diverted from the Elbow River. And that dispersal is already occurring without the project and that the project will manage the site itself and weed occurrences on the site to minimize the project's contribution to weed dispersal further downstream.
Q. Thank you. So in relation to those weed seeds that get in, either through the diverted water or that are brought onto the reservoir area from any of the tributaries or that come into the reservoir area from any other source, how will AT deal with the weed seeds?

And I'm not talking about the ones that are already like vegetation, but the seeds themselves.
A. MR. DE CARLO: Mr. Chair, Nick De Carlo speaking again.

The most important measure for controlling weed seeds is ensuring that the project itself manages weeds such that any seeds that -- and other propagules that come onto site don't have an opportunity to establish and reproduce and further add to the weed issue.
Q. So, Mr. Hebert, can you comment on whether the operation of the filtration system can be limited to
dry or non-flood conditions, assuming that you are able to install that?
A. MR. HEBERT: One moment, Mr. Chairman.

Mr. Chairman, under the circumstances, it may benefit from a written response, so Transportation will undertake that.
Q. Thank you.

UNDERTAKING - TO ADVISE WHETHER THE OPERATION OF THE FILTRATION SYSTEM CAN BE LIMITED TO DRY OR NON-FLOOD CONDITIONS

MS. OKOYE: When you're doing that, can you also undertake to advise us of any restrictions that will make the design and installation of the filtration system not feasible. Is that acceptable?
A. MR. HEBERT: Mr. Chairman, we will include that as part of the undertaking.

MS. OKOYE:
Thank you.
UNDERTAKING - TO ADVISE OF ANY
RESTRICTIONS THAT WILL MAKE THE DESIGN
AND INSTALLATION OF THE FILTRATION
SYSTEM NOT FEASIBLE
Q. MS. OKOYE: So, Mr. Hebert, today you stated in your opening statement that if weeds are detected and found to be above acceptable targets, response

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

options will be considered and applied. Do you recall that? That's actually Exhibit 380.
A. MR. HEBERT: Yeah, I stated that earlier today.
Q. Thank you. So what is AT's acceptable target for weeds before a response option is considered and applied?
A. MR. HEBERT: Mr. Chairman, I believe one of my colleagues can provide an answer to that question.
A. MR. DE CARLO: Mr. Chairman, Nick De Carlo speaking.

The details have not been finalized at this point, and AT and AEP will be working with the Rocky View County to identify desired levels and control methods.
Q. Okay. Thank you, Mr. De Carlo.

I will now shift to biodiversity issues now.
So Mr. De Carlo, I'11 continue with you for now. So there seems to be some discrepancy between what hydrologists and riparian ecologists use to define riparian lands. So I'd like to ensure that we are both on the same page when we talk about riparian habitat.

An aid to cross was presented to your counsel yesterday from Alberta Water Council. Did you review that aid to cross?
A. MR. DE CARLO: Yes, Mr. Chairman, I have reviewed that cross.
Q. Thank you. Document manager, could you please pul1

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

that up?
Thank you. So if we go to page 2 of that document, at the bottom of the page, you could probably expand that, please.

THE CHAIR:
Ms. Okoye, has this been entered an exhibit already?

MS. OKOYE:
No, I don't believe it has been.
So perhaps it could be marked as an exhibit.
THE CHAIR:
You do intend on using it.
MS. OKOYE:
Yes, I do intend on using it.
THE CHAIR:
Ms. Friend?
MS. FRIEND: The next exhibit number is 393.
MS. OKOYE:
Thank you, Ms. Friend.
THE CHAIR:
393, thank you, Ms. Friend.
EXHIBIT 393 - SCLG AID TO CROSS 1 -
FROM ALBERTA WATER COUNCIL RIPARIAN
LAND CONSERVATION EXCERPT
Q. MS. OKOYE:

So, Mr. De Carlo, do you agree with that definition under page 2? And also if we go to page 3, there's an illustration there. Do you agree with that definition and illustration?
A. MR. DE CARLO: Mr. Chair, yes, I agree this is in line with commonly accepted definitions for riparian areas.
Q. Thank you. Document manager, you can put that down,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

please. Thank you.
So in Exhibit 327, PDF 40, AT notes in response, I believe that was Stantec, notes in response to Mr. Dowsett's submissions that without SR1, there would be more area inundated, that inundated areas would be greater, flow velocities would be higher, and there would be more debris within that flow.

So I'd like to know from you what are the effects on floodplain vegetation of SR1 from the reduction of area inundated, the depth of the inundation, and the reduction of flow velocities and debris. And if you could include in your explanation the impacts related to changes current depth and extent, reduction in channel migration, wetlands and reduction in depth and area of sediment deposition?
A. MR. DE CARLO: Mr. Chairman, if I can just have a moment.

THE CHAIR:
Yes, please.
A. MR. DE CARLO:

Mr. Chair, if we could bring up NRCB AEP IR 14, Round 2. Actually, I believe it's Round 1. Just give me one more moment. I'11 just confirm this.

THE CHAIR:
Sure. Has there been an exhibit number attached to it? If so, that would be much easier.

THE CHAIR: please.
Q. MS. OKOYE:
Q. Okay.
Q. Okay. here.
A. MR. DE CARLO: Yes, just one moment, and I'll provide that.

Thanks.
A. MR. DE CARLO: Mr. Chair, it's Exhibit 138, PDF page 79.
THE CHAIR:
So 138, page 79?
A. MR. DE CARLO:

Correct.
Thank you. Thanks, Ms. Taylor.
A. MR. DE CARLO: And if we could magnify that,

So this IR response explains the changes that would be expected from the altered frequency and flows on the Elbow in response to the project, and in general, there will be a narrowing of the channel and a decrease in scouring.

So is that all your response?
A. MR. DE CARLO: One moment, please.
A. MR. DE CARLO: Yes, it's not a simple issue.
A. MR. BRESCIA: Mr. Chairman, it's Dave Brescia

So what we've done in this information request is it examines five ecological and geomorphic processes that we've examined as to how the presence of SR1's
operations would affect these processes. And those processes are overbank deposition, bank erosion rates, channel morphology, scour and maintenance of pools, and maintenance and formation of side channels. And I believe these have some slightly different terminology than Ms. Okoye had mentioned there. But generally they're similar processes.

And overall, we've looked at and explained here how those process would change, and for -- in summary, like three of the five processes would generally be a neutral change.

Two of them we do ascribe would be an adverse change over the long term, and those would be the maintenance and formation of side channels, as well as the channel morphology overal1. And those would be somewhat simplified over the long term.

And part of that is a tradeoff of the function and design of the project which is designed to reduce flooding downstream. It's the stated purpose and design, and I seem to have turned off my camera. There we are.

So I think that covers those processes that Ms. Okoye mentioned.
Q. Okay. So in your view, those are the effects - those are going to be the effects of floodplain vegetation?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

 Cross-examined by Ms. OkoyeA. MR. BRESCIA: Those are the effects that do relate to floodplain vegetation and establishment and some of the description in this response such as overbank deposition and how that relates to the maintenance of the floodplain.
Q. So I'll just switch a little bit to Dr. Whitson.

Dr. Whitson, are you there?
So in Exhibit 327, PDF 190, you indicate that the revised modelling was undertaken in response to a request from the IAAC. Can you tell us when this IAAC IR 4-01 was issued and if it was filed with the NRCB?
A. MR. BRESCIA:

Mr. Chairman, it's Dave Brescia again.

I'11 just start by saying, in about mid-December of last year, we had identified that the new sediment deposition areas that were modelled for the Round 2 IAAC SIRs had implications for other EIA components that we had initially missed, and we started looking into this.

In January of this year, 2021, as part of this work, we also learned of the new sediment modelling included sediment texture information that we had not needed for that initial IR response. And we reviewed that information as well.

And so we analyzed the new sediment area and texture information starting in January and February to understand the implications that they would have for soil and with respect to our conclusions. And those conclusions are included in our March 12th submission that you referred to.
Q. Thank you, Mr. Brescia.

Document manager, could you please put up Exhibit 327 and if we could go to PDF 196.

So, Dr. Whitson, that's a map of your revised modelling on your calculations for change in agricultural land capability classes for the late release design flood; correct?
A. MR. WHITSON: Mr. Chair, this particular figure that was just brought up is actually referring to sediment thickness and the change in sediment thickness after the design flood late release event.

So it's not a figure that shows the 1 and capability change.
Q. That's actually correct, yes. It shows the sediment deposition thickness.

So I'd like us to focus on that legend, legend at the bottom, bottom right-hand of the screen.

In there, you showed the sediment thickness changes. The categories are 0 to 3 centimetres, 3 to

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

20,20 to 100 and above 100 centimetres.
Now, that categorization is not consistent with the 10 to 100 centimetre category that was used in the vegetation evaluation, for instance, in Exhibit 49, PDF 25. Perhaps, document manager, you could pull up 49, PDF 25, but don't lose this page. PDF 25, Exhibit 49.

Doesn't look like what I have on my screen. So Exhibit 49, PDF 25. Thank you. Thank you, document manager.

So if you look at that Table 10-11, it lists a different sediment deposition category of less than 3 , 3 to 10,10 to 100 , and greater than 100 centimetres. Are you able to provide a sediment thickness change mapping that is consistent with this categorization in Table 10-11 of PDF 25 of Exhibit 49?
A. MR. WHITSON: Mr. Chair, we're going to caucus about that for a second.

MS. OKOYE:
Mr. Chair, we probably will have to have an extra time with all the time they're taking for caucusing.
THE CHAIR:
I've been kind of watching, and while sometimes it may seem like a while, it doesn't take all that long.

MS. OKOYE:
Okay. Thank you.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

A. MR. WHITSON: Mr. Chair, I'm back and ready to address that question. This is Ivan Whitson.

THE CHAIR: Proceed, please.
A. MR. WHITSON: Now, the table that we see before us was prepared by my colleague in vegetation. And for their own reason, vegetation has the categories -thickness categories you see in front of us.

But soil has its own reasons for choosing certain thicknesses, and those were the thickness categories that we also used in the 2018 environmental assessment and for our calculation purposes and for our analysis purposes.

And I can explain to you why we chose those particular thresholds and why we're justified in using them and why they don't match the thresholds chosen by my colleague in vegetation and possibly other disciplines in our panel here.

If I may proceed with that, Mr. Chair.
Now, you may -- it may sound obvious, but why would I choose zero as an important threshold. But it is an important threshold because as soon as you have any appreciable sediment accumulating on the reservoir floor after a flood, there's a considerable portion of that sediment that contains calcium carbonate minerals in some form or another, bicarbonates or carbonates.

And over time, those will enter soil ever so slightly, depending on the starting point of that soil material. Now, the threshold of three --

THE COURT REPORTER: Excuse me, excuse me, Dr. Whitson. You cut out there. You said, "And over time, those will enter the soil ever so slightly..."
A. MR. WHITSON: Yes, I'm sorry, I'11 continue.

Some of that calcium carbonate mineral will enter the soil, either physically or by being dissolved in water, and it will change the soil pH. It will raise the soil pH a little bit higher from what it was prior to that. So the pH change is important and why anything above zero is important.

Now, the threshold of 3 centimetres, that was judged to be important from a soil erosion perspective/wind erosion perspective because in my judgment, any sediment thicker than 3 centimetres is just thick enough that it could start to be mobilized or detached by wind movement. That should be clear.

Now, 20 centimetres of -- was chosen because again, in my judgment, a thickness of 20 centimetres is just enough that it's going to start to affect the overall quality or productivity of the soil material underneath, and so we selected 20 centimetres as an important threshold.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Now, the last threshold of 100 centimetres, in the language of soil survey, we separate layers thicker than 100 centimetres from layers thinner than 100 centimetres for various flood taxonomic practice.

And consistent again with the environmental assessment, we separated soil materials thicker than 100 and those thinner than 100 , and we were able to calculate various properties such as land capability and that sort of thing.

And so the figure that you first called for, Exhibit 327 on PDF page 196, presents the -- the post-flood late release -- post-design flood late release picture of sediment thickness according to those estimated thicknesses provided by my colleagues in the hydrology group.
Q. Okay. So, sorry, Dr. Whitson, are you done? I'm sorry, I didn't mean to interrupt you.
A. MR. WHITSON: No, I had, in fact, just finished.
Q. Okay. Thank you. So if I hear you correctly, you are saying that, for your purpose, for your soils report, you choose a different categorization different from what the vegetation people would choose; is that a fair statement?
A. MR. WHITSON: That's a fair statement.

THE CHAIR: Mr. Whitson, if this is going to
continue a little bit, perhaps you could try just moving your mic down. It's overdriving, I think.

I notice the court reporter at times strugging a little bit. Your mic seems to be overdriving. We've had other folks a little soft, but yours seems to overdrive. But I'm not sure if others are noticing that, but Ms. Vespa...

COURT REPORTER: Can you speak now, Mr. Whitson?
A. MR. WHITSON: Yes, Mr. Chair. I just chose to reduce my volume a smidge to see if that made a difference.

THE CHAIR: It seems to be doing the same thing.

Ms. Vespa, are you able to get it or...
COURT REPORTER: I have been. Maybe we can try reducing it or puliing the mic out a little bit.

THE CHAIR:
Yeah, pull the mic down just a bit. Try that.
A. MR. WHITSON: How does that sound?

THE CHAIR: Just up just a little bit, and I think we've got it.
A. MR. WHITSON: How does that sound?

THE CHAIR:
Yeah, that's better. Thank you.

Ms. Vespa?

A. MR. WHITSON: How does that sound?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye

COURT REPORTER: That's great. Thank you.
A. MR. WHITSON:
You're welcome.

MS. OKOYE:
Thank you.
Q. So, Dr. Whitson, you say, then, that it's not possible for you to provide a sediment thickness change mapping that would be consistent with the categorization provided in that Table 10-11 that we were looking at earlier?
A. MR. WHITSON:

Mr. Chair, there is a figure that shows the thicknesses using the thresholds that vegetation has used, and it's in Exhibit 218 on PDF page 85. And I believe that contains a figure that shows the thicknesses broken down by the categories used by vegetation.

I may not be able to speak to it, but that's what that figure contains.
Q. Thank you. Dr. Whitson, I know about that. We will get to it in a moment.

So, Mr. De Carlo, did you conduct any work on the impasse to vegetation based on the revised modeling and the change in sediment deposition that was done by Dr. Whitson? If you didn't, can you tell us why you didn't do that?
A. MR. DE CARLO: We did not conduct any additional assessment following Dr. Whitson's revised assessment.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

Our assessment of the change in sediment patterns is included in Exhibit 218, which is on the screen, and the difference in category has been considered within the vegetation assessment with the fact that, in the 10 to 100-centimetre category, vegetation assessment assumes all grasses and phorbs are lost.
Q. I'm sorry, can you repeat that last sentence? I didn't quite get that.
A. MR. DE CARLO: So in the sediment depth category of 10 centimetres to 100 centimetres, the vegetation assessment assumes that grasses and phorbs are lost.
Q. Thank you. So back to you, Dr. Whitson -- document manager, you can take that down.

So back to your report, Exhibit 327, PDF pages 190, 191, and 198, you describe the change in agricultural land capability classes because of your revised modelling. And then in the end, you conclude that: (as read)
"The change in agricultural land capability does not affect the conclusions presented in the EIA and SIRs."

Are those conclusions still valid?
A. MR. WHITSON: Mr. Chair, the conclusion I think that I'm speaking to in those paragraphs is that the

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

project's effect on agricultural capability of soils is adverse, high magnitude and significant. And those conclusions remain.

What -- what changes is the details around those conclusions, perhaps the areal extent of the 1 and capability reduction, that sort of thing, that does shift but it's in a negative direction still. So it's still an adverse, high magnitude change of significant effect on soils. That's what those statements mean.
Q. Okay. So my question, I'd like, document manager, to pul1 up Exhibit 94, PDF 27. So that's Table IR 368-2, the second one. AT sets out the changes in areas of agricultural land capability.

Can you provide a table that shows the impact of your revised calculations on the hectares of land and compares each of the agricultural land capability classes, similar to what you have provided in Exhibit 94, PDF 27.
A. MR. WHITSON: This is Ivan Whitson. Let me caucus with my colleagues, please.
Q. Okay. Thank you.
A. MR. WHITSON:

Mr. Chair, this is Ivan Whitson again. Some further thought about the question posed by Ms. Okoye.

Now, sorry to go back to Exhibit 327 , sort of in

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

the page ranges that have been identified. One of the results or the outcomes of that analysis is that the size of the -- of the sediment plume is considerably larger than the size of the sediment plume back in the 2018 EIA. So it's larger, much greater in extent.

I don't have an exact extent of the 20 to 100-centimetre thickness isotherm -- isopach but it's considerably larger and it's in the order of two, three, times bigger than the 2018 EIA soil plume, thickness plume. So we know that there's a greater reduction in land capability in terms of the area, but we don't have the exact area worked out.

So I guess just to reiterate, there's a much larger extent of land capability reduction in this revised sediment modelling.

But, then, there's an opposite effect going on as well in that -- because of the change in textural distribution with the revised sediment modelling, now we've got a situation where there's a spatial pattern in the soil texture that wasn't evident in the 2018 EIA.

I'm not going to call up the exhibits or anything, but in the 2018 soils analysis, the sediment plume was predicted to be quite sandy, mostly sand particles with some silt, and its overall land capability was rated

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye
anywhere from Class 5 to Class 7.
Now, one of the things that got me excited about the revised sediment modelling is that there's a lot of that area that is now dominated by silt particles and clay particles, which, from a soils perspective, is a really nice new story. It's not all uniformly sandy, low water storage capacity.

And, in fact, when you calculate land capability now, for the individual soil types that I expect to be identified under that sediment plume, we've got some soil types now that essentially have land capability ratings of just Class 4.

So there's two forces going on now that are kind of now in opposition. Yes, there's a much greater extent of sediment and I would readily admit that the amount of land capability declined is greater than before. But the land capability within that plume is somewhat slightly -- is not as adverse as it used be. Some areas that were Class 5 to Class 7 will now shift to Class 4.

So, Mr. Chair, I know that's a long-winded answer. We haven't got areal extents to show these sorts of things, but I readily admit that the extent is greater than it was presented in the 2018 environmental assessment.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

And, again, to strike the overall conclusion, the conclusion in the 2018 environmental assessment, this was a high magnitude adverse effect on soil land capability, that's consistent, that hasn't changed. It was greater than 10 percent reduction in the extent of land capability Class 2 before, and it will be even greater than that now.

That's the end of my answer, Mr. Chair.
Q. Thank you, Dr. Whitson. So if I understand you correctly, are you saying that you're not able to take the question that I have posed to you away and come back with the revised table that will actually show the hectares of land that are affected, based on your revised calculation? That's not something you can take away as an undertaking and come back?
A. MR. WHITSON: Mr. Chair, we're not promising to do that. The land -- if this project is approved, this land is not going to have an agricultural use. The land capability is not that important going forward. We know that there will be a reduction of land capability, and if we were to recalculate the land capability change over and over again like this, it would be a -- it would be a never-ending process.
Q. Okay. Thank you, Dr. Whitson.

UNDERTAKING - TO PROVIDE A REVISED

TABLE THAT WILL SHOW THE HECTARES OF LAND THAT ARE AFFECTED BASED ON THE REVISED CALCULATION BY MR. WHITSON REFUSED
Q. MS. OKOYE: So in terms of the reduction in LCC Class 2-- I don't know, maybe you might have answered that, but what I'm looking at is if you can tell me by how much greater you expect that reduction in LCC Class 2 to be in comparison to what you have reported in the EIA.
A. MR. WHITSON: Mr. Chair, I will make an attempt to do that, as long as you give me some latitude that it's approximate, and I won't -- I won't quote numbers in terms of hectares because I'm not that good at that.

But I'11 say, strictly speaking, based on the extent of that sediment plume change that we presented in Exhibit 327, and the figure that showed the thickness, that makes up an extent of about a quarter of the PDA.

And a quarter of the PDA, by my math, is in the order of -- well it's a quarter of the PDA. The PDA is -- just a second -- about 1440 hectares, so a quarter of that is about 350 hectares, something like that, by my math. So that would be my -- that would be my approximation, Mr. Chair.
Q. Thank you. So in Exhibit 94, PDF 16 -- if we go to PDF 16. So I think we'11 go down. Perfect. Number B. Can you expand that, please?
A. MR. WHITSON: Mr. Chair, at the completion of our environmental assessment and the initiation of the IR process, it was pointed out to us that we had misspoke in terms of our conclusions about land capability change with the project, and we adjusted the conclusions to indicate that this project would have a significant effect on soil quality, an adverse negative effect, and that that would be significant.

And so we produced -- we produced, subsequently, an IR 365, as indicated here, indicating that post construction -- post-construction effect on the agricultural land capability would be significant and adverse.

We also produced an IR similar to this -- I don't know if I'm getting ahead of myself -- in an IR 393 when we -- we changed our conclusion with respect to the effect of flood or design floods on the same property, on agricultural land capability, and we admitted that this would be a significant adverse environmental effect on soil capability for agricultural purposes.

I hope that answers the question, Mr. Chair.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Q. Thank you, Dr. Whitson. You did answer my next question. So I will skip that, and I will go to Mr. De Carlo.

Mr. De Carlo, is your response the same as for soils in the sense that the changes in sediment area do not affect the conclusions presented in the EIA and SIRs in relation to impacts on vegetation?
A. MR. DE CARLO: Mr. Chairman, just one moment, please.

Hello, Mr. Chair. If I could point to
Exhibit 218, page 83 through 86 , this is in response to the IR question on the change in the sediment deposition, expected patterns and extent. And although there is a change in the distribution of sediment, the analysis and results provided in this IR response is that the significance, determination, and conclusions of the vegetation assessment remain unchanged.
Q. Thank you. So can you summarize for me, Mr. De Carlo, the main conclusions in your EIA and SIRs that will not be affected by the change in sediment deposition information presented by Dr. Whitson?
A. MR. DE CARLO: One moment, Mr. Chair, I'd like to caucus with my colleague.
Q. Document manager, you can take the document down, please.
A. MR. DE CARLO:

So, Mr. Chair, my apologies for the break there.

The conclusions and the change in my colleague's Dr. Whitson's assessment of the revised sediment modelling does not affect the conclusions of the vegetation because the land capability is an agricultural rating and isn't related to the revegetation potential.
Q. Okay. Thank you.

So Exhibit 324 in PDF 22 to 28 , AT describes the environmental assessment methodology and how cumulative effects are dealt with, as well as describing the cumulative effects on wildlife and wildlife habitat.

So my next set of questions will go to Mr. Terry.
Now, are the calculations for habitat loss in SR1, which you have indicated to be less than 1 percent upland and wetland cover types and 0.1 percent for native upland, are those calculations correct given that we have new calculations for areas of sediment deposition presented in the -- presented for soils in Exhibit 325?
A. MR. TERRY: Sorry, could you repeat the question? Are you asking that that's a less than 1 percent change for cumulative effects during post-flood?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Q. I'11 repeat my question. So are the calculations for habitat loss in SR1, i.e. less than 1 percent of upland and wetland cover types and 0.1 percent for native upland correct, given that we have new calculations for areas of sediment deposition presented for soils in Exhibit 325?
A. MR. TERRY: Mr. Chairman, can I take a minute? Ms. Okoye, could you give us the exhibit number?
Q. That was Exhibit 324, PDF pages 22 to 28 . And the specific number is for the upland and native habitat, the percentages that I gave are actually on PDF page 28 of Exhibit 324.
A. MR. TERRY:

And that page again, sorry, was?
Q. PDF 28. We can pull that up if that helps you. If you look at PDF 28 under the summary of key information column. Right there.
A. MR. TERRY: Right, yep. Right, so it's referencing Table 1-8, and yes, subject to check, that sounds reasonable.
Q. Okay. So you're saying that those percentages are still correct even though there is new calculation for areas of sediment depositions presented for soils?
A. MR. TERRY: Mr. Chairman, I believe the Table 1-8 is referring the effects due to -- the cumulative effects due to future projects from

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye
construction.
Q. Okay. So can you explain how there will be no change in habitat loss when the sediment deposition area has increased from 105 hectares in the EIA to 319 hectares for early release scenario and 337 hectares for late release?
A. MR. BRESCIA: Mr. Chairman, it's Dave Brescia. If I could just point out, the numbers that are being referred to in that table relate to the construction phase of the project. So it doesn't -- it doesn't account for sediment.
Q. Okay. So you're saying that that's different and so -- all right.

So back to Mr. Terry, Mr. Terry, are you saying that there is no change in habitat loss percentages for habitat in SR1 based on the new calculations done for soils?
A. MR. TERRY:

Again, the increase in sediment deposition would not change the conclusions of the assessment related to change in the habitat loss.
Q. Okay. So, also in PDF 28 that we have up, so at the bottom of that first row, you have "overal1." Perhaps we can increase the size, please, maybe one more.

Thank you.
So I'm just referring you to the bottom of the

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

first row. You have: (as read)
"Overall, the potential for project
residual effects to act cumulatively
with the residual effects of future
projects on wildifife habitat are
relatively minor because the future
developments do not contain high value wildiffe habitat for many SOMC."

Does wildiffe habitat have to contain high value wildiffe habitat or native species of management concern for it to be considered impacted?
A. MR. TERRY: Right. So that overall conclusion is based on the existing conditions of those future projects, and in particular, the Harmony community development and some of the upgrades to the highways where a lot of these lands are already sitting in existing or previously disturbed areas that provide, you know, relatively lower habitat for species.
Q. Okay. So, again, on that cumulative impacts, if you look at that table that you have presented on PDF 28 , towards the top of that box, sorry, top of that row, you acknowledge at PDF 28 that the landscape has already been impacted which has reduced habitat availability.

What can you tell us about the conservation status

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye
of the Foothills Parkland natural subregion?
A. MR. TERRY: Sorry, can I take a minute, please?
Q. Sure.
A. MR. TERRY:

Ms. Okoye, I don't know the status of that particular subregion.
Q. Mr. De Carlo, do you know?
A. MR. DE CARLO: Nick De Carlo speaking, Mr. Chair. Could you repeat the question, Ms. Okoye?
Q. What can you tell us about the conservation status of the Foothills Parkland natural subregion?
A. MR. DE CARLO: The conservation status, I don't have the numbers in front of me. But there has been meaningful conversion of the area to anthropogenic uses. It may be approximately half, subject to check. That is my understanding.
Q. So you think that there's only about half left that have not been compromised in any form?
A. MR. DE CARLO: I wouldn't say -- I wouldn't characterize it as not compromised in any form. I would say that it's areas that remain native.
Q. Okay. So, in terms of percentage, do you know what the percentage of the remaining native habitat have to be impacted for you to consider the impacts significant?
A. MR. DE CARLO: Mr. Chair, I'm not aware of any

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

threshold that has been identified by regulatory agencies or in scientific publications specific to the parkland, Foothills Parkland natural subregion.
Q. Mr. Terry, do you know what the percentage of the remaining native habitats have to be impacted for impacts to be considered significant?
A. MR. TERRY: Again, I would also add that that would really vary with different species in terms of what that threshold might be.
Q. Okay. So in your view, Mr. De Carlo, if you're considering the project at the local landscape level or at the Foothills Parkland natural subregion level, would your calculation or your views change where the percentage of the remaining habitats in a particular context differ?
A. MR. DE CARLO: Mr. Chair, for the purposes of the assessment, we assess significance using a regional assessment area, which was a $15-\mathrm{kilometre}$ buffer applied to the PDA. I can provide the preference to this specific exhibit if needed.

But the project is expected to affect less than 1 percent of the native area within the regional assessment area, subject to check. And if the assessment area was expanded to the Foothills Parkland natural subregion, the magnitude would decrease
further. And in the absence of a established threshold, no, I would not expect that a significant determination would result.
Q. Thank you, Mr. De Carlo.

Document manager, you can take the document down, and I'11 pick up the pace a little bit here.

So in Exhibit 64, PDF 355, and I'11 read to you what it says. If you feel that you need to bring it up, feel free to ask. The Springbank project, PDF 355 of Exhibit 64 says: (as read)
"The Springbank project would store
floodwaters outside of the Elbow River
valley reducing environmental impacts to
the river corridor. At the same time,
it would provide benefits to downstream
communities including a reduction of
flood risk on the Bow River and the
South Saskatchewan River."
So, Mr. De Carlo, do you agree that the project would reduce environmental impacts to the river corridor, and if you do agree. Can you tell us why?
A. MR. DE CARLO: One moment, Mr. Chairman, I'd just like to caucus.

Mr. Chair, I would say that it reduces some effects. I'd point back to the IR 14 that we had up

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

earlier in the characterization of the changes to the riparian habitats with SR1 where you've got changes in the erosion and channel morphology.
Q. Sir, can you tell me what part of the river corridor would have reduced environmental impacts?
A. MR. DE CARLO: Areas that would have been subject to extreme flooding, erosion, loss of vegetation as a result, those areas would not be subjected to extreme flooding and sediment deposition. And therefore, some of those, particularly outside of riparian areas, would have lower effects.
Q. So areas outside of the riparian areas would have lower effects, but what about areas within the riparian corridor?
A. MR. DE CARLO: Again, Mr. Chairman, I'd direct back to our response for the previous IR of Number 14 where there will be altered effects.
Q. Sorry, which document are you referring to?
A. MR. DE CARLO: One moment, please, and I'11 find the exhibit number again.

Mr. Chair, that is Exhibit 138, PDF page 79.
Q. Perhaps, document manager, can you pull that up, please? And at PDF pages what?
A. MR. DE CARLO: PDF page 79.
Q. So is there a map that you can use to show us are the

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

part of the river corridor that you think will have reduced environmental effects?
A. MR. DE CARLO: One moment, Mr. Chair.
A. MR. BRESCIA:

So Mr. Chairman, it's
Dave Brescia.
I'd like to reiterate a point that Mr. De Carlo brought up earlier. And what we've done to assess cumulative effects is we've chosen a regional assessment area, which is standard practice in assessing cumulative effects. And that is based on a 15-kilometre buffer around the PDA for the project. And we used that to -- to examine the effects of the project and whether or not they interact with the effects of other projects.

And the selection of that study area to assess cumulative effects is consistent with guidance from the federal impact assessment agency and is considered a reasonable -- reasonable boundary within which to assess those effects.
Q. So, Mr. Brescia, as a follow-up to your response, your assessment of cumulative impacts. And I had earlier referred to Exhibit 324, PDF 28, and you had jumped in and said that that particular reference was talking about construction impacts on -- so construction impacts cumulatively.

So did your analysis just stop at construction or did you consider other effects outside of construction -- sorry, did you consider accumulated impacts of the project outside of construction?
A. MR. BRESCIA: Mr. Chairman, it's Dave Brescia. Yes, we did. So in the cumulative affects assessment, we looked at the effects of construction and the methodologies laid out in -- I will find it -- it is Exhibit 58, is where the methodology is laid out, and the initial assessment was split like the rest of the EIA into construction and dry operations as one assessment, and then flood and post flood operations as the second assessment.

And so the cumulative effects assessment that looked at the interaction with surrounding projects focused -- was focused on the construction and dry operations, as the flood and flood operations is unknown.

So we did, however, assess the effects of flood and flood operations, but it was added to the effects that were already considered in the construction phase of the project, which dealt with the primary interactions.

That was a somewhat complex answer and hopefully it made some sense.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

Q. Thank you, Mr. Brescia.

So back to Mr. De Carlo, we were talking about Exhibit 64, PDF 35, and the reduction of environmental impact to the river corridor by the project.

I'm not sure I heard you tell me exactly the environmental impacts within the river corridor that would be reduced by the project. Would you mind going over that and also explain to me how those environmental impacts to the river corridor will be reduced by the project?
A. MR. DE CARLO: Sure, Mr. Chairman. So, again, going back to the definition of riparian areas, I would submit that the entire river corridor is not riparian and there will be areas outside of the riparian area that would have flooded, such as in the 2013, the upland flood areas, including wetlands that sit in higher benches that would have been flooded in 2013, they may have had sediment deposited, vegetation removed, and with the Springbank Reservoir project and the reduced flows in the river, those areas would be less likely to be impacted.

THE CHAIR: Ms. Vespa, that was a little quiet. Did you get that? Okay, thank you.

Sorry for the interruption.
MS. OKOYE:
Thank you, Mr. Chair.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Q. So in Exhibit 324, PDF 46, AT states: (as read) "SR1 also provides a flood risk reduction for communities along the Bow River and South Saskatchewan rivers (Downstream of the Elbow River confluence) by removing up to 600 cubic metres per second from the flood peaks generated from the Elbow. Communities receiving this benefit include the Siksika Nation and even as far downstream as the City of Medicine Hat."

And you also noted the reduction of flood risk in Exhibit 64, PDF 355.

Can you tell me, Mr. De Carlo, how many miles of riparian habitat along the Bow and South Saskatchewan rivers may be impacted by these reduction in flood peaks?
A. MR. BRESCIA: Mr. Chairman, it's Dave Brescia again. I'm going to go back to something I had said previously.

In the selection of the regional assessment area that we used for our effects assessment on vegetation, we used a 15-kilometre buffer around the project development area and that provides an accurate representation of the species and community

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

compositions within the region, and it also aligns with the wildiffe assessment.

And selection of a buffer that aligns with a wildiffe species, like it does in this case, is identified as an accepted method by the federal impact assessment agency for assessing cumulative effects. And we feel this is an appropriate choice for this assessment.
Q. Thank you for that response, but you haven't answered my question. My question is, how many miles of riparian habitats along the Bow and Saskatchewan rivers may be impacted by the reduction in flow peaks and flood peaks?
A. MR. BRESCIA: Mr. Chairman, we haven't looked at any effects downstream of the G1enmore Dam.

Glenmore Dam, in itself, is a flow control structure, and what we did do, in terms of an assessment of riparian effects, is presented in Exhibit 138, and the IR number is 103 , which is on PDF page 474.

So we have provided an assessment of effects to riparian areas along the stretch of the Elbow River that goes from the project down to Glenmore Reservoir. But because Glenmore Reservoir is a flow control structure, we didn't extend that assessment beyond that

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

point.
Q. Okay. So I'11 go back again to Dr. Whitson, changing a little bit here. Just ask a few questions on the land capability, and I'11 continue with the rest of my questions.

So Exhibit 327, PDF 190, Dr. Whitson, you state that: (as read)
"EIA stated that flood sediment would be
dominated by sand-sized particles with
sandy loam to sandy -- to sand textural
classes expected, whereas the updated
modelling shows a range of textural
classes from sand to heavy clay."
Can you tell me what caused the change in soil textural classes from what it was in the EIA to what you currently state in your report?
A. MR. WHITSON: Mr. Chair, the change came about because of the early/late release modelling that was done by the hydrology group.

And for reasons that I probably can't speak to, the revised modelling shows that there's a spatial distribution in the patterns of sediment deposition.
A. MR. WOOD: Mr. Chair -- Chairman, if I may. This is Matt Wood. I can supplement Mr. Whitson's response a little bit, although Mr. Luzi was

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

responsible for that piece of the modelling.
What I can say is that the original modelling, due to technological limitations at the time, utilized multiple discrete models, one for the diversion structure area, one for the channel, one for the reservoir and the outlet.

Because they were discrete models, they couldn't pass the data between them and it was a manual exercise -- essentially a manual exercise of moving them across, and so we couldn't carry that complexity in the output.

Fortunately in the revised modelling, we were able to do a more comprehensive, a more wholistic mode1, if you will, that actually is able to compute some of that separation of materials at the diversion structure and then the resulted output was more comprehensive.
Q. Okay. Thank you.

Dr. Whitson, so what were the early and late release timing scenarios in the EIA, in terms of days, that a floodwater would remain in the reservoir?
A. MR. WHITSON: Mr. Chair, I'm -- I believe --

THE CHAIR:
A. MR. WHITSON: Who's speaking? Sorry.

This is Ivan Whitson, sorry, but --

THE CHAIR:
I'm sorry. Go ahead. Sorry.
A. MR. WHITSON:

The information I have is from Exhibit 218 and it's Table 1-1. I don't know the PDF number, but it shows the dates of the early/late release -- you might recall, but I think he used the term "hold time." And so there's various date -various periods of hold time. I can report them but I'm probably not the person who should speak to them.
Q. No, that's fine. I just want to find out what it was in the EIA and what release timing you used in your revised modelling.

So perhaps you can tell me what release timing you used in your revised modelling versus what was in the EIA?
A. MR. BRESCIA:

Mr. Chairman, it's Dave Brescia. Perhaps I can pull those numbers up. They would be -the numbers that Ivan used in the revised modelling are in that Exhibit 218 that we referred to earlier, and I'm getting the PDF page for that is PDF page 26. So those are the numbers that were used for the updated modelling.
Q. Thank you for that clarification.

Dr. Whitson, earlier you said the effect of soil quality and quantity will still be of high magnitude and irreversible. Do I have that correct?
A. MR. WHITSON:

Mr. Chair, it will be high

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

magnitude, and some of the soil properties are irreversible; some of them remain reversible. For instance, soil wetness is a reversible process. So the soils can dry out afterwards. But the change in pH and the deposition of sediment, those are irreversible changes.
Q. Even with the application of mitigation measures, will those irreversible impacts still remain after the application of the mitigation measures?
A. MR. WHITSON: Mr. Chair, the mitigation measures are intended to revegetate the system.

The soil properties, they can -- some of the soil properties can be mitigated, nutrients can be added. Over time, as vegetation is established, soil nutrient cycling improves from the starting point of fresh sediment. The textural properties won't change so those are irreversible. But some of the dynamic soil properties, the nutrients, that can be improved to support vegetation growth. And I think other people could speak to some more additional mitigations if necessary to assist with revegetation and vegetation health improvement and such.
Q. So, then -- sorry, I got distracted a little bit there.

I'm just going to reduce my volume a bit. So if I heard you correctly, you said with the application of

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

some mitigation measures that some of the soil quality could change. Do I have that correct?
A. MR. WHITSON: Yes, that's correct. I wouldn't foresee that the land capability class would ever change. I would expect it to be somewhat stationary.
Q. So would you agree that successive flood events will further degrade the flood quality and quantity in the PDA?
A. MR. WHITSON: Yeah, I would agree that with future floods, larger floods could introduce more sediment, and you can see the trend based on the one design flood event.

So I think it's intuitive that the continued operation of the reservoir will -- the direction will remain the same.
Q. So can you explain how successive flood events will change the characteristics of the soil units that you have shown in Table 1 of your report and the 1 and capability classification of the soil units that you have shown in Table 2 of your report? And your report is Exhibit, I believe, 327.
A. MR. BRESCIA: Mr. Chairman, it's Dave Brescia. Perhaps I could provide a little context here when we're talking about successive flood events.

When we're talking about successive flood events,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

generally we're talking about small floods, small floods that will occupy -- like, a 1 in 10-year flood would be approximately -- flood approximately 20 hectares of the reservoir. The likelihood of having successive large floods in any short timeframe is extremely low. So we're talking about an effect over a small area.

And I would also refer again to Mr. Hebert's opening statement where he goes over the comprehensive process that will be developed to reestablish vegetation on the landscape.

The reestablishment of vegetation on the landscape isn't going to be dependent on an LCC calculation that's a land capability calculation; it's going to be appropriate to the conditions that are measured on site after the flood. So the LCC is a metric, but it's not going to be a factor in determining what the revegetation and mitigation measures will look like.

And, further, with the monitoring program that is associated with that revegetation plan, that will enable us to adaptively manage the conditions that might occur from changes in soil properties that could affect regrowth.
Q. Thank you, Mr. Brescia.

Dr. Whitson, I have asked specifically in relation
to the characteristics of the soil units provided in Table 1 of your report and the land capability classification of the soil units in Table 2 of your report.

And my question was how would successive flood events, whether it's a larger flood or small flood event, how would that change the characteristics that you've shown in your endorsed tables to your reports?
A. MR. WHITSON: Mr. Chair, with respect to the Table 1, those particular soil types refer to the late release design flood, and they're based on one episode, one event. And that's my estimation of what the distribution of soil types after that event would be approximately like.

I don't think I can provide a similar estimate of what the soil distribution would be like after say two large design events; that would be deeply into speculation.

But what I identify with this Table 1 is kind of a trend. Future floods would be similar in that there would be an area near the outlet where larger sand particles settle out. And that particular soil, if you are discussing in terms of its quality, would have a relatively low water-holding capacity.

But further out from that outlet, subsequent

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

floods would deposit materials of higher silt content and considerably higher water storage capacity. And in furthest out of all, clay particles will settle out of the -- of those larger floods.

So the general pattern is that sandy soils near the outlet, the entrance of the outlet, clay soils furthest away, and then subject to obviously different inputs of sediment vertically in the profile, you would tend to develop soil properties, soil textures that varied vertically, as well.

And to make a long story short, that vertical gradation in texture would improve the water-holding capacity considerably in these emerging soils.

I mean, you can look at the Elbow River floodplain to see the general trend of what happens when you have a short return period flooding, the soils remain in a juvenile Regosolic soil state.

They don't have time to develop much topsoil, and that's really kind of what we expect in the future in areas where sediment is deposited. The soils will remain in a fairly juvenile youthful state because they'11 always be essentially quite young. But the textural properties will vary, and their water-holding capacity will contribute to revegetation efforts.

Nutrients will be -- a nutrient will accumulate

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

over time. This is not an agricultural system anymore. And with the judicious use of amendments for soil nutrients from time to time, we essentially establish a nutrient capital in the soil. We're not hauling off crops every year, and so that nutrient will accumulate over time, and it will be a functional ecosystem where there's a lot of human effort applied to make it so.
Q. Thank you, Dr. Whitson. Just one more question for you; then I'11 go on to sedimentation impacts.

So we have talked a bit, you have talked a little bit about the different classes and textures of soil that you can have occurring with this project.

And at PDF 191 of your report, you actually state that: (as read)
> "The finer textured soils are likely easier to revegetate and manage than areas of coarser texture."

I could be calling that wrong. Do you agree that that statement that I just read to you is an oversimplification of what will actually occur in the project area?
A. MR. WHITSON: Mr. Chair, I think it's generally we11-recognized that coarse-textured soils don't store very much water, and one of the major functions of soil is to act as a storage reservoir of water for plants.

And it's generally at the opposite end of the spectrum. Silty and clay soils have much higher storage capacity for water.

And so given we're in a somewhat drought-prone environment, any soil that has a greater reserve of soil water has less risk for revegetation troubles when you're trying to reestablish vegetation. And so that's the statement I was getting at.

There are other issues associated with revegetating clay soils maybe that I wasn't thinking about at the time. But just in terms of its ability to provide water in the short term and in the long term, every farmer would prefer to have a siltier clay soil than a sandy soil.
Q. Can you tell me a little bit more about the difficulties of revegetating a clay soil?
A. MR. WHITSON: Mr. Chair, I probably should caucus with my fellows.

Revegetation itself is obviously about vegetation, and I only speak to the soil aspects, what does the soil provide for nutrients or water or does it have other limitations. And I don't like to go much further than that.
Q. A11 right. So in Exhibit 325, PDF 56.

MR. BARBERO :
Ms. Okoye, sorry, it's

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Michae1 Barbero here, Mr. Chair. I just noticed that I think my witness panel is caucusing. Are we all ready?
MS. OKOYE: I thought that Dr. Whitson had already answered my question, and I'm moving on.
A. MR. WOOD: No, Mr. Chair, this is Matt Wood. I don't believe he has. Maybe we can just finish our caucus here.

MR. SECORD: And Ms. Okoye.
MS. OKOYE:
Yes.
MR. SECORD:
Ifeoma.
MS. OKOYE:
Yes.
MR. SECORD:
Would you call me, please?
MS. OKOYE:
Sure, I will.
MR. SECORD: We can have a caucus, okay?
MS. OKOYE: Okay. Mr. Chair, if that's okay with you, can I take a few minutes?

THE CHAIR:
MS. OKOYE: Mr. Chair.
THE CHAIR:
Sorry? You just froze, Ms. Okoye. Does anybody else notice that? I think Ms. Okoye is I think maybe lost now.

MR. WIEBE:
She was invited to a breakout room with Mr. Secord.
THE CHAIR:
Oh, now she's back?

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

MR. WIEBE:
I'm assuming that -- no, I think she never left, so she's probably figuring out the breakout room right now.

MS. OKOYE:
There we go. I thought that was a request for me to join a breakout room, and I wasn't sure why that was. I'm back.
Q. A11 right. Should I proceed, or you have a response for me?
A. MR. HEBERT:

Ms. Okoye, maybe if you could repeat the question, then we'11 ensure the pane1 can respond.
Q. I believe I got the answer to my question, so I was just going to move on.
A. MR. HEBERT:

Okay. The Transportation witness pane1 can continue.
Q. Thank you.

So Exhibit 164, PDF 7, Item 3.1.4, that is the IAAC draft conditions, requires AT to install riprap material on the diversion channel side slopes and where the diversion channel enters the reservoir to prevent future bank erosion. Do you recall that? I'm not sure who the panel is going to answer for it.
A. MR. WOOD: Mr. Chair, it's Matt Wood. Yes, I can confirm that. I'm aware of that draft condition.
Q. So and AT in its response, Exhibit 219, PDF 10, agreed

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

that with the installation of the riprap but suggested that the requirement should be limited to the diversion channe1 and portions of the off-stream storage dam.

Now, can the diversion channel/berm and the dam and outlet -- and at the outlet allow wildiffe use and passage while maintaining safety and reducing erosion risk?
A. MR. WOOD: Mr. Chair, yes, I can confirm that the riprap that, as I mentioned, has been modified in many areas to facilitate wildiffe passage. That includes filling of the voids in that riprap with gravels and cover.

And I guess with respect to -- sorry, what was the second part of your question, Ms. Okoye?
Q. I think you've answered it. The question was whether the diversion outlet channel and the riprap installation will allow wildlife passage and use while still maintaining safety and reducing erosion risk. And I believe your answer is yes, it can serve both purpose?
A. MR. WOOD: Correct.
Q. Do I have it wrong?
A. MR. WOOD: No, that would be correct, thank you.
Q. So will there be spacing in between riprap to permit
wildlife passage in all seasons so in winter, spring, whenever?
A. MR. WOOD: Ms. Okoye, I'm not clear as to why spacing in it would facilitate that. Could you please explain?
Q. Perhaps you could explain to me how the installation of riprap along the channe1, diversion channel, for instance, will permit wildlife passage and use?
A. MR. WOOD: Oh, Mr. Chair, this is Matt Wood. As I mentioned, the plan for that riprap is to fill the voids. So when I say the "voids," I mean all the spaces in the riprap. Many of us have seen riprap along the river, maybe tried to walk on it. It has large holes in it that are not good for animals specifically ungulates.

And so what's proposed is to fill the voids with gravels so that those holes or those traps are not present at areas where wildiffe may wish to cross.
Q. Okay. So you're saying that wildiffe can then cross wherever there are gravel?
A. MR. WOOD: Correct.
Q. Is that what you're saying?
A. MR. WOOD: That is correct, yeah.
A. MR. BRESCIA: Ms. Okoye, if I could just add to Mr. Wood's statement, it's not just grave1. The grave1

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

will be covered with soil and vegetation.
Q. Okay. And that would be sufficient, I believe, is that what you're saying, to reduce the erosion risk?
A. MR. WOOD: Yes, Mr. Chair. The size of the riprap, the hydrotechnical analysis that was done, and the placement and general arrangement of that riprap doesn't change. It is simply that the voids are filled with gravels and covered with soil and vegetation as Mr. Brescia added to my response.
Q. Okay. And so the void in between the ripraps, wil1 that be wide enough to allow wildiffe to pass?
A. MR. BRESCIA: Mr. Chairman, it's not the voids that allow the wildife to pass. The voids are filled so that there are no holes, and then the holes are revegetated so that it effectively looks like a grassed slope. And so that's what enables the wildife to pass.
Q. I get that now, thank you.

So in Exhibit 94, PDF 151, AT acknowledges that approximately 15.3 hectares of wetlands will be lost during construction and 11.7 hectares will be lost from post-flood sedimentation greater than 10 centimetre. And then AT states that the lost wetlands will be replaced.

Can you tell me the cost of replacing this

27 hectares of permanently lost wetland?
A. MR. DE CARLO: Mr. Chairman, Nick De Carlo speaking.

I don't have the numbers available to -- to provide.

The compensation rate in the region is $\$ 17,700$ per hectare, multiplied by a replacement ratio based on the value of the wetland.
Q. Okay. So can you -- now, was that cost also included in the - - in Exhibit 159, Appendix G ? The cost for the wetland replacement, was that included in the material?
A. MR. SPELLER: Mr. Chairman, Ms. Okoye, it's Wayne Speller. The answer to that is no, it is not in that cost opinion document.
Q. Okay. Thank you.

So does AT expect that there will be more wetlands lost over time due to sedimentation as the project operates?
A. MR. DE CARLO: Mr. Chairman, that would depend on how the floods occur in the future. I don't believe we are in a position to speculate as to how floods, particularly design floods, will occur which could be many, many years from now and would also be directly related to the replacement approach agreed to between AT and AEP.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

So, for example, some wetlands may be proactively replaced in anticipation of sedimentation and effects from future floods, and AT and AEP are currently discussing what that replacement will look like and what is desired.
Q. Okay. So that it's -- that's okay. So where exactly will the replacement wetlands be located and constructed?
A. MR. DE CARLO: Mr. Chairman, Nick De Carlo again.

That is a decision that is ultimately up to AEP. They decide how the funds from wetland replacement are allocated and where.

However, following the wetland policy and the replacement mitigation directive, there is a preference for wetland replacement to be conducted in the county followed by the watershed where the loss occurs, although that is not always possible, and the directive recognizes that.
Q. So can you explain AT's confidence level regarding the replaced wetlands being of similar productivity and type such that the replaced wetlands will provide 100 percent replacement in terms of composition, quality and ecosystem structure?
A. MR. DE CARLO: Mr. Chairman, Nick De Carlo again.

The province has a very rigorous process when it

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

comes to evaluating wetlands, their function and value, and that factors into the replacement costs. They have replacement ratios based on the values, and those values and those tools have gone through a rigorous scientific review.

So the actual guarantee, I can't say that, but they -- AEP does go through an independent review of how funds are applied and the function of wetlands that are either replaced or restored or adjusted using funds from projects and Water Act approvals.
Q. So can you provide examples of Foothills Parkland wetlands that have been reconstructed that you know of?
A. MR. DE CARLO: No, Mr. Chairman, I can't. AEP does not make that information public. It may be public in the future but I am not aware of any information that AEP has made public to date.
Q. So does AT agree that flood risks are likely operation of the project will be in the spring and summer when the PDA will likely be in use by migratory birds and wild1ife?
A. MR. BRESCIA: Mr. Chairman, it's Mr. Brescia. We would agree that it's -- the likely flood season overlaps with potential migratory bird season.
Q. Thank you. So during cross-examination by Mr. Secord on Topic Block 3, Mr. Menninger indicated that AT had
built safety features into the project design, including signage, warnings informing of the public before operating the dam.

Can you tell me the safety plans that AT has in place for ensuring the safety of wildiffe, including migratory birds, elk and grizzlies, that may be using the reservoir area prior to the operation of the project?
A. MR. BRESCIA: Mr. Chairman, this is Dave Brescia.

So in the context of migratory birds, Alberta Transportation has been in discussions with Environment Canada and the Federa1 Impact Assessment Agency about appropriate mitigation for potential effects to migratory birds.

Through that -- and this information is in the filed material -- the federal agency's proposed the idea of monitoring and salvage plan as an option to -- for AT to consider developing to minimize these effects.

That salvage plan, the draft of it is presented in Exhibit 218 and PDF page 98, and it outlines the steps that are involved in the salvage operations including the flood forecasting which would be information provided by Alberta Environment and Parks, the salvage

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

operation, the identification of salvage areas, and -and measures to -- to get the migratory birds to a rehabilitation centre if necessary.

So that plan has been drafted and will need to be progressed further in consultation with both Environment Canada and Alberta Environment and Parks.
Q. Thank you. So during a flood event, can you tell us the steps that AT will take to remove any wildiffe that may be stranded in the off-stream reservoir or in any of the project's components?
A. MR. BRESCIA: Mr. Chairman, this is

Dave Brescia.
So, as I mentioned, so we've developed a draft migratory bird salvage plan, and some of the steps involved are that AEP, river engineering and technical services, we've spoken with them about flood forecasting, and they've indicated that they are able to provide some notice -- it's a short period of time, on the order of two to three days -- of an impending flood that would have flows that would trigger the operations of the project.

Following that notification, crews -- and this would follow a process much the same as the fish salvage process that we talked about in Topic 4. Crews would be mobilized to the reservoir to identify
priority areas. And those priority areas are based on known habitat types and breeding bird densities that we would expect to be the most likely to have migratory birds.

Following that, birds that were encountered would be salvaged, and they would be -- a process -- they would be -- through a process pre-arranged, they would be taken to recovery centres, wildife recovery centres in the region for rehabilitation.

And through this plan also, we would be looking for amphibian species at risk. Should we encounter any amphibian species at risk, they would be relocated to areas outside of the flooded part of the reservoir.

And it should be noted that we did not see any amphibian species at risk during our wildiife surveys. But should they be there.

With respect to the larger more mobile wildife, like ungulates, we wouldn't expect there to be any real issue with them exiting the reservoir under their own power.
Q. Thank you, Mr. Brescia. So your explanation relates to pre-flood events. I'd like to get your take on what the plan is for -- during flood in terms of wildlife rescue.
A. MR. BRESCIA: When I say "pre-flood events," I'm

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

referring to, quite immediately, pre-flood, so, effectively, on the front end of the flood.

I don't think there's any plans to go into the reservoir when it's full of water to attempt to rescue anything currently planned.
Q. So in the event that there are some wildiffe that are trapped in there, that maybe, for some reason, your plan wasn't effective in getting them out before the flood or you did get some out before the flood, but some entered after you had finished your operation, do you acknowledge that mortality could result in that situation?
A. MR. BRESCIA: Mr. Chairman, I'm not sure that I'm following the reason why wildiffe would enter the area and become trapped while it was flooded. Our expectation is that animals that - that -- would avoid the area during a flood and that's what we've identified in our wildiffe movement assessment is that while the area is flooded, we expect them to move out of the area. That's our assessment.
Q. So there is no assessment on the potential for any wildiffe to either get in there during a flood event, which could last for days, and also before the release event occurs, is it that there's no expectation that there would be any wildiffe getting in there?
A. MR. BRESCIA:

Mr. Chairman, I think I'm having trouble following the mechanism by which they would get into the reservoir. Either the expectation would be they would be species that would be adapted to aquatic environments, perhaps like waterfowl or amphibians, or they would be species that would move away instinctively from the water.

So I'm not certain how they would get -- get trapped again and die.
Q. Okay. So my clients would like to know which wildiffe cannot exit the area. So if you can talk about that a bit.
A. MR. BRESCIA: One moment.
A. MR. TERRY:

Mr. Chairman, Eliot Terry. So we've said an assessment basically is during a flood operation that animals that have relatively lower mobility, so things like amphibians, as Mr. Brescia mentioned, and ground-nesting birds would be at most risk.

Other animals, right, that have higher mobility, mammals, the ungulates, and other species, are expected to move away from the floodwaters reducing their mortality risk. But we've acknowledged that there is a risk, but that will obviously depend on again the magnitude of the flood and the mobility of those

ALBERTA TRANSPORTATION TOPIC \#5 PANEL

Cross-examined by Ms. Okoye
wildife species.
Q. So in terms of bird nests, so I take it that the plan is to actually go in and scan for bird nests and get them all out? Is that the intention?
A. MR. TERRY: Yes, as Mr. Brescia explained. So we'11 have identified priority habitat areas where the density of the birds will be relatively higher, to focus our efforts in that limited amount of time available. And so that would be the plan.

We can't obviously rescue all birds, but the plan is to attempt to do the best we can, within the time available.
Q. Okay. Thank you. So in your opening statement, Mr. Hebert, you indicate that AT will consider the addition of shelter belts at select -- AT will consider the addition of shelter belts at select areas of the PDA or adjacent landowners' requests.

Wi11 AT establish the trees along the embankment in the floodplain berms and the off-streams dam embankments?
A. MR. WOOD: Mr. Chairman, due to engineering reasons, geotechnical maintenance and monitoring reasons, things like trees and shrubs are not permitted in the dam, the floodplain berm or the diversion channe1 embankments.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Ms. Okoye

Q. So you're saying that there won't be any trees along the embankment on the floodplain berm?
A. MR. WOOD: There will not be any trees along the -- on the embankment of the floodplain berm. It is classified as a dam, as was discussed in previous days, and trees are not good to be having growing out of dams.
Q. Okay. And so there will also be no trees along the -- sorry, I think you've answered that. Sorry.

So at what stage of the construction process will AT commence the planting of the trees and where exactly would those trees be planted, or is that not known at this time?
A. MR. HEBERT: Mr. Chairman, that level of detail is not known at this time, as I said in my opening remarks. That's subject to discussions with adjacent 1 andowners around the PDA.

Certainly there may be some other locations that may be appropriate for the location of shelter belts as the plan of the project continues, but certainly I would expect that those details would come at a point after project approval, should the Board and the federal regulator agree.

But, again, it's a matter that -- obvious that requires discussion with those that will continue -- or
choose to live -- or choose to be adjacent to the project area and certainly we'd be open to their views on -- if they're interested when they would expect planting to begin.
Q. So when the trees are established, would AT or AEP be solely responsible for the costs of maintaining the shelter belt trees?
A. MR. HEBERT: Mr. Chairman, I say it's premature at this time to confirm who would be responsible for their management depending on their location and purpose, but certainly, we would be pleased to confirm those details at a later time.
Q. Okay. So will AT agree to include as a condition of approval that AT will establish and maintain the shelter belt trees at its own costs following consultation with local stakeholders and adjacent 1 andowners?
A. MR. HEBERT: Mr. Chairman, we will take that as an undertaking.

UNDERTAKING - TO ADVISE IF AT WILL
AGREE TO INCLUDE AS A CONDITION OF
APPROVAL THAT IT WILL ESTABLISH AND
MAINTAIN THE SHELTER BELT TREES AT ITS
OWN COSTS FOLLOWING CONSULTATION WITH
LOCAL STAKEHOLDERS AND ADJACENT

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

LANDOWNERS

Q. MS. OKOYE:

So does AT agree to also have as a condition of approval that AT shall compensate all farmers with documented expenses for incremental weed control as a result of project activities?
A. MR. HEBERT: Mr. Chairman, we'11 add that to the undertaking.

UNDERTAKING - TO ADVISE IF AT WILL
AGREE TO HAVE AS A CONDITION OF
APPROVAL THAT IT SHALL COMPENSATE ALL FARMERS WITH DOCUMENTED EXPENSES FOR

INCREMENTAL WEED CONTROL AS A RESULT OF PROJECT ACTIVITIES
Q. MS. OKOYE:

So the SCLG acknowledges that AT has conducted some baseline biodiversity surveys, inventories, and analysis of the project's impacts on wildiffe plans. What about a soil and migratory bird habitats? SCLG views the surveys done are not fulsome, and more information are required.

Does AT agree to a condition of approval that would require AT to work with landowners, local stakeholders, including First Nations, in identifying additional biodiversity studies that should be done and undertake to do them?
A. MR. HEBERT: Mr. Chairman, one moment.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

Ms. Okoye, are you able to clarify the meaning of "study" in this instance?
Q. So surveys, additional surveys, additional work in the event arising and identifying habitats and presence of wildlife and other types of biodiversity issues.
A. MR. HEBERT: Just bear with us one moment.

THE CHAIR:
Ms. Okoye, just while we're waiting on caucus, whereabouts are you on your questions?
A. MR. HEBERT:

So Mr. Chairman, generally speaking, I believe what counsel is referring to could or would be captured within monitoring mitigation plans that have been posed. But for the benefit of Ms. Okoye's clients we can undertake to provide a written response.
Q. Okay. Thank you.

UNDERTAKING - TO ADVISE IF AT AGREES TO
A CONDITION OF APPROVAL THAT WOULD REQUIRE ALBERTA TRANSPORTATION TO WORK WITH LANDOWNERS, LOCAL STAKEHOLDERS, INCLUDING FIRST NATIONS, IN IDENTIFYING ADDITIONAL BIODIVERSITY STUDIES THAT SHOULD BE DONE AND UNDERTAKE TO DO THEM

MS. OKOYE: Mr. Chair, yeah, I notice that we are getting close. I was hoping to get -- I still have

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
 Cross-examined by Ms. Okoye

just about four more questions, and then I can turn it over to Mr. Secord. Or he could start in the morning, and then I'11 check in with my clients, and I may have -- any additional questions I can fill them through Mr. Secord.

THE CHAIR:
Okay. So yeah, I think continue with your questions, and then we'11 ask Mr. Secord where he wants to go because we'11 be close to $5: 30$ at that point. And if we need to sit longer or if there's a desire by all parties, we could, but I think we had previously agreed 5:30 and then start tomorrow morning. But continue, please, Ms. Okoye. Thank you.

MS. OKOYE:
Thank you, Mr. Chair. I apologize it's taken a bit of time.
Q. So does AT agree to also work with local stakeholders and First Nations in identifying additional mitigation measures to deal with any unforeseen biodiversity impacts?
A. MR. HEBERT:

Sorry, one moment. Ms. Okoye, can you give us an example? We're just conferring here, and we're just trying to get some context for --
Q. So in the event that you end up doing additional surveys and inventories of wildlife and migratory birds and other habitats that you find as a result of your additional survey, so -- which will require you to

ALBERTA TRANSPORTATION TOPIC \#5 PANEL Cross-examined by Ms. Okoye

undertake some mitigation measures to deal with those additional impacts, do you agree to work with local stakeholders and First Nations in identifying what those additional mitigation measures will be?
A. MR. HEBERT: So as I said, I believe speaking generally the product of the monitoring on project area at either varying stages of its operation, should there be the need for additional mitigation, Transportation would have to apply it consistent with the results of the monitoring program.

But I think certainly for the benefit of your clients, we can include that as part of our response.

UNDERTAKING - TO ADVISE IF ALBERTA
TRANSPORTATION WILL WORK WITH LOCAL
STAKEHOLDERS AND FIRST NATIONS IN
IDENTIFYING WHAT ADDITIONAL MITIGATION
MEASURES REGARDING SURVEYS AND
INVENTORIES OF WILDLIFE AND MIGRATORY
BIRDS AND OTHER HABITATS WILL BE
Q. MS. OKOYE:

So does AT agree to the
development of a grizzly bear monitoring and management plan in consultation with local stakeholders in proximity to the project area?
A. MR. HEBERT: Let me confirm one detail for a moment. I was just checking.

As I suspected, I knew the answer, Mr. Chairman. But we would submit to the panel that that particular plan as it relates to grizzly bears would be captured within the draft wildife monitoring mitigation plan. I don't know if that's the exact title, but I think I came pretty close.

It's certainly the finalization of that plan is subject to engagement with Indigenous groups and interested stakeholders. And you know, I think we've certainly made commitments that we're open to discuss that plan through the life of the project as appropriate.
Q. I'll check in with my client, and I'll turn it over to Mr. Secord. And he can start or say what he wants to do for now while I check in.

MR. SECORD:
Sure. I can start asking some questions, Mr. Chair, if you would like and many -- why don't I do that? I've got a few questions that I wouldn't mind asking before we break.

THE CHAIR: Sure.

MR. SECORD CROSS-EXAMINES THE PANEL:
Q. So probably, Ms. Noble, this might be -- these questions might be for you.

I take it you've done the human health risk assessment?
A. MS. NOBLE: Yes, I have.
Q. Right. And I take it you would be familiar with the Health Canada website as part of your work?
A. MS. NOBLE: Yes.
Q. And you would have an understanding of PM 2.5?
A. MS. NOBLE: Yes.
Q. Okay. And would it be fair to say that PM 2.5 is responsible for an estimated 4.2 million premature deaths every year globally?
A. MS. NOBLE: I'm aware that Health Canada, as well as the World Health Organization and other health agencies, have done estimates of the high cost of exposure to air pollution.

I don't know the exact numbers, but I am aware of those studies, yes.
Q. And in Canada, can you confirm that about 6,000 people die every year from air pollution according to estimates from Health Canada?
A. MS. NOBLE: Subject to check, if you can provide a reference.
Q. No, I'm just -- I'm not providing a reference; I'm just wondering in terms of your work as a health risk assessor, have you come across that type of statistic from Health Canada? If you haven't, then you can just say no.

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

A. MS. NOBLE:

As I said before, I'm aware that there have been estimates made about the rates of illness and disease, but I don't know those numbers off the top of my head.
Q. And among the different types of air pollution, can you confirm that PM 2.5 kills the most people worldwide?
A. MS. NOBLE: I would hesitate to confirm that.

I do know that in terms of health estimates, particulate matter is certainly one of the primary criteria contaminants. The other as being, for example, nitrogen dioxide.
Q. And can you confirm, Ms. Noble that PM 2.5 consists of particles smaller than approximately 2.5 microns?
A. MS. NOBLE: Yes, that's by definition.
Q. Can you confirm that these particles are so small that billions of them can fit inside a single red blood ce11?
A. MS. NOBLE: I would have to check on that. That's certainly not a form of measurement that I have ever used to estimate PM 2.5.

My standard form of reference is the human hair is about 70 microns, and so 2.5 would be 1 ess than that.
Q. And can you explain, what is the -- what is the mechanism for 2.5 killing people?
A. MS. NOBLE: So when it comes to the actual

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

mechanisms, there's a number of studies that have identified potential rates for fatalities, but I'm not sure that those have been formally confirmed. However, when it comes to doing the risk assessment, we tend to work at the -- at the comparison of appropriate benchmarks.

What I can tell you is that, yes, Health Canada has confirmed that the potential effects of exposure of particulate matter relate to respiratory and cardiovascular effects, of both morbidity and mortality.
Q. Perhaps maybe the general question to the pane1, Mr. Hebert, for you to quarterback. Could I ask the panel if they have seen a dry dam project like this where perhaps millions of tons of sediment is intentionally deposited and left to dry over a project life of 100 plus years?
A. MR. HEBERT: One moment, Mr. Chairman.
A. MR. SPELLER: Mr. Chairman, Mr. Secord, it's Wayne Speller.

Instead of passing it around to different people, I think I'11 take a shot, so...
Q. You're not up on the screen yet. There you are. Thank you.
A. MR. SPELLER: I keep thinking it's a touch

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

screen. I can just poke my face on the screen and I'11 pop up for you.

So we are aware of projects where water levels and dams and reservoirs are lowered and raised. We're not aware of a dry dam of this size. We're also not aware of any of those where the proponent has made a commitment to sediment management, the way that we heard Mr. Hebert speak about it earlier today.
Q. And what is the project life of this dry dam?
A. MR. HEBERT: Mr. Chairman, the project's life is essentially indefinite. I don't believe that it's got a fixed life.
Q. So it could be hundreds of years?
A. MR. HEBERT: Yes, Mr. Chairman, presumably that's --
Q. It doesn't have a shelf life, Mr. Hebert; right?
A. MR. HEBERT: No, Mr. Chairman. And we've been pretty clear in documentation that the project's life and function is meant to be indefinite, again subject to all the appropriate maintenance and compliance requirements.
Q. Right. And in Alberta Transportation's report dated March 11, 2021, from your own air quality experts, it clearly states that there will be -- and I quote: (as read)

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

"Unacceptable short-term risk to human
health due to unsafe air quality
levels."
What my clients would like to know is, why are you creating an air quality problem that needs to be managed? Why are you choosing this outcome with likely air quality exceedances over hundreds of years? Why would you intentionally create an air quality problem in a community like Springbank when there are alternatives like MC1 that could have avoided this outcome?
A. MR. SPELLER: Mr. Chairman, Mr. Secord, I just want to clarify two things that were just spoken to.

So I know, Mr. Secord suggested that what he just said was a quote. That's not actually in our report the way that he worded it.

He stated it "will" have effects. That's actually not what our conclusions are. We've seen that in some of the documentation. That's not what our exhibit states. It says it "could," and then it talks about some other factors.

The second piece I wanted to clarify. There has been discussions for this project during this hearing about the MC1 option as another option. I'm not sure that's what Mr. Secord was talking about.

But one thing to be clear is, as at its conceptual

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

stage, as it was proposed back in the day, it's also a dry dam, water levels will rise over a much larger area than that permanent pond, that water will-- water levels will reduce, sediment will be left behind and would have to be managed.

So I just want to make those two clarifications. That's not the answer to your question, but I wanted to clarify those two pieces.
Q. But there isn't a school a few kilometres downstream of MC1, is there?
A. MR. HEBERT: No, Mr. Chairman, there is not; however, I think what we would suggest, as part of Alberta Transportation, is the commitments that I referred to in my remarks earlier today as it relates to the management of sediment, as it would relate to the air monitoring that we've proposed. We've also been addressing other mitigations that would reduce the risk to residents in the area.

Transportation is not denying the potential risks, but on account of knowing that this is a risk that could accrue on account of its operations, Transportation has proposed a set of management techniques to reduce or eliminate the risk to the population.
A. MR. SPELLER: Mr. Secord, sorry, if I could add,

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

again another clarification.
The discussion about the school, we saw that in some of the documentation. It was quite alarming when we saw it as -- it's not the findings of our assessment, it's not what we're seeing in the findings of the old modelling we did, the new modelling we did, the frequency work that we did, Ms. Noble's health risk assessment.

That -- that kind of supposition of what that outcome could be is alarming. We were equally alarmed because it's not what our assessment concludes.
Q. So in your experience, Ms. Noble, what period of time did your education or professional groups designate as an acceptable period of time that young children should be exposed to unsafe air quality?
A. MS. NOBLE: Children should not be exposed to unsafe air quality, nor should the elderly, nor should members of the public.
Q. And in terms of your education and professional -- in your experience and education, what period of time did your education and professional groups designate as an acceptable period of time for people with pre-existing respiratory health issues to be exposed to unsafe air quality?
A. MS. NOBLE: So people should not be exposed to

ALBERTA TRANSPORTATION TOPIC \#5 PANEL
Cross-examined by Mr. Secord

unsafe levels.
The question becomes determining the risk in terms of what constitutes an unsafe level.

MR. SECORD :
Mr. Chair, I think we've reached probably a logical place to break for the evening, unless you would like me to go on. I have an area of cross that would probably take quite a bit of time that I could embark on but...

THE CHAIR: I think -- well, I think tomorrow should work. I mean, I have you at just around 100 minutes for tomorrow in terms of your time allocation, Mr. Secord.

And, you know, I think -- let's see how the morning goes, and we could take maybe -- if people could be prepared to take a half hour lunch if we do fall behind just a little bit tomorrow morning, and then if we need to sit a bit longer tomorrow, we will. But I think we should be close. And that will depend a bit, because right now Alberta Transportation, as I mentioned earlier, would be giving up some of their requested approved -- pre-approved cross time.

And we have noted -- Mr. Secord, you noted that they, in the past, have not used all of that time, but they might in this case. I mean, I don't think we should predispose that.

So let's go with that tomorrow, but we should be prepared to perhaps have a shorter lunch break tomorrow, and be prepared to sit a bit longer tomorrow as well, because we'll be that close, I think. And if we're all fairly diligent about our timing, that we could complete the evidentiary portion tomorrow, which I think I've heard from all parties is sort of the desired outcome for tomorrow. So if we all work to that goal, I think we ought to get there.

MR. SECORD: Thank you, sir.
Thank you, everyone. Let's adjourn for the evening and we'll see you tomorrow morning, 7:45 sign-in and 8:30 start. Thank you.

PROCEEDINGS ADJOURNED TO APRIL 1, 2021, AT 8:30 A.M.
\qquad

8 Dated at the City of Calgary, Province of Alberta, on 9 March 31, 2021.

Certificate of Transcript

We, the undersigned, hereby certify that the foregoing pages $\underline{1895}$ to $\underline{2186}$ are a complete and accurate transcript of the proceedings taken down by us in shorthand and transcribed from our shorthand notes to the best of our skill and ability.
"Lorelee Vespa"
Lorelee Vespa, CSR(A) RPR CRR
Official Court Reporter
"Deanna DiPaolo"
Deanna DiPaolo, CSR(A)
Official Court Reporter

- I N D E X -
VOLUME 8
A. LOCKE, J. FENNELL, D. KLEPACKI (For SCLG)
MR. MERCER CROSS-EXAMINES THE PANEL 1900
MR. FITCH CROSS-EXAMINES THE PANEL 1906
MR. BARBERO CROSS-EXAMINES THE PANEL 1916
MR. CEROICI QUESTIONS THE PANEL 2000
MS. ROBERTS QUESTIONS THE PANEL 2006
MR. HEANEY QUESTIONS THE PANEL 2008
THE CHAIR QUESTIONS THE PANEL 2011
MR. SECORD RE-EXAMINES THE PANEL 2015
M. HEBERT, M. SVENSON, W. SPELLER, D. BRESCIA,
M. WOOD, J. HALLSON, T. NOBLE, N. DE CARLO,E. TERRY, I. WHITSON, R. PERSON, D. BUCHANAN
(For Alberta Transportation)
MR. BARBERO EXAMINES THE PANEL 2028
MS. LOUDEN CROSS-EXAMINES THE PANEL 2073
ms. OKOYE CROSS-EXAMINES THE PANEL 2082
MR. SECORD CROSS-EXAMINES THE PANEL 2176

1	EXHIBITS	
2		
3	EXHIBIT 386 - AT UNDERTAKING RESPONSES TO 10, 12,	1899
4	13, 15, 19, 21, 22, 23	
5		
6	EXHIBIT 387-AT AID TO CROSS NUMBER 3	1923
7		
8	EXHIBIT 388-SCLG AID TO CROSS NUMBER 2	1938
9		
10	EXHIBIT 389 - ALBERTA TRANSPORTATION TOPIC 4 AID	1942
11	TO CROSS 1, CTV NEWS ARTICLE	
12		
13	EXHIBIT 390-AT RESPONSE TO UNDERTAKING 31	1944
14		
15	EXHIBIT 391 - ERRATA 1 FOR EXHIBIT 327 - REVISED	2037
16	TABLE BLUELINED	
17		
18	EXHIBIT 392 - REID PERSON POWERPOINT	2072
19		
20	EXHIBIT 393 - SCLG AID TO CROSS 1 - FROM ALBERTA	2113
21	WATER COUNCIL RIPARIAN LAND CONSERVATION EXCERPT	
22		
23		
24		
25		
	AMICUS REPORTING GROUP	

UNDERTAKINGS GIVEN

UNDERTAKING - TO HAVE MR. FENNELL CHECK THE
TRANSCRIPT EXCHANGES WITH MR. BARBERO AND PROVIDE CORRECTIONS TO ANY OF THE QUESTIONS AND ANSWERS THAT MIGHT BE CHANGED AS A RESULT OF THE NEW INFORMATION PROVIDED

UNDERTAKING - TO ADVISE WHY THERE WAS A PROPOSAL 2075 IN 2018 REGARDING ADDING THE SEGMENT OF HIGHWAY 22 BETWEEN HIGHWAY 1 AND HIGHWAY 8 TO THE HIGH LOAD CORRIDOR NETWORK

UNDERTAKING - IF IT IS DETERMINED THAT THE SEGMENT 2075 OF HIGHWAY 22 BETWEEN HIGHWAY 1 AND HIGHWAY 8 HAS BEEN ADDED TO THE HIGH LOAD CORRIDOR NETWORK, TO ADVISE WHEN THAT OCCURRED

UNDERTAKING - TO ADVISE IF AT WILL COMMIT TO SOURCING AND USING ONLY WEED-FREE CONSTRUCTION MATERIALS AT THE SITE

1	UNDERTAKING - TO ADVISE WHETHER THE OPERATION OF	2111
2	THE FILTRATION SYSTEM CAN BE LIMITED TO DRY OR	
3	NON-FLOOD CONDITIONS	
4		
5	UNDERTAKING - TO ADVISE OF ANY RESTRICTIONS THAT	2111
6	WILL MAKE THE DESIGN AND INSTALLATION OF THE	
7	FILTRATION SYSTEM NOT FEASIBLE	
8		
9	UNDERTAKING - TO PROVIDE A REVISED TABLE THAT WILL	2129
10	SHOW THE HECTARES OF LAND THAT ARE AFFECTED BASED	
11	ON THE REVISED CALCULATION BY MR. WHITSON -	
12	REFUSED	
13		
14	UNDERTAKING - T0 ADVISE IF AT WILL AgREE T0	2171
15	INCLUDE AS A CONDITION OF APPROVAL THAT IT WILL	
16	ESTABLISH AND MAINTAIN THE SHELTER BELT TREES AT	
17	ITS OWN COSTS FOLLOWING CONSULTATION WITH LOCAL	
18	STAKEHOLDERS AND ADJACENT LANDOWNERS	
19		
20	UNDERTAKING - TO ADVISE IF AT WILL AGREE TO HAVE	2172
21	AS A CONDITION OF APPROVAL THAT IT SHALL	
22	COMPENSATE ALL FARMERS WITH DOCUMENTED EXPENSES	
23	FOR INCREMENTAL WEED CONTROL AS A RESULT OF	
24	PROJECT ACTIVITIES	

1 UNDERTAKING - TO ADVISE IF AT AGREES TO A
2 CONDITION OF APPROVAL THAT WOULD REQUIRE ALBERTA
3 TRANSPORTATION TO WORK WITH LANDOWNERS, LOCAL
4 STAKEHOLDERS, INCLUDING FIRST NATIONS, IN
5 IDENTIFYING ADDITIONAL BIODIVERSITY STUDIES THAT
6 SHOULD BE DONE AND UNDERTAKE TO DO THEM

8 UNDERTAKING - TO ADVISE IF ALBERTA TRANSPORTATION

NRCB 1701, Volume 8, March 31, 2021

\$	$\begin{aligned} & \text { 11[8]-1901:1; } \\ & \text { 1981:8; 1982:6; } \\ & \text { 1983:7, 13; 1984:12; } \\ & \text { 2180:23 } \\ & 11.7[1]-2160: 21 \\ & 110[5]-1916: 16 ; \\ & 1978: 9 ; 1982: 12,23 \end{aligned}$	$\begin{gathered} 1902[3]-1927: 3,21 ; \\ 1960: 5 \\ 1906[1]-2187: 7 \\ 1908[1]-1958: 24 \\ 191[2]-2125: 15 ; \\ 2154: 13 \end{gathered}$	$\begin{gathered} 2006[2]-2013: 25 ; \\ 2187: 10-20-2032: 13 \\ 2007 \\ 2008[1]-2187: 11 \\ 2011 \\ 2013[1]-2187: 12 \\ 2013[10]-1900: 17 ; \end{gathered}$	$\begin{aligned} & \text { 2027:20; 2119:5, } 9, \\ & 16 \end{aligned}$
\$17,700 [1] - 2161:6				
				$\begin{aligned} & 25 \text {-year }[1]-1931: 23 \\ & 26\left[\begin{array}{ll} {[1]-2148: 18} \\ 261[3]-1950: 10,13 ; \end{array}\right. \\ & 1993: 1 \end{aligned}$
$\begin{aligned} & \hline \text { '30s }[1]-1931: 21 \\ & \text { '32 }{ }^{[1]}-1930: 5 \\ & \text { 'weight }{ }_{[1]}-1986: 23 \end{aligned}$		$\begin{array}{r} 196[1]-2187: 8 \\ 1923[1]-2188: 6 \end{array}$	$\begin{aligned} & \text { 1903:7; 1904:8; } \\ & \text { 1929:1, 5; 1954:14, } \end{aligned}$	$\begin{array}{r} 262[1]-1946: 19 \\ 263 \text { [4]-1927:16; } \\ \text { 1930:15; 1931:19 } \\ 264[2]-1919: 25 ; \end{array}$
	$\begin{gathered} \text { 1978:9; 1982:12, } 23 \\ 115[1]-2103: 1 \\ 11: 51[1]-202: 1 \end{gathered}$			
		$\begin{aligned} & 1925 \\ & 16,20 \end{aligned}$	$\begin{aligned} & \text { 22; 1956:2; 2143:15, } \\ & 17 \end{aligned}$	
	$\begin{aligned} & 11: 51[1]-2022: 1 \\ & 12[15]-1897: 17 ; \end{aligned}$			
0	$\begin{aligned} & 1899: 2 ; 1923: 15,24 ; \\ & 192: 8 ; 1932: 13,21 ; \end{aligned}$	$\begin{aligned} & 1930[1]-1930: 4 \\ & 1939 \end{aligned}$	2067:19-2034:21;	$264[2]-1919: 25 ;$
0 [3] - 1989:6;	1956:17; 1968:13;1975:23; 200:12;	1930:18; 1931:3, 6,	$\begin{aligned} & 2015[1]-2187: 13 \\ & 2016[3]-2033: 1 ; \end{aligned}$	27 [7] - 1925:1;
2118:25				2126:11, 18; 2161:
0.075 [1] - 2060	2188:3	15, 1933 [1]-1930	$\begin{aligned} & 2016 \\ & 2038: 21 ;-2033: 1 ; \end{aligned}$	
0.1 [2]-2133:17;	$\begin{aligned} & \mathbf{1 2 0}[1]-1929: 4 \\ & 124[1]-2051: 18 \\ & 125\left[{ }_{[12}-1929: 1\right. \\ & 12: 59[1]-2023: 5 \\ & \text { 12th }[1]-2055: 4 ; \\ & 2059: 10 ; 2062: 24 ; \end{aligned}$	1937 [1] - 1932:22	2017 [2] - 1926:11;	$\begin{aligned} & 270[1]-2102: 21 \\ & 273{ }_{[1]}-2096: 6 \end{aligned}$
2134:3		1938 [1]-2188:8		$273[1]-2096: 6$ 28 [9] - 2133:10.
		942 [1] - 2188:10	$\begin{aligned} & 2018[12]-1926: 11 ; \\ & \text { 2033:7; 2040:2; } \end{aligned}$	$\begin{aligned} & 2134: 9,11,14-15 ; \\ & 2135: 21 ; 2136: 20,22 ; \end{aligned}$
		$1944[1]-2188: 13$		
		96 [2]-2118:9;	2074:20; 2075:3;	$\begin{aligned} & \text { 2135:21; 2136:20, 22; } \\ & \text { 2141:22 } \end{aligned}$
1 [74]-1900:11, 23-24; 1901:23, ,	2118:5	$\begin{aligned} & 2122: 11 \\ & 1975[1]-1967: 19 \end{aligned}$	$\begin{aligned} & 2120: 10 ; 2127: 5,9, \\ & 20,23 ; 2128: 24 ; \end{aligned}$	29 [4] - 1902:2;
1902:2, 4, 10,	13 [9] - 1897:17;1899:2;1955:24;	198[1]-2125:15 ${ }^{198}{ }^{\text {[19 }}$ [1]-2041:3	20, 23; 2128:24; 2129:2	2106:8, 10, 20
1903:6, 18; 1904:6			2019 [2]-1940:7;	3
1939:14; 1942:25;	$\begin{aligned} & \text { 1969:21; 1975:15; } \\ & \text { 1999:14; 2188:4; } \end{aligned}$	1984 [1] - 2041:3 $1994[2]-2033: 24$	1956:7	
1954:11, 13-14, 17		2041:4	2020 [5] - 1901:21;	
21, 23; 1955:6, 9;	$\begin{gathered} 1999: 14 ; 2188: 4 \\ 138 \text { [6]-1921:22; } \end{gathered}$	$\begin{aligned} & 1997{ }_{[1]}-2034: 1 \\ & 1: 00_{[1]}-2022: 3 \end{aligned}$		3[29]-1903:25; 1920:22; 1922:7, 16;
1956:6, 12; 1966:	1926:17; 2115:4, 6 ;		$\begin{aligned} & \text { 2017:21 } \\ & \text { 2021 } \\ & \text { 201] - 1896:5; } \\ & \text { 218:2; 2117:21; } \\ & \text { 2186:9; 2185:15; } \end{aligned}$	$923: 10 ; 1940: 9$
1981:24; 1994:20;	$\begin{array}{r} 2140: 21 ; 2145: 19 \\ 14[15]-1976: 21 ; \end{array}$	2		53:14; 1956:6;
1997:16, 25; 2002:	1980:5; 1982:3;			
2011:9; 2035:13;				0, 23; 1994:20
2037:15; 2047:9,	1983:12, 16, 23;	2[26]-1921:22 1926:17; 1930:1	2028[1] - 2187:19	2048:21; 2068:4;
2049:1; 2062:1, $25 ;$	$\begin{aligned} & \text { 1984:14; 2024:3; } \\ & \text { 2025:4; 2076:8; } \end{aligned}$	1935:9; 1938:7; 1950:20:1979:16	2037 [1]-2188:15	2113:20; 2118:25; ${ }^{\text {2119:12: 2121:14, }}$,
2063:4, 15; 2064:2;			$205{ }_{[1]}-2095: 25$	
2065:5; 2073:9, 16,	2114:20; 2139:25;	1994:20; 2002:12;	2050 [1] - 1956:18	119:12; 2121:14,
18; 2074:2, 5, 11, 1			206 [1] - 2083:2	
2075:4, 15; 2113:15;		2094:5; 2107:12;	206(iv [1] - 2083:3	$\begin{aligned} & \mathbf{3 , 0 0 0}[1]-1911: 8 \\ & \mathbf{3 - 1}[2]-2035: 10 ; \end{aligned}$
2114:21; 2133:16, 24	$\begin{aligned} & 140 \text { [2] - 1926:18; } \\ & \text { 2061:12 } \end{aligned}$		207[2]-2100:14;	$\begin{aligned} & 2091: 7 \\ & 3-11[1]-2090: 24 \end{aligned}$
2134:2; 2138:22;	1440[1] - 2130:22	2094:5; 2107:12; 2113:2, 19; 2114:20;		
2150:18; 2151:2;	15[7] - 1897:17;1899:2; 1923:24;	2117:17; 2129:6;	2072[1]-2188:18	$\begin{aligned} & 3-11[1]-2090: 24 \\ & 3-6[1]-1978: 11 \end{aligned}$
2152:2,10, 19;		2130:6, 9; 2150:20;	2073 [1]-2187:20	3-8[[1] - 2035:10
2185:15; 2188:1	1925:8; 2067:21;	2152:3; 2188:8	2082 [1]-2187:21	3-9 [1]-2035:6
20	$\begin{aligned} & \text { 2188:4 } \\ & \text { 15-kilometre [3] - } \end{aligned}$	2,000 [1] - 2001:7	21[7]-1897:17, 21;	
1,000 [1] - 2001:6		2,265[1] - 1966:1	1899:2; 1956:7;	3.1.4 $\left.{ }^{[1]}\right]-2157: 17$3.3.1.3
1,190 [1] - 1964:15	15-kilometre [3] 2138:18; 2141:11;	2.5 [22]-1975:7;	2032:19; 2188:4	
1,240 [1] - 1956:21	$\begin{aligned} & 2138: 18 ; 2141: 11 ; \\ & 2144: 23 \end{aligned}$	2035:7; 2046:16;	2113[1]-2188:20	30 [7]-1924:1;
1,389 [1] - 1956:22	$\begin{aligned} & 15.3[1]-2160: 20 \\ & 151[1]-2160: 19 \end{aligned}$		$2176{ }_{[1]}$ - 2187:22	1970:13; 2027:8;
1,520 [1] - 1931:5		2061:14; 2063:10, 18,	218 [8]-1910:18;	$\begin{aligned} & \text { 2040:18; } \\ & 2102: 23041: 2103 ; 7 \end{aligned}$
1-1 [1] - 2148:2	$\begin{aligned} & 151[1]-2160: 19 \\ & 159[1]-216: 10 \end{aligned}$	22; 2064:13; 2065:3,	2018:8; 2124:11;	
1-8[2]-2134:18, 24	16[4]-2046:17, 24	$\begin{aligned} & 11 ; 2066: 23 ; 2177: 5,5, \\ & 7 ; 2178: 6,12-13,20, \end{aligned}$	2125:2; 2132:11;	$\begin{array}{r} 2102: 23 ; 2103: 7 \\ 300[4]-2080: 2, \end{array}$
10 [27] - 1897:17;	2131:1164 [1] - 2157:17		2148:2, 17; 2164:2	$\begin{gathered} 12-1 ; 2102: 21 \\ \hline \end{gathered}$
1899:2; 1909:4, 17,		$\begin{aligned} & 7 ; 2178: 6,12-13,20, \\ & 22,24 \end{aligned}$	$\begin{aligned} & \mathbf{2 1 8 6}[1]-2186: 4 \\ & 219[1]-2157: 25 \end{aligned}$	
20; 1910:1; 1925:3;	17[2]-1984:19, 21	20 [22]-1912:4;		31 [15] - 1896:5; 1943:10, 15; 1944:12;
1957:6; 1980:19, 23	$\begin{aligned} & 17-1 \text { [3] - 1993:22; } \\ & 1997: 8,18 \end{aligned}$	$\begin{aligned} & 1923: 15,17 ; 1929: 4 ; \\ & \text { 1985:9; 1989:6, 11; } \end{aligned}$	$22[23]-1897: 21 ;$ $189 \cdot 2 \cdot 2044 \cdot 14 ; 17$	$\begin{aligned} & \text { 2023:2; 2026:9, } 15 ; \\ & \text { 2027:2; 2088:21; } \\ & \text { 2089:2, 5, 20; 2186:9; } \end{aligned}$
1989:12; 2002:25;			23; 2045:9, 13;	
2003:2; 2016:11;	$\begin{aligned} & 1701[1]-1897: 10 \\ & 175[2]-1916: 16 ; \end{aligned}$	$2039: 14 ; 2040: 17$$\text { 2047:7: 2090:7. } 21$		
2045:15; 2060:20;			$\begin{aligned} & 2073: 19,22 ; 2074: 9, \\ & 11,13,17 ; 2075: 4, \end{aligned}$	$\begin{aligned} & 2188: 13 \\ & 319 \\ & \end{aligned}$
2119:3, 13; 2125:4,	$1975: 21$	$\begin{aligned} & \text { 2047:7; ;2090:7, 21; } \\ & \text { 2091:23; 2119:1; } \\ & 2121: 20,24 ; 2127: 6 ; \end{aligned}$		
10; 2129:5; 2157:25;	$\begin{aligned} & 178[1]-1989: 24 \\ & 18[1]-1960: 11 \end{aligned}$		14; 2092:24; 2093:7,	$32[1]-2040: 14$
2160:22; 2188:3		$\begin{aligned} & 2121: 20,24 ; 2127: 6 ; \\ & 2151: 3 \end{aligned}$	$\begin{aligned} & 17 ; 2094: 13 ; 2095: 11 ; \\ & 2133: 10 ; 2134: 9 ; \end{aligned}$	2134:9, 12; 2141:22;
10-11 [3] - 2119:1	$\begin{aligned} & 18[1]-1960: 11 \\ & 180[1]-1929: 5 \\ & \mathbf{1 8 0 0 s}[1]-1960: 11 \end{aligned}$	20-year [2] -1900:12; 1966:25		
16; 2124:7			$\begin{aligned} & \text { 22nd } 11]-2019: 11 \\ & 23[13]-1897: 18,21 ; \end{aligned}$	
10-year [1] -2151:2	$\begin{gathered} \text { 1879[4]-1927:3, 21; } \\ 1928: 4 ; 1960: 4 \end{gathered}$	$200 \text { [14]-1900:18, }$		325[9]-2083:2;
100 [21] - 1903:18; 1954:13, 17, 21, 23				2095:21, 24; 2100:14;
1954:13, 17, 21, 2	$\begin{aligned} & 188(1]]-2035: 6 \\ & 189[1]-2186: 4 \\ & 1897[8]-1927: 3,21 ; \end{aligned}$	21; 1903:6,	1899:2; 1900:14;	2104:17; 2107:12
2002:17; 2062:2;		1904:6; 1928:24;	1926:17; 1991:16	2133:21; 2134:
2119:1, 3, 13; 2122:1,		1929:22; 1955:9;	2089:7, 21; 2106:10	2155:24
3-4, 7; 2125:10;	1928:3; 1960:4;	1989:17	20; 2188:4	327 [13]-2035:6
2162:22; 2179:17	1965:21, 24; 1966:13	200-year [1] - 1902.	23-1 [1] - 1926:1	2037:16; 2052:1
2184:10	22	2000 [3] - 2032:11;	235 [1] - 1967:6	2114:2; 2117:8;
100-centimetre [2] -	1899 [1] - 21	2039:12; 2187:9	24[4]-1989:11	2118:9; 2122:11
2125:5; 2127:7	19[5] - 1897:17	2002/20	2002:11; 2045:	2125:14; 2126:25
100-year [3] -	1899:2; 1910:22;	1925:22	24-hour [5] -	2130:17; 2146:6;
1954:11, 15; 1956:12	1931:24; 2188:4	2003 [1] - 2034:8	2035:15; 2065:2,	2150:21; 2188:15
102[2]-1975:21	190 [3]-2117:8;	2003/200	12, 23	336 [5]-2031:14;
$103{ }_{[1]}$ - $2145: 19$	2125:15; 2146:6	1925:23	240 [2]-1989:13, 18	2033:15; 2037:20;
105 [1] - 2135:4	1900 [1] - 2187:6	$2004{ }^{\text {[1] - 2033:25 }}$	25 [12]-1932:12;	2039:4; 2040:14
10:00 [1] - 2079:25	$11^{\text {1900s [2] - 1960:8, }}$	2005 [2]-1929:5;	1953:22; 1954:5;	337 [1] - 2135:5
10:30 [1] - 1969:12	11	196	1957:5; 1961:1	342 [2] - 1966:14, 21

NRCB 1701, Volume 8, March 31, 2021

35 [1] - 2143:3	9, 16	1968:3, 11; 1970:6	2087:13; 2122:13;	2172:6; 2182:25
350 [1] - 2130:23	4:55 [1] - 2019:12	80 [4] - 1925:23;	2177:17	added [8] - 1977:11;
3500 [1] - 1992:17		2008:15, 17; 2009:6	accordingly [5] -	1978:3; 1984:9;
351 [1] - 1901:1	5	81 [2]-2090:20, 22	1950:4; 1951:21;	2075:8; 2142:20;
355 [3] - 2139:7, 9;		83 [1] - 2132:11	1952:21; 1955:19;	2149:13; 2160:9
2144:13	5 [22] - 1924:7;	84 [1] - 2033:15	2071:18	ADDED [1] - 2075:15
362 [1] - 1946:19	1978:25; 1981:15;	85 [1]-2124:12	account [5] -	adding [1] - 2074:21
365 [1] - 2131:13	2002:25; 2021:25;	86 [4] - 1971:15;	1905:17; 2052:24;	ADDING [1] - 2075:3
368-2 [1] - 2126:11	2027:8; 2028:3;	2090:7; 2091:22;	2135:11; 2182:20	addition [8] -
37 [1]-2037:20	2035:3; 2042:21;	2132:11	accounting [3] -	1986:19; 2038:12;
375 [7]-1916:16;	2065:15; 2071:22;	8:29 [1] - 1897:8	2053:4; 2062:3, 7	2041:13; 2050:20;
1955:23; 1982:1;	2076:18; 2078:24;	8:30 [3] - 2078:24;	accrue [1] - 2182:21	2061:21; 2083:23;
1993:17, 21; 1997:8;	2079:4, 12; 2080:3,	2185:13, 15	accumulate [2] -	2169:15
2024:6	18; 2103:14; 2104:8,		2153:25; 2154:5	additional [24] -
376 [1] - 2057:24	11; 2128:1, 19	9	accumulated [2] -	1902:12, 14; 1914:22;
380 [3] - 2042:5;	5.1 [2] - 1980:22;		1973:22; 2142:3	1916:13; 1935:5;
2054:5; 2112:2	2003:2	9 [3]-1973:4; 2045:2	accumulating [1] -	2020:25; 2025:23;
384 [8] - 1900:14;	5.1E-06 [1] - 1999:6	94 [5] - 2047:10;	2120:22	2026:21; 2050:3;
1950:6, 21; 1958:14;	50 [3] - 1925:23;	2126:11, 18; 2131:1;	accurate [3] -	2066:22; 2068:3;
1973:4; 1976:20;	1982:13; 2017:18	2160:19	1983:11; 2144:24;	2100:18; 2124:24;
1999:14; 2024:3	500 [3] - 1900:24;	98 [1] - 2164:22	2186:4	2149:20; 2172:23;
386 [5] - 1898:2,	1902:1; 1955:6	$99.9[1]-2071: 9$	accurately [3] -	2173:3; 2174:4, 16,
22-23; 1899:1; 2188:3	56 [1]-2155:24		1927:17; 1969:22;	22, 25; 2175:2, 4, 8
387 [4] - 1922:14;	57 [1] - 2095:24	A	1983:16	ADDITIONAL [2] -
1923:8, 10; 2188:6	58 [2]-2083:2;		achieve	2173:22; 2175:16
388 [4] - 1938:6;	2142:9	A.M [3] - 1897:8;	1953:24; 2066:15	additionally [1] -
1939:19; 1970:23;	59 [2] - 2100:14;	2022:1; 2185:15	achieved [2] -	2070:6
2188:8	2104:17	a.m [1] - 2019:12	2042:19; 2097:7	address [14] -
389 [3] - 1942:22, 24;	5:00 [2] - 2078:23;	ability [7] - 1991:19;	acidity [1] - 2004:23	1900:16; 1952:21;
2188:10	2079:18	1992:16, 18; 2012:22;	acknowledge [14] -	1955:15; 1963:17;
39 [2] - 1978:9	5:30 [9] - 2079:22;	2013:20; 2155:11;	1906:10; 1952:14;	1978:3; 1992:3;
390 [7] - 1944:7, 11;	2103:7, 15, 21-22;	2186:7	2029:4, 6, 11, 17, 23;	1994:17; 2046:1, 3;
2015:13; 2026:16, 25;	2104:5, 7; 2174:8, 11	able [21] - 1907:1;	2030:8, 11, 21;	2052:11; 2054:22;
2027:2; 2188:13		1976:2; 1977:2;	2031:2; 2071:5;	2104:21; 2107:22;
391 [4]-2037:12, 15;	6	1995:6; 1996:10;	2136:22; 2167:11	2120:2
2188:15		2018:17; 2044:25;	acknowledged [6] -	addressed [5] -
392 [3]-2072:9, 12;	6[5] - 1968:12;	2070:8; 2074:22;	1906:17; 1920:9;	1900:9; 1906:12;
2188:18	1980:23; 2002:15;	2093:15; 2107:19;	1951:20; 1978:4;	1951:21; 2049:19;
393 [5] - 2113:12,	2003:2; 2104:5	2111:1; 2119:14;	1979:2; 2168:23	2088:6
14-15; 2131:18;	6,000 [1] - 2177:16	2122:7; 2123:14;	acknowledges [5] -	addresses [3] -
2188:20	60 [1] - 1925:22	2124:15; 2129:10;	2043:20; 2044:20;	1990:20; 2042:25;
3:15 [2]-2101:9;	600 [3] - 1952:1;	2147:12, 14; 2165:17;	2070:18; 2160:19;	2055:8
2102:15	2144:6	2173:1	2172:14	addressing [4] -
3:20 [1] - 2101:9	63 [1]-1917:11	absence [2]	acknowledging [2] -	1920:10, 14; 1992:11;
4	$2143: 3 ; 2144: 13$	absolutely	1955:17; Act [8] - 2051:7;	adequate [1] -
	640 [1] - 2061:15	1897:22; 1979:7;	2100:24; 2101:3, 19,	2104:5
4 [25] - 1903:25;	67 [2]-2057:23;	1982:11	24; 2102:4, 10;	adhere [2] - 2016:10;
1905:19; 1942:25;	2089:7	absorb [2] - 1902:14;	2163:10	2055:20
1965:5; 1978:25;		2079:1	act [2]-2136:3;	ADJACENT [1] -
2017:21; 2018:24;	7	absorbed [1] -	2154:25	2171:25
2019:22; 2021:13;		2005:24	Action [3] - 1896:23;	adjacent [8] -
2035:14; 2042:20;	7 [7]-1967:14;	absorption [1] -	1905:2; 2072:14	2050:21; 2063:25;
2048:21, 23; 2049:2;	1969:21; 1977:18;	2004:13	actions [2] - 2021:6;	2070:13; 2099:8;
2062:25; 2063:4, 20;	2002:25; 2128:1, 19 ;	absorption-type [1] -	2097:21	2169:17; 2170:16;
2064:14; 2065:10, 23;	2157:17	2004:13	active [1] - 2043:20	2171:1, 16
2094:6; 2128:12, 20;	7,870 [1] - 1964:8	academic [1] -	actively [1] - 2052:3	adjourn [1] - 2185:12
2165:24; 2188:10	7.2 [2]-1980:19;	1919:14	activities [6] -	ADJOURNED [3] -
4-01 [2] - 1910:24;	2003:2	accept [3] - 1964:9;	2047:11; 2048:24;	2022:1, 3; 2185:15
2117:11	7.5 [2]-2051:16;	1974:22; 2100:16	2051:4; 2088:19;	ADJOURNMENT ${ }^{2]}$
4.2 [1] - 2177:8	2060:3	acceptable [9] -	2109:18; 2172:5	- 1969:14; 2102:16
4.5 [3] - 1967:20;	70 [2] - 1925:21;	1899:22; 2049:11;	ACTIVITIES [1] -	adjust [2] - 1991:4;
1970:6; 2002:16	2178:22	2051:12; 2060:16;	2172:13	2071:17
40 [4] - 1924:1;	70,000 [1] - 2014:2	2111:15, 25; 2112:4;	acts [1] - 2004:9	adjusted [5] -
1989:7; 2061:8;	70.9 [1] - 1925:15	2183:14, 22	actual [7] - 1967:3;	1952:20; 1955:2;
2114:2	73 [1] - 1902:1	accepted [2]-	2003:9; 2024:12;	1967:8; 2131:8;
42 [1] - 2088:21	74 [1] - 2039:4	2113:23; 2145:5	2050:11; 2070:2;	2163:9
426 [2] - 2001:19	79 [5]-2031:14;	access [5] - 1929:3;	2163:6; 2178:25	adjustment [1] -
45 [2] - 1969:17;	2115:5; 2140:21, 24	2048:5; 2090:24;	adapted [1] - $2168: 4$	1915:14
2027:14	7:45 [1] - 2185:13	2091:7; 2092:7	adaptive [8] -	admit [2] - 2128:15,
46 [2]-1997:13;		accessible [1] -	2046:8; 2066:12, 21 ;	23
2144:1	8	2100:2	2067:5; 2069:1, 10,	admitted [1] -
47 [1] - 1982:12		accessing [2] -	24	2131:22
474 [1] - 2145:20	8[12]-1896:4;	2084:12; 2085:22	adaptively [1] -	adopted [5] - 2060:2,
48 [5] - 1993:17, 22;	1897:10; 1931:19;	accommodate [1] -	2151:21	22; 2061:5, 7, 17
1997:8; 1998:13;	1980:19; 1996:5;	2045:1	add [12] - 1932:21;	advance [4] -
2024:6	2003:3; 2023:1;	accommodated [3] -	1933:3; 1963:15;	1944:2; 1971:1;
480 [1] - 1952:1	2074:11, 18; 2075:5,	1977:21; 1979:6	2012:18; 2034:9;	2053:25; 2104:1
483 [1] - 2001:18	15; 2187:3	according [6] -	2075:9, 11; 2110:23;	advanced [4] -
49 [5]-2119:4, 6-7,	8.5 [4]-1967:21;	1938:24; 1980:23;	2138:7; 2159:24;	1946:13; 2044:4;

NRCB 1701, Volume 8, March 31, 2021

```2047:19; 2070:3 adverse [14] - 1913:8; 2035:18; 2067:7; 2069:18; 2104:22; 2107:23; 2116:12; 2126:2, 8 ; 2128:18; 2129:3; 2131:10, 16, 22 adversely \({ }^{[1]}\) 1975:1 advice [2] - 2020:16; 2099:11 advise [7] - 1926:16; 1943:11; 1994:2; 2028:12; 2041:17; 2042:3; 2111:13 ADVISE [9] - 2075:2, 17; 2088:9; 2111:8, 19; 2171:20; 2172:8; 2173:17; 2175:13 advised [1] - 1935:12 advisor [2] - 2033:6; 2041:19 advocating [2] - 1917:17, 21 AEP [11] - 2051:10; 2112:11; 2114:20; 2161:25; 2162:3, 10; 2163:7, 13, 16; 2165:15; 2171:5 aerial [1] - 1928:23 aerodynamic [1] - 2059:25 affect [9]-1951:1; 2027:18; 2116:1; 2121:22; 2125:20; 2132:6; 2133:5; 2138:21; 2151:23 affected [7]-1975:1; 1986:4; 2035:7, 11; 2057:21; 2129:13; 2132:20 AFFECTED \({ }_{[1]}\) - 2130:2 affects [2] - 2057:7; 2142:6 affirmed [5] - 1900:2; 1935:19; 2023:19; 2028:6; 2031:8 afternoon [28] - 2023:7; 2027:4, 24; 2029:10; 2031:2; 2033:14; 2037:19; 2040:12; 2042:8, 10; 2072:24; 2073:12; 2076:21; 2077:15, 17, 19; 2078:8, 10; 2079:19; 2081:2, 23; 2082:14; 2095:2 afterwards [1] - 2149:4 aged [1] - 2062:6 agencies [3] - 2046:25; 2138:2; 2177:12 agency [2] - 2141:17; 2145:6 Agency [3] - 1910:14; 1911:22; 2164:13 agency's [1] - 2164:17 agenda [1] - 2079:6 aggregate [1] - 2088:5 aggregates [1] - 2055:20 aging [1] - 1956:5 ago [9] - 1924:10;```	1926:10; 1933:1;   1934:5; 1938:16;   1943:12; 1982:5;   2013:20; 2037:1   agree [72] - 1902:20;   1909:20; 1912:21, 25;   1913:12; 1914:8, 13;   1917:14; 1927:9;   1929:15, 19-20, 24 ;   1931:13; 1941:16;   1945:2; 1948:11;   1951:5, 8; 1952:5;   1954:14, 19; 1958:24;   1961:5; 1964:3, 9-10,   16; 1965:24; 1966:16,   22, 24; 1967:3;   1978:15; 1992:25;   1993:23; 1996:22;   1998:20; 2010:3;   2087:22; 2095:17, 19;   2101:24; 2105:1, 6 ,   11, 22; 2106:1;   2107:2, 6; 2108:13;   2113:18, 20, 22;   2139:19, 21; 2150:6,   9; 2154:18; 2163:17,   22; 2170:23; 2171:13;   2172:2, 20; 2174:15;   2175:2, 20   AGREE [2] -   2171:21; 2172:9   agreeable [1] -   2025:11   agreed [9] - 1914:15;   1953:10; 1975:3;   1985:21; 2026:23;   2102:22; 2157:25;   2161:24; 2174:11   agreement [2] -   2019:20; 2021:2   AGREES [1] -   2173:17   agrees [2] - 2096:1, 11   agricultural [13] -   2038:10; 2118:12;   2125:16, 19; 2126:1,   13, 16; 2129:18;   2131:15, 21, 24;   2133:7; 2154:1   agriculture [1] -   2038:5   ahead [4] - 1921:7;   2076:23; 2131:18;   2147:25   aid [12] - 1935:5, 12;   1937:25; 1939:23;   1940:1; 1942:18;   1971:1; 2020:18;   2026:11, 14; 2112:20,   22   AID [8] - 1923:10;   1938:6; 1942:25;   2113:15; 2188:6, 8 ,   10, 20   Aid [5] - 1920:22;   1922:6, 16; 1935:9;   1939:14   aids [3] - 2020:10,   15, 23   Air [1] - 2027:8   air [65] - 1949:10;   1975:4; 2028:3;   2031:17; 2032:14,   16-17, 25; 2033:3,   8-9; 2035:18;   2042:13; 2044:1;   2046:11, 20; 2047:15;   2052:3, 6; 2053:13;   2054:16; 2056:20;	2057:10; 2058:17, 19;   2062:11; 2063:2, 6,   19; 2064:9; 2065:7,   13, 21; 2066:9, 11,   19-20; 2067:4, 8, 24;   2068:7, 12, 14, 18,   23-24; 2069:12;   2070:9; 2071:23   2076:25; 2177:13, 17;   2178:5; 2180:23;   2181:2, 5, 7-8;   2182:16; 2183:15, 17, 23   alarmed [1] -   2183:10   alarming [2] -   2183:3, 10   Alberta [79] - 1896:2,   18; 1905:18; 1906:11,   19; 1908:5; 1910:7,   20; 1912:23; 1913:13;   1914:14; 1920:10, 21;   1921:10; 1926:7;   1927:1; 1931:10;   1936:8; 1939:1;   1942:10; 1949:24;   1952:11; 1954:13;   1957:2; 1978:4;   1979:2; 1985:23;   1988:18; 1993:6;   2002:2; 2020:11, 15;   2025:2; 2026:13;   2027:7; 2028:1, 23;   2038:7; 2042:12, 17;   2045:12; 2047:14;   2051:7; 2052:4;   2058:18; 2059:8;   2060:2, 15, 18, 21;   2061:6, 13, 16;   2063:18, 24; 2066:14,   18, 20; 2069:15;   2070:14; 2071:22;   2073:6, 17; 2076:1;   2080:17; 2088:7;   2100:24; 2101:3;   2102:5; 2112:21;   2164:11, 25; 2165:6;   2180:22; 2182:13;   2184:19; 2186:8;   2187:18   ALBERTA [6] -   1942:24; 2113:16;   2173:19; 2175:13;   2188:10, 20   Alberta's [2] -   2065:13; 2074:16   alert [1] - 1969:16   alerted [1] - 1935:16   algae [1] - 1940:19   algal [2]-1973:24;   1974:9   align [3] - 1927:5;   2007:1; 2024:13   aligns [2]-2145:1, 3   alkalinity [1] -   2004:24   ALL [1] - 2172:10   allocated [3] -   1905:19, 22; 2162:12   allocation [1] -   2184:11   allocations [1] -   2080:11   allow [5] - 2069:23;   2158:5, 17; 2160:11,   13   allowed [2] -   1976:12; 2108:11   allows [2] - 2057:10;   2070:1	almost [3] - 1923:25;   1940:21; 2054:6   altered [4]-1982:16,   19; 2115:12; 2140:17 alternative [4]   1917:18, 22; 2035:25;   2048:18   alternatives [2] -   2011:8; 2181:9   Amanda [1] -   1896:15   ambient [6] -   2035:18; 2046:13, 20;   2063:18; 2066:18;   2067:8   ambulance [1] -   2010:11   amendments [1] -   2154:2   amount [8] -   1924:18; 1968:23;   1976:11; 1994:7;   2047:12; 2056:6;   2128:16; 2169:8   amounts [1] -   1924:24   amphibian [3] -   2166:11, 15   amphibians [2] -   2168:5, 17   Amusements [1] -   1897:3   analysis [12] -   1967:8; 1991:7;   2053:2; 2062:19;   2068:3; 2120:11;   2127:2, 23; 2132:15;   2142:1; 2160:5;   2172:16   analyzed [1] - 2118:1   AND [13] - 2025:15;   2075:5, 15; 2088:10;   2111:21; 2171:22, 25;   2173:23; 2175:15, 17   anecdotal [1] -   1928:5   animal [3] - 2044:18,   22; 2045:9   animal-vehicle [3] -   2044:18, 22; 2045:9   animals [4] -   2159:14; 2167:16;   2168:16, 20   Annex [1] - 1956:6   annual [3]-1924:20;   1925:14; 2011:21   answer [17] -   1917:24; 1929:11;   1998:8; 2018:4;   2091:19; 2112:7;   2128:21; 2129:8;   2132:1; 2142:24;   2157:12, 22; 2158:19;   2161:13; 2176:1;   2182:7   answered [7] -   2077:3; 2091:15;   2130:7; 2145:9;   2156:4; 2158:15;   2170:9   answering [1] -   1944:19   answers [8] -   1916:4; 1959:9;   2014:23; 2025:10;   2026:21; 2077:2, 8 ;   2131:25   ANSWERS [1] -   2025:16   anthropogenic [1] -	```2137:14 anticipate [2] - 1973:15; 2027:13 anticipated [6] - 2049:23; 2052:18; 2053:17; 2067:7; 2087:2; 2108:16 anticipation [1] - 2162:2 anxious [1] - 2104:4 ANY [2] - 2025:16; 2111:19 anyhow [1]-1906:5 anyway [3] - 2013:24; 2014:11; 2027:21 anyways [1] - 1964:19 apologies [10] - 1933:19; 1938:8; 1982:2, 4; 1984:3, 17; 2053:24; 2054:3; 2067:11; 2133:1 Apologies [1] - 1965:5 apologize [7] - 1922:4; 1934:4; 1983:5; 2024:25; 2025:1; 2106:8; 2174:13 apologizing [1] - 1916:10 apostrophe [1] - 1998:16 apparent [1] - 1980:4 appear [6]-1987:15, 22; 1994:23; 2015:7; 2036:6; 2106:13 appeared [1] - 2032:20 Appendix [4] - 1926:18; 2052:13; 2096:24; 2161:10 apples [1] - 1976:18 application [20] - 1897:10; 1990:8; 2032:23; 2034:16; 2038:17; 2039:22; 2041:16; 2048:13, 20; 2049:19; 2050:2, 5, 14; 2063:11; 2065:3; 2149:7, 9, 25 applied [15] - 1936:14, 16; 1953:22; 1986:24; 1987:8; 2002:6; 2049:12; 2059:12; 2068:21; 2085:13; 2112:1, 5 ; 2138:19; 2154:7; 2163:8 apply [6] - 1942:1; 2007:20; 2012:7; 2085:12; 2175:9 applying [1] - 2002:15 appreciable [1] - 2120:22 appreciably [1] - 2064:17 appreciate [4] - 1911:15; 2071:10, 15; 2080:24 appreciated [2]- 1965:19; 2018:13 appreciating [1] - 2071:7 apprehensive [1] - 2098:3 approach [10] - 1990:13; 2002:20;```

NRCB 1701, Volume 8, March 31, 2021

2012:10; 2036:1;	2128:22	2043:9, 19; 2047:6	2104:18; 2108:12, 21	1929:6
23.	11-1902	,		
2050:16; 2059:11;	15, 25; 1918:6, 11;		21	B
2060:16; 2161:24	1919:10; 1929:10;	2058:14; 2061:2	2126:12; 2133	
approaches [1] -	1930:24; 1948:2;	2062:18; 2067:6, 18,	2144:1; 2157:18, $25 ;$	bachelor
1925:21	1949:3; 1950:1;	21; 2120:10; 2122:6;	2160:19, 23; 2161:16	2032:9; 2033:22;
appropriate [19] -	1974:21; 1987:6;	2124:25; 2125:1, 4-5,	25; 2162:3; 2163:17,	2039:11; 2041:1
1960:24; 2049:21;	1988:6; 2046:21;	11; 2128:25; 2129:2;	25; 2164:4, 19;	helor's [1] -
2050:7; 2059:13, 17	2048:16; 2049:14,	2131:5; 2132	2165:8; 2169:14, 1	2038:4
2060:6, 23; 2073:18	23, 25; 2050:9, 20	2133:4, 11; 2135:20;	2170:11; 2171:5,	back-of-t
2081:18; 2097:21;	2057:5, 18; 2060:19;	2138:17, 23-24;	13-14, 20, 23; 2172:2,	envelope [1]-2002:19
2099:10; 2145:7;	2062:2, 21; 2074:4;	2141:9, 17, 21;	8, 14, 20-21; 2173:17	
2151:15; 2164:14;	2108:14; 2113:24;	2142:6, 10, 12-14;	2174:15; 2175:20;	918:13; 1919:14;
2170:19; 2176:12;	2114:5; 2117:17;	2144:21; 2145:2, 6, 8 ,	2185:15; 2188:3, 6,	1948:14
2179:5; 2180:20	2126:12; 2128:19	18, 21, 25; 2167:18,		bad [1] - 1996:5
approval [5]	2133:19; 2134:5, 22	20-21; 2168:15;	AT's [6] - 2095:21,	baffles [1] - 1920:15
1917:15; 2170:22;	2136:17; 2137:21;	2176:25; 2179:4	24; 2101:2; 2102:9;	balance [3]-2021:4;
2171:14; 2172:3, 20	2140:6, 8, 10, 12-13;	2183:5, 8, 11	2112:4; 2162:19	2076:22; 2078:14
APPROVAL[3]-	2143:12, 14, 16, 20;	assessments	atmosphere	bandwid
2171:22; 2172:10;	2145:22; 2153:20;	1948:17, 25; 2032:14,	1934:17, 22; 1935:3	1996:6; 2013:21
2173:18	2154:17; 2158:10;	18; 2034:7; 2039:14	atmospheric [2]	ank [4] - 1912:3;
approvals [2]	2159:18; 2165:1;	assessor [2]	1947:16; 1949:18	2017:8; 2116:2;
1913:14; 2163:10	2166:1, 13; 2169:6,	1949:8; 2177:23	attach [1] - 1940	2157:21
approved [4]-		assigned [2]-	attached	bank-full [1] - 1912:3
2088:20; 2129:17;	arguably	1993:24; 1997:10	2053:16; 2108:1	bankful [2]-2017:11
2184:21	1953:5; 1977:23	assist [5] - 1924:4	2114:24	Barbara [1] -
approximate [1] -	argued [2]-2060:6	1939:12; 2020:21;	attempt	1929:21
2130:13	arguing [1] - 1979:5	2049:9; 2149:21	2091:19; 2130:1	Barbero
approxi	argument [1] -	assistance [2] -	2167:4; 2169:1	1896:19; 1905:1
2130:25	1904:14	1948:20; 2036:17	attention [2] -	06:1; 1915:4;
APRIL [1] - 2185:15	arguments [1] -	associate [1] -	1911:18; 2105:10	1924:19; 1925:1
April [4]-1968:18;	2019:24	2004:12	attenuation	1937:10; 1939:3, 15;
1972:3, 13; 2050:8	arising [3]-1928:7	associated [18	2004:12; 2005:8, 2	941:11; 1943:3;
April/May [2] -	1945:14; 2173:4	1902:4; 1913:8	attributed [2]	944:13, 20; 1945:7,
1970:2, 15	arranged [1] -	1919:22; 1926:8	1980:16, 22	12; 1946:11; 19
aquatic [2]-	2166:7	1973:7, 15, 17;	AUC ${ }_{[1]}-2021: 1$	1958:15; 1969:3, 10;
1909:11; 2168:4	arrangement [1] -	2003:15; 2009:22	August [4] - 1925:3;	883:22; 1995:14;
aquatics [2]-	2160:6	2041:11; 2046:15;	1956:7; 2007:12, 20	1997:6; 1999:23;
1918:6; 1949:2	arriva	2047:19; 2062:12;	Australia [1] - 1935	2023:13, 16;
aqueous [1] -	arrive [4]-2083:21;	2066:8; 2068:13;	author [1]-1936:1	2024:2; 2025:1, 9, 20,
1919:15	2084:16; 2086:2;	2097:15; 2151:20;	authored [3]-	25; 2027:25; 2034:14;
aquifer [1]	2087:6	2155:9	1935:22; 2040:3	42:7: 205
ARE[1] - 2130:2.	arriving [1] - 2086:7	Associates [1	authoring [2]-	2054:2, 11; 2072:1
Area [5] - 2011:9;	article [1] - 1940:7	1901:21	2033:9; 2034:25	2077:16; 2156:1
2019:22; 2021:13,	RTICLE [2] -	associa	authorities	BARBERO [82] -
2080:17	1943:1; 2188:11	2048:25	1912:5	1915:5, 8, 12, 20;
area [92]-1907:2,	AS [4]-2025:17;	assume [4]-	authority [2] -	1916:1, 3, 9, 20;
17; 1920:4; 1928:17	2171:21; 2172:9,	1960:25; 2008:1	1939:8; 1941:22	1922:11, 19, 25
1959:8; 1964:4, 6-7,	ascribe [1]-2116:12	2009:25; 2020:1	availability [1]	1923:4, 6, 11; 1934:5;
14; 1974:18; 1978:16;	aspect [3]-1987:23;	assumed [2]-	2136:24	1937:15; 1938:2, 8 ;
1980:18; 1981:23;	2012:1; 2051:4	2005:4; 2070:2	available [16]	1939:24; 1940:4
1988:15; 1989:2;		assumes	1964:13; 1996:9;	1943:4; 1944:13
1998:17; 2002:15;	2038:11; 2039:15;	2125:6, 11	2006:18; 2023:9;	23; 1945:8, 11;
2021:23; 2041:10;	2061:21; 2155:20	assuming [6] -	2047:16; 2050:1;	1958:14, 17, 19
2044:10; 2045:10;	assess [11]-2005	1910:3; 1986:25	2066:17; 2071:2	1965:2; 1969:2,
2047:25; 2048:6, 1	2042:17; 2048:1,	2062:4; 2077:11	2085:20, 22; 2086:14;	15, 19; 1982
2059:16; 2060:12;	2049:5; 2097:17;	2111:1; 2157:1	2100:2; 2104:10;	1983:3, 24; 1984:3, 6,
2062:15; 2063:14, 1	2138:17; 2141:7, 15,	assumption [2]-	2161:4, 2169:9, 12	8; 1993:11, 14, 16;
19, 21, 25; 2064:1,	19; 2142	2012:13; 2058:19	average [5]-	1994:6, 10, 21
12; 2065:13; 2089:10,	assessed [15	assumptions [12]	1925:14; 1970:9;	1995:16; 1997:4, 7
20, 25; 2090:1;	1908:5;	2052:25; 205	2002:4, 13; 2063:17	1999:21; 2021:19
2093:8; 2094:15, 18;	2034:3; 2039:18	2059:21; 2060:25	averaged [2]-	2025:15; 2026:2;
2095:18; 2097:20;	2043:23	2061:2, 5, 7, 11, 14	2002:7; 2059:15	2027:12, 23; 2029:1;
2098:10; 2099:19;	assesses [2]-	18, 25; 2063:7	averaging [1] -	2030:3, 15; 2031:6,
2105:11; 2109:1, 11,	1936:4; 2043:5	assure [1] - 20	1977:4	12; 2034:15; 2035:21;
22, 25; 2110:12;	assessing [7] -	AT [88]-1897:8	avoid [2] - 1913:8;	2036:4, 11, 17, 24;
2114:5, 10, 15;	1950:3; 2050:10;	1899:1; 1900:9;	2167:16	2037:8, 14, 17;
2118:1; 2127:11	2061:25; 2062:1	1904:22; 1923:10	avoided [1	2041:25; 2051:20
2128:4; 2132:5;	2141:10; 2145:6	1944:11; 1984:5;	2181:10	2053:23; 2054:3;
2135:3; 2137:14;	Assessment [3]-	2019:11, 15, 18;	aware [22] - 1913:	2067:10, 15; 2071:16,
2138:18, 22-24;	1910:14; 1911:22;	2022:1; 2023:5;	16; 1925:13, 18;	21; 2077:21; 2155:25;
2141:9, 15; 2143:14;	2164:13	2050:22, 24; 2080:14	1926:6; 1953:21;	2187:8, 19
2144:21, 24; 2147:5;	assessment [80]	2082:15; 2083:4, 17;	1967:5, 7, 12;	Barbero's [1] -
2151:7; 2152:21;	1948:21; 1949:7;	2084:4, 20; 2087:11,	1970:20; 2042:12;	1943:7
2154:21; 2164:7;	1987:4; 1993:2;	24-25; 2088:9, 11, 17,	2073:14; 2086:18;	barriers [1] - 2097:16
2167:15, 17, 19-20;	2005:11; 2032:16;	24; 2090:7; 2096:1,	2137:25; 2157:24;	Basal [1] - 1978:12
2168:11; 2171:2;	2033:1, 3, 18; 2034	11; 2097:22; 2098:6,	2163:15; 2177:10, 14	basal [1] - 1978:22
2175:6, 23; 2182	6, 21, 23; 2038:14,	25; 2099:6, 13, 15,	2178:1; 2180:3, 5	base [6] - 1953:24;
18; $2184: 6$	19; 2040:1, 8 ;	22; 2100:1, 11-12,	awhile [1] - 2013:19	1979:13; 2090:14, 17;
areal [2] - 2126:5;	2041:11; 2042:23, 25;	15-16; 2101:24;	axis [2] - 1925:21;	$\text { 2091:11, } 25$

NRCB 1701, Volume 8, March 31, 2021

based [26] - 1908:20;	2111:5; 2144:9	2165:2; 2166:4;	1924:21	2141:11; 2144:23;
1910:8; 1964:3, 5;	2173:13; 2175:	2168:18; 2169:7, 10;	reak [26] - 1920:15;	
1965:25; 1972:10, 14;	benefits [1] -	2174:23	1969:6, 12; 1971:25;	[3] - 1987:20;
1982:9; 1985:3;	2139:15	bit [53]-1898:13;	1973:1; 1995:6;	073:8, 15
2008:20; 2045:19;	berm [12] - 1989:5;	1911:19; 1915:9, 23	1996:6; 2015:8	b
2060:3; 2067:1;	2092:18, 22; 2093:4,	1932:20; 1956:4;	2018:17; 2021:17, 23;	1918:12
2074:1; 2101:24;	9, 14, 21, 23;	1960:1; 1965:19;	2076:21; 2078:8,	buildup [1] - 1988:14
2124:20; 2129:13;	2094:22; 2169:24;	1971:17; 1972:22;	20-21; 2079:23;	built [7] - 1954:20,
2130:15; 2135:16;	2170:2, 4	1974:4, 6; 1988:22	2080:6; 2081:9	22; 1988:12; 2012:20;
2136:13; 2141:10;	berms [1] - 2169:19	1993:18; 1996:25;	2101:9; 2102:12;	2073:6; 2164:1
2150:11; 2152:11;	beside [1] - 1998:16	1997:13; 1998:15;	2133:2; 2176:19;	bulk [1] - 2092:24
2161:7; 2163:3;	best [10]-1909:1, 7;	2000:17; 2011:4;	2184:5; 2185:2	bullet [8] - 1950:22;
2166:1	1913:19; 1934:4;	2019:1; 2029:19;	breaking [1] -	1951:11, 15; 1952:8;
BASED [1] - 2130:2	2009:2, 25; 2073:5;	2079:22; 2092:7;	2088:15	1953:14; 1997:17, 19
baseline [6] -	2081:15; 2169:11;	2099:13; 2103:8, 10;	breakout	bullets [1] - 1997:18
1967:19, 23, 25;	2186:6	2104:9; 2117:6;	2156:23; 2157:3, 5	bump [5] - 1931:25;
1970:5, 9; 2172:15	best-case [1] -	2121:11; 2123:1, 4	breathing [1] -	1932:2; 1965:18;
basic [1] - 1986:3	1909:1	16, 18, 20; 2139:6;	1975:13	1971:16; 1988:22
basins [2] - 1936:17;	bet ${ }_{[1]}$ - 2013:18	2146:3, 25; 2149:23;	breeding [1] - 2166:2	burn [1] - 1974:18
1959:12	better [20]-1915:8,	2154:10; 2155:15;	BRESCIA [26]	business [1] -
basis [3] - 1938:3;	15-16, 21; 1916:2;	2168:12; 2174:14;	2028:21; 2029:16, 18	1913:18
2011:21; 2054:16	1918:4, 23; 1927:10;	2184:7, 16-17, 19;	21; 2101:16; 2102:3;	but.. [1] - 2184:8
BC [2]-1919:9;	1977:1, 4; 1992:20;	2185:3	2115:21; 2117:1, 13;	button [1] - 2006:23
1955:8	2010:7; 2016:21;	black [6] - 1988:15;	2135:7; 2141:4;	BY [1] - 2130:3
BE [4]-2025:17;	2019:4; 2021:17;	1989:4; 2089:12, 20,	2142:5; 2144:18;	
2111:10; 2173:23;	2032:3; 2053:12;	25; 2090:2	2145:14; 2148:14;	C
2175:19	2081:24; 2091:14;	bleach [1] - 2085:	2150:22; 2159:24;	
bear [4]-1897:18;	2123:23	bless [1] - 1913:17	2160:12; 2163:21;	Calalta [3] - 1897:3;
1962:1; 2173:6;	BETWEEN [2] -	Block [1] - 2163:25	2164:9; 2165:11;	2080:16
2175:21	2075:4, 14	blood [1] - 2178:16	2166:25; 2167:13;	calcium
bearing [2]-2106:5;	between [31]	blooms [2] -	2168:1, 13; 2187:1	2000:18; 2120:24;
2107:3	1903:1; 1904:4;	1973:24; 1974:9	Brescia [23] -	2121:8
bears [1] - 2176:3	1920:20; 1923:2, 14	blown [1] - 1973:21	2029:15, 19; 2101:14,	calculate
become [3]-1955:6;	1931:23; 1965:6;	blue [8] - 1940:18;	16; 2115:21; 2117:1	2008:25; 2058:4;
2020:17; 2167:15	1972:4, 17; 1987:10	1981:12; 1989:3, 7;	2118:7; 2135:7;	2122:8; 2128:8
becomes [1] -	15; 2001:10, 14;	1999:6; 2037:6;	2141:5, 20; 2142:5;	calculated [5] -
2184:2	2003:2; 2009:5;	2058:8	2143:1; 2144:18;	1928:1; 2013:24;
bed [2]-1920:2;	2018:1; 2044:13;	BLUELINED [2] -	2148:14; 2150:22;	2058:14; 2061:4, 9
2060:15	2048:23; 2051:2;	2037:16; 2188:16	2151:24; 2160:9;	CALCULATION ${ }_{[1]}$
bedload [2]-1926:8,	2056:13; 2062:8;	Board [16] - 1896:1;	2163:21; 2164:10;	2130:3
	2074:11, 17; 2105:22;	1899:19, 22; 1916:23;	2165:12; 2166:21;	calculation [16] -
bedrock [11] -	2112:16; 2147:8;	1920:25; 1946:8;	2168:17; 2169:5	1985:1; 2001:22;
1978:23; 1986:25;	2158:25; 2160:10;	2015:1; 2042:4, 8-9	bridge [5] - 1928:2;	2002:15, 23; 2008:20;
1987:5, 7; 1990:15,	2161:24	2079:1; 2081:17;	2045:13, 17; 2093:19	2009:5; 2058:25;
20; 2000:14, 22;	beyond [12] -	2102:22; 2104:2;	briefly [3]-1897:15;	2059:3, 18; 2060:23;
2001:8, 11	1900:11, 23; 1901:23;	2170:22	2052:14; 2095:1	2120:11; 2129:14;
BEEN [1] - 2075:15	1902:3, 10, 21;	Board's [2] - 2071:6;	bring [15] - 1901:1;	2134:21; 2138:13;
begin [3]-1906:5,	1908:20; 1960:8;	2081:1	1907:15; 1924:5, 7;	2151:13
24; 2171:4	2065:8; 2079:4, 18;	Bob [2] - 1897:3;	1935:7; 1950:6;	calculations [19] -
beginning [1] -	2145:25	2080:16	1967:14; 1970:22;	1967:3; 1984:23, 25;
1905:13	bias [3]-2055:10;	bodies [2] - 1949:1	2036:5; 2051:24;	1985:6; 2008:10, 13;
behalf [4]-1900:21;	2061:3, 19	bolster [1] - 2049:8	2083:3; 2090:10;	2009:3, 23; 2013:13,
2052:4, 10; 2071:4	bicarbonate [1] -	bookends [2] -	2106:18; 2114:19;	19; 2014:12; 2118:11;
behave [1] - 2003:23	2000:18	1963:2, 17	2139:8	2126:15; 2133:15,
behind [5] - 1974:3,	bicarbonates [1] -	boreal [1] - 2038:14	bringing [2]-	18-19; 2134:1, 4;
5, 7; 2182:4; 2184:16	2120:25	borne [1] - 1987:1	1930:25; 2030:15	2135:16
${ }_{\text {belabour [2]-1 }}{ }_{19371}{ }^{-1942.11}$	big [1] - 2079:10	bottom [15] -	British [1] - 2041:4	calendar [1] - 2016:5
1937:1; 1942:11	bigger [1] - 2127:9	1901:18; 1934:18;	broad [2]-1949:2;	Calgary [30]-
belief [1]-2019:15 below [11]-1912:3;	biggest [1] - 1916:4	1957:19; 1988:9;	1967:7	1896:2, 20, 22-23;
below [11]-1912:3;	Bill [1] - 2019:16	1989:22; 1997:3;	broadly [1] - 2073:4	1899:14, 16,
1940:14; 1968:1;	billions [1] - 2178:16	2045:11; 2090:23;	broke [1] - 1969:20	1900:7, 21; 1902:10,
1970:10; 1986:13;	biochar [1] - 2048:14	2092:11; 2106:22;	broken [1] - 2124:13	22; 1904:13, 21;
1990:1; 1994:14;	biodegradation [1] -	2113:3; 2118:23;	brought [12] -	1905:2; 1936:8;
2017:9; 2047:18;	2006:7	2135:22, 25	1901:5; 1955:9;	1940:20; 1945:23;
2065:8	BIODIVERSITY [1] -	boundary [10] -	1971:24; 1997:7;	1952:10; 1953:1;
belt [2]-2171:7, 15	2173:22	2046:16; 2064:5, 16,	2014:17; 2015:18;	1964:8; 1966:6;
BELT [1] - 2171:23	biodiversity $[7]$	18; 2065:8, 15, 17;	2035:24; 2090:8;	1992:20; 2013:7;
belts [4]-2050:20;	2042:15; 2076:19;	2066:1; 2141:18	2110:12; 2118:15;	2032:12; 2039:12;
2169:15; 2170:19	2112:14; 2172:15, 23;	Bow [25] - 1928:2,	2141:7	2072:14, 18, 20;
benches [1] -	2173:5; 2174:17	9-10; 1929:8, 25;	brown [2]-1981:20;	2074:7; 2186:8
2143:17	biologist [2]-	1931:3, 5, 7, 15;	1983:8	Calgary's [2]-7
benchmarks [1] -	2040:22; 2106:7	1932:11; 1936:7;	Bruni [2] - 1896:23;	1900:20; 2014:7
2179:6	biology [3]-1947:5;	1958:22; 1959:15;	1905:3	calibrated [1] -
${ }_{\text {1974:12 }}^{\text {beneath }}{ }^{\text {[1] - }}$	2038:6; 2041:2	1960:10; 1961:1;	${ }^{\text {Brunswick [2] }}$	1997:19
1974:12 beneficial [4]-	bird [6]-2163:23; 2165:14; 2166:2;	1964:8, 21; 1965:1, 13-14; 1967:10;	2033:23, 25 BUCHANAN 31 -	$\begin{gathered} \text { camera [2] - } \\ \text { 2045:24; 2116:20 } \end{gathered}$
2016:25; 2017:1, 14;	2169:2; 2172:17	2139:17; 2144:4, 15;	2028:23; 2031:1	CAN [1]-2111:9
2044:22	BIRDS [1] - 2175:19	2145:11	Buchanan [3]-	can.. [1] - 1911:9
benefit [8] - 1902:3;	birds [11]-2163:19;	box [1] - 2136:2	2030:18, 25; 2187:17	Canada [17] -
1904:9, 11; 2062:4;	2164:6, 11, 15;	Bragg [2] - 1917:25;	buffer [4]-2138:18;	1910:14; 1911:23;

NRCB 1701, Volume 8, March 31, 2021

1912:16; 1936:17, 23; 1955:11; 1956:14; 1964:13; 2034:4; 2164:13; 2165:6;
2177:3, 10, 16, 18,
24; 2179:7
Canadian [2] -
1941:18; 1949:12
Canmore [2] -
2073:9; 2074:6
cannot [4]-2098:6;
2106:6; 2109:19;
2168:11
canvassed [1] -
2104:1
capability [32]
2038:20; 2118:12, 19;
2122:8; 2125:16, 20;
2126:1, 6, 13, 16;
2127:11, 14, 25;
2128:8, 11, 16-17;
2129:4, 6, 19, 21-22;
2131:8, 15, 21, 23
2133:6; 2146:4;
2150:4, 19; 2151:14; 2152:2
capable [1] -
2081:15
capacity [10] -
1902:14; 1934:18;
1935:3; 1953:23;
2128:7; 2152:24;
2153:2, 13, 24;
2155:2
capital [1] - 2154:4
capture [3]-1963:2;
1974:1; 2013:8
captured [5] -
1957:2; 1958:22;
1959:21; 2173:12;
2176:3
capturing [1] -
1961:10
carbonate [2] -
2120:24; 2121:8 carbonates [1]
2120:25
cardiovascular [1] -
2179:10
Carina [1] - 1896:13
CARLO [72]
2028:22; 2039:2, 5, 8 , 11, 25; 2083:16, 20; 2084:7, 15, 25; 2085:15, 25; 2086:16; 2087:15, 23; 2088:22; 2089:1, 7, 13, 17, 24; 2091:1, 14; 2095:13, 19; 2099:23; 2105:7, 17; 2106:1, 6, 18, 25; 2107:7; 2109:7, 15; 2110:2, 17; 2112:8, 23; 2113:22; 2114:16, 19; 2115:1, 4, 7, 9 , 17, 19; 2124:24; 2125:9; 2132:8, 22; 2133:1; 2137:8, 12, 19, 25; 2138:16; 2139:22; 2140:6, 15, 19, 24; 2141:3; 2143:11; 2161:2, 19; 2162:9, 24; 2163:13; 2187:16
Carlo [32] - 2039:1;
2082:20; 2083:1; 2088:14; 2094:16; 2095:13, 17; 2099:23; 2105:1; 2106:24; 2109:5, 7; 2110:17; 2112:8, 13, 15;

> 2113:18; 2124:19; $2132: 3,18 ; 2137: 7 ;$ $2138: 10 ; 2139: 4,19 ;$ $2141: 6 ; 2143: 2 ;$ $2144: 14 ; 2161: 2 ;$
> 2162:9, 24
> Carolyn [1] - 1896:14 carried $[1]-1993: 1$ carry $[3]-1934: 19 ;$ 2103:20; 2147:10 Case $[7]-2063: 4$, 15, 20; 2064:14;
2065:5, 10, 23 case [21]-1906:23; 1909:1, 7; 1917:12; 1932:19; 1936:14; 1941:9; 1959:23; 1968:4, 8; 1976:19; 2002:14; 2052:19; 2058:2; 2063:11; 2065:3; 2087:4; 2092:5; 2145:4; 2184:24
cases [2] - 2062:23; 2063:1
Cases [1] - 2062:25 catch [1] - 1933:20 catches [1] - 1934:3 catchment [1] 1929:10
categories [5] 2118:25; 2120:6, 9; 2124:13
categorization [4] 2119:2, 15; 2122:21; 2124:6
category [5] -
2119:3, 12; 2125:3, 5,
9
caucus [10] - 2095:1;
2107:8; 2119:17;
2126:20; 2132:23;
2139:23; 2155:18;
2156:7, 14; 2173:8
caucusing [2] -
2119:21; 2156:2
caught [1] - 2029:25
caused [1] - 2146:14
cautious [1] - 1955:6
caveat [1] - 1998:6
CEAA [1] - 1956:6
cell [2] - 1995:5;
2178:17
centimetre [2] -
2119:3; 2160:22
centimetres [14]
2060:20; 2118:25;
2119:1, 13; 2121:14,
17, 20-21, 24; 2122:1,
3-4; 2125:10
centre [3]-1981:13;
1993:19; 2165:3
centres [2] - 2166:8 centroids [3]
1928:17, 24; 1959:10
Ceroici [3]-1896:8;
2000:8; 2006:15
CEROICI [3] -
2000:9, 11; 2187:9
certain [7] - 2048:16;
2053:11, 17; 2068:6;
2085:11; 2120:8;
2168:8
certainly [38] -
1902:22; 1904:15;
1933:6; 1934:15;
1945:17; 1954:25;
1959:1, 7; 1961:16,
24; 1962:3; 1972:19;
1973:24; 1974:14;

1978:14; 1979:9; 1989:16; 2001:8; 2004:4, 9; 2025:21; 2082:22; 2098:1; 2099:6, 18; 2103:15, 21; 2104:1, 6; 2170:18, 20; 2171:2 11; 2175:11; 2176:7, 10; 2178:9, 19
Certificate [1] 2186:1
certify [1] - 2186:3 cetera [1] - 2006:8 chair [9] - 1905:24;
1922:5; 1939:25 1969:15; 1997:4; 2015:4; 2018:15; 2021:14; 2027:24
Chair [118] - 1896:7; 1899:15; 1915:5, 14 1930:11; 1938:4; 1944:13, 23; 1958:17; 1969:2; 1983:1, 3 ; 1991:14; 1993:8, 11-12; 1995:16, 21, 24; 1999:21; 2008:1; 2010:24; 2012:17; 2013:12; 2018:6; 2021:19; 2023:8, 13 25; 2025:19; 2026:2 2027:12; 2030:4, 15; 2035:21; 2037:8, 14; 2041:25; 2042:8; 2051:20; 2053:23; 2071:16; 2072:2; 2073:12; 2074:24; 2075:18, 23; 2077:21; 2082:9; 2083:16; 2091:18; 2092:4, 21; 2093:10, 24; 2094:17, 25; 2095:2, 13; 2099:5; 2103:13 2104:16; 2105:7 2106:1; 2108:6; 2109:7; 2110:2, 17; 2113:22; 2114:19; 2115:4; 2118:14; 2119:17, 19; 2120:1 18; 2123:9; 2124:9; 2125:24; 2126:22; 2128:21; 2129:8, 16; 2130:11, 25; 2131:4, 25; 2132:10, 22; 2133:1; 2137:8, 25; 2138:16; 2139:24; 2140:21; 2141:3; 2143:25; 2146:17, 23; 2147:21; 2148:25; 2149:10; 2152:9; 2154:22; 2155:17; 2156:1, 5, 15, 19; 2157:23; 2158:8; 2159:9; 2160:4; 2173:24; 2174:13; 2176:17; 2184:4
CHAIR [160] - 1897:9,
25; 1898:3, 11, 20 , 23; 1899:3, 10, 23; 1901:9, 14, 16 ; 1904:25; 1905:7, 17 1915:7, 9, 16, 22; 1916:2, 6; 1922:9, 12; 1923:7; 1933:18; 1937:17, 19; 1938:5; 1939:15, 20; 1940:2; 1942:16, 20, 23; 1943:2, 8; 1944:1, 6, 10, 15; 1945:1, 5, 9 ; 1958:9, 15; 1964:23; 1969:3, 9, 12, 18;

1983:2; 1993:10, 13 , 15; 1994:8, 12, 15, 23; 1995:4, 8, 12, 17 20, 23; 1996:3, 11 , 21, 24; 1997:6;
1999:23; 2000:5, 8; 2006:15, 22; 2008:2; 2010:25; 2011:3; 2014:13; 2015:6; 2018:9, 12, 16, 22; 2019:4, 25; 2021:6, 10, 15, 21; 2023:6, 10; 2025:25; 2026:4, 23; 2027:3, 19; 2030:2; 2031:22; 2032:3, 7; 2034:13; 2036:2, 8, 14; 2037:10, 13; 2054:7, 10; 2071:13, 20; 2072:1, 4, 11, 13, 17, 21; 2075:20; 2076:12; 2077:16, 23; 2078:21; 2079:20; 2080:19, 22; 2081:10; 2082:4, 11; 2101:8; 2102:14, 17; 2103:22; 2104:7; 2113:5, 9, 11, 14; 2114:18, 23; 2115:3, 6, 8; 2119:22; 2120:3; 2122:25; 2123:12, 17, 20, 23; 2143:22; 2147:22, 25; 2156:17, 20, 25; 2173:7; 2174:6; 2176:20; 2184:9; 2185:11; 2187:12
Chairman [91] 1897:14, 19; 1899:8; 1905:11; 1915:1 1937:15; 1942:13; 1943:5; 1944:9; 2020:20; 2060:9; 2061:2; 2062:11; 2071:2, 11; 2072:24; 2073:10; 2074:25; 2076:10; 2078:5; 2080:15, 24; 2088:3; 2097:24; 2098:12; 2099:6, 23; 2100:3; 2101:7, 14, 16; 2102:3, 11; 2103:25; 2105:17; 2107:9 2108:15; 2109:3, 5; 2111:3, 16; 2112:6, 8 , 23; 2114:16; 2115:21; 2117:13; 2132:8; 2134:7, 23; 2135:7; 2139:22; 2140:15; 2141:4; 2142:5; 2143:11; 2144:18; 2145:14; 2146:23; 2148:14; 2150:22; 2160:12; 2161:2, 12, 19; 2162:9, 24; 2163:13, 21; 2164:9; 2165:11; 2167:13; 2168:1, 14; 2169:21; 2170:14; 2171:8, 18; 2172:6, 25; 2173:10; 2176:1; 2179:18; 2180:10, 14, 17; 2181:11; 2182:11 challenge [2] 1957:24; 1962:24 challenges [2] 2052:16; 2077:18 challenging [2] -
2062:12; 2078:25
chance [8] - 1921:3; 1933:24; 1935:11, 14;

1943:17; 1971:3, 6; 2015:14
change [70] -
1907:24; 1936:5, 15;
1950:24; 1951:18;
1955:3, 11, 13, 16-17
1956:19, 21; 1957:1,
18; 1967:18, 20, 23,
25; 1970:4; 1974:23;
1985:25; 1986:8;
1988:11, 19; 1991:3;
2004:15; 2024:14, 16,
18; 2025:24; 2035:16;
2062:13; 2116:9, 11,
13; 2118:11, 16, 19 ;
2119:14; 2121:10, 12;
2124:5, 21; 2125:1,
15, 19; 2126:8;
2127:17; 2129:22;
2130:16; 2131:8;
2132:12, 14, 20;
2133:3, 24; 2135:2,
15, 19-20; 2138:13;
2146:14, 17; 2149:4,
16; 2150:2, 5, 17;
2152:7; 2160:7
changed [4]-
2025:10; 2037:6;
2129:4; 2131:19
CHANGED [1] -
2025:17
changes [18]
1907:19; 1921:18, 20;
1968:16; 1974:19;
1985:16; 2035:9;
2114:13; 2115:11.
2118:25; 2126:4, 12;
2132:5; 2140:1;
2149:6; 2151:22
changing [1] -
2146:2
channel [39] -
1914:11; 1953:23;
1979:23; 1981:19;
2008:16, 18; 2045:14,
16; 2090:14-17;
2091:11, 24-25;
2092:1, 11-13, 17 ;
2093:3, 13, 17, 23;
2094:21; 2114:14;
2115:14; 2116:3, 15; 2140:3; 2147:5;
2157:19; 2158:3, 16;
2159:7; 2169:25
channel/berm [1] -
2158:4
channels [2] -
2116:4, 14
characteristics [8]
1974:19; 2004:21;
2006:3; 2055:14;
2150:17; 2152:1, 7
characterization [3] - 2000:13; 2035:12; 2140:1
characterize [2] -
1908:25; 2137:20

NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021

CONDITION ${ }_{\text {[3] }}$ -	2136:25; 2137:10, 12	2051:6; 2070:16, 25;	control [26] -	corrections [2] -
2171:21; 2172:9;	Conservation [1] -	2083:11; 2085:20;	1920:19; 2047:4, 8;	2025:9; 2034:19
2173:18	1896:1	2086:4, 9-10;	2048:19; 2051:3,	CORRECTIONS [1]
CONDITIONS ${ }_{[1]}$ -	CONSERVATION ${ }_{[2]}$	2087:20; 2088:1	11, 15; 2056:18;	2025:15
2111:11	- 2113:17; 2188:21	19-20, 24; 2089:8	2062:4; 2066:16;	correctly [9] -
conditions [18] -	conservatisms[1]	10-11, 14, 16, 21	2068:21; 2100:23	1904:2; 1975:16;
1934:20; 1951:1;	2053:1	2090:3; 2092:6, 13	2108:17, 22, 25;	2015:22; 2016:6;
1972:20; 2005:4;	conservative [9] -	2098:20; 2108:7;	2109:9, 17; 2112:12;	2087:7; 2093:5;
2045:10, 18; 2048:17	1986:21; 2004:10;	2131:14; 2135:1, 9;	2145:16, 24; 2172:5	2122:19; 2129:10;
2052:17; 2068:17;	2005:22; 2008:8, 22;	2141:24; 2142:1, 3-4,	Control [5] - 2051:7;	2149:25
2105:8, 12; 2108:12;	2009:10, 24; 2052:25;	7, 11, 16, 21;	2100:24; 2101:3, 19,	correlation [3]
2111:1; 2136:13;	2061:24	2160:21; 2170:10		1928:12, 14; 1932:4
2151:15, 21; 2157:18	consider [26]	CONSULTATION ${ }_{[1]}$	controlled	correspondence [1]
conduct [3] -	1928:21; 1959:24;	- 2171:24	2051:9; 2055:14;	2036:18
2046:13; 2124:19, 24	1961:13; 1988:7;	consultation [5] -	2058:5; 2101:1	corresponding [1] -
	2008:7; 2009:16;	2044:9; 2046:25;	controller [1] -	1929:25
2038:9, 19; 2046:17;	2017:12; 2044:11;	2165:5; 2171:16;	1900:25	correspondingly ${ }^{[1]}$
2048:24; 2053:7;	2050:19; 2062:19;	2175:22	controlling [2] -	- 2027:17
2054:21; 2162:15;	2064:10; 2065:20;	consultin	2056:2; 2110:19	
2172:15	2073:17, 24; 2078:9,	2037:23; 2041:6, 13	controls [1] - 2057:4	2044:25; 2045:4;
conducting [1] -	19; 2087:5; 2098:14,	Consulting [1] -	convenient [1] -	2073:23; 2074:2, 5, 8,
2052:6	17; 2108:13; 2137:24;	2037:24	1969:8	
conductivities [2]	2142:2; 2164:19;	contact [2] - 2001:2;	convent	2075:8, 22, 24;
1980:6; 1997:20	2169:14	2070:7	1963:3	2076:3, 8; 2139:14,
conductivity [17] -	considerable [3] -	contacted [1] -	conventional [1] -	20; 2140:4, 14;
1975:18; 1976:9, 13,	2014:22; 2056:14;	2023:14	2060:4	2141:1; 2143:4, 6,
25; 1980:17, 22;	2120:23	contain [7]	conversation [2] -	
1985:4; 1993:24;	considerably	1992:21; 2100:21;	1901:12; 2023:13	CORRIDOR [2] -
1997:10; 1999:5;	2127:3, 8; 2153:2, 13	2101:21; 2105:13;	conversion [1] -	2075:5, 16
2001:23; 2002:1, 7 ,	consideration [6] -	2106:15; 2136:7, 9	2137:14	corridors [1] -
22; 2003:4, 14, 25	1954:7; 1955:13;	containing [1] -	convey [1] - 1977:24	2074:16
cone [2]-1976:5, 15	1957:14; 1959:6;	2062:21	conveyed [1] -	corroborate [1] -
conferring [2]-	2048:13; 2098:3	contains [5]	2004:7	1928:11
2100:3; 2174:20	considerations [4] -	1950:9; 2102:1;	convince [1] -	cost [6] - 1940:20;
confidence [2] -	2014:14; 2042:15;	2120:24; 2124:12, 16	1979:18	2160:25; 2161:9, 14;
2069:4; 2162:19 confident [1] -	$\begin{gathered} \text { 2044:4; 2068:25 } \\ \text { considered [27] } \end{gathered}$	contaminant [2] 2005:21; 2006:2	copied [1] - 1943:16 copy [1] - 2100:11	$\begin{aligned} & \text { 2177:12 } \\ & \text { COSTS } \\ & {[1]-2171: 24} \end{aligned}$
2043:17	1909:9; 1927:2;	contaminants	corner [2]-1980:7;	costs [3]-2163:2;
confirm [39] -	1951:19; 1953:16;	2003:19; 2004:5;	1984:14	2171:6, 15
1946:22; 1950:8;	1958:5; 1960:14, 18;	2005:25; 2034:4;	Correct [3]	Council [1] - 2112:21
1997:16; 1999:4;	1968:8; 2009:23;	2178:10	1908:23; 2000:21;	COUNCIL [2]
2000:16; 2028:18;	2017:9; 2044:15;	content [3]	2159:21	2113:16; 2188:21
2031:13, 16; 2033:14,	2048:18; 2049:11;	1934:17; 1987:24;	correct [92] -	Counsel [2] -
17; 2037:19, 22;	2053:18, 20; 2074:5,	2153:1	1897:22; 1905:10;	1896:10
2039:3, 6; 2040:12,	7; 2086:15, 17;	context [13] - 1902:7,	1906:16, 21-22;	counsel [9] -
21; 2074:4; 2082:17;	2094:19; 2112:1, 5;	18; 1911:21; 1973:10;	1907:21; 1908:2, 7-8,	1920:25; 1994:21;
2083:13; 2087:15;	2125:3; 2136:11;	1985:24; 2062:17;	15-16; 1909:6, 12, 15;	2028:14; 2035:22;
2088:5; 2091:6;	2138:6; 2141:17;	2064:13, 22; 2065:23;	1914:24; 1917:7, 15;	2042:4, 9; 2082:16;
2094:12, 15, 18;	2142:21	2138:15; 2150:23;	1919:12, 17; 1920:6,	2112:20; 2173:11
2098:22; 2106:4, 6;	considering [2] -	2164:11; 2174:21	8, 12; 1923:7, 12;	country [1] - 1955:12
2114:22; 2157:24;	2053:8; 2138:11	continue [18] -	1926:2; 1927:3, 11;	county [1] - 2162:15
2158:8; 2171:9, 11;	considers [1] -	2016:11; 2034:15;	1934:8; 1938:2, 14;	County [3] -
2175:24; 2177:16;	2043:5	2048:9; 2049:13, $25 ;$	1941:10; 1949:10;	2051:11; 2099:7;
2178:6, 12, 15	consistent [12] -	2102:12; 2104:3;	1950:10, 19; 1952:6,	2112:12
confirmation [1] -	1968:18; 1979:25;	2105:6, 24; 2109:13;	16; 1954:2, 13;	couple [8]-1969:24;
2088:22	1999:15, 18; 2003:7;	2112:15; 2121:7;	1956:12; 1958:16;	1995:15; 2000:9;
${ }_{2179: 3}^{\text {confirmed [2] - }}$	2119:2, 15; 2122:5;	2123:1; 2146:4;	1960:5; 1962:11;	2018:17; 2072:25;
$\begin{aligned} & \text { 2179:3, } 8 \\ & \text { confirming }{ }_{[2]} \text { - } \end{aligned}$	$\begin{aligned} & 2124: 6 ; 2129: 4 ; \\ & 2141 \cdot 16 \cdot 2175 \cdot 9 \end{aligned}$	$\begin{aligned} & 2157: 15 ; 2170: 25 ; \\ & 2174: 612 \end{aligned}$	1964:4, 24; 1966:18; 1971:9: 1975:19:	$\begin{gathered} \text { 2076:14, 20; 2156:17 } \\ \text { coupled [2]-2045:4; } \end{gathered}$
1917:5; 1922:20	consists [2]-	continued [3] -	1983:9; 1985:10;	2069:1
confirms [1]-2043:6 confluence [1]-	2062:5; $2178: 12$ constituents $[1]$	$\begin{aligned} & \text { 2050:17; 2069:23; } \\ & \text { 2150:13 } \end{aligned}$	1990:16; 1999:3;	course [20] - 1903:2;   1004:10: 1909:13:
	constituents [1] -	2150:13	2020:22; 2025:5;	1904:10; 1909:13;
2144:6 confused [5] -	2003:24   constitutes [1] -	$\begin{gathered} \text { continues [3] - } \\ \text { 1923:25; 2070:12; } \end{gathered}$	2027:11; 2031:15; 2036:6, 10; 2039:8;	$\begin{aligned} & \text { 1913:5; 1918:19; } \\ & \text { 1923:18; 1925:24; } \end{aligned}$
1965:6; 1981:2;	2184:3	2170:20	2040:13, 23; 2060:9;	1926:1; 1966:20;
1983:6; 1984:7;	constrained [1] -	contour [4] -	2073:6; 2074:3;	1971:5; 2006:5;
1990:17	2006:7	2064:19, 21; 2066:2,	2082:21; 2083:16;	2012:7; 2014:3, 5, 10;
confusion [6]	constr		2088:23; 2089:16;	2025:22; 2077
1941:9; 1960:12;	2045:7	contours [1] -	2090:25; 2091:13;	2078:3
1978:20; 1980:15;	construct [1] -	1928:25	2093:8; 2115:7;	COURT [11] - 1901:8;
1981:1; 2025:1 connect [2] -	$\left.\begin{array}{l}\text { 2092:22 } \\ \text { constructed }\end{array} 3\right]$ -	${ }_{2093: 12}^{\text {contractor }}{ }_{[1]}$	2118:13, 20; 2133:18; 2134:4, 21; 2148:24;	
connect [2] -	constructed [3] - 1903:8; $2162: 8$	2093:12 ${ }^{\text {contribute [2] }}$	$\begin{aligned} & 2134: 4,21 ; 2148: 24 ; \\ & 2150: 2: 2158: 21,23 \end{aligned}$	$\begin{aligned} & 6 ; 2031: 24 ; 2032: 5 ; \\ & \text { 2121:4; 2123:8, 15; } \end{aligned}$
connection [1] -	constructing [3] -	1933:13; 2153:24	2159:23	
1930:6	2045:11; 2070:20;	contributing [1] -	corrected [2]	Court [5] - 1897:5;
connectivity [1] -	2093:4	2038:23	1941:25; 2037:4	2031:6, 9; 2186:14,
2001:14	CONSTRUCTION ${ }_{[1]}$	contribution [1] -	correction [6] -	
consequently	- 2088:11	2110:9	1898:5; 1930:10;	court [11] - 1898:12;
2052:21; 2068:2	construction [42] -	CONTROL [1] -	1946:25; 1947:7;	1915:17; 1930:11;
conservation [3] -	2044:12; 2045:7;	2172:12	2023:15, 22	1933:24; 1937:20;

NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021

detached [1] -	2058:23	2112:16	4, 16; 2159:7;	2176:24; 2177:12
2121:19	fferent [32] -	discrete [3] -	2169:24	dotted [2] - 1967:24;
detail [6] - 1971:7;	1966:7; 1967:19;	1962:10; 2147:4, 7	diverted [9] -	1970:7
2044:15; 2059:9;	1970:5; 1973:18;	discuss [4] - 1942:9;	2008:16; 2011:22;	double [1] - 1940:21
2098:9; 2170:14;	1976:8, 16; 1981:25;	2019:17; 2176:10	2100:21; 2101:21;	Douglas [1] -
2175:24	1987:18; 2000:17;	discussed [12] -	2102:1; 2109:24;	1896:24
detailed [6] - 1993:2;	2003:23; 2007:5, 9	1928:16; 2021:3;	2110:1, 5, 11	DOWN [1] - 2026:6
2008:19; 2018:5;	2055:19; 2058:13, 22;	2042:20; 2044:16;	division [1] -	down [55] - 1911:19;
2043:19; 2062:24;	2060:13; 2062:18;	2045:24; 2047:8;	1932:12	1918:3; 1921:19;
2098:22	2063:7; 2064:20;	2048:25; 2052:7;	DO [1] - 2173:23	1924:16; 1926:4;
details [12] -	2066:2; 2075:25;	2054:18; 2061:22;	doctorate [1] -	1929:22; 1932:10, 16,
1952:15, 17; 2051:15;	2076:5; 2116:5;	2073:20; 2170:5	1918:19	24; 1936:2; 1940:8;
2084:25; 2085:15;	2119:12; 2122:21;	discussing [8] -	Document [2] -	1951:24; 1956:25;
2091:16; 2097:6;	2135:12; 2138:8;	1959:10; 1969:21;	2095:21; 2139:5	1957:16; 1960:1;
2098:1; 2112:10;	2153:7; 2154:11;	2024:4; 2070:13;	document [69] -	1973:2; 1978:23;
2126:4; 2170:21;	2178:5; 2179:21	2107:15, 25; 2152:23;	1900:25; 1910:17;	1979:5; 1984:17;
2171:12	differently [1] -	2162:4	1911:10; 1916:11;	1987:4; 2001:11;
detectable [1] -	1953:4	discussion [7] -	1920:21; 1921:18;	2003:12; 2007:17;
1909:10	difficult [5] -	1901:10; 1997:13;	1924:6; 1926:4;	2008:16; 2010:11;
detected ${ }^{2}$	1931:22; 1932:6;	2015:21; 2016:7;	1930:13; 1931:15, 20 ;	2013:6; 2017:9, 11;
2049:10; 2111:24	1959:17; 1963:4;	2083:24; 2170:25;	1935:7; 1937:22;	2027:7; 2037:3;
determination [3] -	1968:9	2183:2	1938:1; 1939:13;	2067:16; 2082:20;
1913:18; 2132:16;	difficulties [1] -	DISCUSSION [1] -	1950:20; 1955:23;	2086:12, 19; 2087:3;
2139:3	2155:16	2031:11	1956:3, 7, 10;	2090:5; 2092:24;
determine [2] -	diligent [1] - 2185:5	discussions [4]-	1957:16; 1958:2;	2093:3, 20; 2094:21;
2048:12; 2073:5	diligently [1] -	2020:4; 2164:12;	1966:4; 1967:13;	2095:22; 2109:12;
determined [7] -	2034:11	2170:16; 2181:22	1970:22; 1971:5, 15;	2113:25; 2123:2, 17;
2020:24; 2046:21, 24 ;	dimensions [1] -	disease [1] - 2178:3	1973:2; 1975:21, 23;	2124:13; 2125:13;
2075:7; 2084:2, 8;	2045:15	dispersal [7] -	1982:2; 1988:23;	2131:2; 2132:24;
2085:16	dioxide [1] - 2178:11	2083:6; 2096:14;	1994:7; 2016:23;	2139:5; 2145:23;
DETERMINED [1] -	DiPaolo [8] - 1897:6;	2097:2, 16; 2108:14;	2017:17; 2020:25;	2186:5
2075:13	1915:17, 24; 1933:20;	2110:5, 9	2021:2; 2023:7;	downstream [15] -
determining [2] -	1934:2; 2104:10;	disperse [4] -	2026:10; 2028:15;	1902:13; 1903:22;
2151:17; 2184:2	2186:16	2095:18, 20; 2106:2;	2036:4, 6; 2051:24;	1904:16; 1920:5, 18;
develop [3] -	direct [15] - 1945:13;	2109:11	2067:15; 2071:7;	1940:20; 1992:14;
1912:23; 2153:9, 18	1966:12; 2005:13;	dispersed	2089:5; 2090:5, 20;	2014:6; 2110:9;
developed [4] -	2018:24; 2019:8;	2004:15	2095:22; 2104:12;	2116:19; 2139:15;
1936:13; 2069:21;	2021:12; 2027:8, 15;	dispersing [3] -	2106:8, 18; 2112:25;	2144:11; 2145:15;
2151:10; 2165:13	2045:11; 2071:22;	2095:15; 2109:18	2113:3, 25; 2118:8;	2182:9
developing [2] -	2073:21; 2080:1;	dispersion [2] -	2119:5, 9; 2125:12;	Downstream [1] -
2098:25; 2164:19	2082:23; 2089:2;	2032:15; 2033:2	2126:10; 2132:24;	2144:5
development [12] -	2140:15	disposal [1] - 2100:9	2139:5; 2140:18, 22;	downward [1] -
1948:21; 1974:9;	directed [2] -	disruption [2] -	2161:14	1932:1
2039:21; 2043:11;	1899:21; 2020:13	2096:14; 2097:2	documentation [6] -	Dowsett [2] -
2094:15; 2098:18;	direction [5] -	Dissipation [1] -	1952:19; 2085:7;	1958:20; 1967:10
2099:3, 16; 2102:7;	1929:3; 2021:9;	1975:25	2086:24; 2180:18;	Dowsett's [1] -
2136:15; 2144:24;	2092:15; 2126:7;	dissipation [1] -	2181:18; 2183:3	2114:4
$2175: 21$	2150:14	1976:3	documentations [1]	dozens [1] - 1923:19
developments	directive ${ }^{2}$	dissolved [1] -	- 1960:7	Dr [103] - 1898:6, 9 ;
2136:7	2162:14, 17	2121:9	documented [8]	1899:21; 1900:4;
deviations [1] -	directly [3] - 1974:6;	distance	1959:16, 20; 1960:10,	1901:8; 1905:15;
2092:14	1986:24; 2161:23	2006:1; 2059:16;	21; 1963:5; 2005:4;	1910:19; 1916:17, 21;
device [2] - 1914:10;	director [1] -	2093:15, 22	2077:25; 2172:4	1918:5; 1922:16;
2108:19	2037:22	distinct [1] - 1932:3	DOCUMENTED [1] -	1923:11; 1924:9;
DFO [2] - 1912:21;	directs [2] - 2102:20,	distinction [1] -	2172:11	1927:6; 1930:8, 16;
1913:5	25	1976:7	documents [16] -	1932:5; 1934:5, 9, 16;
diagram [15] -	dirt [1] - 2087:4	distracted [1] -	1911:9, 11, 16;	1935:11; 1936:21;
1920:23; 1921:8, 19,	dirty [1] - 1912:10	2149:23	1916:13; 1920:1;	1937:22; 1938:9;
25; 1922:5; 1930:6;	disadvantage [1] -	distributed [2] -	1924:19; 1927:17;	1940:5; 1942:15;
1932:8, 10, 16, 22,	1998:1	2003:13; 2007:17	1939:11; 1992:7;	1943:22; 1944:17, 23;
24; 1985:20; 1988:21;	disagree [3] -	distribution [9]-	2008:14; 2020:9, 17,	1945:8, 11; 1958:19;
1999:4	1968:14; 2106:17	1928:16, 23; 2053:10;	22, 25; 2021:4	1959:9; 1960:3, 13;
diagrams [6] -	disagreement [1] -	2100:19; 2127:18;	dominated [2] -	$1962: 7,18 ; 1966: 24$
1924:5, 9, 12;	2058:17	2132:14; 2146:22;	2128:4; 2146:9	1967:15; 1969:20;
1985:22; 1989:25;	disappear [1] -	2152:13, 16	DONE [1] - 2173:23	1970:18; 1973:3;
2005:1	1915:13	distributions [1] -	done [39] - 1907:7;	1981:1; 1983:5, 23;
diameter [1] -	discharge [6] -	1928:19	1914:4, 25; 1941:24;	1984:8; 1994:22;
2059:25	1923:19, 23; 1924:24;	disturbance [1] -	1942:14; 1967:2;	1997:14; 1999:20, 22;
dictate [1] - 2004:20	1925:7; 1930:22;	2055:16	1976:4, 10; 1987:4,	2000:10, 12; 2006:13;
dictated [1] - 2006:4	2107:5	disturbed [2]	13; 1993:4, 9; 2005:8,	2008:3, 20; 2009:5;
die [2]-2168:9;	discipline [1] -	2062:5; 2136:17	11; 2006:25; 2007:2,	2010:25; 2011:11;
2177:17	2033:8	diversion [26] -	11; 2008:10, 12;	2015:11, 16, 19;
differ [2] - 2005:21;	disciplines [1] -	1914:11; 1952:1;	2010:21; 2011:24;	2023:15, 21; 2025:3,
$2138: 15$	2120:17	1953:23; 1957:6;	2014:21; 2017:3;	22; 2026:5; 2030:18,
difference [6] -	discovered [1] -	1981:19; 1999:1;	2047:22; 2059:9;	25; 2038:25; 2052:10,
1947:3; 2024:19;	2007:6	2008:16, 18; 2045:14;	2073:3; 2098:8;	23; 2082:18; 2096:7,
2061:9; 2077:5;	Discovery [1] -	2090:14; 2091:11, 24;	2115:23; 2122:16;	9, 12; 2117:6;
2123:11; 2125:3	1902:16	2092:17; 2093:2, 16,	2124:21; 2135:16;	2118:10; 2121:4;
differences [3] -	discrepancy [3] -	23; 2094:21; 2147:4,	2141:7; 2146:19;	2122:16; 2124:4, 17,
1908:11; 2000:24;	1980:24; 1984:14;	15; 2157:19; 2158:2,	2160:5; 2172:18, 23;	22, 25; 2125:12;

NRCB 1701, Volume 8, March 31, 2021

2129:9, 24; 2132	12, 18; 2066:9, 16-17	2117:1; 2133:12, 24	2169:18; 2170:2, 4	8; 2167:14
2133:4; 2146:2,	7:6; 2068:20, 22	2134:24; 2136:3		
2147:18; 2148:22;	dusts [1] - 2060:19	2139:25; 2140:11, 13,	2169:20, 25	9:22; 1942:16;
2151:25; 2154:8;	dynamic [1] -	17; 2141:2, 8, 10, 12,	ark [1] - 2184:8	12: 2036:12
2156:3	2149:17	14, 16, 19; 2142:2, 7 ,		2113:5; 2167:10
dr [1] - 2037:17	dynamics [1] -	14, 19-20; 2144:22;		
draft [9] - 1921:14;	1947:6	2145:6, 15, 18, 21;	emission [13]-	1; 2084:1
$\begin{aligned} & \text { 2045:24; 2051:16; } \\ & \text { 2069:20; 2157:18, } \end{aligned}$	E	2162:2; 2164:14,		
2164:21; 2165:13;		efficient [2] - 1951:2,	$25 ; 2059: 2,18 ;$	entire [6] - 18
2176:4	E.1-2 [1]		2060:4, 12; 2061:5	1902:22; 2
drafted [1] - 2165:4	$\begin{array}{r} \text { early } \\ \text { en } 160 \text { - } 20 ; 1908 \\ \hline 1910: 12 \end{array}$	$\begin{gathered} \text { effort [3] - 2052:24 } \\ \text { 2083:6; 2154:7 } \end{gathered}$	$\begin{aligned} & \text { 2062:16 } \\ & \text { emissions [20] } \end{aligned}$	$\begin{aligned} & \text { 2063:19; 2081:3; } \\ & \text { 2143:13 } \end{aligned}$
23; 2057:9, 14	1912:24; 1913:	efforts [12]-20	1968:7; 2035:17	2143.13
[ [1] - 1974	1946:11; 1960:8	2043:8; 2047:11	2055:9; 2056:3	1899:21
drainage [4] -	1968:25; 2016:19, 21;	2048:8, 21, 25;	18; 2057:20; 2058:	1933:14, 16
1964:4, 6-7, 14	2017:4, 13; 2135:5;	2049:8; 2050:1,9	9-10, 14; 2059:8, 1	entirety [1] - 2071:1
drained [1] -210	2147:18	2153:24; 2169:8	2060:24; 2061:9, 1	5;
drains [1]-1924:3   draw [1]-1911:18	early/late [2] 2146:18; 2148:3	EI [1] - 2008:13	$\begin{gathered} 15 ; 2063: 13 ; 206 \\ \text { emphasize } 11] \end{gathered}$	$\begin{aligned} & \text { 1975:24; 1978:11; } \\ & \text { 2067:21 } \end{aligned}$
drawdown [1] -	earthen [1] - 1979:10	2008:13; 2033:4,7	2042:22	entrained $[7]$ -
1976:17	easier [3]-2086:5;	2034:21; 2040:3, 6	employ	1907:7, 10; 19
drier [1] - 1962:15	2114:25; 2154:16	2041:20, 22; 2057:24;	2046:23; 2097:16	2009:19; 2107:18, 25
drill [1] - 1960:1	east [10] - 1981:1	2069:19; 2117:18;	employed [1] -	trainm
drive [1] - 1933:7	2044:14; 2046:16;	2125:21; 2127:5, 9 ,	2054:22	914:5, 23; 20
driven [2]-1933:14,	2064:15; 2065:14;	21; 2130:10; 2132:6,	employees.. [1] -	1; 2010:10
	2073:9; 2076:2, 7, 9	19; 2135:4; 2142:11;	2097:11	trance
drivers [2] - 1933:7;	east-west [3] -	2146:8, 15; 2147:19;	enable [1] - 2	2084:10; 2153:6
1949:22 ${ }^{\text {driving }}$	2076:2, 7	2148:9, 13	enables [1] -	entry [1] - 2084:6
driving [1] - 2056:17 dropped [2] -	ecologic	$\begin{aligned} & \text { eight }[2]-2041: 13 \\ & \text { 2049:22 } \end{aligned}$	2160:16	2002:19 ${ }^{\text {envelope }}$ [1] -
1995:13, 25	2115:24	EIS [2] - 1911:25;	2166:11	ENVIRON/RM
dropping [1]	ecologist [2]	2034:24	encountered [1]	2058:4
2010:20	2039:7, 25	either [11]-1922	2166:5	environmen
drops [1] - 1974:12	ecolog	1943:14; 1950:1;	end [18]-1913:12	155:5
Drought [1] - 1973:6	2112:17	2049:19; 2103:9;	1972:25; 2005:19;	Environment [8]-
drought [17]	ecology [2]-2038:6;	2110:11; $2121:$	2008:9; 2046:19	1931:10; 2043:1
1950:25; 1951:16	2039:12	2163:9; 2167:22	2,	047
1953:2, 4, 7-8;	ecosystem [3] -	2168:3; 2175:7	2082:2, 5; 2092:6, 19;	2164:12, 25; 2165:6
1973:8, 14; 2011:13,	1909:13; 2154:6;	El [1]-1933:9	2093:3; 2094:13;	Environmental [2]
17-18, 22; 2012:2, 6 ,	2162:23	Elbow [63]-	2125:17; 2129:8;	1908:21; 2041:15
16; 2014:19; 2155:4 drought-prone [1]	ecosystems [1]	1902:15-17; 1906:13	2155:1; 2167:2;	environmental
	1909:11	1907:12; 1909:5, 1		2014:6; 2032:10
2155:4 ${ }^{\text {dry }}$ [18] - 1902.5	${ }_{1896}^{\text {Edmonton [2] - }}$	1912:2; 1920:5, 20 ;	endeavor [2]-	18; 2034:7; 2038:6;
dry [18]-1902:5; 1933:7; 1938:21;	1896:2; 2076:9	1924:18, 21; 1925:10;	2027:16; 2078:1	2039:13; 2041:6, 11;
1933:7; 1938	educat $1918: 16$	1926:8; 1927:11,	ending [2]-2046:18;	2042:21, 25; 2043:1,
2060:14; 2105:12, 21;	education [9] -	15; 1936:7; 1954:18;	endorsed [1] -	2054:12, 18; 2055:3;
2106:3; 2111:1;	2031:19; 2033:20	1958:23; 1959:2, 14;	2152:8	2067:21; 2070:11;
2142:11, 16; 2149:4;	2038:2; 2039:9;	1960:4, 8; 1961:2;	energy [3] - 1920:15;	2085:5; 2120:10;
2179:14, 16; 2180:5,	2040:24; 2183:13, 19	1964:15; 1965:1, 15;	2039:21; 2059:6	2122:5; 2128
9; 2182:2	educational [1] -	1966:13, 22; 2007:13,	engage [1] - 2099:7	2129:2; 2131:5, 23;
DRY [1] - 2111:10	1918:13	18; 2008:7; 2011:16,	engagement [2]-	2133:11; 2139:13, 20;
drys [1] - 1974:11	effect [19]-1912:23;	21; 2012:22; 2013:6;	2043:10; 2176:8	2140:5; 2141
due [7] - 1986:22;	1929:8; 1974:24;	2014:1, 8, 20; 2017:7;	engineer [7] -	2143:3, 6, 9
2134:24; 2147:2;	1990:14; 2045:11;	2093:18; 2100:17, 20;	1919:17, 19; 1947:19,	environmentally ${ }_{[1]}$
2161:17; 2169:21;	2053:1, 8; 2126:1, 9;	2101:25; 2105:5;	22; 1988:5; 2031:17	- 1918:4
2181:2	2127:16; 2129:3;	2106:12; 2109:2, 12,	engineering [14]-	environments [1]
duration [3]-- 1907:19; 2068:15,	2131:10, 14, 20, $23 ;$ $2148: 22.2151 .6$		1919:16; 1938:2	2168:5
during [27] -	effective [3] -	2145:22; 2153:14	1955:10; 1957:3;	ephemeral [2] -
1933:23; 1953:4;	2066:16; 2068:20;	elderly [1] - 2183:17	1962:25; 1963:14;	2105:15; 2106:13
1958:22; 1962:14;	2167:8	elders [1] - 2044:7	2032:10, 12; 2033:23;	episode [1] -
1970:19; 2044:8;	effectively $[4$	elements [3]-	2165:15; 2169:21	2152:11
2070:15; 2073:21;	1909:21; 2002:9;	2004:18; 2055:25;	engineers [1] -	equal [1] - 2065:7
2083:11; 2085:20, 23;	2160:15; 2167:2	2096:4	1962:20	equally [1] - 2183:10
2086:3; 2092:13;	effectiveness [3] -	elevate [1] - 2032:7	ensure	equations [2] -
2105:4, 21; 2107:5;	2045:22; 2068:23;	elevated [1] - 2067:3	1951:21; 1961:19	2058:12, 15
2133:24; 2160:21;	2069:22	${ }_{2182.23}^{\text {eliminate [1] - }}$	2042:18; 2043:13, 2	equipment $[8]-$
2163:24; $2165: 7 ;$ 2166:15, 23: 1167.17	effects [59] -	2182:23	2048:5, 15; 2081:5;	1938:21; 1941:19;
2166:15, 23; 2167:17,	1906:14; 1907:18;	Eliot [1] - 2168:1	2084:17; 2085:6;	1942:2; 2048:4;
$\begin{aligned} & \text { 22; 2168:15; 2181:22 } \\ & \text { dust } 366-1973: 21 ; \end{aligned}$	$\begin{aligned} & \text { 1912:9, 12-13; } \\ & \text { 1913:8; 1986:19; } \end{aligned}$	$\begin{aligned} & \text { elk }[4]-2044: 10,13 ; \\ & 2045: 18 ; 2164: 6 \end{aligned}$	$\begin{aligned} & 2086: 5,22,25 ; \\ & 2104: 4 ; 2112: 18 ; \end{aligned}$	$\begin{aligned} & 2084: 24 ; 2086: 10 ; \\ & 2097: 7 ; 2098: 8 \end{aligned}$
1975:14; 2035:17;	2035:18; 2038:20;	ellipse $[1]$ - 1929:3	2157:10	equitable [1] -
2046:5; 2055:8, 13,	2039:18; 2043:2;	elsewhere [1] -	ensuring [8]-	1918:1
22; 2056:3, 8, 11, 15	2046:14; 2062:11	2047:7	2044:13; 2053:	equivalen
18; 2057:17, 20;	2067:7; 2069:4,	email [5] - 1943:23	2066:13; 2070:21;	1902:2; 2076:2
2058:4, 9, 25; 2059:2,	17-18, 20; 2088:18;	2019:12, 16; 2020:11	2083:21, 24; 2110:20;	erosion [38]-
8, 18; 2060:14, 24;	2104:22; 2107:23;	emails [1] - 2020:7	2164:5	1919:22; 1920:2,
2061:5, 23; 2062:4,	2114:8; 2116:24;	embankment [3]-	enter [4]-2121:1, 6 ,	19; 1921:21; 2047:4,

NRCB 1701, Volume 8, March 31, 2021

8; 2048:7, 17, 19;	24; 2173:4; 2174:22	2054:15, 23; 2068:7,	1919:25; 1922:6, 10;	XPENSES [1] -
2049:3, 5, 15, 18, 24;	vents [37] -	13; 2181:7	1923:21; 1937:16;	2172:11
2050:5, 9; 2055:22;	1926:22; 1927:2, 7 ,	exceeding [1] -	1939:16; 1942:17;	experience [22] -
2056:4, 6, 9; 2057:6,	21, 25; 1929:7;	2065:21	1943:21; 1944:5;	1918:14; 1919:4;
13, 16, 22; 2060:5,	1934:24; 1952:21;	exceeds [2] -	1958:11, 13; 2017:15,	1947:8; 1948:3, 23;
12, 21; 2062:6;	1959:8; 1960:4, 14,	1954:20; 2058:6	20; 2018:8; 2025:5;	1971:12; 1974:17;
2116:2; 2121:15;	16-17, 20; 1961:10;	EXCERPT [2] -	2026:25; 2035:24;	2031:20; 2033:21;
2140:3, 7; 2157:21;	1962:10, 13; 1964:21;	2113:17; 2188:2	2036:9, 13; 2037:9,	2034:1; 2038:3, 9, 11;
2158:6, 18; 2160:3	1965:1, 13; 1972:24;	excess [4] - 1911:8;	11; 2072:3, 7;	2039:10, 15; 2040:18,
erosion-resistant [1]	2051:2; 2053:13;	1954:17; 1961:12;	2091:23; 2107:11	25; 2041:6, 14 ;
- 2062:6	2062:1; 2068:17;	2002:18	2113:6, 8, 12;	2183:12, 20
errata [3] - 2036:7,	2070:2; 2105:22;	excessive [1]	2114:23; 2134:8;	experienced [2] -
25; 2037:13	2108:3; 2150:6, 16	2066:23	2138:20; 2140:20;	1929:16; 1935:1
ERRATA [2] -	24-25; 2152:6, 17;	exchanged [1] -	2181:18	expert [12] - 1918:6;
2037:15; 2188:15	2166:22, 25	2020:7	EXHIBIT [18] -	1948:3, 12; 1949:10;
erred [2] - 2009:10;	evidence [22]	exchanges [1]	1899:1; 1923:10;	1975:3, 5, 12-13;
2058:20	1920:9; 1923:12;	2025:8	1938:6; 1942:24;	2009:17; 2032:20;
error [5] - 1982:20;	1928:7, 11; 1929:25	EXCHANGES [1] -	1944:11; 2037:15	2058:18, 20
2023:25; 2024:22;	1942:8; 1945:15;	2025:14	2072:12; 2113:15;	expertise [3] -
2035:3, 7	1956:8; 2001:13;	excited [1] - 2128:2	2188:3, 6, 8, 10, 13,	1949:3; 2014:18;
errors [1] - 2034:18	2011:11; 2018:24	excruciating [2] -	15, 18, 20	2041:10
especially [1] -	2019:9; 2021:4, 16,	1952:17; 1971:6	Exhibits [1] -	experts [3] - 1950:1;
1927:7	20; 2023:16; 2071:22;	excuse [4]-1995:21,	1916:16	1975:9; 2180:23
essentially [8] -	2081:16; 2095:21, 24;	24; 2121:4	EXHIBITS [1] -	explain [12] -
1914:10; 2014:23;	2103:2; 2104:18	executive	2188:1	2058:18; 2075:21;
2102:25; 2128:11;	evident [1] - 2127:20	1936:2; 1937:24	exhibits [6] - 1922:1;	2084:20; 2108:21;
2147:9; 2153:22;	evidentiary [3] -	exercise [5] -	1977:15; 2019:14;	2120:13; 2135:2;
2154:3; 2180:11	2081:6; 2082:2;	1903:3; 1904:17;	2020:12, 17; 2127:22	2143:8; 2150:16;
establish [4]-	2185:6	2052:16; 2147:9	exist [2] - 1903:11;	2159:5; 2162:19;
2110:22; 2154:3;	exact [5] - 1904:7;	exert [2] - 2057:9, 14	2052:18	2178:23
2169:18; 2171:14	2127:6, 12; 2176:5;	exerts [1] - 2056:19	existence [1] -	explained [6] -
ESTABLISH [1] -	2177:14	exhausting [1] -	2105:3	1952:24; 1989:10, 15;
2171:22	exactly [7] - 1932:7;	2078:25	existing [6] - 1978:5;	2109:16; 2116:8;
established [4] -	1963:12; 1972:23;	Exhibit [115] -	2045:10; 2063:14;	2169:5
2070:23; 2139:1;	2096:21; 2143:5;	1900:14; 1901:1	2136:13, 17; 2183:22	explaining [1] -
2149:14; 2171:5	2162:6; 2170:11	1910:18; 1921:22	exists [2] - 1912:19;	1987:13
establishment [1] -	examination [13] -	1924:6; 1926:17;	1986:12	explains [1] -
2117:2	1899:5; 1959:10;	1927:16; 1930:15;	exit [4] - 2084:5	2115:11
estimate [4] -	1970:19; 1978:21;	1931:19; 1944:7;	2104:23; 2107:24;	explanation [2]-
1984:24; 2056:15;	1987:12; 2011:10;	1946:19; 1950:6, 10,	2168:11	2114:12; 2166:21
2152:15; 2178:20	2027:17; 2071:25;	13, 21; 1955:23;	exiting [1] - 2166:19	explicitly [4] -
estimated [6] -	2079:8, 14; 2080:1;	1958:14; 1967:6;	exits [1] - 2084:10	1977:20; 1979:16;
1956:18; 1966:13;	2103:2; 2163:24	1970:23; 1973:4;	expand [2]-2113:4;	1987:16, 22
2001:16; 2005:4;	examine [1] -	1975:21; 1976:20;	2131:3	exponentially [1] -
2122:14; 2177:8	2141:12	1978:9; 1982:1, 12,	expanded	2058:10
estimates [12] -	examined [2] -	23; 1989:24; 1993:1,	1908:19; 2138:24	exposed [4] -
1927:25; 1936:16;	1986:20; 2115:25	17, 21; 1997:8;	expansive [1] -	2183:15, 23, 25
1964:20; 1965:12;	examines [1] -	1999:14; 2015:13;	2070:22	exposure [5] -
2024:23; 2047:18;	2115:24	2018:8; 2024:3, 6 ;	expect [27] - 1900:8;	2035:10, 14-15;
2062:2, 15; 2177:12,	EXAMINES [17] -	2026:9, 15-16;	1906:2; 1963:11-13;	2177:13; 2179:8
18; 2178:2, 8	1900:3; 1906:4;	2031:14; 2033:15;	2000:17; 2014:9;	express [1] -
estimating [2] -	1916:20; 2015:10;	2035:6; 2037:20;	2015:14; 2026:12;	2099:15
2056:3; 2059:22	2023:20; 2029:1;	2039:4; 2040:14;	2057:21; 2076:21;	expressed [2] -
estimation [2] -	2073:2; 2082:13;	2042:5; 2047:7, 10;	2077:1, 6, 8; 2080:4;	1912:22; 2056:24
2062:16; 2152:12	2176:21; 2187:6-8,	2051:18; 2052:13;	2100:7; 2128:9;	extend [4] - 1959:3;
et [1] - 2006:8	13, 19	2054:5; 2057:23;	2130:8; 2139:2;	2079:18; 2081:17;
evacuated [1] -	examining [1] -	2083:2; 2088:21;	2150:5; 2153:19;	2145:25
1976:11	1990:14	2089:2, 5, 20; 2090:7,	2161:16; 2166:3, 18;	extended [6] -
evaluated [3] -	example [13] -	21; 2095:21, 24 ;	2167:19; 2170:21;	1912:8; 1953:4, 8 ;
1908:19; 2053:8;	1973:20; 2005:2, 13 ;	2096:6; 2100:14;	2171:3	1962:14; 2079:2
2062:18	2011:19; 2050:2;	2104:17; 2106:8, 10,	expectation [4]-	extends [2] - 2064:2;
evaluating [1] -	2053:14, 20; 2061:8;	20; 2107:12; 2112:2;	2107:17; 2167:16, 24;	2065:14
2163:1	2087:20; 2088:1;	2114:2; 2115:4;	2168:3	extension [1] -
evaluation [2] -	2162:1; 2174:20;	2117:8; 2118:9;	expected [16] -	2001:3
2048:11; 2119:4	2178:11	2119:4, 7, 9, 16;	1900:19; 1979:24;	extensive [1] -
evening [8]-1921:1,	examples [2] -	2122:11; 2124:11;	1988:12; 2005:3;	1947:8
11; 1932:6; 1940:1;	1985:12; 2163:11	2125:2, 14; 2126:11,	2008:9; 2009:11;	extensively [1] -
1971:3; 2081:20;	excavated [2] -	18, 25; 2130:17;	2017:19; 2049:2;	1940:12
2184:5; 2185:12	2090:13; 2091:10	2131:1; 2132:11;	2053:6; 2057:18;	extent [12] - 1938:22;
event [27]-1900:17;	excavation [5] -	2133:10, 21; 2134:6,	2068:14; 2115:12;	2114:13; 2126:5;
1901:22; 1902:4;	2091:23; 2092:17;	9, 12; 2139:7, 10;	2132:13; 2138:21;	2127:5, 14; 2128:15,
1928:3; 1935:1;	2093:6; 2094:20, 24	2140:21; 2141:22;	2146:11; 2168:21	23; 2129:5; 2130:16,
1954:15; 1966:22;	exceed [4] - 1952:2;	2142:9; 2143:3;	expecting [2] -	18; 2132:13
1972:11; 2011:17;	2063:24; 2064:1;	2144:1, 13; 2145:19;	1904:22; 2108:7	extents [1]-2128:22
2046:14, 17-18;	2065:12	2146:6; 2148:2, 17;	expects [1] -	external [3]-
2048:22; 2077:6;	exceedance [7] -	2150:21; 2155:24;	2099:10	1986:22; 1987:1;
2105:18; 2107:17;	2064:11, 17, 23;	2157:17, 25; 2160:19;	expediting [2] -	1990:14
2118:17; 2150:12;	2065:25; 2066:3, 6;	2161:10; 2164:22	1943:10, 20	extra [1] - 2119:20
2152:7, 12-13;	2068:8	exhibit [38] -	expenses [1] -	extracted [1] -
2165:7; 2167:6, 22,	exceedances [5] -	1897:24; 1898:20;	2172:4	1982:14

NRCB 1701, Volume 8, March 31, 2021

extrapolate [2] -	2057:10	15, 18; 1984:10, 16	FILTRATION ${ }_{[2]}$ -	1910:15; 1913:15
1961:25; 1962:2	fatalities [1] - 2179:2	22; 1985:1, 8, 11, 14 ,	2111:9, 21	fishes [1] - 2008:17
extrapolating [1] -	fate [1] - 2005:10	22; 1986:3, 7, 15, 17;	final [4] - 1921:14;	fit [1] - 2178:16
1966:14	fate-type [1] -	1988:10; 1989:20, 23;	1935:25; 1997:19;	Fitch [11] - 1896:19;
extrapolation [1] -	2005:10	1990:4, 7, 11, 17, 23;	2071:3	905:9, 12; 2015:21;
1962:5	feasibility [1] -	1991:12, 22, 25;	finalizat	2016:8, 13; 2017:15;
extreme [5]	2045:6	1992:3, 6; 1993:3;	2099:12; 2176:7	2018:6, 9; 2020:1
1950:25; 1951:16;	feasible [5] - 1907:9;	1994:3, 13, 19;	finalized	FITCH [5] - 1905:11,
1960:19; 2140:7	2010:22; 2073:24;	1995:9; 1997:15, 22;	2085:1; 2086:17	24; 1906:4; 2018:6;
extremely [3] -	2111:15	1998:3, 12, 19, 22,	2098:4, 19; 2100:8;	2187:7
1933:22; 2045:6;	FEASIBLE [1] -	25; 1999:3, 8, 12, 18;	2112:10	five [14] - 1899:20;
2151:6	2111:22	2000:21, 23; 2001:19,	finalizing [1] -	1938:14; 1939:5;
eye [1] - 1983:10	feature [4]-1977:23;	25; 2002:24; 2003:7;	2070:4	1940:16, 25; 1941:3,
eyes [1] - 1956:5	1979:22, 25	2004:3; 2006:2, 9;	finally [2] - 204	16, 23; 2079:
		2012:17-2018:	2048:1	2081:25; 2086:11, 19;
	2045:	2023:18, 24; 2025:6,	finals [1]	:24; 2116:10
face [2] - 1993:5	2024:15; 2118:2	Fennell's [1] -	2024:19; 2183:4	fixed [2] - 2015:9;
2180:1	Federal [1] - 2164:13	1973:3	fine [13]-1904	2180:12
facilitate	federal [8] - 1910:13,	few [19] - 1899:18	1911:15; 1975:13;	flag [1] - 2017:23
2044:23; 2045:14, 22;	21; 1912:5; 1956:11;	1900:7; 1916:19;	1990:4; 2000:19;	flat [1] - 2057:9
2158:10; 2159:4	2141:17; 2145:5;	1917:1; 1918:13;	2006:5; 2017:10;	Fleck [1] - 1896:13
facilities [1] - 2086:7	2164:17; 2170:23	1944:19; 1945:14;	2056:6; 2062:22;	flesh [1] - 2097:5
fact [22] - 1917:6;	feedback [1] -	1946:18; 1950:7;	2063:21; 2090:4;	float [1] - 2078:16
1927:15; 1937:11;	2029:19	1966:8; 1993:10;	2094:11; 2148:8	FLOOD [1] - 2111:10
1951:18; 1954:9;	fell [1] - 2024:12	2049:23; 2051:3;	fine-grain [1] -	Flood [1] - 1896:23
1959:25; 1965:20;	fellows [1] - 2155:18	2063:5; 2071:17;	2006:5	flood [151] - 1900:22;
1985:4; 1986:20;	felt [2] - 1904:3;	2146:3; 2156:16;	fine-tune [1] -	1901:22; 1902:9;
1991:13; 2000:6, 16;	2043:13	2176:18; 2182:9	2017:10	1903:7, 13, 18;
2012:25; 2013:10;	fence [1] - 2010:10	field [5] - 1949:21;	finer [5] - 2053:20;	1904:8, 12; 1910:3;
2017:17; 2024:12;	FENNEL [1] -	1975:18; 1976:3, 5 ,	2056:4, 7; 2062:22;	1918:1, 6; 1925:14;
2056:9; 2060:11;	1975:20	17	2154:15	1927:2; 1928:9;
2069:18; 2122:18;	Fennell [36] - 1898:6	fields [2]-1948:7;	finish [7] - 2076:23;	1929:16, 22, 25;
2125:4; 2128:8	9; 1899:21; 1900:4;	2034:2	2077:7, 10; 2080:8;	1931:8, 15; 1936:6,
factor [8] - 1951:19;	1901:8; 1905:1, 15;	Figure [8] - 1930:1	2086:8; 2104:8;	15; 1939:5; 1941:2;
1957:5; 1963:15;	1916:17; 1927:6;	1969:21; 1978:11;	2156:6	1945:21; 1950:25;
2060:7, 11; 2079:11;	1934:16; 1943:22	1993:22; 1997:8;	finished	1951:16; 1953:6, 9;
2151:17	1945:8, 11; 1958:19;	2057:23; 2090:24	2122:18; 2167:10	1954:10-12, 14;
factors [9] - 1933:10	1967:15; 1969:20;	2091:7	finishes [1] -	1955:7; 1956:2,
13; 1953:21; 1957:2;	1981:1; 1983:5, 23;	figure [38]-1969:25;	2103:13	20; 1957:14; 1960:4;
1964:6; 1966:19;	1984:8; 1994:22;	1970:3; 1978:15;	finishing [1] -	1962:4, 10, 13;
2106:2; 2163:2;	1997:14; 1999:20, 22,	1988:10; 1993:23;	2079:17	1964:21; 1965:1, 13,
2181:20	24; 2000:10, 12;	1997:9, 14, 24;	Fiona [1] - 1896:10	25; 1966:25; 1967:8;
faded [1] - 2026:24	2006:13; 2011:11;	2056:21; 2057:2, 25	fire [1] - 1974:14	1972:11; 1974:1;
failure [1] - 1985:16	2012:17; 2015:11;	2058:8; 2063:1, 15,	fires [3] - 1933:10;	1992:12; 2011:15;
failures [2]-1986:9;	2023:15, 21; 2025:3,	20, 22; 2064:19;	1975:2	2017:7; 2039:20;
1987:6	22; 2026:5	2065:5, 10, 22;	firmly [1] - 2078:23	2046:2, 11, 14, 17-18,
fair [23] - 1907:3;	FENNELL [180] -	2089:8, 12; 2091:2, 6,	First [3] - 2172:22;	$21 ; 2047: 16,23 ;$
1913:19; 1917:17, 19,	1900:1, 5; 1901:7, 19;	13, 16; 2092:3;	2174:16; 2175:3	2048:2, 23; 2049:13,
21; 1918:15; 1926:23;	1902:6; 1903:2;	2093:25; 2094:18;	first [26] - 1913:23;	22; 2050:23; 2051:1;
1927:14, 19, 23;	1904:10, 24; 1945:12,	2095:10; 2118:14, 18;	1914:3; 1921:9, 12,	2055:8; 2058:13;
1937:9; 1942:7;	17, 21; 1946:4, 10,	2122:10; 2124:9, 12,	17; 1926:11; 1934:10;	2061:23; 2062:1, 18;
1946:23; 1947:11;	17, 25; 1947:3, 13,	16; 2130:17	1943:17; 1950:22;	2063:11; 2064:24;
1958:21; 1994:7;	18, 20, 23; 1948:1,	figures [9] - 1915:24;	1956:9; 1971:19;	2065:4; 2066:7, 19;
2005:19; 2098:24;	13, 16, 24; 1949:11,	1979:17; 1988:8;	1996:5; 1997:17;	2067:6; 2069:11;
2122:22, 24; 2177:7	14; 1950:11, 15, 18;	2063:9; 2064:4;	2021:18; 2047:4, 16;	2083:11; 2085:23;
fairly [7] - 1955:6;	1951:4, 7, 10, $13 ;$	2065:1, 16; 2066:5	2061:6; 2073:8;	2101:23; 2105:3, 12,
1971:4; 1977:18;	1952:7, 13, 17;	figuring [1] - 2157:2	2077:3; 2083:1, 20;	18, 22; 2107:5, 17;
2000:15; 2071:8;	1953:12, 20; 1954:1,	file [1] - 2025:3	2084:21; 2087:12;	2108:3, 12; 2111:1;
2153:21; 2185:5	4, 12, 16, 22; 1956:3,	filed [18] - 1897:15;	2122:10; 2135:22;	2118:13, 17; 2120:23;
fall [6]-2007:2, 6,	9, 13, 24; 1957:11,	1906:19; 1910:7;	2136:1	2122:4, 12; 2131:20;
16; 2046:19; 2184:16	13, 19, 23; 1958:1, 7 ,	1950:10; 1982:10;	FIRST [2] - 2173:21;	2133:25; 2139:17;
falling [1] - 1968:1	18; 1959:1, 7, 19;	1993:1; 2019:9, 11;	2175:15	2142:12, 17, 19-20;
false [1] - 1961:9	1960:6, 16; 1961:3, 6,	2024:6; 2031:14;	fish [41] - 1906:13;	2143:16; 2144:2, 7 ,
familiar [12]-1901:4,	24; 1962:3, 11, 17,	2033:15; 2037:20;	1907:7, 10, 18;	12, 16; 2145:13;
6; 1948:18; 1952:14;	23; 1963:25; 1964:2,	2039:3; 2040:13;	1908:12; 1912:12;	2146:8; 2150:6, 12,
1954:9; 1964:1;	5, 10, 17, 22, 25;	2052:8, 12; 2117:11	1914:10; 2006:25;	16, 24-25; 2151:2, 16;
1975:6; 1985:17;	1965:3, 8, 11, 14, 18,	2164:17	2007:4, 16, 22;	2152:5, 11; 2160:22;
2040:6; 2091:16;	23; 1966:2, 5, 11, 17;	filings [1] - 1898:4	2008:7, 23; 2009:1,	2163:17, 22; 2164:24;
2177:2	1967:2, 12, 17;	fill [7] - 2012:23;	18; 2010:1, 7-8, 18;	2165:7, 16, 20 ;
far [10]-1901:24;	1968:5, 15; 1969:23;	2013:1; 2014:2, 10;	2015:23; 2016:2, 24 ;	2166:22, 25; 2167:1,
1907:1; 1918:3;	1970:3, 21; 1971:2,	2159:10, 16; 2174:4	2104:23; 2106:5, 16;	9, 17, 22; 2168:15, 25
1921:1; 1932:2;	10, 14, 16, 23;	filled [5] - 2092:16;	2107:3, 14-15, 18-19,	flooded [6] -
1959:3, 13; 1976:15;	1972:5, 16; 1973:9,	2093:6; 2094:20;	24-25; 2108:1, 5, 8;	1938:13; 2143:15, 17;
2144:10	17; 1975:5, 12;	2160:7, 13	2165:23	2166:13; 2167:15, 19
farmer [1] - $2155: 13$	1976:1, 4, 22;	filling [1] - 2158:11	fish-bearing [2] -	flooding [8]-1902:4;
farmers [1] - 2172:4	1977:13; 1978:14, 19;	filtration [7] -	$2106: 5 ; 2107: 3$	1933:14; 1954:23;
FARMERS ${ }_{[1]}$ -	1979:20; 1980:4, 8,	2107:5, 13, 22;	fisheries [2] -	1959:13; 2116:19;
2172:11	$10 ; 1981: 3,6 ; 1982: 6,$	2108:10, 19; 2110:25;	1912:15; 2106:7	2140:7, 9; 2153:16
faster [2] - 2005:14;	8, 11, 16, 22; 1983:9,	2111:14	Fisheries [2] -	flooding's [1] -

NRCB 1701, Volume 8, March 31, 2021

33:	2060:15; 2162:16	2081:19	2055	$25$
dplain [17] -	LOWING [1]	- 2083:4;	ds [3] - 2162:11;	1991:18; 1992:13, 17
2092:18, 22; 2093:4,	2171:24	2084:17; 2085:2;	2163:8	2000:19; 2003:24;
8-9, 14, 21; 2094:22;	following [18]	2088:1, 5; 2139:	erance [1]	8:2; 2133:18;
2114:9; 2116:25;	1905:14; 2028:9	FREE [1] - 2088:1		134:4; 2155:4
2117:2, 5; 2153:14;	2046:6, 19; 2047:24;	Free [1]-1896:23	further	glacial [3] - 1979
2169:19, 24; 2170:2,	2050:7; 2064:23;	frequencies [1] -	2068:20	981:10; 1987:9
	2066:6, 19; 2104	1936:7	furthest [2]-2153:3,	1:12
floods [37] -	2105:18; 2124:25;	frequency		nmore [16] -
1900:16; 1903:10,	2162:13; 2165:22;	1903:10, 14; 1907:19;	future [18]-1903:11;	1902:2, 11,
1927:10, 13; 1928:21;	2166:5; 2167:14;	1918:7; 1936:15;	1926:22;	1903:1; 1904:2, 4,
1933:16; 1934:12;	2168:2; 2171:15	1957:18, 22; 1967:8;	1955:19; 1961:16	1952:15; 1964:15;
1951:23; 1953:17;	follows [1] - 2043:2	2035:5, 12; 2055:15	1992:13; 2069:16	92:15; 2012:20;
1955:2, 12; 1958:21	Foothills [7]-	2064:11, 14, 16;	2134:25; 2136:	2145:15, 23
1960:7, 10, 25;	1928:17; 2137:1	2065:20, 24; 206	13; 2150:10; 2152:20;	glitches [1] - 1996
1962:14; 1963:21;	2138:3, 12, 24;	2115:12; 2183:7	2153:19; 2157:21;	global [1] - 1968:7
1965:12; 1967:10;	2163:11	frequent [2]	2161:20; 2162:3;	Global [2] - 1936:2
1991:20; 2007:2;	footprint	1903:15; 1934:12	2163:15	$937 \cdot 4$
2062:2; 2067:2;	1974:12; 1979:12	fresh [1] - 2149:15		globally [1] -2177:9
2131:20; 2150:10	1980:2; 1981:14,	freshening [1] -	G	$\begin{aligned} & \text { goal }[3]-1904: 12, ~ \end{aligned}$
2153:1, 4 ;	11, 16, 22; 2090:3;	friction [6] - 2056		goals [4]-1961:19;
2161:20-22; 2162:3	20	205		20
floodwater [2] -		day [4]-1919	gain [1] - 2103:7	Goals [3]-2047:15;
2109:23; 2147:20	2088:24	1920:9; 1923:12;	ners [1] - 1996	2048:21
floodwaters [6] -	FOR [3] - 2037:15	1926:19	gas [5] - 1919:6;	Golder [3] - 1901:21
1912:1, 10; 2101:20	2172:11; 2188:15	Friend [7]	1947:15; 1968:6	96
2105:14; 2139:12;		2036:9, 16; 2033	2039:20;	- 1 1-209
2168:22	19, 23; 2057	2072:8; 2113:11, 13	te [1] - 1965:2	vernment $[5]$
floor [2]-2078:4;	ces [1]-2128:1	friend [16]-1897:25;	gauge [1] - 1967	910:13, 21; 1956:11;
2120:23	recasting [2]	1898:21; 1922:13;	avin [4]-1896:19	2041:7; 2074
flow [34] - 1901:24;	2164:24; 2165:17	1923:7; 1937:17;	1905:12; 2018:6, 10	grabbing [1] -
1902:1; 1904:1;	foregoing [1] -	1939:16, 18; 1942:2	general [8]-1948:2;	976:25
1909:5; 1912:11, 1	2186:3	1943:15; 1944:2, 6;	2017:25; 2098:9;	grada
1920:15; 1923:18;	foresee [1] - 2150:	1996:3, 13-14	2115:14; 2153:5, 15;	2153:12
1924:15, 18, 22, $24 ;$ $1925: 4$; 1927:20, 5 ;	forest [2]-1933:1	2036:12; 2113:14	2160:6; 2179:12	gradient [3]-2002:8,
1925:4; 1927:20, 25;	2038:9	IEND		
1947:4; 1956:17, $20 ;$	forestry [1] - 2041	1898:2, 22; 1901:1	1973:8; 2065:14;	grain [3] - 2000:19
1962:20; 1963:22;	forget [2]-2007:12;	15; 1922:14; 1923:9	2073:3; 2079:10;	2006:5; 2056:6
1966:13; 2004:11;	2109:21	1939:19; 1942:22;	2092:15; 2116:6, 10	graph [2]-1967:17;
2008:15; 2013:2, 5;	forgot [1] - 1903:	1944:7; 1995:21,	2151:1; 2154:22;	1968:9
2014:8, 12; 2114:6,	form [9]-2006:4;	2036:22; 2037:12;	2155:1; 2173:10;	graphs [4] - 1923:20,
11; 2145:12, 16, 24	2094:23; 2108:16, 24 ;	2072:8; 2113:12	2175:6	23; 1930:3; 1966:7
Flow [1] - 1908:21	2120:25; 2137:18, $20 ;$	friends [3]-1897:23;	咗	
flow's [1] - 1902:12,	2178:19, 21	2015:13; 2079:7	1948:22; 2035:4	2160:15
flowing [2] - 1999:1;	mal [1] - 2075:	Frigo [2]-1900:20;	generated [2] -	grasses [2] - 2125:6
2013:1	formally	1928:18	2046:5; 2144:8	
flows [16] - 1904:6	2078:16; 2179:3	FROM [2]-2113:16;	geocell [1]-2048:4	gravel [11] - 1977:11,
1907:20, 24; 1912:2	formation $[4]-$	2188:20	geochemical [1]	16; 1978:3; 1979
1923:13; 1947:6;	1977:1; 2116:4, 14	front [7] - 1915:2	2001:13	21; 2024:21; 2087:20;
1953:5; 1967:9;	fortunately	1916:7; 1984:21;	geochemist [4] -	2088:2; 2159:20, 25
1969:1; 1974:16,	2147:12	2014:16; 2120:7;	1946:23; 1947:1, 11	Gravel [1] - 1978:12
24-25; 2014:1;	Forum [2]-1936:25;	2137:13; 2167:2	geochemistry [1] -	gravels [3]
2115:12; 2143:20;	1937:4	froze [2] - 1930:10	1919:15	2158:12; 2159:17
2165:20	forward [5] -	2156:20	geological [2]-	2160:8
fluid [1] - 1947:4   flux [1] - 2002:23	1931:13; 1996	frozen [1] - 199	1918:24; 1978:16	great [10] - 1902
	2035:25;			
$\begin{aligned} & \text { flying [1] - 1966:8 } \\ & \text { focus }[8]-1954: 5 ; \end{aligned}$	2129:19	$\begin{aligned} & \text { 2035:17; 2055:13, 22; } \\ & \text { 2056:3, 8, 11, 15, 18; } \end{aligned}$	$\begin{aligned} & \text { 1918:16; 1947:1 } \\ & \text { 1963:6 } \end{aligned}$	$\begin{aligned} & \text { 1996:25; 1997:1; } \\ & \text { 199:11; 2008:25 } \end{aligned}$
1955:24; 1965:20;	1916:12; 1943:22	2058:9; 2059:2,		2101:11; 2104:8;
2083:20; 2105:10;	four [11] - 1905:19	2060:24; 2061:4;	1918:19, 22; 1947	2124:1
2109:22; 2118:22;	2014:2; 2047:3, 25;	2062:12; 2066:9;	geometric [1] -	greater [18] -
2169:8	2062:18, 23; 2079:1	2067:6; 2068:22	2002:4	1900:17; 1954:2
focused	24; 2174:1	full [5] - 1912:3	24	2056:6; 2060:20
2142:16 focuses [2]-	$\begin{aligned} & \text { fourchett } \\ & \text { 1925:17 } \end{aligned}$	$\begin{aligned} & 1971: 19 ; 1979: 14 \\ & 1988: 16 ; 2167: 4 \end{aligned}$	2115:24   Geoph	$\begin{aligned} & \text { 2064:9; 2114:6 } \\ & \text { 2119:13; 2127: } \end{aligned}$
2041:10; 2042:21	fourth [1] - 2048:16	fully [1]-2014:16	1940:11	2128:14, 16,
folks [3] - 2011:5;	fraction [2] -	fulsome [2] - 2053:5;	geoscientist [1]	2129:5, 7; 2130:8
2014:22; 2123:5	2003:15; 2059:2	2172	1963:7	2155:5; 2
follow [10]-1903:2	fracture [2]-20	function	Geotechnical [1]	green [5] - 1983:8
1934:23; 1938:24;	2005:13	1970:16; 1972:1	1985:19	1998:23; 2091:13;
$\begin{aligned} & \text { 1967:24; 2009:8; } \\ & \text { 2051:7:2092:12; } \end{aligned}$	$\begin{aligned} & \text { fractured } \\ & \text { 2003:6, } 8 \end{aligned}$	$\begin{aligned} & \text { 1973:21; 2004:22 } \\ & \text { 2058:11; 2100:7; } \end{aligned}$	$19$	${ }^{\text {2092 }}$ greenhouse [1] -
2100:23; 2141:20;	frame [1] - 1972:1	2101:20; 2116:17	-2	1968:6
2165:23	framework [5] -	2163:1, 8; 2180:19	1988:5; 1989:2	grey [1] - 1967:2
foliow-up [3]	2043:2; 2096:14;	functional [1] -	1990:2, 8,	grizzlies [1] - 2164:6
1903:24; 2009:8;	2097:2, 17; 2108:	2154:6	2169:22	grizzly [2]-2175:21;
2141:20 followed $[4]$ -	franchise [2] -	functions [1] -	Gino [1] - 1896:23	2176:3
followed [4] 2017:2; 2059	2019:20; 2021:2 frankly	$2154: 24$	$\text { girl }[1]-1929: 23$   given [12]-1915	ground [6] -   1974:10: 1999:10.

NRCB 1701, Volume 8, March 31, 2021

2056:19, 22-23;	handy [1] - 2094:10	1975:8; 2032:21;	1957:14; 1962:14;	2027:14; 2035:7, 13;
2168:18	hang [1] - 2096:18	2081:20	1974:20; 1985:3	2061:9; 2063:10, 17,
ground-nesting [1] -	happy [3] - 1937:3;	heat [1] - 1934:17	1986:11; 1987:17	24; 2064:13
2168:18	1943:16, 20	heavy [1] - 2146:13	1991:19; 1992:12;	2065:1; 2071:17;
groundwater [8]	hard [1] - 1930:5	Hebert [22]-2028:9,	2001:3, 9, 24;	2077:1; 2079:8, 13;
1977:24; 1978:7;	harm [1] - 2107:3	19; 2029:2; 2042:1, 6 ;	2003:14; 2004:7	2184:15
1990:2; 1991:2;	Harmony [1] -	2069:6; 2071:13;	2017:5; 2056:22;	hours [10] - 1905:20;
2000:13, 18; 2004:8,	2136:14	2073:20; 2076:25;	2057:5; 2062:21;	2064:22; 2076:20;
	HAS [1] - 2075:15	2082:17; 2087:25;	2063:22; 2065:10	2079:18, 22, 24;
group [2]-2122:15;	hashed [1] - 1942:12	2088:13; 2091:17;	2114:6; 2121:11;	2080:3; 2081:20
2146:19	hashtags [1] -	2097:24; 2098:6;	2143:17; 2153:1;	housekeeping [1]
Group [5] - 1896:23;	1931:24	2100:22; 2110:24;	2155:2; 2168:20;	897:13
1897:1; 1905:2;	Hat [1] - 2144:11	2111:23; 2169:14;	2169:7	hugely [1] - 1911:
1917:7; 2072:14	hatched [2]-	2179:13; 2180:8, 16	highest [2] - 1946:1;	human [19]-
groups [6]-1912:6;	2089:25; 2090:1	HEBERT [42] -	2063:2	1948:12, 16,
2043:11, 22; 2176:8;	hatching [2]-	2028:21; 2029:3, 6	highlight [2] -	2028:3; 2034:2, 6, 23,
2183:13, 21	1988:15; 1989:4	2042:7; 2069:8;	1952:4; 1985:10	25; 2035:19; 2042:13;
growing [1] - 2170:6	haul [13]-2090:15	2073:10; 2074:25	highlighted [2]-	2044:2; 2067:18;
grown [1] - 2049:24	18; 2091:12, 25;	2075:11; 2082:22;	1980:5; 1986:17	2068:10; 2069:4;
growth [5]-2049:6,	2092:2, 9-10, 16, 18;	2088:3; 2097:24;	highlighting [1] -	2071:23; 2154:7;
15, 18; 2050:10;	2093:6; 2095:8, 10	2098:12; 2099:5, 18;	1989:21	2176:24; 2178:21;
2149:19	hauling [1] - 2154:4	2100:3, 13; 2101:7,	highly [1] - 1936:20	2181:1
guarantee	HAVE [2]-2025:13;	14; 2108:15; 2109:3;	Highway [25] -	Human [1] - 2027:8
2163:6	2172:9	2111:3, 16; 2112:3, 6 ;	2044:14, 17, 23;	humidity [1] - 1935:3
Guelph [1] - 2041:2	hazard [1] - 1954:10	2157:9, 14; 2170:14;	2045:9, 13, 2073:9	hundred [2]-17
guess [28]-1913:3,	head [4] - 1936:25;	2171:8, 18; 2172:6,	16, 18-19, 22; 2074:2	1984:24; 2001:17
18; 1915:19; 1924:13;	1989:10; 2002:10;	25; 2173:6, 10;	5, 9, 11, 13, 17-18;	hundreds [2] -
1926:6; 1927:1, 16;	2178:4	2174:19; 2175:5,	2076:8; 2093:7, 17	2180:13; 2181:7
1928:6, 17; 1931:11;	heads [1] - 202	2179:18; 2180:10, 14,	2094:13; 2095:11	hydrates [1] - 1988:1
1938:3; 1960:12;	headset [4] -	17; 2182:11; 2187:15	HIGHWAY [6] -	hydraulic [17] -
1971:18; 1972:8;	1915:11, 19, 21;	Hebert's [1] - 2151:8	2075:4, 14	1975:18; 1976:9, 13,
1984:7; 1987:12;	2030:4	hectare [1] - 2161:7	highway	25; 1980:16, 21;
2002:23; 2005:19;	health [27] - 1948:12,	HECTARES ${ }_{[1]}$ -	2044:24	1985:4; 1993:24;
2008:21; 2009:14;	17, 20, 22; 1975:7	2130:1	highways	1997:9, 20; 1999:5;
2012:10; 2017:25;	2028:4; 2034:2, 6, 21,	hectares [12]-	2073:7; 2076:6;	2001:23; 2002:1, 7 ,
2019:8, 17; 2021:18;	23; 2035:1, 19;	2126:15; 2129:13	2087:3; 2136:15	22; 2003:4, 14
2035:22; 2127:13;	2042:14; 2044:2;	2130:14, 22-23;	historical [2] -	Hydro [1] - 1919:9
2158:13	2067:18; 2068:10	2135:4; 2151:4;	1928:4; 1960:10	hydrodynamically
guidance	2069:4; 2071:23;	2160:20; 2161:1	history [1] - 1967:9	[1] - 2004:14
2060:4; 2141:16	2149:22; 2176:24;	height [2]-2045:3,	hmm [2] - 1919:7;	hydroelectric [1] -
guide [1] - 2069:2	2177:11, 22; 2178:8;		1984:17	2041:8
guideline [7] -	2181:2; 2183:7, 23	held [4] - 1912:	hold [6] - 1934:2	hydroge [1] - 1947:3
$\begin{aligned} & 2060: 9 ; 201: 18 ; \\ & 2063: 19,24 ; 2064: 2 \end{aligned}$	$\begin{aligned} & \text { Health }[8]-2027: 9 ; \\ & 0067 \cdot 2.0177 \cdot 3 \end{aligned}$	1930:12; 2015:23;	$\begin{aligned} & \text { 1947:16; 2013:7; } \end{aligned}$	hydrogeological [1] - 1990:8
$9$	10-11, 18, 24; 2179:7	hello [2]-2006:20;	holding [4]-1912:7;	hydrogeologist [5] -
guys [1] - 1945:4	health-related [1] -	2132:10	2152:24; 2153:12, 23	1947:1, 10-11; 1948:5
	2035:1	Hello [1] - 2013:1	holds [1] - 1992:16	hydrogeology [1] -
H	healthy [1] - 1975:14	help [8]-1920:19;	holes [4]-2159:14,	1986:4
abitat [24]	2008:4; 2010:24	2031:25; 2032:6;	honest [1] - 1917:9	1925:19; 2013:25
1906:13, 15; 1907:18	2187:11	2049:8; 2054:25	honesty [1] -	hydrographs [2] -
1908:13; 2106:16;	Heaney [3] - 1896:9;	2087:17	1935:18	1924:20; 1991:4
2112:19; 2133:13, 15;	2008:3; 2010:25	helpful [7] - 1929:12;	hope [5] - 1915:6,	hydrologist [3] -
2134:2, 10; 2135:3,	hear [25]-1901:12;	1932:25; 1947:7;	14; 1920:17; 1971:25;	1919:12; 1937:2;
15-16, 20; 2136:5,	1915:6, 17; 1934:1, 6 ;	1991:9; 2005:17;	2131:25	1946:23
8-10, 18, 23; 2137:23;	1937:3; 1941:12;	2034:10; 2107:11	hopefully [6] -	hydrologists [2] -
2144:15; 2166:2;	1972:4; 1995:2;	helping [1]-1926:15	1917:2; 2005:17;	1963:21; 2112:17
2169:6	1996:20, 23; 2015:5,	helps [1] - 2134:14	2015:5; 2026:20;	
habitats [7] - 2138:5,	22; 2016:5; 2019:3;	hence [1] - 1937:4	2104:12; 2142:24	1919:14; 1936:6;
14; 2140:2; 2145:11;	2030:2, 7; 2031:23;	hereby [1] - 2186:3	hoping [2]-1898:6;	1947:5; 2122:15;
2172:18; 2173:4;	2032:1; 2079:9;	hesitate [1] -2178:7	2173:25	2146:19
2174:24	2080:5; 2082:10;	hi [1] - 2101:16	horizon [1] - 2005:15	hydrophobic [1] -
HABITATS ${ }_{[1]}$ -	2087:7; 2093:5;	high [36] - 1909:25;	horizons [1] -	1974:22
2175:19	2122:19	1912:19; 1925:1, 18;	1987:17	hydroseeding [2] -
hair $[1]-2178821$	heard [12]-1914:18	1928:1; 2008:9	horizontal	2050:3, 14
half [8]-1933:24;	1938:18; 1939:16;	2044:24; 2045:2, 4	1997:20; 2094:1	hydrotechnical [1] -
2006:9; 2079:8, 14;	1951:25; 1952:18;	2057:15; 2061:25;	horse [1] - 2027:21	2160:5
2094:3; 2137:15, 17;	1958:19; 1962:7;	2068:22; 2069:3;	host [24]-1911:19;	hypothetical [1] -
2184:15	2044:7; 2143:5;	2073:22; 2074:1, 3, 5 ,	1920:21; 1921:19;	2061:8
HALLSON [4] -	2149:25; 2180:8;	7, 9, 12, 14, 16, 21;	1924:6; 1926:4;	
2028:22; 2030:20, 23;	2185:7	2075:8, 22, 24;	1939:13; 1950:20;	I
2187:16 Hallson ${ }^{\text {2] - }}$ -	hearing [15]- 1897:11; 1899	2076:3, 8; 2126:2, 8;	1955:23; 1956:4;	
Hallson [2] - 2030:17, 19	1897:11; 1899:4,	2129:3; 2136:7, 9;	1957:16; 1958:2;	I.. [1] - 1911:5
2030:17, 19 19 1901:24;	12-13; 1952:18;	2148:23, 25; 2177:12	1967:13; 1970:22;	i.e [1] - 21
hand [12]-1901:24; 1931:21; 1932:16;	1996:2; 2020:19;	HIGH [2]-2075:5, 16	1971:15; 1973:2	IAAC ${ }_{\text {[4] }}$-2117:10,
1935:15, 20; 1966:9;	2033:10; 2035:2	- 1909 :25-level [1]-	1981:5: 1982:1:	
1977:9; 1981:16;	2071:8; 2078:24;	higher [33] -	1988:23; 1993:16;	1977:1; 1995:14;
1989:1; 2118:23	2103:17; 2181:22	1903:10; 1933:12;	1994:2	2009:9; 2081:24;
hands [1] - 1997:14	hearings [3] -	1934:17; 1951:23;	hour [17] - 1905:20;	2164:18

NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021

1934:12; 1986:11;	2157:17	kills [1] - 2178:6	2080:13, 23; 2081:10;	1909:21; 1910:9;
1987:9; 2048:10	item [1] - 2048:16	metre [1]		21. 1913:3.
interveners [2] -	tems [7]-2015:3;	2064:3		1; 1932:6
2011:7, 13	2018:17; 2048:9, 14;	kilometres	L	1960:11; 196
1941:24	2098:1, 17, ${ }_{\text {ITS }}$ [1]-2171:23	1929:2, 4-5; 1964:8,	LAA [1] - 2106:13	2016:10, 19; 2062:3;
introduce [2] -	itself [17] - 1973:23;	2094:5; 2182:9	lab [1] - 1976:3	2081:19; 2103:10, 19;
2028:7; 2150:10	1974:15; 1978:8;	kind [15] - 1901:2	elled	18:12, 17; 2122:12;
introducing [1] -	1979:10, 12; 1988:14;	1949:4; 1972:20;	1983:24; 1984:6;	2135:5; 2147:18;
2028:2	1989:2, 5, 16;	1998:23; 2003:1;	2024:9, 11	2152:10
introduction [6]	2005:15; 2068:9, 16;	2013:11; 2026:24;	labels [1] - 2024:12	latitude [1] - 2130:12
2040:16; 2083:10, 14,	2110:7, 20; 2145:16;	2077:25; 2081:25;	lack [2] - 1927:10;	Laura [6] - 1896:11;
22; 2087:17, 19	2155:19	2101:9; 2119:22;	2055:24	1995:22, 25; 2019:16;
intuitive [1] -	Ivan [5] - 2120:2;	2128:13; 2152:19;	lacustrine [7] -	2036:22; 2072:8
2150:13	2126:19, 22; 2147:23;	2153:19; 2183:9	1981:10; 1987:9;	laws [1] - 1942:1
inundated [3] -	2148:16	kindly ${ }_{[2]}$ - 2029:23;	1999:9; 2003:5,	lawyer [2] - 1922:1, 3
2114:5, 10	Iwanyshyn [1] -	2030:21	10-11, 16	layer [11]-1977:25;
${ }_{2114: 10}^{\text {inundation [1] - }}$	1896:12	kinds [1] - 2010	laid [3]-2003:12;	1980:16; 1993:25;
inventories [3]-	J	( ${ }_{\text {Klepacki [29]- }}$ 1905:16; 1916:18, 21;	${ }^{\text {lake }}$ lak]-2060:14	$22$
2032:15; 2172:16;		1918:5; 1922:16;	land [35] - 1938:21;	Layer [5] - 1978:25;
2174:23	January [2] -	1923:11; 1924:9;	1940:12; 2118:12, 18;	1979:16; 1981:24;
INVENTORIES [1] -	2117:21; 2118:2	1930:8, 16; 1932:5;	2122:8; 2125:16, 19;	1997:16, 25
2175:18	jargon [1] - 1934:3	1933:23; 1934:5;	2126:5, 13, 15-16;	layers [4] - 1980:21;
inventory [2] -	John [4]-1929:4;	1935:11; 1937:22;	2127:11, 14, 25;	2001:23; 2122:2
2033:2; 2060:4	1933:11; 1934:6;	1938:9; 1940:5, 11;	2128:8, 11, 16-17	LCC [4]-2130:6, 9;
investigated [1] -	1935:24	1942:15; 1944:17, $23 ;$	2129:3, 6, 13, 17-21;	2151:13, 16
2010:22	join [2] - 2093:17;	1945:6; 1958:20;	2131:7, 15, 21;	lead [4] - 1908:13
invite [3] - 2042:1;	2157:5	1960:3, 13; 1966:24;	2133:6; 2146:3;	1974:9; 2033:8;
2051:19; 2069:6	joins [1] - 2095:11	1967:11; 1970:18;	2150:4, 18; 2151:14;	2039:25
invited [1] - 2156:23	Jon [1] - 2012:17	2013:19	2152:2	leader [1]-2052:2
involved [12] -	journey [1] - 1993:7	KLEPACKI [73] -	LAND [3] - 2113:17;	leads [3] - 1908:17;
1936:23; 1948:16, 24;	judge [1] - 2081:15	1900:1; 1916:22;	2130:2; 2188:21	1978:6; 2069:3
2034:20; 2052:4, 6;	judged [1] - 2121:15	1917:4, 8, 13, 16, 19,	landowners [6]	leak [1] - 1979:13
2067:19; 2081:18;	judgment [2] -	23; 1918:9, 17;	2050:21; 2070:14;	leakage [1] - 1985:2
2099:11; 2164:23;	2121:17, 21	1919:2, 7, 13, 18;	2099:8; 2170:17;	learn [1] - 1909:25
2165:15	judicious [1] -	1920:7, 13, 24;	2171:17; 2172:21	learned [1] - 2117:22
involvement [5] -	2154:2	1921:4, 7, 12, 17, 24;	Landowners [2]	least [11] - 1935:2,
2028:8; 2032:23;	July [1] - 1925:2	1923:17; 1924:11;	1897:1; 1917:7	12; 1938:16; 2005:17;
2033:6; 2039:23;	jumped [1] - 2141:22	1925:17; 1926:3, 9 ,	LANDOWNERS ${ }_{[2]}$	2014:23; 2076:16;
2041:17	June [7] - 1910:3;	24; 1927:4, 12;	2172:1; 2173:20	2078:18; 2079:25;
involving [1] -	1968:11; 2007:3, 5,	1928:3, 13; 1929:20;	landowners' [1] -	2084:9; 2103:7
2038:14	20; 2015:24	1930:1, 4, 9, 14, 17,	2169:17	leave [5] - 2019:22;
IR [19] - 1911:3;	jurisdiction [2]	21, 24; 1931:10, 17;	lands [5]-2044:14;	2083:17; 2086:25;
1921:22; 1926:11, 17;	1955:15; 1956:15	1932:9, 19, 24;	2109:10, 19; 2112:18;	2102:24; 2103:1
1956:6; 2114:20;	justified [1] -	1933:2, 4; 1934:1, 8 ,	2136:16	leaves [3]-2095:9,
2115:11; 2117:11, 24;	2120:14	13; 1935:14, 18, 25;	landscape [5] -	
2126:11; 2131:6, 13,	Justin [1] - 1896:17	1936:10, 19, 22;	1986:1; 2136:22;	leaving [4] -
17-18; 2132:12, 15;	juvenile [2] -	1937:4, 9, 13;	2138:11; 2151:11	2083:25; 2084:14;
2139:25; 2140:16;	2153:17, 21	1938:15; 1939:7	landscapes [1] -	2086:6; 2108:25
2145:19	K		2	led [3]-1959:20;
2148:24; 2149:2, 5,8 ,		1945	1960:25; 2122:2	$\mathrm{ft}$
	Kaminski [1] -	18, 24; 2023:18;	large [14] - 1926:22;	1965:15, 20; 1967:16;
IS ${ }_{[1]}$ - 2075:13	1896:14	2187:5	1940:17; 1958:21;	1974:1, 3-4, 7;
iso [1] - 1928:25	keep [12]-1902:7;	Klepacki's [1] -	1959:12; 1971:5;	1977:9; 1980:6, 19;
iso-precipitation [1]	1907:7, 10; 1915:23;	1959:9	1974:18; 1975:2;	1981:10; 1984:13;
- 1928:25	1928:20; 1974:25;	knowing [2] -	2045:6, 21; 2092:8;	1989:4; 2054:8;
isopach [2] -	1981:6; 1983:10;	1998:10; 2182:20	2151:5; 2152:17;	2063:17; 2065:5;
1981:11; 2127:7	2010:21; 2032:5;	knowledge [5] -	2159:14	2137:17; 2157:2;
Isopach [1] -	2068:11; 2179:25	1918:7; 1921:23;	largely [1] - 1947:9	2179:16; 2182:4
1978:11	keeping [1] - 1913:9	1938:22; 1948:2;	larger [20] - 1934:12;	left-hand [3]-
isotherm [1] - 2127:7	KENNEDY $[7]$ -	1986:3	1954:14; 1961:14;	1965:15, 20; 1977:9
issue [12]-1920:1;	1995:7; 1996:18;	known [4]-1963:22;	2059:12, 15-16;	leftmost [1] - 2058:8
2044:15; 2051:1;	2000:6; 2020:2, 4, 7;	2166:2; 2170:12, 15	2061:13, 15; 2062:20;	legal [2] - 2102:4, 8
2053:22; 2069:14;	2081:14	kPa [4]-1989:6,	2063:21; 2127:4, 8 ,	legend [ 77 - 1980:18;
2077:13; 2079:12, 16;	Kennedy [12]-	12-13, 18	14; 2150:10; 2152:6,	1988:22, 25; 1993:19;
2082:7; 2110:23;	1896:10; 1944:2;	KRUHLAK [9] -	21; 2153:4; 2166:17;	1995:10; 2118:22
2115:19; 2166:19	1995:4; 1996:15, 22;	1897:14; 1898:16;	2182:2	length ${ }^{1212]}$ -
issued [1]-2117:11	2000:5; 2019:16;	1943:5, 9; 1944:9;	last [17] - 1933:20;	2019:17; 2021:3;
issues [14]-1951:6,	2021:11; 2027:9;	2020:20; 2078:5;	1939:17; 1944:19;	2024:4; 2057:1;
9; 1957:21; 2041:11;	2081:13; 2082:4;	2080:24; 2103:25	1951:11; 1952:8;	2058:16, 21; 2059:2,
2043:19; 2044:1;	2103:16	Kruhlak [24]-	1966:8; 1972:8;	4, 12, 14, 17; 2060:22
2055:1; 2070:19;	Kennedy's [1] -	1896:18; 1897:14;	2003:17; 2019:12;	lengths [1]-2057:8
2077:21; 2095:15;	2020:22	1898:5, 16, 24;	2061:10; 2106:21-23;	Leshchyshyn [1] -
2112:14; 2155:9;	kept [1] - 1911:7	1905:8; 1943:5, 18;	2117:16; 2122:1;	1896:16
2173:5; 2183:23	key [4]-2046:9;	1944:1, 10; 2015:13;	2125:7; 2167:23	less [20] - 1970:10;
IT [3]-2075:13;	2055:9; 2069:10;	2020:1, 20; 2021:11;	lastly [1] - 2062:7	1974:21; 2013:6;
2171:22; 2172:10	2134:15	2023:14; 2025:20;	late [28]-1897:16;	2035:13; 2048:9;
Item [2] - 2090:7;	killing [1] - 2178:24	2026:9, 12; 2078:6;	1908:6, 10, 20;	2057:16; 2059:25;

NRCB 1701, Volume 8, March 31, 2021

2063:18; 2064:2;	1917:9, 11; 2015:15	look [47] - 1898:10;	1919:23; 1920:11;	56:14; 2012:2, 6-7;
2065:15; 2103:4;	listed [1] - 2074:18	1901:23; 1909:25;	1923:14; 1924:25;	2023:7; 2039:20;
2119:12; 2133:16, 23;	listen [1] - 1975:9	1911:6; 1914:16;	2105:6, 25; 2107:4,	2046:8, 10; 2047:2;
2134:2; 2138:21;	listing [2] - 2096:16;	1921:3; 1923:19, 22;	20; 2108:11, 19;	2050:16; 2051:5;
2143:21; 2155:6;	2097:4	1925:2, 19; 1928:22;	2109:1	2066:12, 21; 2067:5;
2178:22	lists [1] - 2119:11	1930:1, 17; 1931:20;	low-recurrence [1] -	2069:10, 24; 2096:2,
Lethbridge [1] -	literature [1] -	1932:11; 1935:14;	2062:1	5, 10; 2097:23;
2041:15	1934:23	1943:17; 1950:16;	lower [14] - 1953:5,	2098:4, 25; 2099:17,
level [27] - 1903:22;	litre [1] - 2001:7	1961:12; 1973:10;	9; 1977:9; 1985:5;	19; 2102:6; 2109:8;
1909:25; 1919:23;	live [2] - 1918:2;	1983:7, 11; 1987:8;	2009:11; 2056:22;	2136:10; 2171:10;
1920:11; 1923:14, 25;	2171:1	1989:1; 1995:11;	2057:5; 2062:21;	2175:21; 2180:7;
1924:25; 1946:1;	lives [1] - 1929:21	2001:1; 2007:21;	2096:18; 2136:18;	2182:15, 22
1949:2; 1952:20;	LOAD [2] - 2075:5,	2009:14; 2011:20;	2140:11; 2168:16	manager [25] -
1961:18; 1976:11;	16	2015:15; 2026:9;	lowered [1] - 2180:4	1910:17; 1916:11;
2053:21; 2084:21;	load [19] - 1987:1;	2057:24; 2067:25;	lowest [1] - 2063:2	1931:20; 1935:7;
2105:6, 25; 2107:4,	1990:18; 2044:24;	2074:15; 2087:9;	Ltd [3] - 1897:3;	2028:15; 2036:4;
20; 2108:11, 19;	2045:4; 2073:22;	2090:23; 2096:13;	2037:24	2051:24; 2067:15;
2109:1; 2138:11;	2074:2, 5, 7, 9, 12,	2098:10; 2107:1;	Luigi [1] - 1896:22	2071:7; 2089:5;
2162:19; 2170:14;	14, 16, 22; 2075:8,	2119:8, 11; 2134:15;	lulled [1] - 1961:9	2090:5, 21; 2095:22;
2184:3	22, 24; 2076:3, 8	2136:20; 2151:18;	lumber [1] - 2087:20	2106:9; 2112:25;
levels [11]-1912:3;	loaded [1] - 1916:14	2153:14; 2162:4	lunch [5] - 2018:16;	2113:25; 2118:8;
2010:21; 2051:12;	loading [2] -	looked [14] -	2023:14; 2103:8;	2119:5, 10; 2125:13;
2064:20; 2066:3;	1985:25; 1986:22	1912:21; 1926:12;	2184:15; 2185:2	2126:10; 2132:24;
2112:12; 2180:3;	loads [4]-1990:14;	1966:15; 1987:22;	Luzi [3] - 1962:8, 18;	2139:5; 2140:22
2181:3; 2182:2, 4;	2045:1; 2075:25;	1992:6; 2010:6;	2146:25	manages [1] -
2184:1	2095:4	2011:16; 2012:1, 3;		2110:20
liaison [4] - 2043:13;	loam [1] - 2146:10	2116:8; 2142:7, 15;	M	managing [1] -
2070:7, 15; 2100:8	local [13] - 1976:13;	2145:14		2109:20
licenses [3] -	2043:22; 2090:19;	looking [24] -	ma'am [2] - 2037:3, 7	manipulate [2] -
2019:10, 23; 2020:9	2092:19; 2095:5;	1910:23; 1931:18;	macroscale [3] -	1907:25; 1908:1
life [10] - 2006:9;	2099:1, 18; 2138:11;	1932:8-10; 1943:13;	2059:12, 14, 17	Manley's [1] -
2043:16; 2106:15;	2171:16; 2172:21;	1948:25; 1965:24;	Madam [1] - 2031:6	2013:25
2176:11; 2179:17;	2174:15; 2175:2, 22	1967:15; 1981:17;	madam [1] - 2031:9	manner [1] - 2070:20
2180:9, 12, 16, 18	LOCAL [3] -	1982:5; 1993:21;	magnification [2] -	manual [3] -
lifespan [1] - 2071:1	2171:25; 2173:20;	1999:4; 2007:9;	1988:23; 2091:2	1938:17; 2147:8
light [1] - 1999:6	2175:14	2014:18; 2017:12;	magnify [1] - 2115:9	Map [1] - 1978:11
likelihood [7] -	localized [1] - 2067:2	2073:15; 2080:19;	magnitude [20] -	map [4] - 1981:9;
2064:11, 20; 2065:21;	locally [1] - 2092:22	2095:9; 2101:8;	1903:10; 1907:20;	2094:16; 2118:10;
2066:3; 2108:4;	locate [1] - 2097:8	2117:19; 2124:7;	1951:23; 1953:17;	2140:25
2151:4	located [6] - 2014:3;	2130:7; 2166:10	1957:15; 1961:10;	mapping [2] -
likely [20] - 1905:9;	2024:5, 7, 21; 2084:9;	looks [11] - 1905:10;	1965:12; 1985:3;	2119:15; 2124:5
1929:7; 1940:18;	2162:7	1923:23; 1927:7;	1991:19; 1992:12;	March [12] - 1896:5;
1953:17; 1958:6;	Iocation [7] -	1932:21; 1985:20;	2001:21, 23; 2061:25;	1972:2, 13; 2017:21;
1985:2; 1992:12;	2046:16, 20; 2084:1;	1994:18; 1995:12;	2126:2, 8; 2129:3;	2023:2; 2040:2;
2050:7; 2068:19;	2093:13; 2170:19;	1999:12, 18; 2107:1;	2138:25; 2148:23;	2055:4; 2059:10;
2095:17; 2100:20;	2171:10	2160:15	2149:1; 2168:25	2062:24; 2118:5;
2102:23; 2110:4;	locations [2] -	Lorelee [3] - 1897:5;	magnitudes [2] -	2180:23; 2186:9
2143:21; 2154:15;	2084:7; 2170:18	2186:12	1903:19; 1964:21	mark [8] - 1922:5, 7;
2163:17, 19, 22;	Locke [17] - 1905:14;	lose [2] - 1982:2;	main [5] - 1901:3;	1943:14; 1944:4;
2166:3; 2181:6	1906:3, 5, 10;	2119:6	2086:6, 23; 2087:3;	2021:1; 2037:8;
limit [3] - 2004:1;	1910:19, 23; 1915:2;	loses [1] - 1988:1	2132:19	2049:2; 2072:2
2083:9, 14	2006:17, 21, 24;	loss [7] - 2133:15;	MAINTAIN ${ }_{\text {[1] }}$ -	Mark [3] - 2073:13;
limitation [1] -	2007:24; 2010:23;	2134:2; 2135:3, 15,	2171:23	2075:23; 2095:3
1962:24	2011:1; 2014:14;	20; 2140:7; 2162:16	maintain [2] -	marked [7] -
limitations [2] -	2015:17, 19	Iost [11] - 1930:11;	2044:18; 2171:14	1897:23; 1922:9;
2147:3; 2155:22	locke [3] - 2008:4;	2103:18; 2125:6, 11;	maintaining [3] -	1937:16; 2026:16;
limited [8] - 1902:24;	2015:16, 19	2156:22; 2160:20, 23;	2158:6, 18; 2171:6	2035:24; 2072:6;
2013:21; 2054:16;	LOCKE [50] - 1900:1;	2161:1, 17	maintenance [12] -	2113:8
2070:24; 2086:4;	1906:6, 8, 16, 22;	Lou [1] - 1905:6	2085:23; 2086:13;	marks [1] - 1928:1
2110:25; 2158:2;	1907:5, 22; 1908:3, 8,	LOUDEN [8] -	2087:8, 12; 2092:7;	marriage [1] - 1947:4
2169:8	16, 24; 1909:6, 12,	1899:8; 2072:24;	2116:3, 14; 2117:5;	mask [1] - 2091:21
LIMITED [1] -	15, 19, 22; 1910:5,	2073:2; 2075:7, 18,	2169:22; 2180:20	master [1] - 2041:3
2111:10	10, 16; 1911:1, 5, 7,	21; 2076:10; 2187:20	major [6] - 1929:16;	master's [2] -
line [14]-1934:18;	14; 1913:1, 11, 16,	Louden [8] -	1931:14; 1951:3;	2032:11; 2033:24
1967:25; 1968:2;	20, 22; 1914:7, 12,	1896:25; 1899:9;	1960:17; 2089:10;	match [2]-2017:6;
1970:7; 1998:23;	17, 20, 24; 2006:20,	2072:22, 25; 2076:12;	2154:24	2120:15
2058:8; 2086:18;	23; 2007:8; 2008:10;	2079:9	majority [1] - 2105:2	material [27] -
2089:25; 2090:2;	2009:14, 20; 2010:5,	louder [1] - 1915:10	MAKE [1] - 2111:20	1929:17; 1979:4;
2092:3, 12, 14;	16; 2012:1; 2015:17,	louvres [1] - 1914:19	mammals [1] -	1981:20; 1982:10;
2113:23	19, 25; 2016:9, 20;	Iow [23]-1909:9;	2168:21	1987:10; 2000:20;
linear [2] - 1979:22,	2017:18; 2023:18;	1919:23; 1920:11;	manage [10] -	2006:6; 2024:19;
25	2187:5	1923:14; 1924:15, 25;	1955:12; 1991:19, 24;	2090:13; 2091:10, 23;
lines [10] - 1918:22;	Locke's [1] - 1924:14	2003:25; 2008:23;	2047:20; 2087:17;	2092:17, 21, 23, 25;
1967:24; 1968:1;	locked [1] - 1907:9	2013:4; 2057:8, 12;	2095:15; 2097:10;	2093:2, 6, 13;
1981:12; 2045:1;	$\boldsymbol{\operatorname { l o g }}$ [1] - 2015:8	2062:1; 2067:1;	2110:7; 2151:21;	2094:21, 24; 2105:15,
2064:19, 21; 2066:2,	logic [1] - 1952:24	2105:6, 25; 2107:4,	2154:16	19; 2121:2, 23;
4; 2089:12	logical [2] - 1962:17;	20; 2108:11, 19;	managed [3] -	2157:19; 2161:11;
linked [2] - 1935:2;	2184:5	2109:1; 2128:7;	2105:9; 2181:6;	2164:17
2047:12	long-winded [2] -	2151:6; 2152:24	2182:5	materially [1] -
list [4] - 1916:12;	1929:11; 2128:21	low-level [11] -	management [33] -	2057:21

NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021

1953:24; 1957:8;
1962:21; 2020:24; 2043:23; 2044:17; 2047:20; 2048:8; 2049:8; 2050:7, 17; 2054:22; 2096:3
2117:24; 2138:20
needing [1] -
2027:13
needs [6] - 1951:20;
1961:17; 1976:7;
2092:18; 2181:5
negative [2] -
2126:7; 2131:10
negatively [1] -
2004:22
neighbouring [2] -
1955:1, 4
nesting [1] - 2168:18
nests [2] - 2169:2
net [2]-1901:24;
1902:1
NETWORK ${ }_{[2]}$ -
2075:6, 16
network [9] -
2044:25; 2074:2, 10,
12, 19, 22; 2075:8;
2090:19; 2092:19
neutral [1]-2116:11
never [4]-1919:18;
2080:11; 2129:23;
2157:2
never-ending [1] -
2129:23
New [2]-2033:23, 25
new [16] - 1915:20;
1933:22; 1950:9;
2025:11; 2031:7;
2083:10, 14; 2117:16,
22; 2118:1; 2128:6;
2133:19; 2134:4, 21;
2135:16; 2183:6
NEW [1] - 2025:17
newly [1] - 2024:6
news [1] - 1940:6
NEWS [2]-1942:25;
2188:11
News [1] - 1940:7
Next [1] - 2061:20
next [34] - 1897:24;
1898:2; 1924:2;
1937:16; 1940:14;
1945:7; 1951:11;
1957:17; 2021:23;
2037:3, 9, 11;
2055:12; 2056:1, 16;
2057:3; 2058:1;
2059:20; 2060:17;
2061:1; 2062:10;
2063:5, 8; 2064:7, 25; 2065:19; 2066:8, 25;
2072:8; 2080:7;
2085:21; 2113:12;
2132:1; 2133:14
nice [3] - 1916:25;
2080:8; 2128:6
Nick [10] - 2082:20;
2095:13; 2099:23;
2109:7; 2110:17;
2112:8; 2137:8;
2161:2; 2162:9, 24
night [2] - 1921:1;
2103:11
nitrogen [1] -
2178:11
Niño [1] - 1933:9
Noble [12]-2028:10;
2033:12; 2034:15;
2035:20; 2036:25;

## 2043:25; 2067:12, 17 2069:8; 2176:22; <br> 2178:12; 2183:12 <br> noble [2] - 2034:9; <br> 2042:1 <br> NOBLE [23] - <br> 2028:22; 2033:13, 16, <br> 19, 22; 2034:20; 2037:2, 5; 2067:14, 17; 2177:1, 4, 6, 10, 19; 2178:1, 7, 14, 18,

 25; 2183:16, 25;2187:16
Noble's [1] - 2183:7
non [6] - 2061:18;
2105:3, 12; 2107:5;
2108:12; 2111:1
NON [1] - 2111:10
non-flood [5]
2105:3, 12; 2107:5;
2108:12; 2111:1
NON-FLOOD [1] -
2111:10
non-guideline [1] 2061:18
none [4]-1899:4,
12-13; 1986:25
nonetheless [1] -
2045:12
noon [3] - 1905:20;
2021:24; 2078:1
Nora [1] - 1896:16 north [1] - 2076:7 north-south [1] 2076:7
NOT [1] - 2111:22
notable [1] - 1987:24
note [8] - 1908:9;
1918:23; 2040:15;
2047:17; 2054:21;
2071:11; 2077:24;
2079:9
noted [7]-1912:16;
2068:5; 2082:20;
2144:12; 2166:14;
2184:22
notes [10] - 1936:3;
1940:12; 1942:14;
1943:7; 1969:7;
1993:9; 2075:19;
2114:2; 2186:6
nothing [4] - 1924:2;
1990:15; 1991:6;
2026:2
notice [4] - 2123:3;
2156:21; 2165:18;
2173:24
noticed [2]
2029:19; 2156:1
noticing [1] - 2123:6 notification [1] -
2165:22
noting [1] - 2024:18
nought [1] - 2057:2
novel [1] - 1971:20
noxious [6] - 2051:9,
12; 2100:25; 2101:5; 2102:2
NRCB [6] - 1921:22;
1926:16; 2028:14; 2047:9; 2114:20; 2117:12
nuance [1] - 2053:22 number [47] -
1898:1; 1907:6, 8 ; 1939:16, 19; 1942:18; 1944:5; 1948:24;
1958:11, 13; 1964:6;
1966:3, 21; 1996:14;
2002:21; 2004:16;

2007:20; 2008:23;
2009:1, 4; 2013:1; 2014:13; 2017:20; 2018:2, 8; 2020:23; 2026:25; 2032:18; 2036:10; 2037:11; 2041:7; 2052:25; 2053:7; 2061:24; 2069:15; 2070:3; 2072:9; 2093:25; 2113:12; 2114:24; 2134:8, 10; 2140:20; 2145:19; 2148:3;
2179:1
Number [10] 1920:22; 1922:7, 14, 16; 1935:9; 1939:14; 1942:22; 1944:7; 2131:2; 2140:16
NUMBER [4]
1923:10; 1938:7;
2188:6, 8
numbers [16] -
1922:2; 1923:21; 1964:12; 1966:15; 1980:25; 2007:10, 14; 2130:13; 2135:8; 2137:13; 2148:15, 19; 2161:4; 2177:14;
2178:3
numeral [1] -
2100:15
nutrient [5] -
2038:13; 2149:14;
2153:25; 2154:4
nutrients [6] -
1974:8; 2149:13, 18;
2153:25; 2154:3;
2155:21
$\frac{\text { O }}{\text { o'clock [1] - 2021:25 }}$
oath [13]-2028:18;
2029:5, 7, 12, 17, 24;
2030:8, 12-13, 22;
2031:3
objection [4] -
1923:5; 1938:4;
1942:17, 19
objections [2] -
1898:3; 1939:22
objective [10] -
1912:16; 2011:18;
2053:11; 2064:9;
2065:7, 13, 21;
2068:8, 14
observation [1] -
2017:25
obtained [1] - 2038:6
obvious [2] -
2120:19; 2170:24
obviously [17] -
1902:9; 1913:2;
1943:22; 1945:22; 1946:12; 1949:15; 1972:18; 1973:18; 1974:10; 2001:1; 2003:22; 2012:20; 2013:5; 2153:7; 2155:19; 2168:24; 2169:10
occupy [1] - 2151:2
occur [19]-1952:3;
1953:6; 1960:20
1961:1, 11, 16;
1968:19; 1973:15;
1992:12; 2050:6;
2053:13; 2064:11;
2065:17; 2086:19;

2087:19; 2151:22; 2154:20; 2161:20, 22
OCCURRED [1] -
2075:17
occurred [6] -
1953:18; 1960:17;
1961:1, 15; 1978:20;
2075:10
occurrence [7]
2035:5, 12; 2064:15,
21; 2065:25; 2068:17
occurrences [2] -
2068:19; 2110:8
occurring [11] -
1958:21; 1959:14;
1968:17; 1970:14;
1973:18; 1979:10;
2089:14; 2109:13;
2110:6; 2154:12
occurs [6] - 2055:13,
22; 2064:5; 2065:25;
2162:16; 2167:24
Oceanographic [1] 1949:13
Oceans [3] -
1910:15; 1912:15;
1913:15
odds [1] - 1972:12
OF [13] - 2025:16;
2075:4, 14; 2111:9,
19, 21; 2130:1;
2171:21; 2172:9, 12;
2173:18; 2175:18
OFF [2] - 1901:10;
2031:11
off-stream [7] -
1902:5; 1941:4;
2011:19; 2105:2, 14;
2158:3; 2165:9
Off-Stream [1] -
1926:21
off-streams [1] -
2169:19
offered [2] - 1900:12;

## 1948:21

Official [3] - 1897:5;
2186:14, 18
offline [1] - 2020:8
offs [1] - 1908:14
often [1] - 2014:17
oil [7] - 1919:6;
1947:15; 1948:25;
1975:8; 2039:20;
2041:8
OKOYE [33] -
2082:9, 12-13;
2088:13; 2101:12; 2102:11; 2104:16; 2111:12, 18, 23; 2113:7, 10, 13, 18; 2115:16; 2119:19, 25 ; 2124:3; 2130:5;
2143:25; 2156:3, 9, 11, 13, 15, 18; 2157:4; 2172:2, 14; 2173:24; 2174:13; 2175:20; 2187:21
Okoye [33] - 1897:1; 2076:18; 2078:4; 2082:8, 15; 2091:18, 20; 2092:4; 2101:8; 2102:14, 19; 2104:14; 2107:9; 2113:5; 2116:6, 23; 2126:24; 2134:8; 2137:5, 9; 2155:25; 2156:8, 20-21; 2157:9; 2158:14; 2159:3, 24; 2161:12; 2173:1, 7; 2174:12, 19

## Okoye's [1]

2173:14
old [4] - 2010:12;
2103:16; 2183:6
ON [1] - 2130:2
once [4] - 1939:5;
2009:18; 2046:21;
2070:17
one [120] - 1897:19;
1898:5; 1901:9;
1903:24; 1907:6, 8,
11; 1911:12, 17;
1914:21; 1915:1, 12;
1919:11; 1926:5; 1927:7; 1928:20; 1929:5, 13; 1935:19; 1937:18, 21; 1938:9; 1942:13; 1945:10; 1946:12, 25; 1948:20;
1953:14; 1958:9;
1963:21; 1965:2, 22;
1967:20; 1974:17;
1979:2; 1981:6;
1982:3; 1983:8;
1990:23; 1993:8, 14;
1994:4; 1996:5;
2000:12; 2003:17;
2006:17; 2008:13;
2014:8; 2021:24;
2023:12; 2024:1;
2026:8; 2031:9;
2035:7, 13; 2036:24;
2047:25; 2048:3;
2053:2, 14; 2057:6;
2059:21; 2063:10, 17,
24; 2064:10, 13, 22;
2065:1; 2066:5;
2071:17; 2076:8;
2078:22; 2082:15;
2087:7; 2088:3, 17;
2089:1; 2099:5;
2101:7; 2103:17;
2107:7; 2109:3;
2111:3; 2112:6;
2114:21; 2115:1, 17;
2126:12; 2127:1
2128:2; 2132:8, 22;
2135:23; 2139:22;
2140:19; 2141:3;
2142:11; 2147:4;
2150:11; 2152:11;
2154:8, 24; 2168:13;
2172:25; 2173:6;
2174:19; 2175:24;
2178:9; 2179:18;
2181:25
one-hour [8] -
2035:7, 13; 2063:10,
17, 24; 2064:13, 22;
2065:1
ones [2]-2063:1;
2110:15
ongoing [4] - 2049:4,
14; 2050:5, 8
online [5] - 1899:11;
1994:24; 1995:1;
2018:23; 2023:7
ONLY [1] - 2088:10

NRCB 1701, Volume 8, March 31, 2021

1926:2; 1938:12; 2108:11 operated [2] 1953:3; 2052:20 operates [1] 2161:18 operating [3] 2070:20; 2107:4; 2164:3   Operation [1] 1910:25 operation [18] 1938:17; 1951:2, 17,   22; 1952:15; 2046:6;   2068:16; 2086:18;   2105:12; 2107:5;   2110:25; 2150:14;   2163:17; 2164:7;   2165:1; 2167:10;   2168:16; 2175:7   OPERATION [1] -   2111:9   operational [3] -   1938:20; 1953:9; 2071:1   operations [23]-   1941:14; 1951:9, 25;   1952:3, 6; 1953:11;   2047:4; 2070:16;   2083:12; 2085:24;   2086:3; 2101:23;   2105:21; 2106:3;   2116:1; 2142:11, 17,   20; 2164:23; 2165:21; 2182:21   operator [2] -   2047:14; 2051:10   operators [2] -   1938:24; 2085:22   opinion [6] - 1950:9;   1960:18; 1992:9, 24;   2011:23; 2161:14   opportunity [7] -   2019:23; 2044:3;   2046:1; 2047:16;   2052:14; 2067:24;   2110:22   opposed [8] -   1917:14; 1929:2;   1945:16; 1947:14;   1977:2; 2011:14;   2070:2; 2078:23   opposite [2]-   2127:16; 2155:1   opposition [1] -   2128:14   option [11] - 1907:9;   1946:11; 1991:18;   1992:10, 20; 1996:8;   2073:24; 2112:5;   2164:18; 2181:23   options [4] -   2049:11; 2050:3;   2073:24; 2112:1   Opus [2] - 1946:13;   1992:7   OR [1] - 2111:10   or.. [1]-2123:14   oranges [1] -   1976:18   order [7] - 1963:1;   2002:24; 2027:14;   2108:22; 2127:8;   2130:21; 2165:19   orders [2] - 1985:3;   2001:20   Organization [1] -   2177:11   organizations [3] - 1949:19; 1950:3	original [3] - 2009:5;   2024:14; 2147:2   originally [1] -   1910:7   Oscillation [2] -   1933:9   Osko [2] - 2096:9, 12   Osko's [1] - 2096:7   osmosed [1] -   1949:4   OTHER [1] - 2175:19   otherwise [1] -   2103:9   ought [2]-2072:7;   2185:9   ourselves [1] -   1963:10   outcome [4]-   2181:6, 10; 2183:10;   2185:8   outcomes [2] -   2070:1; 2127:2   outer [1]-2066:4   outermost [2]-   2064:21; 2066:4   outlet [20]-1919:23;   1920:19; 1924:15, 25;   1925:6; 1974:5;   2105:6, 25; 2107:20;   2108:20; 2109:2;   2147:6; 2152:21, 25;   2153:6; 2158:5, 16   outlets [1] - 2108:11   outline [3]-1981:18;   1998:17; 2046:7   outlined [2]-2047:6;   2053:15   outlines [2]-2043:7;   2164:22   16   output [2]-2147:11,   outset [1] - 1937:11   outside [16] -   2083:18; 2089:15,   20-22; 2090:1;   2108:3; 2139:12;   2140:10, 12; 2142:2,   4; 2143:14; 2166:13   outstanding [1] -   2026:20   oval [1] - 1929:1   overall [13] -   2027:18; 2055:11;   2064:4; 2065:16;   2067:5; 2116:8, 15;   2121:23; 2127:25;   2129:1; 2135:22;   2136:2, 12   overbank [2] -   2116:2; 2117:4   overdrive [1] -   2123:6   overdriving [2] -   2123:2, 4   overestimation [1] -   2059:19   overhead [2] -   2045:1; 2093:19   overkill [1] - 1931:2   overlaps [1] -   2163:23   overlying [2]-   1987:2; 2001:10   overpass [9] -   2044:12, 17, 21;   2045:5; 2073:8, 15,   18, 23   overpasses [1] -   2073:7   overpredict $[1]$ -	2053:3   overprediction [2] -   2061:3, 19 oversight [1] 2024:25 oversimplification   [1] - 2154:20   oversized [1] -   2075:25   overview [3]-   2055:3, 7; 2058:3   owed [1] - 2027:20   own [9] - 1955:14;   1956:15; 1971:12;   2006:2; 2120:6, 8;   2166:19; 2171:15;   2180:23   OWN [1] - 2171:24   oxidation [1] -   2004:19   oxygen [2] -   2010:19, 21   oxygenation [1] -   2010:15	2078:9; 2079:1, 12;   2081:15, 21; 2082:5,   14   PANEL [24] - 1900:3;   1906:4; 1916:20;   2000:11; 2006:19;   2008:5; 2011:3;   2015:10; 2029:1;   2073:2; 2082:13;   2176:21; 2187:6-13,   19   panels [2]-2028:5;   2030:16   paper [6] - 1935:10,   15, 22; 1937:7;   1970:18; 1971:8   paradigm [1] -   1955:11   paragraph [16] -   1940:14; 1955:24;   1971:19-21; 2016:23;   2017:23; 2083:2;   2095:25; 2096:22, 24;   2100:14; 2104:17;   2106:22   paragraphs [1] -   2125:25   parallel [1] - 2090:18   parameters [4] -   1926:13; 1933:17;   2012:11; 2053:12   parkland ${ }^{[1]}$ - 2138:3 Parkland $[6]-$   Parkland [6] -   2137:1, 11; 2138:3,   12, 24; 2163:11   Parks [5] - 2043:15;   2047:14; 2070:15;   2164:25; 2165:6   Part [1] - 1956:6   part [32]-1906:19;   1911:23; 1920:10;   1926:25; 1935:2;   2001:8, 11; 2007:25;   2011:14; 2031:14;   2037:20; 2038:22;   2039:4; 2040:13;   2045:23; 2052:12;   2067:23; 2085:13;   2096:18; 2098:17;   2109:14; 2111:17;   2116:17; 2117:21;   2140:4; 2141:1;   2158:14; 2166:13;   2175:12; 2177:3;   2182:12   participants [2]-   1916:24; 2081:22   particled [1] - 2053:9   particles [16] -   2053:17-19; 2055:19;   2056:8; 2059:7,   24-25; 2127:24;   2128:4; 2146:9;   2152:22; 2153:3;   2178:13, 15   particular [30] -   1900:10, 13; 1902:17,   19; 1904:7; 1911:3;   1929:13; 1930:2;   1933:21; 1950:1;   1952:21; 1955:1;   1962:13; 1970:1;   1973:12; 1986:11;   2010:14; 2011:8;   2034:17; 2074:21;   2090:11; 2118:14;   2120:14; 2136:14;   2137:6; 2138:14;   2141:23; 2152:10, 22;   2176:2	```particularly [7] - 1906:2; 1919:11; 1933:7; 2004:17; 2052:19; 2140:10; 2161:22 particulate [4] - 2059:22; 2067:3; 2178:9; 2179:9 parties [5] - 2042:9; 2070:8; 2100:10; 2174:10; 2185:7 parties' [1]-2081:5 partner [2] - 2076:17; 2103:13 parts [4]-1902:17; 2102:2; 2105:5, 13 party [1] - \(2100: 11\) pass [4]-2147:8; 2160:11, 13, 17 passage [7] - 1913:6; 2073:25; 2158:6, 10, 17; 2159:1, 8 passed [1]-1902:12 passing [3]-2092:8; 2101:23; 2179:21 passionate [1] - 1945:13 past [7]-1953:18; 1961:15; 2011:25; 2032:19; 2039:14; 2104:11; 2184:23 pathogens [3]- 2003:20; 2006:5, 10 pathway [1] - 2006:11 pathways [5] - 1978:7; 1979:9; 2004:4, 6; 2005:13 pattern [2]-2127:19; 2153:5 patterns [3]-2125:1; 2132:13; 2146:22 PDA [41] - 2046:16; 2050:20; 2063:25; 2064:3, 5-6, 16, 18; 2065:8, 14-15, 18; 2066:1, 19; 2083:10, 15, 18-19, 21, 25; 2088:25; 2089:12, 15, 22; 2092:19; 2094:13, 19; 2095:9, 11; 2105:8; 2107:16; 2130:19-21; 2138:19; 2141:11; 2150:8; 2163:19; 2169:17; 2170:17 PDF [87] - 1910:22; 1922:1; 1923:21; 1924:7; 1930:15; 1931:19; 1940:9; 1950:21; 1955:24; 1971:15; 1978:9; 1982:12; 1983:23; 1993:17, 22; 1997:12; 2024:3, 6; 2031:14; 2037:20; 2039:4; 2040:14; 2057:24; 2083:2; 2088:21; 2089:7, 21; 2090:7, 20, 22; 2091:22; 2095:24; 2096:7, 12, 23; 2100:14; 2104:17; 2106:10, 20; 2114:2; 2115:5; 2117:8; 2118:9; 2119:5, 9, 16; 2122:11; 2124:11; 2125:14; 2126:11, 18; 2131:1; 2133:10; 2134:9, 11, 14-15;```

NRCB 1701, Volume 8, March 31, 2021

2135:21; 2136:20, 22; 2139:7, 9; 2140:21, 23-24; 2141:22 2143:3; 2144:1, 13; 2145:19; 2146:6; 2148:2, 18; 2154:13;
2155:24; 2157:17, 25;
2160:19; 2164:22
peak [9] - 1901:24;
1904:1; 1932:20;
1956:17; 1967:8;
1974:16, 24
peaked [1] - 1965:25
peaks [4] - 2144:7,
17; 2145:12
pending [1] - 2021:1
penetration [1] -
1976:5
penetrometer [1] -
1976:15
people [20] - 1903:4;
1904:15, 18; 1945:18;
1946:6; 1949:4;
1961:20; 1993:3;
2077:14; 2122:22;
2149:19; 2177:16;
2178:6, 24; 2179:21;
2183:22, 25; 2184:14
per [22] - 1912:4;
1923:15, 17; 1925:1, 4, 9, 15; 1931:5;
1966:1, 14, 21;
1980:19; 2001:7, 17;
2002:25; 2031:8;
2061:8; 2101:23;
2144:7; 2161:6
percent [34] -
1902:1; 1909:4, 17,
20; 1910:1; 1933:12;
1953:22; 1956:17;
1957:5; 1961:13;
1967:25; 1968:12;
1970:13; 2008:15, 17;
2009:6; 2016:11;
2035:13; 2060:3
2061:9, 12, 15;
2071:9; 2129:5;
2133:16, 24; 2134:2;
2138:22; 2162:22
percentage [5]
1933:15; 2137:22;
2138:4, 14
percentages [3]-
2134:11, 20; 2135:15
perfect [2] - 2021:8;
2131:2
Perfect [1] - 2082:12
performed [1] -
1967:8
perhaps [46] -
1897:23; 1926:11;
1939:12; 1942:8;
1943:6; 1988:7;
1995:4; 1996:6, 13;
2008:16; 2011:7;
2017:3; 2020:2, 13,
21; 2023:21; 2067:16;
2077:2, 25; 2078:7,
11, 19; 2079:14;
2081:23; 2085:12;
2087:24; 2089:3;
2090:10; 2099:13;
2103:6; 2113:8;
2119:5; 2123:1;
2126:5; 2135:22;
2140:22; 2148:11, 15;
2150:23; 2159:6;
2168:5; 2179:12, 15;
2185:2
period [19] -

1903:13; 1912:8;
1953:1; 1959:2, 21;
1961:8; 1970:2, 9, 15
2016:1; 2047:19;
2079:3; 2153:16;
2165:18; 2183:12, 14,
20, 22
periods [11] -
1903:15; 1933:7;
1958:22; 1962:14;
1992:22; 2007:1;
2047:17; 2051:1;
2105:21; 2148:6
permanent [3] -
2090:24; 2091:7;
2182:3
permanently [1] -
2161:1
permeable [2] -
1977:24; 2004:7
permission [2] -
2015:12; 2025:22
permit [2] - 2158:25;
2159:8
permits [1] - 1913:14
permitted [1] -
2169:23
Person [5] - 2031:22,
25; 2052:2; 2072:9
person [12]
2028:10, 12; 2031:12;
2042:1; 2043:25;
2051:19, 22; 2053:23;
2067:10; 2069:8;
2076:24; 2148:7
PERSON [15] -
2028:23; 2031:15, 18,
21; 2032:1, 9, 25;
2052:1; 2054:1, 6, 9, 12; 2072:12; 2187:17; 2188:18
person's [1] -
2036:18
personally [1] -
2106:6
perspective [2]
2121:16; 2128:5
perspective/wind [1]

- 2121:16
pertaining [1] -
1943:13
perused [1] - 1947:8
Peter [1] - 1896:7
petroleum [1] -
1947:10
pH [6] - 2004:23;
2005:4; 2121:10-12;
2149:4
phase [2]-2135:10;
2142:21
PhD [2] - 1918:24;
2038:5
phone [2] - 1996:8;
2019:7
phone-in [1] - 1996:8
phoned [1] - 1995:25
phonetic) [1] -
2008:20
phorbs [2]-2125:6,
11
physical [1] -
2055:13
physically [1] -
2121:9
physics [2]-
1934:15; 2058:3
pick [2] - 1991:15;
2139:6
picture [2] - 2053:5;
piece [3] - 1933:23;
2147:1; 2181:21
pieces [1] - 2182:8
pinned [1] - 1995:1
place [6] - 1992:25;
2011:5; 2084:5;
2087:14; 2164:5;
2184:5
placed [2] - 1985:25;
2084:3
placement [1] -
2160:6
places [1] - 1973:19
placing [1] - 1990:19
plan [46] - 1923:23;
1939:5; 2011:14;
2040:5; 2045:25;
2051:5, 14, 17;
2087:14; 2096:2, 5,
10; 2097:23; 2098:4
15, 18, 25; 2099:4
12, 17, 20, 22, 24;
2100:1, 12; 2108:25;
2109:8; 2151:20;
2159:10; 2164:18, 21;
2165:4, 14; 2166:10,
23; 2167:8; 2169:2,
9-10; 2170:20;
2175:22; 2176:3, 7,
11
plane [1] - 1987:19
planned [3] - 1925:6;
2069:23; 2167:5
planning [2] -
2039:16; 2078:13
plans [13] - 1925:7;
1941:14; 2043:12;
2070:3; 2087:16;
2098:22; 2099:9;
2100:8; 2108:21
2164:4; 2167:3;
2172:17; 2173:12
plant [4]-2085:3;
2102:2; 2105:5, 13
planted [1] - 2170:12
planting [2]
2170:11; 2171:4
plants [1] - 2154:25
play [1] - 1966:19
pleased [1] -
2171:11
plume [8] - 2127:3,
9-10, 23; 2128:10, 17;
2130:16
plus [4] - 1974:8;
1986:5; 2079:22;
2179:17
pluses [1] - 2012:13
PM [18] - 1975:7
2035:7; 2046:16;
2059:25; 2060:2;
2061:14; 2063:10, 17
22; 2064:13; 2065:2,
11; 2066:23; 2177:5,
7; 2178:6, 12, 20
PMF [2]-1991:24;
1992:3
PMF) [1] - 1991:20
poem [1]-2010:12
Point [1] - 2107:12
point [48] - 1900:25;
1907:23; 1908:4
1911:9; 1914:1;
1925:11; 1926:5;
1929:7, 19; 1932:1; 1937:1, 21; 1939:25;
1941:20; 1942:11;
1950:11; 1951:19;
1952:23; 1968:16, 22;
1969:7; 1977:3;

1980:10; 1986:8;
1987:3; 1988:6;
1989:10; 2025:23;
2049:4; 2058:17;
2066:14; 2068:23;
2070:7; 2084:8;
2085:17; 2086:1;
2107:11, 21; 2112:10;
2121:2; 2132:10;
2135:8; 2139:25;
2141:6; 2146:1;
2149:15; 2170:21;
2174:9
pointed [7] - 1929:9;
1960:4; 1988:5;
2005:9; 2014:14;
2016:22; 2131:6
points [2] - 1927:5;
2084:6
poke [1] - 2180:1
policy [2] - 1955:21;
2162:13
pollution [3] -
2177:13, 17; $2178: 5$
Pomeroy [5] -
1929:4; 1934:6, 9;
1935:24; 1936:21
pond [1] - 2182:3
pools [1] - 2116:3
pop [1] - 2180:2
population [5] -
2007:4, 10, 14;
2008:7; 2182:24
Pore [1] - 1975:24
pore [19] - 1948:7;
1976:2; 1985:16,
24-25; 1986:5, 19;
1987:20; 1988:11, 13 ,
19; 1989:6, 17;
1990:5, 9; 1991:3;
2006:7
portion [8] -
2028:13; 2040:8
2074:6; 2082:2;
2094:12, 22; 2120:23;
2185:6
portions [1] - $2158: 3$
pose [1] - 1998:5
posed [3] - 2126:23;
2129:11; 2173:13
Posed [1] - 1973:5
position [6]-
1936:24; 1946:3;
1958:25; 2087:23;
2098:21; 2161:21
positions [1]
1947:9
positive [2] -
1955:17; 2017:24
positively [1] -
2004:21
possibility [4]
1944:22; 1961:14;
2078:8
possible [18] -
1907:9; 1908:18;
1912:18; 1922:8;
1946:1, 6; 1956:3; 1957:15; 2007:8;
2009:12; 2027:13;
2068:12; 2088:4;
2092:23; 2097:18;
2098:15; 2124:4;
2162:17
possibly [5]
1988:4; 2000:19;
2003:20; 2006:6;
2120:16
post [34] - 2008:20;
2009:5; 2039:17;

2041:14; 2046:2, 11 21; 2047:16, 23;
2048:2, 23; 2049:13, 22; 2050:23; 2051:1; 2055:8; 2058:13;
2061:23; 2062:18;
2067:6; 2069:11;
2083:11; 2105:3, 18;
2107:17; 2108:3, 7;
2122:12; 2131:13;
2133:25; 2142:12;
2160:22
post-construction
[2] - 2108:7; 2131:14
post-design [1] -
2122:12
post-flood [25] -
2046:2, 11, 21 .
2047:16, 23; 2048:2,
23; 2049:13, 22;
2050:23; 2051:1;
2055:8; 2058:13;
2061:23; 2062:18;
2067:6; 2069:11;
2083:11; 2105:3, 18;
2107:17; 2108:3;
2122:12; 2133:25;
2160:22
post-reclamation [1]

- 2039:17
potential [34]-
1901:22; 1906:14;
1907:17; 1912:9;
2004:25; 2007:21;
2011:16, 20; 2018:18;
2039:18; 2043:8;
2045:9; 2046:5, 14;
2050:23; 2054:15;
2056:8; 2063:23;
2065:12; 2066:11;
2068:6; 2069:4;
2083:9; 2087:17;
2088:18; 2097:10;
2133:8; 2136:2;
2163:23; 2164:14;
2167:21; 2179:2, 8 ;
2182:19
potentially [5] -
2007:22; 2012:8;
2016:2; 2103:10;
2107:25
power [1] - 2166:20
PowerPoint [16]
1900:13; 1950:5, 8 ;
1958:2; 1965:6;
1973:3; 1976:20;
1984:20; 2028:13;
2036:19; 2051:22;
2054:25; 2067:16;
2072:3, 10
POWERPOINT [2] -
2072:12; 2188:18
practical [1] - 2014:5
practice [4]
1963:15; 2081:17;
2122:4; 2141:9
practices [2]
1918:11; 2045:20
practitioner [1] -

NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021


NRCB 1701, Volume 8, March 31, 2021

2070:16	1974:21	RIPARIAN ${ }^{\text {[2] - }}$	OBERTS	2152
	etired [1] - 1940:11	2113:16;	19;	dr [1] - 1978:12
2179:9; 2183:23   respond [5]-2043:6;	return [9]-1903:13, 15. 1912:3, 17	riprap [15] - 1920:18; 2087:20 2088:1.	robust [4]-2042:18 2053:2: 2070:21;	$\begin{aligned} & \text { sand-sized } \\ & \text { 2146:9 } \end{aligned}$
2073:5; 2103:5;	1913:23; 1958:2;	2157:18; 2158:1, 9 ,	2096:1	Sandi
2109:5; 2157:11	1973:3; 2102:15;	11, 16, 25; 2159:7,	rock [3] - 1918:1	dier [1] - 2004:6
responded [1] -	2153:16	10, 12; 2160:5	23, 25	nds [3]-1948:25;
2048:8	returned [1]	ripraps [1] - 2160:10	Rocky [4] - 205	5:8; $2041: 8$
responding [2]	2100:19	rise [3] - 2068:9, 18;	2099:3,	sandy [8] - 2056:3;
2052:11; 2055:5	revegetate	2182:2	role [6] - 2032:22	2058:15; 2127:24;
response [40]-	2149:11; 2154:16	rises [1] - 1928:6	2034:16; 2038:16	2128:6; 2146:10;
1897:16; 1898:6;	revegetated	risk [45] - 1926:20	2039:23; 2041:1	2153:5; 2155:14
1910:20; 1911:4;	2160:15	1948:17, 25; 1949:1	2070:15	Sara [4] - 1896:21,
1914:13; 1921:22;	revegetating	6, 8; 1953:9; 1962:13;	rolled [1] - 19	25; 1899:9; 2072:25
1943:10, 14; 2046	2155:10, 16	1986:11; 1987:17, 21 ;	Roman [1] - 2100:15	Saskatchewan [5]
2047:8; 2049:11;	revegetation [21]	2033:18; 2034:3, 6,	Ron [7] - 1896:18;	1955:5; 2139:18;
2070:1; 2073:11;	2040:5; 2046:11;	23; 2035:9; 2057:6;	1897:14; 1898:16;	2144:4, 15; 2145:
2075:1; 2088:8;	2047:2, 5; 2048:18	2060:21; 2067:2, 18	1943:5; 2020:20;	sat [1]-2103:19
2101:15; 2111:5, 25;	2049:6, 15; 2050:6	2097:14; 2105:4;	2078:6; 2103:25	saw [5] - 1921:9;
2112:5; 2114:2;	11, 17; 2051:4, 14	2139:17; 2144:2, 12;	room [3] - 2156:23;	1928:14; 2024:9;
2115:11, 13, 16;	17; 2069:12; 2133:8	2155:6; 2158:7, 18;	2157:3, 5	2183:2, 4
2117:3, 9, 24; 2132:	2149:21; 2151:18, 20 ;	2160:3; 2166:11, 15	rooted [1] - 2105	cale [1] - 1925:20
11, 15; 2140:16;	2153:24; 2155:6, 19	2168:19, 23-24;	rougher [1] -	scan [1] - 2169:3
2141:20; 2145:9;	reversible [2] -	2176:24; 2177:2	2057:13	scenario [30] -
2146:25; 2157:7, 25;	2149:2	2179:4; 2181:1;	,	1908:7, 20; 1909
2160:9; 2173:15;	Review [1] - 2017:21	2182:18, 20, 23;	1979:25; 1981:13, 18;	21; 1910:9, 12;
2175:12	review [16] - 1911:3;	2183:7; 2184:2	1989:12; 2001:20;	1911:25; 1912:19, 22
RESPONSE [2]	1935:12; 1937:6;	Risks [1] - 1973:5	2002:5, 16; 2004	; 1913:6
1944:11; 2188:13	1942:14; 1971:4, 2	risks [9]-1973:7-9,	roughness [20]	1929:13; 1953:4;
RESPONSES ${ }_{[2]}-$	1993:8; 2016:22;	11, 14; 2048:17;	2055:15, 25; 2056:25;	1968:4, 8; 1986:21;
1899:1; 2188:3	2017:19; 2034:22;	2050:25; 2163:17;	2057:1, 4, 6, 8, 12,	2002:14; 2010:17
responses [15]	2041:21; 2067:24;	2182:19	15, 22; 2058:5, 16,	2015:23; 2016:19, 21;
1897:16; 1906:18;	2075:19; 2112:21;	river [27] - 1902:2	21; 2059:1, 4, 12,	2017:13; 2046:3;
1926:12; 1956:1;	2163:5, 7	1907:3, 14; 1908:2	14-15, 17; 2060:22	2048:3; 2062:3;
2032:24; 2033:10;	reviewabl	1912:11, 20; 1914:	Round [8]-1921:22	2063:21; 2099:20
2034:17; 2035:2;	1946:8, 15	1918:2; 1920:2;	1926:17; 1956:6;	2135:5
2038:17, 23; 2039:24;	reviewed [10]	1925:5, 14; 1931:7	2017:21; 2047:9;	Scenarios [1] -
2040:4; 2041:18, 22;	1911:8, 11; 1937:2	1936:17; 1960:21;	2114:20; 2117:17	1910:25
2043:8	1946:12; 1956:7;	2010:2, 7; 2139:14	route [5] - 2074:1	scenarios [10
responsibility [1]	2017:16; 2052:9;	20; 2140:4; 2141:1;	2075:24; 2076:3;	1908:10, 18; 1924:17
2040:7   responsible	2112:23; 2117:24	$2143: 4,6,9,13,20$ $2159: 13 ; 2165: 15$	2093:11; 2094:4	1967:20; 1970:5;
2033:9; 2034:25		River [56] - 1896:2	$\text { 2136:1, } 21$	$\begin{aligned} & \text { 2012:4; 2053:3; } \\ & \text { 062:19; 2147:1 } \end{aligned}$
2109:20; 2147:1	1943:7; 2008:6	1902:17; 1905:2;	RPR [2] - 1897	
2171:6, 9; 2177:8	REVISED	1906:13; 1907:12	2186:13	2076:23; 2078:24
rest [4]-2102:12,	2037:16; 2129:25;	1909:5, 14; 1912:2;	run [6]-1933:12;	scheduled [1
24; 2142:10; 2146:4	2130:3; 2188:15	1920:5, 20; 1924:21;	1949:23; 1974:19, $23 ;$	2079:13
restarts [1] - 1995:3   restored [1] - 2163.9	revised [22]-196	1925:10; 1926:8	2076:6; 2104:9	school [2] - 2182:9;
restored [1] - $2163: 9$ restrict [1]-2088:19	2025:3; 2035:22;	19	run-off [4]-1933:12;	2183:2
restricted [1] -	2117:9; 2118:10;	1932:11; 1958:22;	running [4] -	science [8] -
2007:1	2124:20, 25; 2125:1	1960:10; 1961:1;	1979:25; 1980:1;	1908:22; 1947:17
restrictions [1] -	2126:15; 2127:15, 18;	1964:8, 15, 21;	1981:20; 2082:1	2033:22; 2038:5, 12;
2111:13	2128:3; 2129:12, 14;	1965:13; 1966:13;	runoff [2] - 1972:9,	2039:11; 2041:1
${ }_{2111 \cdot 20}$ RESTRICTIONS $^{[1]}$ -	2133:4; 2146:21;	1967:10; 2007:13, 18;		sciences [1] -
2111:20	2147:12; 2148:10, 12,	2012:22; 2014:1, 8	runs [1] - 1981:13	1918:24
$\begin{aligned} & \text { rests }[1]-2080: 25 \\ & \text { result }[15]-19102 ; \end{aligned}$	revisit [1] - 2081:23	2093:18; 2100:17, 20;	S	$\begin{gathered} \text { Scienc } \\ \text { 2041:15 } \end{gathered}$
2025:11, 24; 2035:16;	rhythmic [1] -	2101:25; 2105:5;		scientific [2] -
2061:2, 12, 14, 18;	1925:20	2106:12; 2109:2		2138:2; 2163:5
2107:4; 2139:3;	rhythmic	24; 2110:5; 2139	2007:15, 22; 2009:24	scientist [1]-2038:8
2140:8; 2167:11;	2003:13	17-18; 2144:4;	safety [14]-1951:6;	SCLG [34]-1899:5;
2172:5; 2174:24	Richard [3]-1897:1;	2145:22; 2153:14	1953:21; 1957:3, 5;	1900:1; 1917:7, 14
RESULT [2]-	1983:20; 1994:5	Rivers [1] - 1936:7	1959:22; 1961:18;	17; 1918:5; 1934:1
2025:17; 2172:12 resulted [2] -	rid [1]-2019:2 rig [1] - 2048:4	rivers [3] - 2144:4, 16; 2145:11	$\begin{aligned} & \text { 1963:15; 2047:4; } \\ & 2158: 6,18 ; 2164: 1,4 \end{aligned}$	$\begin{aligned} & \text { 14; 1935:9; 1938:6; } \\ & \text { 2023:18: 2024:15: } \end{aligned}$
2043:18; 2147:	right-h	road [15] -	sake [2]-1926:15;	2052:10; 2059:11
resulting [4] -	1901:24; 1931:21	1929:22; 2086:12,	1932:7	2060:6; 2061:7, 11
1907:18; 2026:14;	1932:16; 1965:15	2090:15, 18-19;	salvage [7]	14, 17; 2076:14;
2056:14, 20	1981:16; 1989:1;	2091:12, 25; 2092:2	2164:18, 21, 23, 25;	2078:11; 2079:12;
results [12]-1909:3	2118:23	7-8, 19; 2094:18	2165:1, 14, 24	2081:24; 2082:16
1985:10; 2055:10;	rigorous [2]-	roadmap [2]-	salvaged [1] -	2099:2, 14; 2102:21;
2059:18; 2062:23;	2162:25; 2163:4	2076:17; 2077:14 roads [8]-2039	2166:6	2113:15; 2172:14, 18;
2064:14; 2065:24;	ring [6]-1930:3,	roads [8]-2039:20;	sampling	2187:5; 2188:8,
2066:10; 2070:9; 2127:2; 2132:15;	1931:12, 14, 18	2087:4; 2090:17, 24;	1925:25	SCLG's [3] -
2127:2; 2132:15; 2175:9	${ }^{\text {riparian [15] - }}$	2091:7; 2094:1;	sand [17] - 1977:1	2058:17, 19; 2061:2
$\begin{aligned} & 2175: 9 \\ & \text { retained }[1] \text { - } \end{aligned}$	$\begin{aligned} & 2112: 17-19 ; 2113 \\ & \text { 2140:2, 10, } 12-13 \end{aligned}$	2095:6	$\begin{aligned} & 16 ; 1978: 3,22 \\ & 1979: 1,8,14,21 ; \end{aligned}$	Scott [3] - 1896:12;
2010:18	2143:12-14; 2144:15	Roberts [3] - 1896:8;	2024:20; 2058	scour [1] - 2116:3
retention [1] -	2145:11, 18, 22	2006:16; 2008:2	2127:24; 2146:9, 13;	scouring [1] -

NRCB 1701, Volume 8, March 31, 2021

## 2115:15 <br> screen [13] - <br> 1920:23; 1958:8

2034:12; 2089:3;
2091:6; 2095:10
2096:19; 2118:23;
2119:8; 2125:2;
2179:23; 2180:1
scroll [6] - 1911:19;
1936:2; 1940:8;
1957:16; 1995:10;
2037:3
searched [1] -
1948:19
season [7] -
1968:19, 25; 1970:16;
2013:9; 2046:19
2163:22
seasonal [1] -
2106:14
seasons [1] - 2159:1
second [38] -
1907:11; 1912:4;
1914:3; 1915:1;
1923:15-17; 1925:1, 4, 9, 16; 1930:25;
1931:6; 1934:9;
1945:10; 1966:1, 14 , 21; 1971:19; 1980:20; 1997:17, 19; 2003:1;
2047:4; 2061:7;
2096:20, 22, 24;
2106:21-23; 2119:18;
2126:12; 2130:22;
2142:13; 2144:7;
2158:14; 2181:21
second-to-the-last
[2] - 2106:22
secondary [1] -
2041:14
Secord [52] - 1897:1; 1898:11, 16; 1922:19; 1923:6; 1937:19;
1938:2, 5; 1939:22; 1942:17; 1943:9, 16; 1983:20; 1994:8, 10 , 15, 17; 1995:12, 25; 1996:15, 22; 2011:2 2015:2; 2018:12; 2023:24; 2026:5, 24; 2027:20; 2072:5, 13;
2076:14; 2077:23;
2078:6, 13, 17;
2079:24; 2081:12, 18; 2103:12; 2156:24;
2163:24; 2174:2, 5, 7; 2176:14; 2179:19;
2181:11, 13, 24;
2182:25; 2184:12, 22
SECORD [51] -
1898:5, 14, 19;
1922:15, 22; 1923:2,
5; 1937:18, 21;
1938:3; 1942:19;
1943:18; 1944:4, 8 , 25; 1945:3; 1983:20 1984:1, 4; 1994:5, 9; 1996:23; 1997:1; 2013:17, 23; 2015:3, 7, 10; 2018:10;
2023:12, 20; 2025:19; 2026:7; 2027:2;
2036:7; 2054:4;
2072:2; 2076:16;
2078:22; 2080:10; 2103:13; 2156:8, 10, 12, 14; 2176:16, 21; 2184:4; 2185:10;
2187:13, 22
Secord's [2] -

1994:6; 2080:25
Section [3] -
2051:16; 2067:21;
2068:4
section [4] -
1978:24; 1979:5;
2074:13, 21
sections [6]
1937:23; 2033:3;
2034:23; 2076:5
2094:8
sectors [1] - 2041:7
security [6]
1952:10, 25; 1953:1
8; 1961:9; 1992:19
sediment [88]
1912:14; 1973:22; 1974:6; 1976:24 2046:3, 11, 15, 21; 2047:2, 12; 2049:2; 2050:16, 24; 2053:9 16; 2057:18; 2060:19, 21; 2062:2, 5, 8, 13, 15, 20-22; 2063:16, 21-22; 2069:12; 2105:19; 2114:15; 2117:16, 22-23; 2118:1, 16, 20, 24 ; 2119:12, 14; 2120:22, 24; 2121:17; 2122:13; 2124:5, 21; 2125:1, 9; 2127:3, 15, 18, 23; 2128:3, 10, 15
2130:16; 2132:5, 12 14, 20; 2133:4, 19; 2134:5, 22; 2135:3, 11, 18; 2140:9; 2143:18; 2146:8, 22; 2149:5, 16; 2150:11 2153:8, 20; 2179:15;
2180:7; 2182:4, 15
sedimentation [4] -
2154:9; 2160:22
2161:17; 2162:2
sediments [2]-
1986:11; 1987:14
see [93]-1901:4, 7 1903:19, 25; 1910:24; 1911:21; 1916:25; 1921:4, 13, 24; 1924:5, 16; 1925:2, 20-21; 1930:5; 1931:22; 1933:21; 1935:24; 1936:9, 18-19; 1939:21; 1940:22; 1941:6; 1951:3; 1952:12; 1953:19; 1955:10, 16; 1956:23; 1957:10, 17-18; 1958:7, 18; 1966:1; 1968:9; 1975:25; 1976:1 1978:12, 18; 1979:24 1980:11; 1981:8, 18; 1982:11; 1984:16; 1985:19; 1986:13; 1988:13, 25; 1989:3 5, 17; 1991:21;
1994:1; 1995:6, 19; 1997:2, 17, 21;
1998:12, 14, 17, 23; 1999:7; 2010:22; 2034:11; 2071:16; 2078:7; 2079:16, 20; 2081:1, 5, 8; 2097:1; 2099:20; 2100:6; 2120:4, 7; 2123:10; 2150:11; 2153:15; 2166:14; 2184:13; 2185:12
seed [5] - 2100:19; 2105:4, 13; 2108:22; 2109:25
seeds [15] - 2100:21;
2101:21; 2102:1; 2104:22; 2105:23; 2106:2; 2107:22; 2108:24; 2109:17; 2110:10, 14, 16, 20 seeing [6] - 1968:20,
22-23; 2001:9; 2183:5
seek [3] - 2099:6, 14,
16
seeking [2] - 2099:1;
2104:23
seem [3] - 1994:10;
2116:20; 2119:23
seepage [3]-
1984:24; 2001:17;
2024:23
sees [1] - 2001:12
SEGMENT [2] -
2075:4, 14
segment [4] -
2074:10, 17, 19;
2076:8
select [3] - 2050:20
2169:15
selected [4] -
1985:11; 2053:14;
2085:18; 2121:24
selection [3] -
2141:15; 2144:21;
2145:3
selenium [3] -
2003:20; 2004:18;
2005:2
send [3]-1929:1;
1940:19; 2015:13
Senek [2] - 1896:20;
1899:14
Senek's [1] -
1899:17
senior [8] - 1947:10
2031:17; 2033:18;
2034:22; 2038:8;
2039:7; 2040:22
sense [10] - 1961:9;
2008:8; 2009:10;
2011:6; 2017:8;
2035:23; 2036:2;
2084:8; 2132:5;
2142:25
sensitive [1] -
2106:15
sensitivities [9] -
2053:7, 11, 15, 18-19;
2054:14; 2068:1, 5
sensitivity [3] -
1991:7; 2062:19;
2063:6
sent [8] - 1943:12,
15; 1944:1; 2019:13,
16; 2036:8, 11, 20
sentence [5] -
1936:12; 1957:17;
1972:8; 2097:1;
2125:7
separate [2] -
2058:12; 2122:2
separated [2] -
2094:2; 2122:6
separation [1] -
2147:15
sequence [1] -
1972:24
serious [2]
2104:22; 2107:23
seriously [1] -
2042:16
serve [3] - 2070:7;
2092:7; 2158:19
service [1] - 2074:19
services [2] - 2041:7;
2165:16
Session [1] - 2023:3
set [6] - 1913:23;
1921:21; 2054:12;
2068:1; 2133:14;
2182:22
sets [1] - 2126:12
settle [2] - 2152:22;
2153:3
settling [1] - 1912:14
several [3] - 1960:23;
2038:11; 2069:21
severity [1] - 1961:2
shall [1] - 2172:3
SHALL [1] - 2172:10
shallow [2]
1940:17; 2000:14
shallower [3] -
1979:8; 1987:9;
2000:17
shape [2] - 1998:18;
2094:23
shaped [1] - 1929:1
share [1] - 2100:9
shared [1] - 2100:6
sharers [1] - 2104:12
Sharon [1] - 1896:15
shear [2] - 1987:21;
2056:23
shelf [1] - 2180:16
shelter [6] - 2050:20;
2169:15; 2170:19;
2171:7, 15
SHELTER ${ }_{[1]}$ -
2171:23
shift [6] - 1903:14;
1968:20, 22; 2112:14;
2126:7; 2128:19
shifted [1] - 2024:10
shifting [1] - 1970:16
shocking [1] -
1911:16
short [10] - 1917:1;
1943:12; 2053:10;
2068:15; 2151:5;
2153:11, 16; 2155:12;
2165:18; 2181:1
short-term [1] -
2181:1
shortening [1] -
1968:19
shorter [1] - 2185:2
shorthand [2] -
2186:5
shortly [1] - 2048:22
shot [1] - 2179:22
SHOULD [1] -
2173:23
SHOW [1] - 2130:1
show [11] - 1901:2,
23; 1904:5; 1928:8;
1991:2; 1995:10
2005:6; 2058:8;
2128:22; 2129:12;
2140:25
showed [7]
1903:13; 1924:12;
1970:7; 1997:25;
2005:1; 2118:24;
2130:17
showing [15]
1903:14; 1964:25;
1967:18, 22-23;
1970:12; 1980:19;
1981:9, 12-13, 16, 22
1988:17, 21; 2005:3
shown [18]
1908:11; 1967:21;
1977:20; 1981:23;
2037:6; 2056:21;
2057:23; 2061:10;
2063:16; 2064:19;
2065:22; 2089:12;
2091:12; 2092:3;
2094:18; 2150:18, 20;
2152:8
shows [16] -
1900:22; 1924:22;
1964:20; 1965:12;
1980:21; 2063:22;
2065:10; 2089:9;
2118:18, 20; 2124:10,
13; 2126:14; 2146:12, 21; 2148:3
shrubs [1] - 2169:23
shy [1] - $2103: 3$
side [29] - 1931:22;
1932:1, 15-16;
1947:14; 1965:15, 21;
1977:10; 1981:16;
1983:14; 1989:1, 4
2009:11; 2012:16;
2064:15; 2081:6;
2090:16; 2092:1, 11,
13; 2116:4, 14;
2157:19
sign [2] - 1995:13;
2185:13
sign-in [1] - 2185:13
signage [1] - 2164:2
significance [3]
2043:7; 2132:16;
2138:17
significant [17] -
1926:20; 1946:14;
1977:18; 2035:18;
2061:18; 2067:2, 7 ;
2069:5; 2126:2, 8;
2131:10, 15, 22;
2137:24; 2138:6;
2139:2
significantly [1] -
2061:14
signs [3] - 2048:7;
2049:5, 14
Siksika [1] - 2144:10
Silt [1] - 1978:12
silt [5] - 2005:15;
2058:15; 2127:25;
2128:4; $2153: 1$
siltier [1] - 2155:13
silts [2] - 2003:12
silty [2] - 2058:15;
2155:2
similar [9] - 1919:16;
2000:15; 2065:1;
2116:7; 2126:17;
2131:17; 2152:15, 20;

## 2162:20

similarities [1] -
2000:24
simple [4] - 2014:11;

NRCB 1701, Volume 8, March 31, 2021

```2066:6; 2178:16 SIR [3] - 2017:20; 2033:10; 2041:22 SIRs [9] - 2032:24 2034:18; 2038:18; 2039:24; 2041:18; 2117:18; 2125:22; 2132:7, 19 sit [7]-2030:16; 2079:4; 2103:7; 2143:16; 2174:9; 2184:17; 2185:3 site [33]-1973:15; 2004:1; 2007:5; 2044:10; 2047:20; 2084:6, 11-12, 16, 19; 2085:6, 23; 2086:3, 5 , 7, 23; 2087:1, 6, 9 , 14, 18-19, 21; 2088:2; 2091:8; 2092:24; 2095:12; 2109:18; 2110:7, 22; 2151:15 SITE [1]-2088:12 sites [1] - 2034:4 sits [1] - 2062:8 sitting [6] - 1978:23; 2078:9, 23; 2079:18; 2082:7; 2136:16 situation [6] - 1953:2, 6; 1954:5; 1970:17; 2127:19; 2167:12 six [1] - 2049:13 size [12]-1959:11; 2006:7; 2053:9; 2055:18; 2096:19; 2127:3; 2135:23; 2160:4; 2180:5 sized [2]-2055:19; 2146:9 sizes [1] - 2056:7 skill [1] - 2186:7 skim [1] - 2103:8 skip [1] - 2132:2 SLG [1]-2055:6 Slide [37]-1901:1; 1950:20; 1951:11; 1952:8; 1958:3, 16; 1964:18, 20, 23; 1965:5; 1967:14; 1969:21; 1973:4; 1975:15; 1976:21; 1977:8; 1979:19; 1980:5; 1981:8; 1982:3, 6-7; 1983:7, 12-13, 16; 1984:12, 14, 19, 21; 1985:9; 1991:16; 1999:14; 2025:3 slide [37] - 1951:11; 1953:14; 1964:19, 22; 1965:10, 25; 1973:5; 1980:20; 1981:2, 4; 1982:4; 1986:7; 1989:19; 1990:16; 1997:3; 2000:12; 2024:3, 9; 2054:7; 2055:12; 2056:1, 16; 2057:3; 2058:1; 2059:20; 2060:17; 2061:1, 20; 2062:10; 2063:8; 2064:7, 25; 2065:2, 19; 2066:8, 25 slides [9] - 1903:12; 1953:3; 1958:8; 1977:14; 1983:23; 1984:4; 2053:24; 2054:1; 2063:5 slightly [3]-2116:5;```	```2121:1; 2128:18 slightly... [1]-2121:6 slip [1] - 1987:21 slippage [1] - 1988:2 slipped [1] - 1935:19 slope \({ }_{[2]}\)-1932:15; 2160:16 slopes [1] - 2157:19 slotted [1] - 2080:2 slow [1] - 1969:4 slower [1]-2034:11 slowly [1] - 1933:23 small [11] - 1931:25; 1976:24; 2079:6; 2092:14; 2104:21; 2107:22; 2151:1, 7; 2152:6; 2178:15 smaller [4] - 2059:24; 2062:20; 2063:15; 2178:13 smectite [1] - 1987:25 smidge [1]-2123:10 snow [6] - 1898:7; 1972:4, 7, 10, 17; 2015:14 snow-based [1] - 1972:10 so.. [6] - 1898:10; 1915:11; 1933:2; 1936:25; 1986:5; 2179:22 Society [1] - 1949:13 soft [4] - 1915:7; 2031:24; 2032:4; 2123:5 soil [83] - 2038:5, 8-9, 11-13, 20; 2046:12; 2048:12; 2055:14, 16-17, 20-21, 23, 25; 2056:2, 13; 2058:13; 2059:3, 7; 2060:13; 2069:13; 2082:18; 2105:14; 2118:4; 2120:8; 2121:1, 6, 9-11, 15, 23; 2122:2, 6; 2127:9, 20; 2128:9, 11; 2129:3; 2131:10, 23; 2146:14; 2148:22; 2149:1, 3, 12, 14, 17; 2150:1, 17, 19; 2151:22; 2152:1, 3, 10, 13, 16, 22; 2153:9, 17; 2154:2, 4, 11, 24; 2155:5, 13-14, 16, 20-21; 2160:1, 8; 2172:17 soils [28] - 1974:22; 1987:24; 2038:15; 2056:3, 5-6, 10; 2076:25; 2122:20; 2126:1, 9; 2127:23; 2128:5; 2132:5; 2133:20; 2134:5, 22; 2135:17; 2149:4; 2153:5, 13, 16, 20; 2154:15, 23; 2155:2, 10 sole [1] - 2020:25 solely [1] - 2171:6 solution [2]-1918:1; 2085:13 solve [1] - 2012:8 SOMC [1] - 2136:8 someone [3]- 1941:21; 2014:18 sometime [2] - 2016:12; 2078:1 sometimes [4] -```	1961:24; 1963:3;   2034:9; 2119:23   somewhat [5] -   2116:16; 2128:18;   2142:24; 2150:5;   2155:4   somewhere [11] -   1922:18; 1924:16;   1925:8; 1928:13;   1932:22; 1938:16;   1939:11; 2002:25;   2009:4, 6; 2096:23   sonic [1] - 1914:10   soon [2] - 2077:9;   2120:21   sooner [2] - 2010:7;   2047:21   sorry [73] - 1897:17;   1898:11, 20; 1901:8;   1904:6; 1910:19;   1911:14; 1922:2;   1923:3, 20; 1929:11;   1930:10; 1933:3, 18;   1934:1; 1939:13;   1945:4; 1946:19;   1958:7, 23; 1962:7;   1965:7; 1967:13;   1969:3, 24; 1970:9;   1998:3; 1999:24;   2007:12; 2013:14, 16;   2015:19; 2016:24;   2017:19; 2018:14;   2019:2, 6; 2020:3, 6;   2028:10; 2031:22;   2078:5; 2091:5;   2093:8; 2094:6;   2096:22; 2121:7;   2122:16; 2125:7;   2126:25; 2133:22;   2134:13; 2136:21;   2137:2; 2140:18;   2142:3; 2143:24;   2147:22, 25; 2149:23;   2155:25; 2156:20;   2158:13; 2170:9;   2174:19; 2182:25   Sorry [1] - 2031:22   sort [10] - 1914:9; 1972:12: 1979:25:   2009:8, 22; 2073:3;   2122:9; 2126:6, 25 ;   2185:7   sorts [2] - 2018:3;   2128:22   sought [1] - 2052:10   sound [5] - 2014:22;   2120:19; 2123:19, 22,   25   sounds [8]-   1918:23, 25; 1964:17;   2018:25; 2077:23;   2083:16; 2088:23;   2134:19   source [14] -   1938:19; 1939:7, 9;   1940:5; 1991:23;   1992:2, 4; 2005:24;   2056:8; 2097:13;   2100:17; 2110:14   sourced [1] -   2092:22   sources [1] -   2060:12   sourcing [1] -   2087:25   SOURCING [1] -   2088:10   South [3] - 2139:18; 2144:4, 15   2144:4, 15 south [10]   south [10] - 2076:7;	```2092:11, 19; 2093:3, 7, 21; 2094:12, 22 southbound [1] - 2093:17 southeast [2] - 2090:16; 2091:25 Southern [1] - 1933:9 sown [1] - 2048:12 spaces [1]-2159:12 spacing [2] 2158:25; 2159:4 span [2]-2045:15, 17 spatial [2]-2127:19; 2146:21 spatially [2] - 2058:24; 2064:12 speaking [23]- 1905:12; 1918:9; 1969:25; 1970:3; 2013:14, 16; 2020:3, 6; 2068:12; 2073:13; 2079:10; 2082:19; 2099:24; 2109:7; 2110:17; 2112:9; 2125:25; 2130:15; 2137:8; 2147:22; 2161:3; 2173:11; 2175:5 speaks [4] - 1986:9; 2001:9; 2012:24; 2013:11 special [1] - 1918:7 specialist [2]- 2033:18; 2067:18 specializing [1] - 2038:5 species [13] - 2005:3; 2136:10, 18; 2138:8; 2144:25; 2145:4; 2166:11, 15; 2168:4, 6, 21; 2169:1 specific [10] - 2047:3; 2054:17; 2069:19; 2093:25; 2098:1, 22; 2105:17; 2134:10; 2138:2, 20 specifically [15] - 1910:13; 1975:22; 1998:10; 2047:23; 2054:13; 2058:23; 2059:24; 2060:7; 2074:10, 18; 2084:4; 2102:4; 2151:25; 2159:15 specifics [1] - 2073:14 spectrum [1] - 2155:1 speculate [1] - 2161:21 speculation [1] - 2152:18 speed [4] - 1942:6; 2055:14; 2056:20; 2061:8 speeds [3] - 2056:22; 2057:11, 15 spell [1]-1932:20 SPELLER [11] 2028:21; 2029:10, 13; 2107:9; 2108:6; 2161:12; 2179:19, 25; 2181:11; 2182:25; 2187:15 Speller [5] - 2029:9; 2107:10; 2108:2; 2161:13; 2179:20 spend \({ }^{[1]}\) - 2081:25```	```split [1] - 2142:10 splitting [1] - 2077:17 spoken [3]- 2050:13; 2165:16; 2181:12 sponge [2] - 1934:19 spotlight [1] - 1996:10 spread [4]-2083:18; 2101:5; 2102:7; 2108:22 spreadsheet [2] - 1930:25; 2035:4 spring [5] - 1968:25; 1996:6; 2007:16; 2159:1; 2163:18 Springbank [6] - 1917:6; 1926:21; 2139:9, 11; 2143:19; 2181:9 Spur [1]-2090:16 square [2] - 1964:8; 2002:16 squared [1] - 1964:16 squeeze [1] - 1934:19 squiggly [1] - 1998:23 SR1 [54] - 1897:1, 10; 1900:12, 16; 1902:5; 1903:1,5; 1904:1, 4; 1906:25; 1917:22; 1925:15; 1926:1, 8; 1938:12, 24; 1939:5; 1945:16; 1946:3; 1951:17, 22; 1952:9; 1953:7, 16, 22; 1954:19; 1957:4; 1958:5; 1960:14; 1962:22; 1973:7, 10 , 12, 15-16, 25; 1974:12, 15; 1992:21; 2014:16; 2036:7; 2037:25; 2042:24; 2069:17; 2096:15; 2097:3; 2114:4, 9; 2133:15; 2134:2; 2135:16; 2140:2; 2144:2 SR1's [1] - 2115:25 SR1.. [1] - 1951:2 staff [6]-1999:25; 2015:1; 2042:9; 2071:6, 14 Staff [11] - 1896:11 stage [5] - 2085:1; 2098:18; 2106:15; 2170:10; 2182:1 stages [2]-2033:5; 2175:7 \\ STAKEHOLDERS \\ [3]-2171:25; 2173:20; 2175:15 \\ stakeholders [13]- \\ 2043:10, 23; 2046:25; \\ 2070:5, 8; 2099:2, 18; \\ 2171:16; 2172:22; \\ 2174:15; 2175:3, 22; \\ 2176:9 \\ stand [1] - 2081:9 standard [10] - \\ 1918:21; 1954:10, 20; 1955:9; 1956:12; \\ 1963:15; 2068:8, 14; \\ 2141:9; 2178:21 standardized [1] 2043:2 \\ standards [4] -```

NRCB 1701, Volume 8, March 31, 2021

1938:25; 2054:16; 2068:7, 24
STANDS [1] - 2026:6
Stantec [13] -
1909:25; 1914:14; 1924:12; 2001:18; 2031:17; 2033:17; 2037:24; 2039:7; 2040:21; 2044:1; 2052:3; 2067:18; 2114:3
Stantec's [1] -
1906:18
start [22] - 1897:12; 1899:4; 1916:10, 18; 1917:5; 1918:15 1969:16; 2013:20; 2021:25; 2027:6 2028:16; 2031:12; 2058:9; 2102:19; 2117:15; 2121:18, 22; 2174:2, 11; 2176:14, 16; 2185:13 started [6] - 1919:8; 2021:22; 2023:11; 2040:1; 2102:21; 2117:19
starting [8]
1955:10, 16; 2028:19; 2038:21; 2083:1; 2118:2; 2121:2; 2149:15
starts [1] - 1955:25
state [15] - 1907:14;
1938:21; 1950:22;
1951:12; 1953:14;
1958:4; 2004:19;
2005:6; 2096:4;
2146:6, 16; 2153:17,
21; 2154:13
statement [28] -
1902:8, 19; 1917:19; 1927:14; 1937:9;
1938:18; 1939:10; 1944:21; 1946:24; 1957:24; 1977:9; 1978:2; 1987:3; 2036:19; 2042:2; 2071:3; 2091:3; 2100:22; 2111:24; 2122:23; 2151:9; 2154:19; 2155:8; 2159:25; 2169:13 statements [5] 1904:3; 1977:15; 2024:1; 2069:15; 2126:9
states [11] - 1911:24;
1956:16; 2083:4; 2090:8; 2100:15;
2104:18; 2144:1; 2160:23; 2180:24;
2181:19
States [1] - 2034:5 stating [1] - 1975:17 station [4] - 2084:2,
24; 2085:16; 2086:20
stationary [1] -
2150:5
stations [11] -
2083:8, 13; 2084:3, 5,
9, 13; 2085:20, 22;
2086:8, 13; 2097:8
statistic [1] -
2177:23
statistics [2] -
1954:16; 1962:4
status [6] - 2049:5;
2050:10; 2136:25;
2137:5, 10, 12
stay [1] - 2054:9 staying [1] - 1966:20
steam [1] - 2085:12
step [2] - 1963:3;
1982:3
Stephanie [1] -
1896:13
stepping [1] -
1899:17
steps [8] - 2043:4;
2047:18, 21, 24;
2098:14; 2164:22;
2165:8, 14
sticks [1] - 1974:6 still [34]-1904:11; 1912:19; 1915:16; 1931:11; 1933:6; 1994:24; 1996:11; 2017:8; 2029:4, 11, 17, 24; 2030:8, 12-13,
21; 2031:4; 2032:3;
2072:22; 2081:4;
2086:13; 2090:1;
2095:9; 2125:23;
2126:7; 2134:21;
2148:23; 2149:8
2158:18; 2173:25
stones [1] - 1987:7
Stoney [8] - 1896:24;
1899:7; 2044:5, 8, 11,
16; 2072:23; 2079:7
stop [1] - 2142:1
stops [1] - 1995:2
storage [6] - 1957:7;
2128:7; 2153:2;
2154:25; 2155:2;
2158:3
store [4] - 1992:16,
18; 2139:11; 2154:23
storms [3]-1934:25;
1959:11
story [3] - 2054:19;
2128:6; 2153:11
straight [1] - 1966:17
straightforward [1] -
1934:16
stranded [1] - 2165:9
strategies [2] -
2096:17; 2097:5
stream [10] - 1902:5;
1917:25; 1941:4;
1969:1; 2011:19, 24;
2105:2, 14; 2158:3;
2165:9
Stream [1] - 1926:21
streams [1] -
2169:19
stress [3] - 1948:7;
1986:4
stretch [2] - 1959:13;
2145:22
strictly [2] - 2011:15;
2130:15
strike [1] - 2129:1
strong [1] - 2055:23
stronger [1] -
2057:14
struck [1] - 1947:9
structural [2] -
1918:21; 1947:22
structure [14] -
1903:7; 1979:13;
1998:20; 1999:2;
2012:7; 2044:21;
2045:6; 2055:17;
2062:8; 2145:17, 25;
2147:5, 15; 2162:23
struggling [1] -
2123:3
studies [3] -

2172:23; 2177:15; 2179:1
STUDIES [1] -
2173:22
study [11] - 1936:13;
1947:5; 1948:8;
1971:12; 2024:19; 2063:14, 19; 2064:12; 2141:15; 2173:2
stuff [1] - 1972:20
subcontractor [1] -
2037:24
subject [17] -
1922:20; 1950:18;
2004:12; 2005:7;
2025:21; 2088:22;
2103:14; 2108:6;
2134:18; 2137:15; 2138:23; 2140:6; 2153:7; 2170:16; 2176:8; 2177:19; 2180:19
subjected [1] -
2140:8
subjecting [1] -
2058:2
submission [14] -
1906:20; 1921:13;
1985:2; 1990:25;
2005:2; 2009:3;
2024:15; 2033:7;
2040:3; 2055:4;
2059:10; 2062:24;
2098:13; 2118:5
submissions [5] -
1901:3; 1918:5;
2033:10; 2035:2;
2114:4
submit [3] - 2018:25;
2143:13; 2176:2
submitted [5] -
1920:25; 1966:24;
1993:6; 2020:21;
2055:3
subregion [6] -
2137:1, 6, 11; 2138:3,
12, 25
subscribe [1] -
1933:6
subsequent [2] -
2008:19; 2152:25
subsequently [1] -
2131:12
substantive [1] -
1907:2
subsurface [2]
2003:23; 2004:5
successful [1] -
2050:18
successive [6] -
2150:6, 16, 24-25;
2151:5; 2152:5
suddenly [1] -
1924:1
sufficient [2] -
1986:10; 2160:2
sufficiently [3] -
2085:8
suggest [6] - 1981:1;
1995:2; 1996:18;
2067:15; 2103:6;
2182:12
suggested [3] -
1960:24; 2158:1;
2181:13
suggesting [6] -
1960:13; 1963:1;
1972:13; 1973:7;
2000:14; 2069:15
suggestion [3] -

1914:9, 19, 21
suitable [3] - 2017:7;
2045:18; 2051:11
suited [1] - 2073:5
summarize [2] -
2063:5; 2132:18
Summary [1] -
1975:24
summary [7] -
1936:2; 1937:24;
1947:12; 2060:18;
2082:6; 2116:9
2134:15
summation [2] -
1926:23
summer [2]
2007:16; $2163: 18$
Sunday [7] - 1921:1,
10; 1922:24; 1923:2;
1935:5; 1940:1;
1971:3
super [1] - 1934:25
superior [3] -
1991:18; 1992:9, 24
supervised [1]
2040:2
supplement [1] -
2146:24
supplemental [3] -
2035:1; 2040:3;
2047:9
supplies [1] - 2088:6
support [10] -
1948:22; 2011:17, 21;
2014:21; 2034:22;
2043:8; 2071:6, 14;
2099:11; 2149:19
supported [1] -
2034:6
suppose [4] -
1929:18; 1969:22;
2026:18; 2076:2
supposition [1] -
2183:9
surface [28] - 1947:6
1979:3; 1999:10;
2004:13; 2024:20;
2048:2; 2055:15,
23-24; 2056:19, 25;
2057:1, 4, 6, 10, 15,
22; 2058:5, 16, 21;
2059:1, 3, 14, 16;
2060:22; 2062:5, 7
surfaces [5]
2057:5, 7, 12-13, 15
surprise [1] - 1910:4
surprised [2] -
1909:24; 2080:14
surrogate [2] -
2008:14, 18
surrounding [6] -
1906:13; 2046:4
2109:19-21; 2142:15
Survey [1] - 1964:13
survey [10] -
2006:25; 2007:7;
2038:9, 12; 2048:8;
2049:4, 14; 2050:9;
2122:2; 2174:25
SURVEYS [1] -
2175:17
surveys [8] -
2047:25; 2048:6;
2166:15; 2172:15, 18;
2173:3; 2174:23 survival [5] - 2009:9,
12, 15, 17; 2010:13
susceptible [4] -
2055:23; 2056:4;
2057:12, 16
suspect [2] - 1917:9;
2099:7
suspected [1] -
2176:1
Suzanne [1] -
1896:16
SVENSON [11] -
2028:21; 2030:13;
2073:12, 20; 2074:4,
13, 24; 2075:23;
2076:5; 2095:2;
2187:15
Svenson [6] -
2030:11; 2073:10, 13;
2075:23; 2095:3, 7
swath [1] - 1981:20 swelling [1] - 1988:1 switch [1] - 2117:6 switched [1] -
1980:25
sworn [3] - 2028:6,
24; 2031:8
sworn/affirmed [1] -
2028:24
Sylvia [1] - 1896:14 synchronicity [1] -
1928:21
SYSTEM [2] -
2111:9, 22
system [13]
1912:18; 1941:5
1942:8; 2004:23-25;
2107:13, 22; 2108:10;
2110:25; 2111:15;
2149:11; 2154:1
systems [3] -
1928:22; 1929:9;
2104:21
T
table [18] - 1901:5,
17, 20; 1967:16;
1968:9; 1969:22;
1974:12; 1980:23; 2002:10; 2035:22;
2037:4; 2061:4;
2120:4; 2126:14;
2129:12; 2135:9;
2136:20
Table [17] - 1975:23;
1999:16; 2035:6;
2119:11, 16; 2124:7;
2126:11; 2134:18, 24 ;
2148:2; 2150:18, 20;
2152:2, 10, 19
TABLE [3] - 2037:16;
2130:1; 2188:16
tables [1] - 2152:8
Tables [1] - 2035:10
tackifier [3] -
2048:20; 2050:3, 15
tackifiers [1] -
2049:20
tail [1] - 1927:7
talks [1] - 2181:19
tangent [1] - 1984:18
Tania [1] - 2067:17
tapers [2] - 1923:25;
1924:2

NRCB 1701, Volume 8, March 31, 2021

2115:8	2138:7; 2168:14;	20; 2072:1, 4, 11, 13,	Thursday [2] -	total [2] - 1986:4;
TDS [4]-2001:3, 5,	2169:5; 2187:17	17, 21; 2073:2;	2044:8; 2077:7	2059:22
7,9	Tesemma [2] -	2075:3, 5, 14, 16, 20;	Tier [1] - 1948:22	totally [1] - 1961:6
teaching [1] -	1935:10, 23	2076:12; 2077:16, 23;	tills [3] - 1987:10;	ouch [1] - 2179:25
2041:14	test [12]-1938:14;	2078:21; 2079:20;	1990:21; 2001:6	towards [7] - 2074:6;
team [4] - 1923:22;	1941:15, 17; 1976:5,	2080:19, 22; 2081:10;	timeframe [1]	2092:6; 2094:13;
1985:15; 2033:1;	8, 10, 15, 17, 23, 25	2082:4, 11, 13;	2151:5	2096:18, 25; 2106:20;
2038:22	tested [2] - 1941:23;	2088:11; 2101:8;	timing [6] - 1905:21;	2136:21
teams [1] - 1949:4	1987:16	2102:14, 17; 2103:22;	2102:20; 2147:	toxicity [1] - 2006:3
Technical [1] -	testimony [6] -	2104:7; 2111:8,	2148:9, 11; 2185:	toxicologist [2] -
2017:21	1906:11, 18; 1914:18;	20-21; 2113:5, 9, 11,	tipped [1] - 2071:16	1948:13; 1949:9
technical [21] -	1954:2; 2024:16	14; 2114:18, 23;	title [3] - 1994:1, 13;	trace [1] - 2004:18
1900:8; 1904:23;	testing [9] - 1938:20;	2115:3, 6, 8; 2119:22;	2176:5	track [1] - 1911:7
1918:6; 1933:22;	1939:6; 1941:19;	2120:3; 2121:4;	titled [2] - 1910:24;	tracked [1] - 2048:3
1934:3; 1993:1;	1942:2; 1976:23;	2122:25; 2123:12, 17,	1985:19	trade [2] - 1908:14;
2018:5; 2033:6;	1986:10; 1987:14;	20, 23; 2130:1;	TO [35] - 1899:2;	2027:21
2034:22; 2041:19, 21,	2030:6	2143:22; 2147:22, 25;	1923:10; 1938:6	trade-offs [1] -
23; 2052:2, 11, 15;	tests [5] - 1975:18;	2156:17, 20, 25;	1942:25; 1944:1	1908:14
2054:14, 19; 2068:2,	1976:3, 9	2171:23; 2173:7;	2022:3; 2025:13, 15;	tradeoff [1] -
4; 2099:11; 2165:15	Tests [1] - 1975:2	2174:6; 2176:20;	2075:2, 5, 16; 2088:9;	$2116: 17$
technical-type [1] -	text [6]-1986:13,	2184:9; 2185:11;	2111:8, 10, 19;	traffic [3] - 2082:23;
1904:23 technic	$\begin{aligned} & 18 ; 1988: 9 ; 1989: 21 \\ & 1990: 1 \end{aligned}$	$2187: 6-13,19$	$\begin{aligned} & \text { 2113:15; 2129:25; } \\ & \text { 2171:20; 2172:8; } \end{aligned}$	2086:4; 2087:2
1971:18	textural	THEM [1] - 2173:23	2173:17, 19, 23	2048:1
techniques [1] -	2127:17; 2146:10, 12,	themselves [3] -	2175:13; 2185:15;	transcribed [2] -
2182:23	14; 2149:16; 2153:23	2062:16; 2108:25;	2188:3, 6, 8, 11, 13,	1915:25; 2186:6
technological [1]	texture [11]-	2110:16		TRANSCRIPT [1] -
2147:3	2055:17; 2056:2, 10,	THERE [1] - 2075:2	today [16] - 1899:17;	2025:14
Technologies [1] -	13; 2062:2, 15;	thereafter [1] -	$1916: 4 ; 1923: 1,3$	transcript [5] -
1896:17	2117:23; 2118:2;	2048:22	1969:1; 1971:1;	1932:7; 2020:13;
tectonics [1] -	2127:20; 2153:12;	therefore [3] -	1999:20; 2024:16;	2025:7; 2186:4
1919:2	2154:17	1954:19; 2049:3;	2026:9; 2043:4;	Transcript [1] -
Teghtmeyer [1] -	textured [3] - 2056:5;	2140:9	2077:22; 2078:14;	2186:1
1929:21	2154:15, 23	they've [4]-1915:20;	2111:23; 2112:3;	transcripts [1] -
temperature [1] -	textures [4]-	2017:3; 2019:20;	2180:8; 2182:14	1932:5
1972:19 1899.20.	2058:13; 2062:21	2165:17	today's [1] - 2036:20	transfer [1] - 2059:6
ten [5] - 1899:20;	2153:9; 2154:11	thick [3] - 1977:18;	toe [1]-1989:5	transit [1] - 2005:14
2064:22; 2080:21;	THAT [10] - 2025:16;	1981:15; 2121:18	together [4] -	transport [2] -
2086:11, 19	2075:13, 17; 2111:20;	thicker [3]-2121:17;	1898:8; 1961:18;	$2038: 13 ; 2097: 10$
tend [4]-2056:4;	2130:1; 2171:22;	2122:2, 6	2036:20; 2068:25	transportation [2] -
2153:9; 2179:4	2172:10; 2173:18, 22	thickness [16] -	tomorrow [35] -	2041:9; 2103:24
tender [1]-2020:8	that'll [3] - 1898:20;	1981:11, 15; 2002:7	2026:14, 18, 22;	TRANSPORTATIO
tends [1]-2053:2	1996:11; 2006:4	2118:16, 21, 24;	2077:18, 20, 22;	N [4] - 1942:24;
term [7] - 1955:20;	THE [208]-1897:9,	2119:14; 2120:7, 9;	2078:1, 3; 2079:6, 17,	2173:19; 2175:14;
2116:13, 16; 2148:5;	25; 1898:3, 11, 20,	2121:21; 2122:13;	25; 2080:8; 2081:7,	2188:10
2155:12; 2181:1	23; 1899:3, 10, 23;	2124:5; 2127:7, 10;	11-12; 2082:3;	Transportation [90] -
terminology [1] -	1900:3; 1901:8-10,	2130:18	2102:24; 2103:11;	1896:18; 1905:18;
2116:5	14, 16; 1904:25;	thicknesses [4] -	2104:5, 8-9, 11;	1906:11; 1908:5;
terms [34]-1905:21;	1905:7, 17; 1906:4;	2120:9; 2122:14;	2174:11; 2184:9, 11	1910:8, 20; 1912:23;
1928:16; 1933:22;	1915:7, 9, 16, 22;	2124:10, 13	16-17; 2185:1, 3, 6, 8,	1913:13; 1914:14;
1941:19; 2009:17;	1916:2, 6, 20; 1922:9,	thin [1] - 1979:4	12	1920:10, 22; 1921:10;
2012:6; 2014:20;	12; 1923:7; 1933:18;	thinking [2] -	tonight [2] - 2079:5;	$1926: 7 ; 1927: 2$
2018:24; 2056:21;	1937:17, 19; 1938:5;	2155:10; 2179:25	2103:10	1942:10; 1949:25;
2062:14; 2077:16;	1939:15, 20; 1940:2;	thinks [1] - 2076:20	tons [1] - 2179:15	1952:11; 1978:4;
2079:6; 2093:15;	1942:16, 20, 23;	thinner [2]-2122:3,	took [4] - 2002:3;	1979:2; 1985:23;
2095:8; 2102:4;	1943:2, 8; 1944:1, 6,		2024:5; 2033:8	1988:18; 1993:6;
2107:14; 2127:11;	10, 15; 1945:1, 5, 9;	third [6]-1932:10,	tool [1] - 2069:25	2002:2; 2020:11, 15;
2130:5, 14; 2131:7;	1958:9, 15; 1964:23;	16, 24; 1936:11;	tools [4]-1962:19;	2021:16; 2025:2;
2137:22; 2138:8;	1969:3, 9, 12, 18;	1997:18; 2047:5	1963:20; 2048:5;	2026:13; 2027:7;
2145:17; 2147:19;	1983:2; 1993:10, 13,	thoroughly [1] -	2163:4	2028:1, 3, 23;
2152:23; 2155:11;	15; 1994:8, 12, 15,	2084:19	top [11] - 1940:10;	2042:12, 17, 23;
2162:22; 2166:23;	23; 1995:4, 8, 12, 17,	thousand [2] -	1978:23; 1987:18;	2043:15, 17, 19;
2169:2; 2177:22;	20, 23; 1996:3, 11,	1984:25; 2001:17	1988:8, 10; 1989:3;	2044:15, 20; 2045:12;
2178:8; 2183:19;	21, 24; 1997:6;	three [14] - 1916:13;	2010:10; 2045:5;	2046:2, 13; 2047:3;
2184:2, 11	1999:23; 2000:5, 8,	1975:17; 2001:20;	2136:21; 2178:4	2050:19; 2051:10;
terrain [1] - 2076:25	11; 2006:15, 19, 22;	2038:8; 2048:11;	TOPIC [2] - 1942:25;	2052:5; 2059:8;
Terrestrial [1] -	2008:2, 5; 2010:25;	2064:21; 2066:4;	2188:10	2060:2, 15, 18, 22;
2027:9	2011:3; 2013:14, $16 ;$	2077:4; 2116:10;	Topic [15] - 1905:19;	2061:6, 13, 16;
terrestrial [2] -	2014:13; 2015:6, 10;	2121:3; 2127:9;	2011:9; 2018:24;	2066:14, 18, 21;
2028:4; 2071:23	2018:9, 12, 16, 22;	2165:19	2019:22; 2021:12, 25;	2069:16, 19; 2070:2,
Terry [7] - 2040:10;	2019:4, 25; 2021:6,	threshold [11] -	2027:8; 2028:3;	12, 14, 17, 19;
2082:20; 2133:14;	10, 15, 21; 2023:6,	1900:23; 2058:7;	2035:3; 2042:20;	2071:4, 22; 2073:17;
2135:14; 2138:4;	10, 20; 2025:14,	2120:20; 2121:3, 14,	2071:22; 2080:18;	2080:1, 5, 11, 17;
2168:14	16-17, 25; 2026:4, 23;	25; 2122:1; 2138:1, 9 ;	2163:25; 2165:24	2088:7; 2098:13, 16,
TERRY [19] -	2027:3, 19; 2029:1;	2139:2	topic [6] - 1928:15;	21; 2099:10, 20;
2028:22; 2040:11, 15,	2030:2; 2031:11, 22,	thresholds [3] -	2018:13; 2021:23;	2102:5, 24; 2103:1;
23; 2041:1, 19;	24; 2032:3, 5, 7;	2120:14; 2124:10	2027:18; 2036:20;	2111:5; 2157:14;
2133:22; 2134:7, 13,	2034:13; 2036:2, 8 ,	throughout [4] -	2042:2	2164:12; 2175:8;
17, 23; 2135:18;	14; 2037:10, 13;	1992:1; 1993:7;	topics [1] - 2044:5	2182:13, 19, 22;
2136:12; 2137:2, 5;	2054:7, 10; 2071:13,	2063:19; 2076:6	topsoil [1] - 2153:18	2184:19; 2187:18

NRCB 1701, Volume 8, March 31, 2021

Transportation's [7]	turn [7] - 1910:22;	12-13, 21; 2031:3;	2041:2	:15; 1974:15
- 1906:20; 2043:9;	1915:3; 1919:24;	2044:5; 2071:8;	nown [1] -	upwards [3] -
2046:7; 2058:18;	1946:20; 1967:6;	2074:19; 2076:7	2142:18	1970:13; 1981:14;
2070:24; 2071:3;	2174:1; 2176:13	2079:3; 2092:8;	unless [1] - 2184:6	1989:17
2180:22	turned [2]-2081:20;	2098:3; 2111:4;	unlikely [2] - 1899:6;	uranium [3]
transported [2] -	2116:20	2113:19; 2128:10;	2106:14	2003:19; 2004:18;
2095:5; 2097:19	turns [1] - 2017:22	2134:15; 2166:19	Unnamed	2005:2
2005:10	1980:14	$\begin{aligned} & \text { underdesigned } \\ & \text { 1926:22 } \end{aligned}$	1920:5, 19; 1977:	$\begin{aligned} & \text { ban }[1]-203 \\ & \mathbf{S}[2]-2060: 4, \end{aligned}$
transpose [1]	tweaking [1]	underlying [2]	1979:3; 1980:1	usefu
1963:21	2017:12	1986:25; 1990:19	2024:21	1991:7; 2005:11
transposition [1] -	twice [2] - 1925:4;	underneath [8] -	unquote [1]	2010:15
1982:20 ${ }_{\text {trapped }}$ [3] - 2167:7	2014:10 ${ }_{\text {twigged }}$	1979:10; 1980:2; 1988:14: 1989:4,	1934:25	uses [2]-2059:2
trapped [3]-2167:7,	twigged [1] - 1973:1	1988:14; 1989:4, 16; 2121:24	unroll [1] unsafe	2137:15
raps [1]-2159:17	1937:23; 1942:13;	underpass [2] -	2183:15, 17, 23;	utility [1] - 2045:1
travelling [1] -	1967:19; 1970:5;	2045:17, 22	2184:1,	utilized [1] - 2147:3
2087:3	1980:6; 1981:4;	underpasses [2]	unsuitable [1] -	utilizing [1] - 1967:9
$\begin{gathered} \text { tree }[6]-1930: 3,20 ; \\ 1931: 12.14 .18 \end{gathered}$	$\begin{aligned} & \text { 1985:10; 2001:14, 23; } \\ & \text { 2002:4; 2015:3; } \end{aligned}$	2045:21; 2073:25 undersigned [1]	2048:18 unvegetated ${ }_{[1]}$	V
trees [11] -2169:18,	2030:16; 2047:23	2186:3	2057:	
23; 2170:1, 3, 6, 8 ,	2048:6, 10; 2063:1, 9;	understood [2]	up [98] - 1900:23	valid [1] - 2125:23
11-12; 2171:5, 7, 15	2065:1; 2066:5;	1960:13; 2016:15	1901:1, 5; 1903:2	Iley [5] - 1977:17;
TREES [1] - 2171:23	2076:16; 2079:22	UNDERTAKE[1]	1905:10; 1907:15;	1978.5.
trend [4]-2001:12	2096:17	2173:23	1910	2010:11; 2139:13
2150:11; 2152:20;	12	undertake [8]-	1915:18, 23; 1919:2	y [1]-1902:
2153:15 trends [2]			1930:12 25-1935	
1963:9	2181:12; 2182:6,	2172:24; 2173:14;	1942:5; 194	2002:17; 2059:2, 5;
tributaries [7] -	two-week [1] -	2175:1	1946:20; 1950:6;	:7,
2105:16, 24; 2106:4 $12.2107 .2 .2108: 4$.	2048:10	undertaken [8]-	1958:8; 1965:18;	2163:1
12; 2107:2; 2108:4; 2110:13	type [10]-190	2043:18; 2048:1, 6 ;	1967:6, 14; 1970:22,	valued [2] - 2043:3;
2110:13	2000:18; 2002:19,	2049:4, 9; 2052:23	24; 1971:16; 1974:6	2069:22
tried [2]-1995:13;	2003:8, 16; 2004:13;	2084:23; 2117:9	15; 1987:20; 1988:22	values [8] - 1967:2
2159:13	2005:10; 2162:21;	Undertaking [4]-	1991:15, 20; 1995:1;	1993:24; 1997:1
trigger [1] - 2165:20 trouble [1]-2168:2	2177:23 ${ }^{\text {a }}$ types $[18 \mathrm{l}$ - 1974:16;	1943:10, 15; 2026:15;	1996:6, 25; 2001:7;	2001:6; 2002:1;
trouble [1]-2168:2 troubles [1]-2155:6	types [18] -197	2027:2	2002:17; 2007:17;	037:5; 2163:3
troubles [1] - 2155:6 trough [2]-1932:14,	1975:1; 1976:8; 1987:18; 1991:9;	undertaking [11]	2009:8; 2010:21;	Vance [3]-1896:10
22 (1)	1987:18; 1991:9	1897:15; 1898	2011:5, 9; 2014:17	1995:4; 2000:2
truck [11] - 2092:16,	205	2088:8	2026:16: 2032:5;	variability ${ }^{\text {d }}$
18, 20; 2093:6, 16,	2128:9, 11; 2133:1	2129:15;	2035:24; 2036:5;	2001:5
19; 2094:20, 23;	2134:3; 2152:10, 1	2172:7	2045:1; 2051:25;	variable [2] - 2056
2095:9	2166:2; 2173:5;	UNDE	2054:9; 2076:22;	2062:14
2090:13; 2091:10, 24	1] -1925		2080:8, 11;	$\begin{aligned} & \text { varia } \\ & \text { 2057:7 } \end{aligned}$
trucks [2]-2092:9;	typically [3]-2007:3;	2088:9; 2111:8, 19 ;	2086:9; 2088:15;	varied [1] - 2153:10
2095:8	2085:2; 2100:4	2129:25; 2171:20;	2089:3, 5; 2090:8-10,	varies [2]-1925:24;
true [3]-19	typo [1] - 2040:16	2172:8; 2173:17	21; 2096:19; 2106:18;	2064:12
1962:13; 2052:19	U			2060:12; 2066:16
2080:25		2026:20; 2077:9, 25;	2119:5; 2123:2	various
truth [1] - 1918:9	$\mathbf{u}^{*}[1]$ - 2056:24	2078:12, 14	2126:11; 2127:22;	2012:11; 2039:19;
Try [2]-2032:1;	ultimately [6] -	Undertakings [1] -	2130:18; 2134:14;	2050:13; 2053:15;
2123:18	1908:13; 1913:17;	1897:17	2135:21; 2139:6, 9,	2106:2; 2122:4, 8 ;
try [16]-1898:17;	2046:8; 2068:11;	unfolds [1] - 2081:2	25; 2140:22; 2141:7,	2148:5
1904:19; 1914:10;	2069:9; 2162:10	unforeseen [1] -	20; 2144:6; 2148:15;	vary [2] - 2138:8;
1915:19; 1962:1, 6 ;	unable [1] - 1972:9	2174:17	2162:10; 2174:22;	2153:23
1981:25; 1997:4;	unacceptable [2] -	unfortunately [4] -	2179:23; 2180:2;	varying
1998:11; 2016:10;	2066:13; 2181:1	1933:15; 1942:7;	2184:20	2098:14; 2175:7
2029:21; 2078:13;	uncertain [1] -	1959:23; 2009:1	update [1] - 1898:18	vast [1] - 2105:2
2081:6; 2104:4;	2079:4	unfractured [1] -	updated [2] -	vectors [1] - 2097:18
2123:1, 15	uncer	2003:6	2146:11; 2148:19	tated [1] -
trying [19]-1903:21;	1906:12; 2052:21, 24;	ungulates [4]-	upgrades [1] -	2045:16
1906:24; 1925:11;	2053:4; 2066:8	2045:18; 2159:15;	2136:15	vegetation [52] -
1926:10; 1938:18;	uncertainty [5]	2166:18; $2168: 21$	upgrading [1]	1912:14; 2039:7,
1941:20; 1960:19;	2056:14; 2062:14, 17;	uniformly [1] -	2092:6	25; 2040:1, 4, 7;
1988:6; 1994:15, 17;	2069:25	2128:6	upland [6]-2133:17;	2042:14; 2044:6
1996:1; 1998:2, 14;	unchanged	${ }_{\text {uninhibited }}$ [1]	2134:2, 4, 10;	2051:13, 16; 2055:15,
2084:4; 2091:5;	2132:17	2044:13	2143:16	24; 2057:14, 19, 21;
2094:9; 2102:9;	unconventional [1] -	unique [1] - 2071:8	uploaded [1] -	2066:15; 2076:19;
2155:7; 2174:21	2061:17	unit [2]-1978:17;	2025:5	2082:19; 2088:18;
TSP [4]-2046:15;	under [36] - 1943:	1999:10	upper [6] - 1980:6	2105:9; 2108:24;
2060:2; 2061:12;	1959:23; 1961:11;	United [1] - 2034:5	1984:13; 1993:24;	2110:16; 2114:9;
2066:23 ${ }_{\text {TSS }}^{\text {[1] - 1926.12 }}$	1967:19; 1968:11;	units [5] - 2024:7;	1997:10; 2001:8, 11	2116:25; 2117:2;
TSS ${ }^{[1]}$ - 1926:12	$\begin{aligned} & \text { 1970:5; 1986:20; } \\ & \text { 1991:6; 2003:22; } \end{aligned}$	$2150: 17,19 ; 2152: 1,$	upslope ${ }_{[1]}$ 1934:20	$\begin{aligned} & 2119: 4 ; 2120: 5,16 ; \\ & 2122: 22 ; 2124: 11,14, \end{aligned}$
tune [1] - 2017:10	2015:22; 2027:8;	University [8] -	upstream ${ }^{81}$	$\text { 20; 2125:4, } 10$
turbid [4]-1912:17,	2028:18; 2029:4, 6,	2032:10, 12; 2033:2	1902:10, 15, 23, 25	2132:7, 17; 2133:6;
19; 2017:6	$12,17,24 ; 2030: 8 \text {, }$	$25 ; 2038: 7 ; 2039: 12 ;$	1917:25; 1924:21;	2140:7; 2143:18;

NRCB 1701, Volume 8, March 31, 2021

2144:22; 2149:14, 19,	void [1] - 2160:10	water's [1] - 1979:11	- 2070:23	WILDLIFE [1] -
21; 2151:11; 2155:7,	voids [7] - 2158:	water-holding [3] -	well-recognized [1] -	2175:18
19; 2160:1, 8	2159:11, 16; 2160:7,	2152:24; 2153:12, 23	2154:23	wildlife [59] -
vehicle [9] - 2044:18,		watercourses [1] -	well-versed [2]	2040:22; 2041:2, 10,
22; 2045:9; 2083:8	volume [6] -	2107:16	1919:11; 1947:15	20-21; 204
13; 2084:12; 2086:4;	1915:10; 1925:10	waterfowl [1] -	west [8] - 1955:8;	044:6, 12, 19
2087:13; 2090:1	1957:7; 2017:5;	2168:5	1981:17; 2044:14	23; 2045:4, 14, 19-20,
vehicle-cleaning [2]	2123:10; 2149:24	waters [1] - 2107:	2074:6; 2076:2, 7	23, 25; 2073:23, 25;
- 2083:8, 13	Volume [2]-1896:4;	watershed [4]	Western [1] -	2076:19; 2082:19;
vehicles [20]-	2023:1	1928:21; 1963:21	1936:23	2133:13; 2136:5,
2083:17, 21, 23, 25;	VOLUME	2162:16	wet [6] - 1932:3	8-10; 2145:2, 4;
2084:15, 23, 2085:2	2187:3	Waterworks [1]	1933:7; 1941:17	2158:5, 10, 17;
6-7, 11; 2086:2, 6, 20,	volumes	1897:3	1958:22; 1974:1	2159:1, 8, 18-19;
23-24; 2087:5;	1924:15; 1962:21	way.. [1]	wetland [12] -	2160:11, 13, 16;
2089:15, 19; 2097:6;		Wayne [3] - 2107:10;	2040:1, 7; 2051:1	2163:20; 2164:5;
2098:7	W	2161:13; 2179:20	$17 ; 2133: 17 ; 2134$	$\text { 2165:8; 2166:8, } 15$
ein [1] - 1948:11		ways [2] - 2003:23	2161:1, 8,1	17, 23; 2167:6, 14
velocities [2] -	Wag	2058:22	2162:11, 13, 15	18, 22, 25; 2168:10;
2114:6, 11	1899:13; 202	weak [2] -	wetlands [14] -	2169:1; 2172:17;
velocity [6] -	2079:14	2057:9	2039:19; 2088:19;	2173:5; 2174:23;
2056:24; 2057:7	WAGNER [1]	weaknes	2114:14; 2143:16;	2176:4
2058:6, 11	2021:14	1987:19	2160:20, 23; 2161:16;	wildlife-related [1] -
neer [1] -	wait [3]	veat	2162:1, 7, 20-21;	2041:10
verbatim [2] -	1995:14; 1996:21	1934:20, 24	2163:1, 8, 12	WILL [8] - 2088:9;
1920:12; 1923:14	waiting [2] -	website [3] - 1966:	wetness [1]-2149:3	2111:20; 2130:1;
erbatim) [2]	1970:24; 2173:8	2074:16; 2177:3	wetter [2] - 1932:20;	2171:20, 22; 2172:8;
1999:7; 2055:6	walk [2] - 2087:2	weed [50] - 2047:5	1962:14	2175:14, 19
verification [1]	2159:13	2051:3, 5-6, 11-12,	WHAT [1] - 2175:16	William [1] - 1896:10
1991:8	Walter [1] - 1896:8	15; 2083:6; 2087:17,	WHEN [1] - 2075:17	Williams [15] -
verify [4]-1982:23	wants [3] - 1943:16;	19; 2088:1, 5;	whereabouts [1] -	1897:3; 1899:11;
1994:3, 19; 2069:22	2174:8; 2176:14	2095:18; 2096:2	2173:8	1901:11; 2018:19, 24;
verifying [1] -	warming [3] -	10; 2097:10, 14, 23;	whereas [1] -	2019:25; 2020:8, 13,
1997:24	1934:11; 1968:7	2098:3, 25; 2099:16,	2146:11	16, 23; 2021:7, 10;
vernacula	1974:9	19; 2100:18, 21, 23;	WHETHER [1] -	2080:20
1963:2	warmth [1] - 1972:21	2101:5, 21; 2102:1,	2111:8	WILLIAMS [7] -
versed [2]-1919:11;	warn [1] - 1914:10	6-7; 2104:21;	Whitso	2018:21; 2019:2, 6;
1947:15	warnings [1] -	2105:23; 2106:2;	2037:17, 23; 2038:25;	2021:5, 8; 2080:15,
version [1] - 1921:8	2164:2	2107:22; 2108:9,	2082:18; 2117:6;	
versus [5] - 2001:18;	WAS [1] - 2075:2	19; 2109:8; 2110:4,	2118:10; 2120:2;	wind
2011:25; 2057:22;	wash [1] - 2097:8	9-10, 14, 19, 23;	2121:4; 2122:16, 25	2048:7; 2049:3, 5, 15,
2058:25; 2148:12	washed [1] - 2085:12	2172:4	2123:8; 2124:4, 17,	23; 2050:5, 9;
vertical [5] - 1977:3	waste [1] - 1916:14	Weed	22; 2125:12; 2126:19,	2055:14, 21, 23;
1997:20; 2002:6;	watching [2] -	2100:24; 2101:3	22; 2129:9, 24;	2056:4, 9, 17-18,
2056:20; 2153:11	2042:10; 2119:22	24	2132:1, 21; 2146:2, 6;	20-21; 2057:6, 11-12,
vertically [2] -	water [95] - 1907:2,	WEED [2] - 208	2147:18, 23; 2148:22;	15-16, 22; 2059:6;
2153:8, 10	11, 14; 1908:2;	2172:12	2151:25; 2154:8;	2060:5, 12; 2061:8;
Vespa [13] - 1897:5	1910:2; 1912:7, 11,	weed-free	2156:3	2121:19
2026:23; 2027:3;	17; 1913:9; 1914:1;	2088:1,5	WHITSON [38] -	windblown [3] -
2031:23; 2103:20, 22;	1926:13; 1928:1;	WEED-FREE	2028:22; 2037:18, 21;	1973:20; 2046:15;
2104:10; 2123:14, 24;	1934:18, 22; 1936:23;	2088:11	2038:1, 4, 19;	2055:8
2143:22; 2186:12	1940:16, 18; 1947:6,	weeds [32	2118:14; 2119:17;	winded [2] -
Vespa.. [1] - 2123:7	14; 1949:1, 21;	2049:7, 10, 16	2120:1, 4; 2121:7	1929:11; 2128:21
vetted [1] - 1949:19	1952:9, 25; 1953:1,	2050:12; 2051:1, 8-9;	2122:18, 24; 2123:9,	winter [5] - 1968:19,
via [1] - 2105:5	1973:25; 1974:2, 7 ,	2083:10, 14, 18, 22;	19, 22, 25; 2124:2, 9 ;	24; 1970:16; 2050:6;
viability [1] - 2048:15	12, 22; 1976:11;	2095:15, 20; 2097:19	2125:24; 2126:19, 22;	2159:1
video [4]-1995:2;	1979:12, 15; 1988:17,	2100:25; 2105:4, 9 ,	2129:16; 2130:3, 11;	wish [4] - 1943:25
2013:20; 2015:4, 7	25; 1989:11; 1990:19;	13; 2108:14, 22-23;	2131:4; 2146:17;	2099:15, 19; 2159:18
View [4]-2051:11;	1992:16, 18-19, 21;	2109:9, 17, 25;	2147:21, 23; 2148:1,	WITH [5] - 2025:14;
2099:3, 7; 2112:11	2001:1; 2002:10;	2110:20; 2111:24;	25; 2149:10; 2150:3,	2171:24; 2172:11;
view [15] - 1913:7;	2005:14; 2010:18	2112:4	9; 2152:9; 2154:22;	2173:20; 2175:14
1926:21; 1927:1;	2011:21; 2012:7, 25;	week [4] - 1935	2155:17; 2187:17	witness [7] -
1934:10, 13, 15;	2013:8; 2014:7, $20 ;$	2035:22; 2048:10;	Whitson's [3] -	1900:20; 2018:7;
1981:17; 1983:14;	2016:1, 11, 15;	2080:7	2124:25; 2133:4;	2028:7; 2032:20;
1993:20; 2008:21;	2017:5; 2019:10	Week [1] - 2049:2	2146:24	2071:4; 2156:2;
2044:17; 2108:18;	22-23; 2034:3;	weeks [3] - 2047:23;	whole [3] - 1903:	2157:14
2116:24; 2138:10	2038:13; 2100:16, 20;	2049:13, 22	1913:18; 1993:7	WITNESS [2] -
viewpoint [1] -	2102:1; 2107:20;	Weeks [1] - 2048:23	wholistic [1] -	2023:20; 2026:6
2011:13	2110:1, 4, 11;	weigh [1] - 1994:16	2147:13	witnesses [4] -
views [4]-1969:6	2121:10; 2128:7;	weighing [1] -	WHY [1] - 2075:2	2028:6; 2030:16;
2138:13; 2171:2;	2152:24; 2153:2, 12,	1994:8	wide [3] - 2034:4;	2031:7
2172:18	23; 2154:24; 2155:3,	weight [2] - 1988:17;	2066:16; 2160:11	Woloshyn [1] -
virtually [2] - 1896:2;	6, 12, 21; 2167:4;	1990:18	width [1] - 2045:16	1896:7
2008:24	2168:7; 2180:3;	Weisbach	Wiebe [6] - 1896:17;	wondering [20]-
visible [1] - 2046:22	2182:2	1896:13	1945:10; 1994:23;	1898:7, 9, 14
visually [1] - 2085:3	WATER [2] -	welcome [4]-	1996:8; 2102:17	1917:12; 1921:2, 6
vitae [1] - 2031:13	2113:16; 2188:21	1897:10; 2023:6	WIEBE [7] - 1994:25;	1929:14; 1931:11;
vogue [1] - 1919:3	Water [5] - 1936:25;	2027:4; 2124:2	1995:18; 1996:9, 16,	1937:25; 1939:9;
voice [7] - 1898:13;	1937:4; 1964:13;	well-conceived [1] -	20; 2156:23; 2157:1	1941:12; 1982:2, 19;
$1915: 18,23 ; 2013: 17$	$2112: 21 ; 2163: 10$	1946:5	wild [1] - 1974:14	2011:24; 2012:18;
$2032: 5,7 ; 2088: 15$	water' [1] - 1986:23	well-established [1]	wildfire [1] - 1933:12	2014:18; 2035:23;

NRCB 1701, Volume 8, March 31, 2021

