#### ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT RESPONSE TO NRCB AND AEP SUPPLEMENTAL INFORMATION REQUEST 1, JULY 28, 2018

Appendix IR42-1 Hydrogeology Technical Data Report Update May 2019

APPENDIX IR42-1 HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE



#### ALBERTA TRANSPORTATION SPRINGBANK OFF-STREAM RESERVOIR PROJECT RESPONSE TO NRCB AND AEP SUPPLEMENTAL INFORMATION REQUEST 1, JULY 28, 2018

Appendix IR42-1 Hydrogeology Technical Data Report Update May 2019



SPRINGBANK OFF-STREAM RESERVOIR PROJECT Environmental Impact Assessment

Hydrogeology Technical Data Report Update



Prepared for: Alberta Transportation

Prepared by: Stantec Consulting Ltd.

May 2019

## TABLE OF CONTENTS

| 1.0 |                                                               | 1.1  |
|-----|---------------------------------------------------------------|------|
| 2.0 | METHODS                                                       | 2.1  |
| 2.1 | DATA COMPILATION AND PRELIMINARY CONCEPTUAL                   |      |
|     | HYDROSTRATIGRAPHIC FRAMEWORK DEVELOPMENT                      | 2.1  |
| 2.2 | GROUNDWATER RESOURCES ASSESSMENT AREAS                        | 2.2  |
| 2.3 | DRILLING AND MONITORING WELL INSTALLATION                     | 2.5  |
| 2.4 | HYDRAULIC CONDUCTIVITY TESTING                                | 2.10 |
| 2.5 | GROUNDWATER MONITORING AND ANALYSIS                           | 2.11 |
|     | 2.5.1 Quality Assurance and Quality Control                   | 2.12 |
| 2.6 | DEVELOPMENT OF THE THREE-DIMENSIONAL CONCEPTUAL SITE MODEL    |      |
| 3.0 | 3D CSM RESULTS FOR THE HYDROSTRATIGRAPHIC FRAMEWORK           | 3.1  |
| 3.1 | TOPOGRAPHY                                                    | 3.4  |
|     | 3.1.1 Bedrock                                                 | 3.6  |
|     | 3.1.2 Unconsolidated Sediment above Bedrock                   |      |
|     | 3.1.3 Cross-Sections                                          |      |
| 3.2 | GROUNDWATER LEVELS AND FLOW REGIMES                           |      |
|     | 3.2.1 Hydraulic Conductivity                                  |      |
|     | 3.2.2 Groundwater Flow in the Unconsolidated Glacial Deposits |      |
|     | 3.2.3 Groundwater Flow in the Upper Bedrock Aquifers          | 3.39 |
|     | 3.2.4 Vertical Hydraulic Gradients, Groundwater Springs and   |      |
|     | Recharge/Discharge Mapping                                    |      |
|     | 3.2.5 Groundwater Level Fluctuation                           |      |
| 3.3 | GROUNDWATER USE                                               |      |
| 3.4 | GROUNDWATER CHEMISTRY                                         |      |
|     | 3.4.1 Groundwater Chemistry of the Unconsolidated Deposits    |      |
|     | 3.4.2 Groundwater Chemistry of the Upper Bedrock Aquifers     |      |
| 3.5 | GROUNDWATER QA/QC RESULTS                                     | 3.75 |
| 4.0 | NUMERICAL MODEL CONSTRUCTION AND CALIBRATION                  |      |
| 4.1 | NUMERICAL MODELLING APPROACH                                  |      |
| 4.2 | NUMERICAL MODEL DOMAIN AND DISCRETIZATION                     |      |
|     | 4.2.1 Discretization of the Model Domain                      |      |
| 4.3 | HYDROSTRATIGRAPHIC FRAMEWORK OF THE NUMERICAL MODEL           |      |
|     | 4.3.1 Model Layers                                            |      |
|     | 4.3.2 Parameterization of Model Layers                        |      |
| 4.4 | NUMERICAL FLOW MODEL BOUNDARY CONDITIONS                      |      |
|     | 4.4.1 Specified Head Boundaries                               |      |
|     | 4.4.2 Specified Flux Boundaries                               |      |
| 4.5 | NUMERICAL MODEL CALIBRATION                                   |      |
|     | 4.5.1 Calibration Points                                      |      |
|     | 4.5.2 Steady-State Residual Analysis                          | 4.19 |



| <b>5.0</b><br>5.1  |         | L SIMULATIONS OF POTENTIAL EFFECTS ON GROUNDWATER<br>/IEW OF MODELLED SCENARIOS |      |
|--------------------|---------|---------------------------------------------------------------------------------|------|
| 5.2                |         | IENT SIMULATION PERIODS AND TIMESTEPS                                           |      |
| 5.3                |         | ARYING SPECIFIED HEAD BOUNDARY CONDITIONS                                       |      |
| 5.4                |         | S OF INTEREST USED FOR TIME SERIES EVALUATION                                   |      |
| 5.5                |         | PRETATION OF MODEL SIMULATIONS                                                  |      |
| 0.0                | 5.5.1   | Average Flow Conditions Scenarios (EEX0/PPX0)                                   |      |
|                    | 5.5.2   |                                                                                 |      |
| 6.0                | SUMM    | ARY AND CONCLUSIONS                                                             | 6.1  |
| 7.0                | REFERE  | NCES                                                                            | 7.1  |
| LIST OF            | TABLE   | S                                                                               |      |
| Table              | 2-1     | Monitoring Well Completion Details                                              | 2.7  |
| Table              | 3-1     | Single Well Response Test Hydraulic Conductivity Estimates                      | 3.33 |
| Table              | 3-2     | Single Packer Permeability Test Hydraulic Conductivity Estimates                | 3.35 |
| Table              | 3-3     | Groundwater Licences and Registrations in the RAA                               | 3.59 |
| Table              | 3-4     | Summary of Groundwater Laboratory Analytical Results                            | 3.65 |
| Table              | 3-5     | Summary of Laboratory Analytical Results from the Domestic Well                 | 0 71 |
| Talala             | 1 1     | Testing Program                                                                 |      |
| Table -            |         | Observed versus Simulated Heads and Calculated Residuals                        |      |
| Table -<br>Table - |         | Residual Statistics from Steady-State Calibration<br>Calibrated Parameters      |      |
| Table              |         | Summary of Numerical Groundwater Model Simulation Runs                          |      |
| Table              |         | Summary of Transient Simulation Timesteps                                       |      |
| LIST OF            | F FIGUR |                                                                                 |      |
| Figure             |         | Groundwater Resources Assessment Area                                           | 23   |
| Figure             |         | Groundwater Monitoring Well and Geotechnical Borehole                           |      |
|                    |         | Locations                                                                       | 2.6  |
| Figure             | 2-3     | Lithological Data Used in the 3D CSM                                            |      |
| Figure             |         | Oblique Angle Overview of 3D CSM                                                |      |
| Figure             |         | Overview of 3D CSM Subsurface Data Distribution                                 |      |
| Figure             |         | Regional Stratigraphic Column                                                   |      |
| Figure             | 3-3     | Topography of the Expanded RAA                                                  |      |
| Figure             | 3-4     | Bedrock Topography and Subcrop Formations                                       | 3.6  |
| Figure             | 3-5     | Distribution of Basal Silt, Sand and Gravel                                     | 3.10 |
| Figure             | 3-6     | Isopach Map of the Basal Silt, Sand and Gravel                                  | 3.11 |
| Figure             | 3-7     | Distribution of Till                                                            |      |
| Figure             | 3-8     | Isopach Map of the Glacial Till                                                 |      |
| Figure             | 3-9     | Distribution of Glaciolacustrine Deposits (Clay)                                |      |
| Figure             |         | Isopach Map of the Glaciolacustrine Deposits                                    |      |
| Figure             | 3-11    | Distribution of Recent Fluvial Deposits                                         | 3.22 |



| Figure 3-12                                                                                                                                                                              | Isopach Map of the Recent Fluvial Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.23                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Figure 3-13                                                                                                                                                                              | Hydrostratigraphic Cross-section Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |
| Figure 3-14                                                                                                                                                                              | Geological Cross-Section A-A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.28                                                                                                            |
| Figure 3-15                                                                                                                                                                              | Geological Cross-Section B-B'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
| Figure 3-16                                                                                                                                                                              | Geological Cross-Section C-C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.30                                                                                                            |
| Figure 3-17                                                                                                                                                                              | Geological Cross-Section D-D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.31                                                                                                            |
| Figure 3-18                                                                                                                                                                              | Geological Cross-Section E-E'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.32                                                                                                            |
| Figure 3-19                                                                                                                                                                              | Water Table Elevation in the Unconsolidated Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.37                                                                                                            |
| Figure 3-20                                                                                                                                                                              | Potentiometric Surface of the Upper Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.41                                                                                                            |
| Figure 3-21                                                                                                                                                                              | Mapped Groundwater Spring Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.45                                                                                                            |
| Figure 3-22                                                                                                                                                                              | Water Table-Potentiometric Surface Difference Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.46                                                                                                            |
| Figure 3-23                                                                                                                                                                              | Depth to Groundwater and Recharge-Discharge Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.47                                                                                                            |
| Figure 3-24                                                                                                                                                                              | Hydrographs of Monitoring Wells Completed in Unconsolidated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
|                                                                                                                                                                                          | Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Figure 3-25                                                                                                                                                                              | Hydrographs of Monitoring Wells Completed in Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.51                                                                                                            |
| Figure 3-26                                                                                                                                                                              | Hydrographs of Monitoring Wells Completed in Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |
|                                                                                                                                                                                          | (continuation of Figure 3-25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
| Figure 3-27                                                                                                                                                                              | GOWN Well Hydrographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| Figure 3-28                                                                                                                                                                              | Groundwater Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| Figure 3-29                                                                                                                                                                              | Histogram of Water Well Depth in the RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Figure 3-30                                                                                                                                                                              | Diagram of Monitoring Well Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |
| Figure 4-1                                                                                                                                                                               | 3D Overview of the RAA and Numerical Model Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
| Figure 4-2                                                                                                                                                                               | Overview of 2D Surface Mesh within the Numerical Model Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                                                                             |
| Figure 4-3                                                                                                                                                                               | Refined 2D Mesh in the Vicinity of the Off-Stream Reservoir and Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| Figure 4-4                                                                                                                                                                               | Refined 2D Mesh along the Diversion Channel and Elbow River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.7                                                                                                             |
| Figure 4-5                                                                                                                                                                               | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.7<br>4.9                                                                                                      |
| Figure 4-5<br>Figure 4-6                                                                                                                                                                 | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.7<br>4.9<br>4.10                                                                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7                                                                                                                                                   | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7<br>4.9<br>4.10<br>4.10                                                                                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8                                                                                                                                     | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.7<br>4.9<br>4.10<br>4.10<br>4.11                                                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9                                                                                                                       | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.11                                                                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10                                                                                                        | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.11<br>4.12                                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11                                                                                         | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.11<br>4.12                                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10                                                                                                        | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model                                                                                                                                                                                                                                                                                                                                                                   | 4.7<br>4.9<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12                                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12                                                                          | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain                                                                                                                                                                                                                                                                                                                                                         | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12<br>4.14                                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13                                                           | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA                                                                                                                                                                                                                                                                                                           | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.14<br>4.14                              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-14                                            | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels                                                                                                                                                                                                                                             | 4.7<br>4.9<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.14<br>4.17<br>4.22                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-14<br>Figure 4-15                             | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Comparison of Residuals to Simulated Water Levels                                                                                                                                                                                        | 4.7<br>4.9<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.14<br>4.17<br>4.22                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-14                                            | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs<br>(from Volume 4, Appendix J, Section 2, Figure 2-4)                                                                                                                     | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.23                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-14<br>Figure 4-15                             | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs<br>(from Volume 4, Appendix J, Section 2, Figure 2-4)                                                                                                                     | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.23                      |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-13<br>Figure 4-15<br>Figure 5-1               | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs<br>(from Volume 4, Appendix J, Section 2, Figure 2-4)<br>Example of Hydrographs Used for Time Varying Specified Head<br>Boundary Conditions in Elbow River                | 4.7<br>4.9<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.23<br>4.23              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-13<br>Figure 4-15<br>Figure 5-1               | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Comparison of Residuals to Simulated Water Levels<br>Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs<br>(from Volume 4, Appendix J, Section 2, Figure 2-4)<br>Example of Hydrographs Used for Time Varying Specified Head | 4.7<br>4.9<br>4.10<br>4.11<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.23<br>4.23              |
| Figure 4-5<br>Figure 4-6<br>Figure 4-7<br>Figure 4-8<br>Figure 4-9<br>Figure 4-10<br>Figure 4-11<br>Figure 4-12<br>Figure 4-13<br>Figure 4-13<br>Figure 4-15<br>Figure 5-1<br>Figure 5-2 | Refined 2D Mesh along the Diversion Channel and Elbow River<br>Hydraulic Conductivity Distribution in Layer 1<br>Hydraulic Conductivity Distribution in Layer 2<br>Hydraulic Conductivity Distribution in Layer 3<br>Hydraulic Conductivity Distribution in Layer 4<br>Hydraulic Conductivity Distribution in Layer 5<br>Hydraulic Conductivity Distribution in Layer 6<br>Hydraulic Conductivity Distribution in Layer 7<br>Locations of Specified Head Boundary Conditions in the Model<br>Domain<br>Location of Calibration Targets within RAA<br>Comparison of Observed versus Simulated Groundwater Levels<br>Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs<br>(from Volume 4, Appendix J, Section 2, Figure 2-4)<br>Example of Hydrographs Used for Time Varying Specified Head<br>Boundary Conditions in Elbow River                | 4.7<br>4.9<br>4.10<br>4.10<br>4.11<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.12<br>4.23<br>5.2<br>5.4<br>5.5 |



| Figure 5-5  | Simulated Steady State Heads for the EEX0 Scenario                  | 5.11 |
|-------------|---------------------------------------------------------------------|------|
| Figure 5-6  | Simulated Steady State Heads for the PPX0 Scenario                  | 5.12 |
| Figure 5-7  | Simulated Net Change in Head for the PPX0/EEX0 Scenario             | 5.13 |
| Figure 5-8  | Local Scale Cross Section A-A' Through the Off-stream Reservoir for |      |
|             | PPX0/EEX0 Scenarios                                                 | 5.15 |
| Figure 5-9  | Local Scale Cross Section B-B' Through Diversion Channel for        |      |
|             | PPX0/EEX0 Scenarios                                                 | 5.16 |
| Figure 5-10 | Local Scale Cross Section C-C' Through Diversion Channel and Off-   |      |
|             | stream Reservoir for PPX0/EEX0 Scenarios                            | 5.17 |
| Figure 5-11 | Simulated Head Distribution for the EEX1 Scenario at Timestep 650   | 5.19 |
| Figure 5-12 | Simulated Head Distribution for the PPX1 Scenario at Timestep 650   | 5.20 |
| Figure 5-13 | Simulated Net Change in Head for the PPX1/EEX1 Scenarios at         |      |
|             | Timestep 650                                                        | 5.21 |
| Figure 5-14 | Local Scale Cross Section A-A' Through the Off-stream Reservoir for |      |
|             | PPX1/EEX1 Scenarios at Timestep 650                                 | 5.24 |
| Figure 5-15 | Local Scale Cross Section B-B' Through Diversion Channel for        |      |
|             | PPX1/EEX1 Scenarios at Timestep 650                                 | 5.25 |
| Figure 5-16 | Local Scale Cross Section C-C' Through Diversion Channel and Off-   |      |
|             | stream Reservoir for PPX1/EEX1 Scenarios at Timestep 650            | 5.26 |
|             |                                                                     |      |

## LIST OF ATTACHMENTS

| Attachment A | Borehole Logs and Response Test Analysis             | A.1 |
|--------------|------------------------------------------------------|-----|
| Attachment B | Water Well Drilling Records                          | B.1 |
|              | Groundwater Monitoring Laboratory Analytical Results |     |
| Attachment D | QA/QC Data and Analysis                              | D.1 |
|              | Numerical Model Sensitivity Analysis                 |     |



## **Abbreviations**

| 3D CSM     | three-dimensional conceptual site model       |
|------------|-----------------------------------------------|
| ASTM       | American Society for Testing and Materials    |
| AWWID      | Alberta Water Well Information Database       |
| ASL        | above sea level                               |
| BGL        | below ground level                            |
| cfu/100 mL | colony forming units per 100 millilitre       |
| CSA        | Canadian Standards Association                |
| DEM        | digital elevation model                       |
| DOC        | dissolved organic carbon                      |
| GCDWQ      | Guideline for Canadian Drinking Water Quality |
| GIS        | geographic information system                 |
| GOWN       | groundwater observation well network          |
| HPC        | heterotrophic plate count                     |
| EIA        | Environmental Impact Assessment               |
| m          | metres                                        |
| mg/L       | milligram per litre                           |
| mpn/100 mL | most probable number per 100 millilitres      |
| μg/L       | microgram per litre                           |
| m ASL      | metres above sea level                        |
| m BGL      | metres below ground level                     |
| m³/day     | cubic metres per day                          |



| LAA         | local assessment area                   |
|-------------|-----------------------------------------|
| Lidar       | light detection and ranging             |
| PVC         | polyvinyl chloride                      |
| PDA         | Project Development Area                |
| QA/QC       | quality assurance and quality control   |
| RAA         | regional assessment area                |
| the Project | Springbank Off-stream Reservoir Project |



Introduction May 2019

# 1.0 INTRODUCTION

This technical data report provides updated information on groundwater resources that supports the EIA for the Springbank Off-stream Reservoir Project (the Project). This update was prepared in response to information requests received from AEP, the Canadian Environmental Assessment Agency (CEA Agency), and feedback from Indigenous groups.

Specifically, this report presents a consolidated update and replacement to the two reports in Volume 4, Appendix I of the EIA: Hydrogeology Baseline Technical Data Report, and Groundwater Numerical Modelling Technical Data Report.

The principal updates include:

- a geographically expanded RAA, which now covers an expanded area south of the Elbow River Valley, including the Tsuut'ina Nation Reserve within the Elbow River watershed
- an expanded baseline assessment with additional information for areas south of the Elbow River Valley
- an expanded numerical groundwater flow model in accordance with the expanded RAA
- additional model updates based upon Information Requests received from the National Resources Conservation Board (NRCB), AEP, and the CEA Agency following their review of the EIA filed in March 2018.

The remaining four main technical sections of this report are:

- 2, Methods
- 3, 3D CSM Results
- 4, Numerical Model Construction and Calibration
- 5, Model Simulations of Potential Effects on Groundwater

Sections 2 and 3 present the updated hydrogeology baseline assessment. This includes new information prepared for the expanded areas of the RAA and re-presents information that was previously presented and did not change as a result of that expanded area (i.e., some baseline information within the original RAA area did not change, but it is re-presented herein for continuity).



Introduction May 2019

Sections 4 and 5 present the updated numerical groundwater flow model and simulation results. While the overall scope and objective of the modeling remains to support the assessment of Project effects on groundwater, the geographic extent of the model domain has been expanded and some model parameters have been updated in response to some of the Information Requests. The operational scenarios that are simulated by the model include dry operations and flood operations/post-flood operations related to a design flood.



Methods May 2019

# 2.0 METHODS

## 2.1 DATA COMPILATION AND PRELIMINARY CONCEPTUAL HYDROSTRATIGRAPHIC FRAMEWORK DEVELOPMENT

The preliminary assessment of existing hydrogeological conditions involved compilation and review of data from various publicly available sources, including the following regional reports (among others):

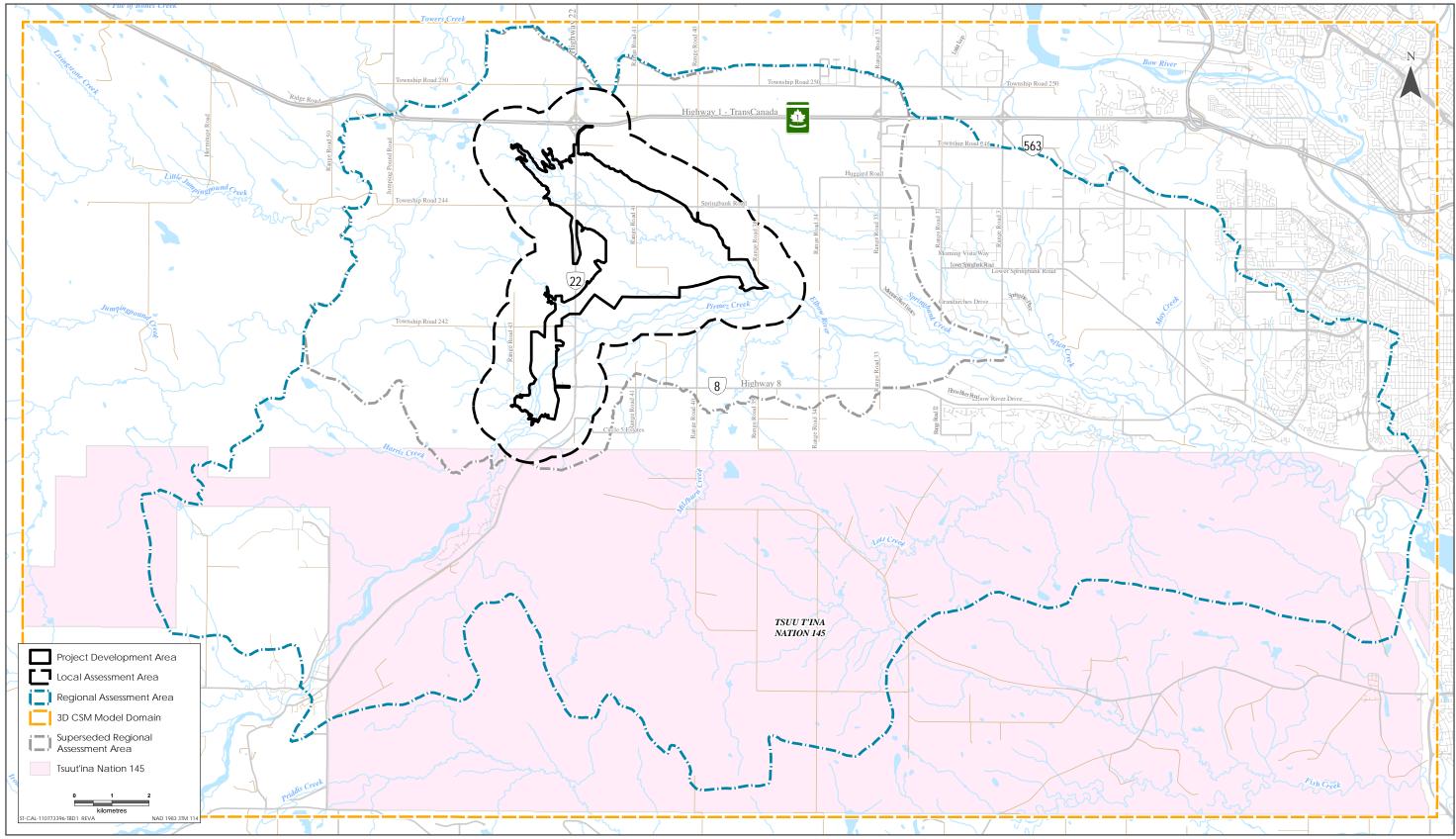
- Surficial Geology of Alberta Foothills and Rocky Mountains (Map 150) (AGS 1980)
- Surficial Geology of Alberta (Map 601) (Fenton et al. 2013)
- Quaternary Geology of Southern Alberta (Map 207) (Shetsen 1987)
- Bedrock Topography of Alberta (Map 602) (MacCormack et al. 2015)
- Geology of the Alberta Rocky Mountains and Foothills (Map 560) (Pana and Elgr 2013)
- Bedrock Geology of Alberta (Map 600) (Prior et al. 2013)
- Prairie Farm Rehabilitation Administration Regional Groundwater Resource Assessment (HCL 2002)
- Alberta Environment Water Well Information Database (AWWID)
- AMEC (2014) Preliminary Geotechnical Investigation
- Stratigraphic Framework of the Uppermost Cretaceous to Paleocene Strata of the Alberta Basin (Jerzykiewicz 1997)
- Hydrogeology of the Canmore Corridor and Northwestern Kananaskis Country (Toop and de la Cruz 2002)

In addition to these data sources, a geological mapping of outcrops that could be accessed within the RAA was completed. Mapping of 18 outcrops was completed in March 2016. The objectives of the mapping were to determine the distribution of lithological units, orientation of the bedding planes, fracture characteristics, and to estimate the strength of the bedrock material.

Where outcrops along the Elbow River could not easily be accessed to the west of Highway 22, they were scanned using ground-based light detection and ranging (LiDAR). This work was completed primarily for geotechnical purposes but was also used to support the development of the conceptual hydrostratigraphic framework for the expanded RAA.



Methods May 2019


All the information and data noted above were reviewed and used to create a preliminary conceptual hydrostratigraphic framework for the region. The preliminary framework was used in conjunction with the Project design to determine appropriate hydrogeology RAA and LAA and to guide the hydrogeological field program for the Project. Details regarding the framework and subsequent modelling process are presented in Section 2.6.

## 2.2 GROUNDWATER RESOURCES ASSESSMENT AREAS

The boundaries of the groundwater resources assessment areas were defined as the area over which potential interactions between the Project and groundwater resources could occur. The horizontal boundaries are presented in Figure 2-1. The vertical boundaries are defined by the ground surface as the uppermost surface and an arbitrary lower surface at an elevation of 1,000 m ASL. An arbitrary bound to the bottom of the RAA is chosen since the bedrock structure of the RAA consists of dipping bedrock units and several subcrops that preclude use of a single stratigraphic contact to establish a lower boundary. The groundwater resources assessment areas are defined as follows:

- PDA is the area of the physical Project footprint and consists of the area of physical disturbance associated with the diversion structure, diversion channel, dam and reservoir.
- LAA includes the PDA plus a 1-km buffer surrounding the PDA to address potential localized hydrogeological effects, including water level and water quality changes near Project infrastructure and localized changes in groundwater levels near the off-stream reservoir and dam. The LAA is the maximum area within which Project-related groundwater effects can be predicted or measured with a reasonable degree of accuracy and confidence. The LAA includes the PDA and adjacent areas where Project-related groundwater effects may be expected to occur.
- RAA supports physically-based boundary conditions for the numerical groundwater model. The expanded RAA covers approximately 43,050 ha (the original area of the RAA reported in the EIA was 14,000 ha) and is bounded by a surface and shallow groundwater flow divide in the north, the composite of the subwatersheds of three small tributaries to the Elbow River in the northwest, the Elbow River watershed boundary to the south, with the eastern/downstream extent bounded by a subwatershed just west of Glenmore Reservoir.





Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Groundwater Resources Assessment Area

Figure 2-1

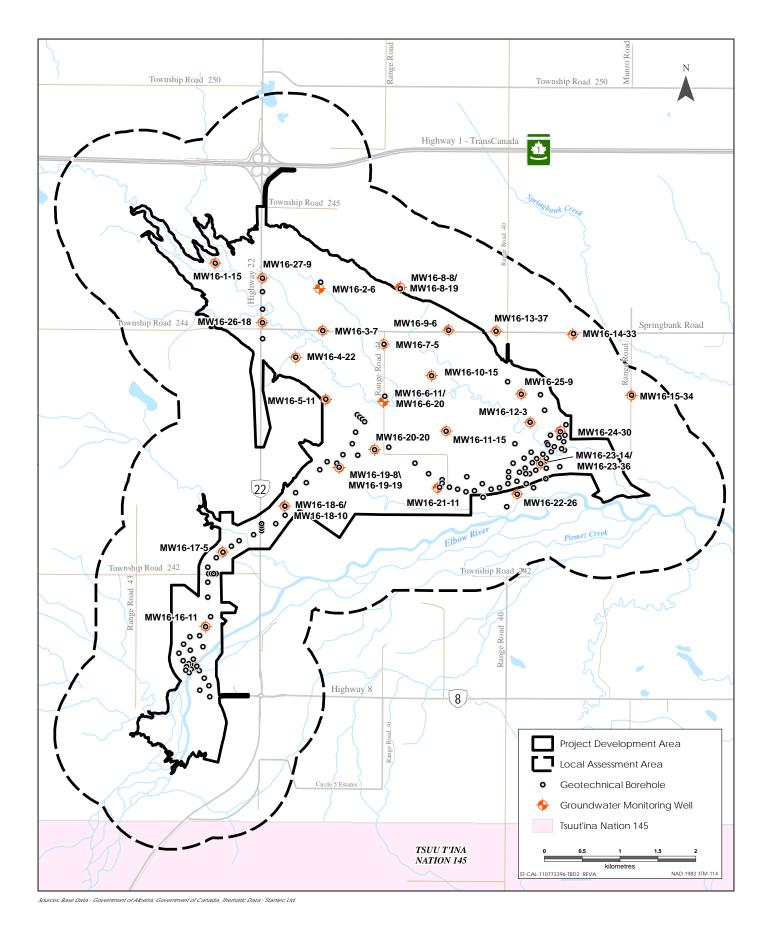
Methods May 2019



Methods May 2019

## 2.3 DRILLING AND MONITORING WELL INSTALLATION

The hydrogeological field program plan was developed based on the existing hydrogeologic information presented in Section 2.1 and the Project design. The planned geotechnical field program was also reviewed to reduce redundancies in drilling locations such that information from both investigations could be better used in a synergistic manner. Table 2-1 summarizes the instrumentation installed during the borehole drilling and monitoring well installation program. The borehole and monitoring well locations are presented in Figure 2-2. The locations were chosen based on the information in the preliminary hydrostratigraphic framework, as well as land access restrictions and physical constraints identified in the field, including underground utilities, pipeline right-of-way, and drilling rig access restrictions.


Prior to drilling, borehole locations were staked in the field. Once staked, the locations were surveyed, and utility sweeps were conducted around each borehole location. Alberta One Call underground utility locates were then completed.

The field program included drilling the following boreholes (summarized in Table 2-1) which were completed to characterize the hydrostratigraphy of the LAA:

- 17 shallow boreholes completed to depths ranging from 3.1 m to 25.9 m BGL to assess the unconsolidated Quaternary aged deposits
- 15 deep boreholes completed to depths ranging from 10.5 m to 42.7 m BGL to characterize the upper bedrock units

The installations summarized above also included nested installations at five locations, with one well completed in the unconsolidated deposits and one well completed deeper in bedrock in the same location. The nested installations were completed to characterize the deeper hydrostratigraphy and to determine the vertical hydraulic gradients beneath the LAA.





Groundwater Monitoring Well and Geotechnical Borehole Locations

Methods May 2019

| Well Name  | Borehole Name | 3TM East <sup>1</sup> | 3TM North <sup>1</sup> | Ground<br>Elevation<br>(m ASL) | Total Borehole<br>Depth<br>(m BGL) | Screen<br>from<br>(m BGL) | Screen to<br>(m BGL) | Water Level Elevation -<br>September 2016<br>(m ASL) | Completion Unit                | Pressure<br>Transducer/<br>Logger Installed | Response Test<br>Completed |
|------------|---------------|-----------------------|------------------------|--------------------------------|------------------------------------|---------------------------|----------------------|------------------------------------------------------|--------------------------------|---------------------------------------------|----------------------------|
| MW16-1-15  | GW1           | 5659967.3             | -33327.5               | 1211.71                        | 16.8                               | 12.2                      | 15.2                 | 1207.83                                              | Sandstone                      | Yes                                         | Yes                        |
| MW16-2-6   | GW2           | 5659623.9             | -31947.3               | 1204.26                        | 13.7                               | 3.1                       | 6.1                  | 1203.52                                              | Glaciolacustrine Clay          |                                             |                            |
| MW16-3-7   | GW3           | 5659073.5             | -31904.4               | 1201.07                        | 7.6                                | 3.7                       | 6.7                  | 1199.89                                              | Glaciolacustrine Clay and Silt |                                             |                            |
| MW16-4-22  | GW4           | 5658717.4             | -32259.3               | 1204.30                        | 22.9                               | 18.6                      | 21.6                 | 1200.97                                              | Sandstone                      |                                             | Yes                        |
| MW16-5-11  | GW5           | 5658164.7             | -31863.2               | 1210.63                        | 22.9                               | 8.2                       | 11.3                 | 1208.32                                              | Sandstone                      |                                             |                            |
| MW16-6-11  | GW6S          | 5658135.3             | -31100.5               | 1195.44                        | 10.7                               | 7.3                       | 10.4                 | 1195.28                                              | Glacial Till                   | Yes                                         |                            |
| MW16-6-20  | GW6D          | 5658133.9             | -31100.4               | 1195.51                        | 22.9                               | 18.9                      | 21.9                 | 1195.37                                              | Claystone/Siltstone            | Yes                                         | Yes                        |
| MW16-7-5   | GW7           | 5658895.2             | -31098.8               | 1199.28                        | 9.1                                | 2.1                       | 5.2                  | 1198.14                                              | Glaciolacustrine Clay and Silt | Yes                                         |                            |
| MW16-8-8   | GW8S          | 5659641.1             | -30875.7               | 1218.16                        | 7.9                                | 6.1                       | 7.6                  | 1212.02                                              | Glacial Till                   | Yes                                         |                            |
| MW16-8-19  | GW8D          | 5659641.2             | -30877.5               | 1218.13                        | 20.4                               | 16.5                      | 18.6                 | 1213.88                                              | Sandstone                      | Yes                                         | Yes                        |
| MW16-9-6   | GW9           | 5659076.8             | -30236.4               | 1204.52                        | 6.1                                | 4.3                       | 5.8                  | 1204.29                                              | Glaciolacustrine Clay and Silt |                                             | Yes                        |
| MW16-10-15 | GW10          | 5658478.2             | -30461.4               | 1195.40                        | 18.3                               | 12.2                      | 15.2                 | 1192.75                                              | Glacial Till                   |                                             | Yes                        |
| MW16-11-15 | GW11          | 5657742.9             | -30269.8               | 1193.68                        | 15.2                               | 11.6                      | 14.6                 | 1193.06                                              | Glacial Till                   |                                             |                            |
| MW16-12-3  | GW12          | 5657858.3             | -29160.3               | 1189.98                        | 12.2                               | 1.5                       | 3.1                  | 1187.23                                              | Glacial Till                   | Yes                                         |                            |
| MW16-13-37 | GW13          | 5659064.0             | -29610.3               | 1222.34                        | 37.2                               | 33.5                      | 36.6                 |                                                      | Claystone                      |                                             |                            |
| MW16-14-33 | GW14          | 5659018.4             | -28592.2               | 1202.24                        | 33.5                               | 30.5                      | 33.5                 | 1175.75                                              | Siltstone/Claystone            |                                             |                            |
| MW16-15-34 | GW15          | 5658214.9             | -27818.8               | 1190.10                        | 35                                 | 32.9                      | 34.4                 | 1172.94                                              | Siltstone                      | Yes                                         |                            |
| MW16-16-11 | DC-9          | 5655154.3             | -33453.6               | 1227.47                        | 14.1                               | 7.6                       | 10.7                 | 1226.12                                              | Glacial Till                   |                                             |                            |
| MW16-17-5  | DC-15         | 5656140.6             | -33226.5               | 1213.52                        | 11.2                               | 3.7                       | 5.2                  | 1208.97                                              | Glaciolacustrine Clay          |                                             |                            |
| MW16-18-6  | DC-21S        | 5656749.5             | -32406.6               | 1216.04                        | 6.1                                | 4                         | 5.5                  | 1212.69                                              | Basal Silt and Sand            | Yes                                         |                            |
| MW16-18-10 | DC-21D        | 5656750.6             | -32406.7               | 1216.03                        | 12.5                               | 9.1                       | 10.6                 | 1212.94                                              | Claystone                      |                                             | Yes                        |
| MW16-19-8  | DC-25S        | 5657262.2             | -31684.6               | 1202.73                        | 7.6                                | 6.1                       | 7.6                  | 1198.88                                              | Basal Silt and Sand            |                                             |                            |
| MW16-19-19 | DC-25D        | 5657263.2             | -31684.5               | 1202.80                        | 23.2                               | 17.1                      | 18.6                 | 1200.02                                              | Sandstone                      |                                             | Yes                        |
| MW16-20-21 | D2            | 5657498.6             | -31218.4               | 1206.60                        | 21.3                               | 19.8                      | 21.3                 | 1191.40                                              | Sandstone                      |                                             |                            |
| MW16-21-11 | D9            | 5656987.1             | -30383.8               | 1202.61                        | 14.1                               | 9                         | 10.5                 | 1193.00                                              | Sandstone                      |                                             |                            |
| MW16-22-26 | D27           | 5656907.3             | -29330.9               | 1190.70                        | 27.4                               | 22.9                      | 25.9                 | 1182.94                                              | Glacial Till                   |                                             |                            |
| MW16-23-14 | D36S          | 5657309.6             | -29019.7               | 1190.54                        | 14                                 | 11                        | 14                   | 1186.74                                              | Glacial Till                   |                                             |                            |
| MW16-23-36 | D36D          | 5657308.3             | -29019.3               | 1190.56                        | 45.7                               | 35.68                     | 37.18                | 1187.18                                              | Siltstone                      |                                             |                            |
| MW16-24-30 | D51           | 5657740.5             | -28761.8               | 1194.50                        | 30.8                               | 29                        | 30.5                 | 1186.37                                              | Sandstone                      |                                             | Yes                        |

## Table 2-1 Monitoring Well Completion Details



Methods May 2019

#### Table 2-1 Monitoring Well Completion Details

| Well Name                     | Borehole Name       | 3TM East <sup>1</sup> | 3TM North <sup>1</sup> | Ground<br>Elevation<br>(m ASL) | Total Borehole<br>Depth<br>(m BGL) | Screen<br>from<br>(m BGL) | Screen to<br>(m BGL) | Water Level Elevation -<br>September 2016<br>(m ASL) | Completion Unit | Pressure<br>Transducer/<br>Logger Installed | Response Test<br>Completed |
|-------------------------------|---------------------|-----------------------|------------------------|--------------------------------|------------------------------------|---------------------------|----------------------|------------------------------------------------------|-----------------|---------------------------------------------|----------------------------|
| MW16-25-9                     | BS3                 | 5658231.0             | -29274.7               | 1197.44                        | 9.4                                | 6.1                       | 9.1                  | 1190.50                                              | Glacial Till    |                                             | Yes                        |
| MW16-26-18                    | H6                  | 5659178.1             | -32702.7               | 1204.56                        | 18.3                               | 15.8                      | 18.3                 | 1204.41                                              | Claystone       | Yes                                         |                            |
| MW16-27-12                    | H9                  | 5659766.2             | -32702.3               | 1207.67                        | 18.9                               | 10.1                      | 11.6                 | 1207.45                                              | Glacial Till    |                                             |                            |
| NOTE:                         |                     |                       |                        |                                |                                    |                           |                      |                                                      |                 |                                             |                            |
| <sup>1</sup> Coordinate syste | em is NAD83 3TM 114 |                       |                        |                                |                                    |                           |                      |                                                      |                 |                                             |                            |



Methods May 2019

The 32 boreholes and monitoring wells were completed between May 1 and August 29, 2016. The drilling program was completed in conjunction with the geotechnical drilling program, which was conducted from March 21 to August 25, 2016. The hydrogeology drilling program was completed by All-Service Drilling and included a combination of auger, ODEX and rotary coring. A hydrogeologist was on-site for the drilling and monitoring well installations, and performed the following tasks:

- coordinating land access
- reviewing borehole locations and utility locates
- supervising subcontractors
- logging of the auger cuttings, ODEX returns and core
- determining appropriate well completion intervals based on field observations

To maintain consistency with the geotechnical drilling program, the borehole names for the monitoring wells that overlap between the geotechnical and hydrogeological drilling programs include a prefix to reference the following Project components:

- D dam
- DC diversion channel
- DS river structures (service spillway and diversion inlet)
- BS borrow source
- H highway embankment and bridge

Boreholes with the monitoring wells installed use the prefix "MW" for monitoring well, followed by the year of installation, a unique well identifier and the approximate completion depth in metres. For example, monitoring well MW16-1-15 was completed in 2016 at location 1 and the bottom of the completion interval is at a depth of approximately 15 m BGL.

Drilling of the unconsolidated material above bedrock was completed using a track- or truck-mounted auger drilling rig. Drilling through the bedrock material involved a combination of auger drilling where conditions would allow (if weathered or weakly lithified bedrock was encountered), air rotary, and rotary coring where required as part of the geotechnical field program.

Samples were collected at varying intervals in conjunction with the geotechnical drilling program and included undisturbed Shelby tube samples and bulk samples of auger cuttings. Samples were stored in moisture-tight containers and transported to a laboratory in Calgary for testing. While most sampling and testing was specific to the geotechnical investigation, the following tests were also used to support the hydrogeological assessment:

- moisture content (ASTM D2216, CSA A23.2-11A)
- particle size distribution by sieve analysis (ASTM D422)



Methods May 2019

- particle size distribution by hydrometer (ASTM D422)
- permeability test, flexible wall/falling head (ASTM D5084)

Borehole logs for each hydrogeological drilling location are presented in Attachment A.

The shallower monitoring wells were installed with screened intervals within the first water-bearing unit encountered. The deeper (bedrock) monitoring wells were installed in the first water-bearing bedrock unit, excluding the weathered upper portion of the bedrock, which was generally in hydraulic communication with the unconsolidated deposits.

Monitoring wells were constructed of 51 mm (2") flush threaded Schedule 40 polyvinyl chloride (PVC) pipe and end caps. Well screens were constructed from flush threaded 10 slot (0.010") PVC. The length of well screens varied from 1.5 to 3.1 m depending on the characteristics of the water-bearing interval encountered. Shorter screens were used where discrete water-bearing intervals could be identified and targeted, while longer screens were used where water-bearing intervals were thicker or not easily identifiable. Monitoring wells were completed with either flush-mounted protectors or aboveground steel casing protectors installed over the PVC well casing, depending on landowner requirements. Monitoring well completion details are presented in the borehole logs in Attachment A.

Following drilling and completion of the monitoring wells, each well was developed by pumping until most fines were removed or until dry (in the case of low-yielding wells). The purpose of development was to remove fine-grained materials from around the filter pack, improve the hydraulic efficiency of the filter pack and improve hydraulic communication between the filter pack and geologic formation. Well development results in more representative groundwater samples, hydraulic head measurements, and improved hydraulic conductivity estimates.

A horizontal and vertical (geodetic) survey of new monitoring well locations was completed, which allowed for the determination of accurate top of well-casing elevations and water-level elevations based on depth to water measurements. Precise elevation control is required for interpretation of hydraulic gradients and groundwater flow. Survey coordinates for the well locations are presented in Table 2-1.

## 2.4 HYDRAULIC CONDUCTIVITY TESTING

After the new monitoring wells were developed and water levels had recovered to static, rising head response tests were completed at 10 representative monitoring wells to collect information to estimate the hydraulic conductivity of the materials adjacent to the completion intervals.

In addition to the single well response tests, packer testing was completed as part of the geotechnical drilling program. In total, 37 single packer permeability tests were conducted in five boreholes to determine the permeability of the bedrock interval. The tests were completed at the base of the borehole after the borehole had been advanced to its maximum depth.



Methods May 2019

## 2.5 GROUNDWATER MONITORING AND ANALYSIS

The groundwater monitoring and sampling program was conducted between September 27 and October 6, 2016. It included the following tasks:

- measuring and recording depth to water and depth to bottom of well (total depth)
- purging each monitor of three well volumes or until they were essentially dry, using a combination of dedicated bailers and electric pumps
- obtaining field measurements of temperature, pH and electrical conductivity at the time of sample collection
- labelling sample containers with the monitor number, date of collection and analyses required, prior to collection of the sample
- collection and preservation (where required) of representative groundwater samples in laboratory-supplied containers
- collection of blind duplicate samples for quality assurance and quality control (QA/QC) purposes
- transport of samples in temperature-moderated coolers and submission of samples to Maxxam Analytics laboratory in Calgary, Alberta

In total, 31 of the 32 new monitoring wells were monitored and sampled. The remaining monitoring well (MW16-13-37) could not be located and may have been destroyed during re-grading and addition of gravel to fix rutting caused during the drilling program. In total, 33 samples, including two duplicate QA/QC samples, were submitted for analysis of the following parameters in order to characterize existing groundwater chemistry:

- routine chemistry parameters
- dissolved metals (including low-level mercury)
- total mercury (low level)
- nutrients (ammonia, total Kjeldahl nitrogen, orthophosphate, phosphorus)
- dissolved organic carbon (DOC)
- benzene, toluene, ethylbenzene, xylenes and F1 to F2 fraction hydrocarbons
- bacteriological parameters (heterotrophic plate count, total coliforms, fecal coliforms)

Data logging pressure transducers were installed in 10 monitoring wells during the groundwater monitoring program to record ongoing pressure data. The locations of the data logging pressure transducers were chosen to achieve spatial distribution across the LAA and to include the various hydrostratigraphic units. One barometric pressure transducer was also deployed to record atmospheric pressure required to correct the pressure data from the other unvented transducers installed in monitoring wells. All loggers were set to record pressure data on an hourly



Methods May 2019

basis. The data was downloaded from the loggers and used to calculate potentiometric elevations calibrated with manual field measurements.

## 2.5.1 Quality Assurance and Quality Control

Quality assurance and quality control protocols were implemented during sample collection, storage and transport, including:

- use of disposable nitrile gloves and dedicated bailers for purging monitoring wells and collecting samples
- decontamination and rinsing of the water level meter and water quality probe with demineralized water between each monitoring well
- storage of samples at moderate temperature in coolers during storage and transport
- collection of duplicate groundwater samples during monitoring
- submission of samples to Maxxam Analytics Inc., a Canadian Association for Laboratory Accreditation accredited laboratory, under standard chain of custody protocols

Duplicate groundwater samples were collected as part of the QA/QC program to evaluate the precision or reproducibility of the analytical data between samples. Two blind, duplicate samples were submitted along with the groundwater sample submissions.

# 2.6 DEVELOPMENT OF THE THREE-DIMENSIONAL CONCEPTUAL SITE MODEL

This section summarizes the process used to construct the 3D conceptual site model (3D CSM). A discussion of the salient features of the 3D CSM is presented in Section 3.1 along with related mapping products derived from the 3D CSM generation and workflow.

The publicly available historical data summarized in Section 2.1 and the Project-specific field data were used to build a 3D CSM for the groundwater resources within the RAA. The 3D CSM covers approximately 81,000 ha as an orthogonal domain that contains the 43,050 ha RAA.

The intent of the 3D CSM was to synthesize the available data to:

- improve the understanding of the local and regional physiographic setting
- develop a hydrostratigraphic framework of the RAA with consistent topology
- provide the basis for the numerical groundwater flow model



Methods May 2019

The 3D CSM platform allows for more effective conceptualization and clearly demonstrates the relationships between the geology, hydrogeology, monitoring network and other physical features of the RAA. The larger area covered by the 3D CSM also allows data from outside the RAA to improve the resolution of the geological/hydrogeological framework inside the RAA. The 3D volumes created in the model can also be exported directly for use in numerical modelling software.

LiDAR data for the RAA were obtained from AltaLIS to form the topographical layer of the model. The AltaLIS "LiDAR 15 DEM" data were processed into 15-m post spacing with an accuracy of 30 cm, which is used to create a high-resolution digital elevation model (DEM). Recent air photo coverage of the RAA, regional maps and GIS shapefiles were also added to the model and overlaid on the topography.

Construction of the modelled surfaces and volumes was based on the compilation of stratigraphic structure elevation interpretations (picks) from the borehole drilling program described in Section 2.2, additional picks from selected records held in the Alberta Water Well Information Database (AWWID), mapped bedrock outcrop locations and bedrock elevation picks from the HCL (2002) regional groundwater assessment of the area. Regional geological reports and mapping products described in Section 2.1 were also used to guide the interpretation of the hydrostratigraphic framework. In total, 2,050 unique well records obtained through project-specific field work and through analysis of public data resources were used to generate the geological and hydrogeological framework of the RAA.

Lithological data for areas within the LAA used the 32 borehole logs from the hydrogeological field investigation and the additional 125 borehole logs from the geotechnical investigation. Additional lithological data for both the LAA and RAA were obtained from bedrock elevation picks established by HCL (2002), recent water well drilling records from the AWWID postdating the HCL (2002) analysis, and interpretations based on regional mapping products discussed in Section 2.1. In total, 1,745 bedrock elevation picks from the HCL (2002) report were incorporated into the model; well records that did not encounter bedrock were culled from the data used in the 3D CSM.

Development of the hydrostratigraphic framework within the LAA was derived primarily from the interpretation of borehole lithologies and descriptions. For areas outside the LAA, the unconsolidated deposits were interpreted based on AGS Map 601 (Fenton et al. 2013) and assumed unit thicknesses based on drilling results within the LAA. An additional 149 AWWID records that were not considered in the HCL (2002) analysis that were outside the LAA (but within the RAA) were added to the model to provide additional interpretation and verification of the modelled surfaces.

Figure 2-3 presents the distribution of the monitoring wells, AWWID drilling records and HCL (2002) bedrock picks across the 3D CSM domain.

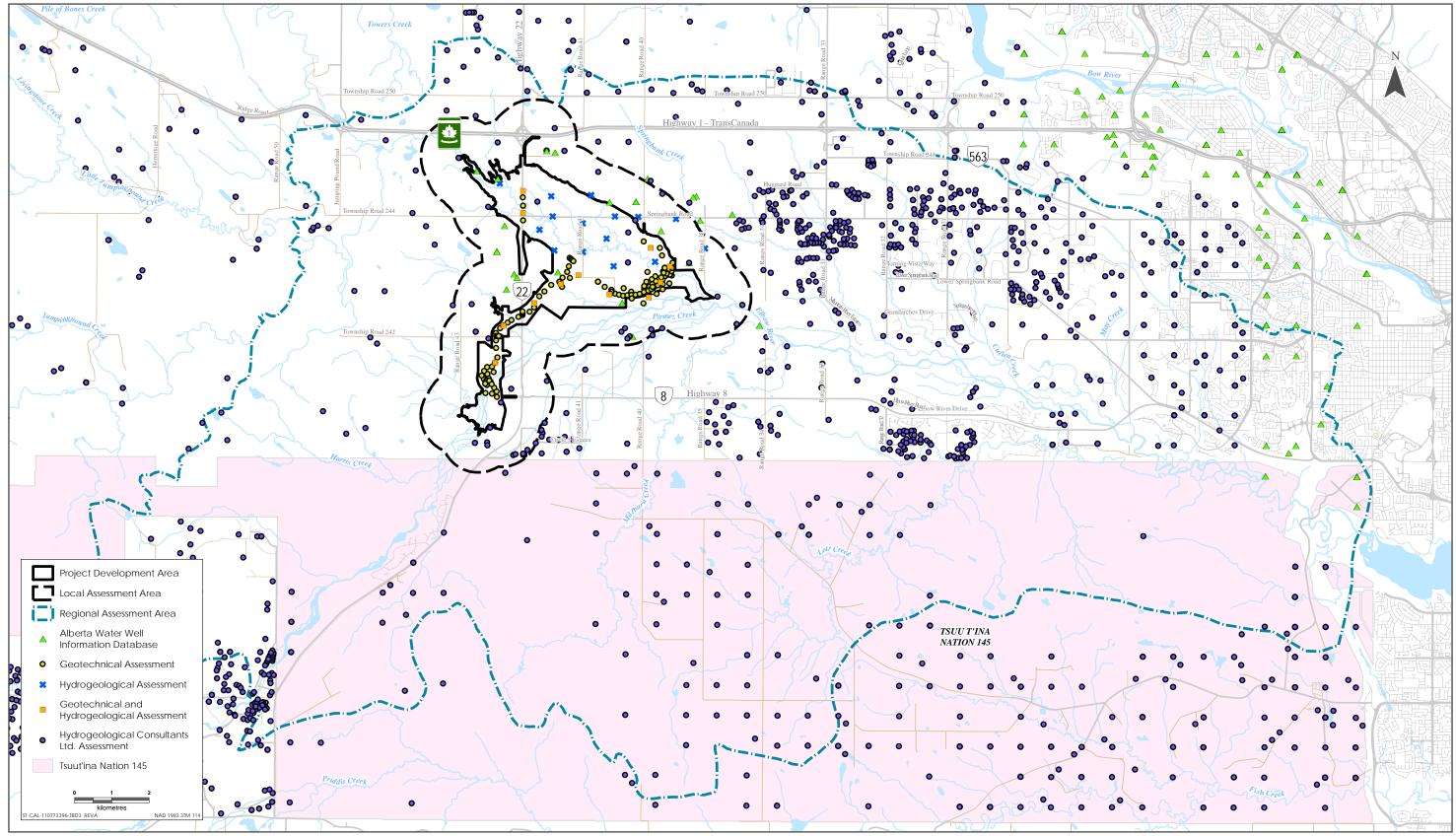


Methods May 2019

The compiled hydrostratigraphic picks were used to develop the 3D CSM using Leapfrog Works<sup>™</sup> software. The modelling was completed in an iterative process whereby reinterpretation or culling of boreholes that were inconsistent with the overall hydrostratigraphic framework was conducted during each iteration.

An interpreted water table surface—for the unconsolidated deposits and potentiometric surface for the bedrock units—was created for the RAA. A potentiometric surface represents the elevation to which water rises in an open standpipe due to pressure in the aquifer. Where the potentiometric surface is not confined, it is equivalent to the water table in the unconfined areas of the aquifer. To compare and analyze the potential effects of confining conditions, a water table surface (phreatic surface) for the surficial geology and a potentiometric surface from deeper within the bedrock unit have been prepared and compared against each other.

The water table surface in the unconsolidated deposits is based on a combination of Project-specific groundwater monitoring data, water level data from AWWID drilling records with a total depth of less than 20 m BGL, and surface water elevations where shallow groundwater intersects the land surface (e.g., dugouts, wetlands, creeks, groundwater springs). The water levels within the LAA are well described, based on the data gathered during the Project-specific field program. Outside the LAA, water levels were derived from the AWWID and LiDAR data. Hydraulic head values were calculated based on elevations obtained from the LiDAR data for the Project and the recorded non-pumping static water levels in the database. Once these water table specific hydraulic head data were compiled, the water table surface was interpolated using geostatistical methods. A conditional statement was then applied to the interpolated water table surface to limit the areas it was predicted to be above land surface to the ground surface elevation.


Data on water levels that were stored in the AWWID required processing to records that are not representative of the upper bedrock units. Water levels for individual well records in the AWWID were manually removed if:

- wells were completed at depths greater than 80 m BGL
- they appeared anomalous compared with water levels in nearby groundwater wells
- the completion interval was inconsistent with surrounding wells

In the case of multiple adjacent completions, the well with the uppermost completion interval was used to reduce the possible effect of vertical hydraulic gradients on the gridded potentiometric surface.

Despite screening of the data, variations in the potentiometric surfaces may have also resulted from uncertainty in the elevation control based on the digital elevation model (DEM), temporal variations in water level measurements, pumping conditions at measured or nearby wells, multiple aquifer completions, vertical hydraulic gradients, and groundwater flow.





Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Lithological Data Used in the 3D CSM

Figure 2-3

Methods May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

# 3.0 3D CSM RESULTS FOR THE HYDROSTRATIGRAPHIC FRAMEWORK

The conceptual hydrostratigraphic framework for the LAA and RAA presented in this section is based on the 3D CSM.

Figure 3-1a presents an oblique view of the 3D CSM looking from the east with the RAA boundary overlain on the model and air photograph for reference. Figure 3-1a also shows the Tsuut'ina Nation 145 Reserve as a transparent polygon on the air photograph for reference. It should be noted that all the oblique views of the model except for the bedrock subcrop areas (Figure 3-4) are shown in the same orientation. Figure 3-1b shows the same view with a transparent model domain with all the lithological interval data integrated into the 3D model. The detail on Figure 3-1b depicts the multi-coloured interval data representing different geological media projected onto each borehole trace.

The black intervals represent undifferentiated bedrock material, as was reported in borehole logs from the AWWID. This convention is used to present the bedrock as a single volume in the 3D CSM. However, in the Project-specific boreholes where the bedrock lithology has been described in detail, the more porous and permeable intervals (sandstone and siltstone) are depicted in red, while the less permeable intervals are depicted in grey (claystone, mudstone and shale). Above the bedrock, the unconsolidated deposits are depicted on the borehole traces as follows:

- yellow basal silt, sand and gravel
- green till
- dark brown glaciolacustrine clay
- orange recent fluvial sand and gravel

Minor coal seams and thin bentonite beds were also noted in some boreholes but are not visible at the scale of the figure.

A regional stratigraphic column that shows the generalized stratigraphy beneath the expanded RAA is depicted in Figure 3-2. Brief descriptions of each stratigraphic unit, and a discussion of the additional salient features of the model are presented below. The descriptions and interpretation are based on the existing geological data sources summarized in Section 2.6 and information gathered as part of the hydrogeological and geotechnical field programs for the Project, as described in Sections 2.3 to 2.5.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

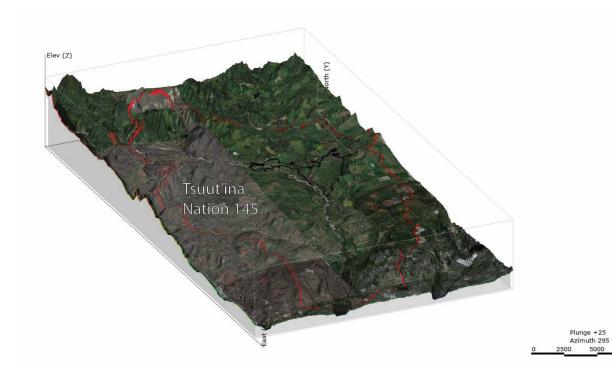



Figure 3-1a Oblique Angle Overview of 3D CSM



7500

3D CSM Results for The Hydrostratigraphic FRamework May 2019

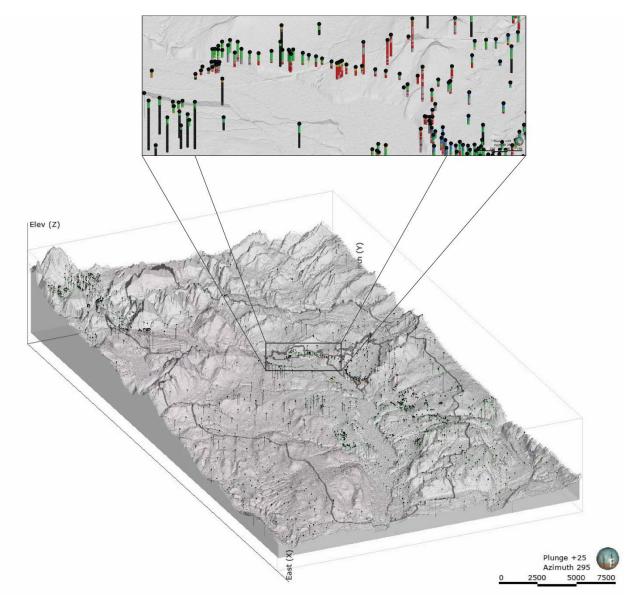
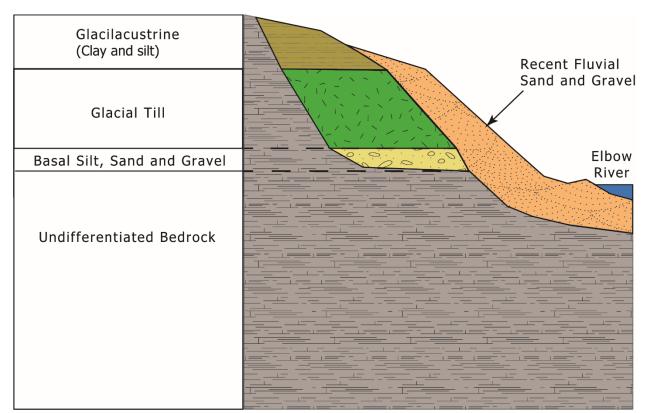




Figure 3-1b Overview of 3D CSM Subsurface Data Distribution



3D CSM Results for The Hydrostratigraphic FRamework May 2019



## Figure 3-2 Regional Stratigraphic Column

## 3.1 TOPOGRAPHY

The ground surface topography of the RAA is depicted by the DEM in Figure 3-3. The Tsuut'ina Nation Reserve and the hydrogeology PDA and LAA are also shown as an overlay for reference. Areas of higher elevation are denoted by red, and they grade down to areas of relatively low elevation, denoted by blue as shown on the colour scale. The topographic elevation ranges from approximately 1,365 m ASL on the bedrock ridges in the southwest corner of the RAA to approximately 1,125 m ASL along Elbow River at the eastern boundary.

The topography on the north side of the RAA consists of a series of ridges and valleys that are oriented northwest to southeast. The topography of most of the RAA is generally controlled by the bedrock structure, particularly in the southwest and, to a lesser extent, the patterns of glacial sediment deposition modify the topography in lower areas. Prominent ridges through the RAA are a result of formations that are more resistive to weathering; the valleys in between the ridges are more easily weathered or recessive.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

Near Elbow River and Jumpingpound Creek, the terrain is incised with one or more fluvial terraces within the river valleys. Hummocky regions have low to moderate relief, with gentle slopes that vary between 2% and 15%. Areas with low relief are generally underlain by till or glaciolacustrine sediments, while areas of moderate relief are underlain by till and glaciofluvial sediments. Outcrops of bedrock occur along ridges in the lower areas of the RAA and are moderately weathered and fractured but are generally covered by a thick sequence of unconsolidated sediment.

There are topographic highs in areas both north and south of Elbow River in the southwest portion of the RAA, which are interpreted to be deformed bedrock features with a thin veneer of overlying unconsolidated sediment.

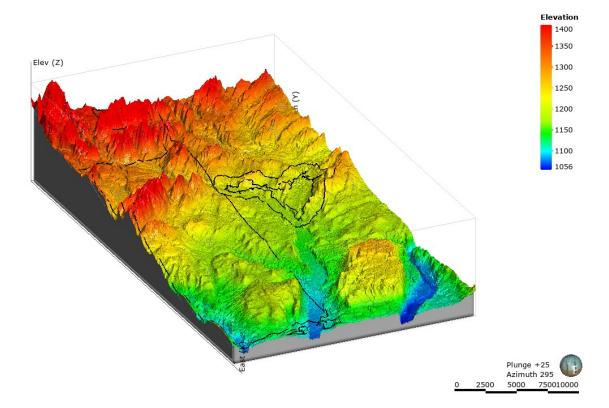



Figure 3-3 Topography of the Expanded RAA



3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.1.1 Bedrock

The bedrock surface within the RAA was shaped by, primarily, tectonism and associated formation of the Rocky Mountains to the west, glacial erosion/deposition, and erosional incision of modern-day river channels. The RAA is located in the disturbed belt that forms a transitional zone (foothills) between the Rocky Mountains to the west and prairie to the east. Bedrock topography is depicted in Figure 3-4. The Tsuut'ina Nation Reserve, PDA, and the hydrogeology LAA are also shown as an overlay for reference.

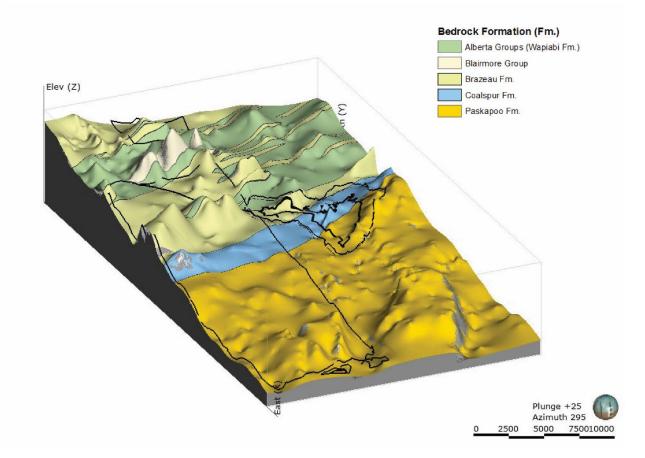



Figure 3-4 Bedrock Topography and Subcrop Formations



3D CSM Results for The Hydrostratigraphic FRamework May 2019

The bedrock units encountered beneath the quaternary deposits are presented below from oldest to youngest (this generally coincides with how they appear from west to east across the RAA except for the Blairmore Group:

- Blairmore Group. The Lower Cretaceous Blairmore Group dominantly composed of fluvial sediments. The two fluvial formations belonging to the upper Blairmore Group include the Beaver Mines and Mill Creek formations (Langenberg et al., 2000). This unit subcrops over a small topographically elevated area in the southwest of the RAA.
- Wapiabi Formation. The Upper Cretaceous-aged Wapiabi Formation of the Alberta Group is generally composed of shale and mudstone with minor siltstone, with the exception of the Chungo and Marshybank Members, which are sandstone dominated (Pana and Elgr 2013).
- Brazeau Formation. The Upper Cretaceous-aged Brazeau Formation is composed primarily of sandstone and laminated siltstone, along with olive green mudstone and granule to pebble conglomerate in the lower part. The upper part is composed of greenish-grey to dark grey mudstone, siltstone and greenish-grey sandstone. Thin coal and coaly shale beds and thin bentonite layers also occur in the upper part (Prior et al. 2013). In the foothills, the Brazeau Formation is the approximate lateral equivalent of the Scollard Formation on the plains (Hamblin 2010).
- Coalspur Formation. This Upper Cretaceous to Tertiary aged deposit formed as a marginal marine fluvial infill of the foreland basin. The Coalspur Formation is composed of thinly bedded to massive sandstone, siltstone, light grey to olive green mudstone, shale, coaly shale, coal seams and minor volcanic tuff in the lower portions (Pana and Elgr 2013).
- Paskapoo Formation. The Tertiary-aged Paskapoo Formation is made up of thick tabular sandstone, siltstone and mudstone (Glass 1990). The sandstones are fine to coarse grained and are cliff forming. The Paskapoo Formation also contains a significant amount of shale, carbonaceous shale, siltstone, rare coals seams and shell beds (Pana and Elgr 2013). In the central Rocky Mountains and foothills, the Paskapoo Formation is dominated by recessively weathering, grey to greenish-grey mudstone and siltstone with subordinate pale grey, thick-to thin-bedded, commonly cross-stratified sandstone; minor conglomerate; mollusc coquina; and coal (Prior et al. 2013). The Paskapoo Formation is the primary bedrock aquifer in the Elbow River watershed. Due to the stratigraphy of the layers of sandstone and shale within this formation, multiple aquifers occur at various depths in the rock (Waterline 2011). In the Project area, the yield value for the Paskapoo Formation aquifer is 35–175 m<sup>3</sup>/day (Waterline 2011).

The approximate subcrop boundaries of the bedrock units are presented in Figure 3-4 and are based on regional mapping by Pana and Elgr (2013), except for the contact between the Coalspur and Brazeau Formations. This contact was reinterpreted by Jerzykiewicz (1997) based on observation and description of the entrance conglomerate in outcrop along Highway 22. The entrance conglomerate marks the boundary between these two formations, and its presence was confirmed in the field.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

In the 3D CSM, the bedrock units were not differentiated from one another in a plan sense or vertically for the following reasons:

- All bedrock units were found to have similar lithologies (alternating sandstone, siltstone and claystone) and were inferred to have similar hydraulic properties.
- Substantial fracturing was noted in the bedrock, but no spatial relationships between fracture angle, intensity or connectivity could be identified.
- No spatial correlation in hydraulic conductivity values was noted.
- Regional mapping by HCL (2002) indicated that the permeable units of the Brazeau, Coalspur and Paskapoo Formations have the same range of apparent transmissivity in the RAA, as discussed in Section 3.3.
- Marker horizons or distinguishing lithological characteristics required to make positive formation assignments were not identified on the borehole logs or in the core at the depths of the investigation.

The bedrock descriptions (included on the borehole logs in Attachment A) generally consist of varying thicknesses of alternating siltstone, sandstone mudstone and claystone. Descriptions of each of these lithological are as follows:

- Sandstone occurrence is grey to brown, fine to medium-grained sandstone ranging from completely unlithified to well cemented and dry. Significant fracturing was noted in many intervals, with oxidation common along fracture planes. The upper sandstone beds beneath the unconsolidated deposits were highly weathered. Thicknesses of individual sandstone beds ranged from thin, centimetre-scale beds to a maximum of 15.3 m and an average thickness of 2.5 m.
- Siltstone occurrence is grey to brown and, in some intervals, greenish-grey siltstone. It is extremely weak and friable to well cemented, and it is highly fractured in some intervals, with oxidation along fracture planes. The average thickness of the interbedded siltstone beds is 2.5 m.
- Claystone occurence is medium grey to brown, generally blocky and not fissile-like shale. It is dry except where fractures are saturated. Fracturing varied from completely unfractured to, more often, highly fractured with oxidation and alteration of clay along fractures. Claystone was interbedded with the other lithologies described above, with an average thickness 1.9 m for each of the interbedded layers.

Based on regional mapping by Pana and Elgr (2013), the Brazeau thrust fault is located in the western portion of the LAA between the proposed diversion structure and the existing Highway 22 bridge; however, it was not identified in borehole or outcrop during the course of the field program. The thrust fault (reverse fault dipping less than 45°) has pushed the hanging wall block in the west over the footwall block in the east. Thrust faults in the region result in older



3D CSM Results for The Hydrostratigraphic FRamework May 2019

formations being thrust over younger formations. Although the fault was not identified, steeply dipping bedding angles were noted in the western portions of the LAA compared to sub-horizontal bedding in the east. This transition may mark the approximate location of the thrust fault.

### 3.1.2 Unconsolidated Sediment above Bedrock

As noted in Figure 3-2, the bedrock is shown as undifferentiated in grey at the base of the model. Moving upward in succession, the coarse-grained material at the base of the till is shown in yellow, and the till is shown in green. The glaciolacustrine clay is depicted in dark brown, and the recent fluvial deposits along the Elbow and Jumping Pound Rivers are depicted in orange. Each of these hydrostratigraphic units is described and spatial distribution within the CSM the domain is presented below.

### 3.1.2.1 Basal Silt, Sand and Gravel

In some portions of the LAA, a coarser grained unit occurs above the bedrock at the base of the till. This unit is most prominent near the Elbow River valley and consists of a mixture of brown sand, silt and gravel with variable fines. The distribution of the basal silt, sand and gravel deposits is shown in yellow in Figure 3-5. The Tsuut'ina Nation Reserve, PDA, and the hydrogeology LAA are also shown as an overlay for reference. While this unit may be more widespread within the RAA than the distribution shown, the data density in the PDA and LAA is sufficient, based on Project-specific data to allow correlation and mapping of this unit. An isopach thickness map of the basal silt, sand and gravel unit is presented for the LAA in Figure 3-6.

This unit was described in outcrop along Elbow River; outcrops were generally 0.5 m to 1.0 m thick and consist of clast-dominated diamicton. White and orange staining was noted, which indicates oxidation and mineral precipitation processes.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

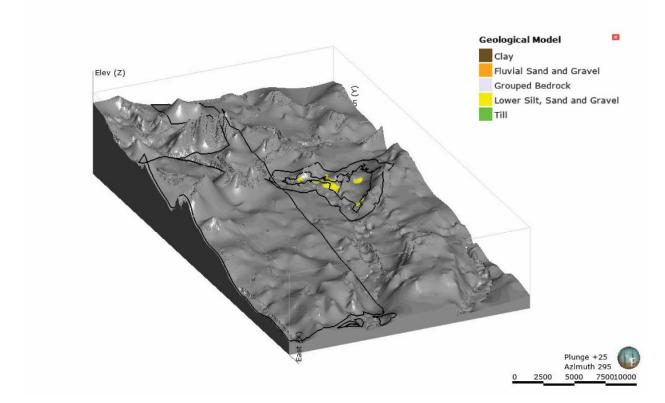
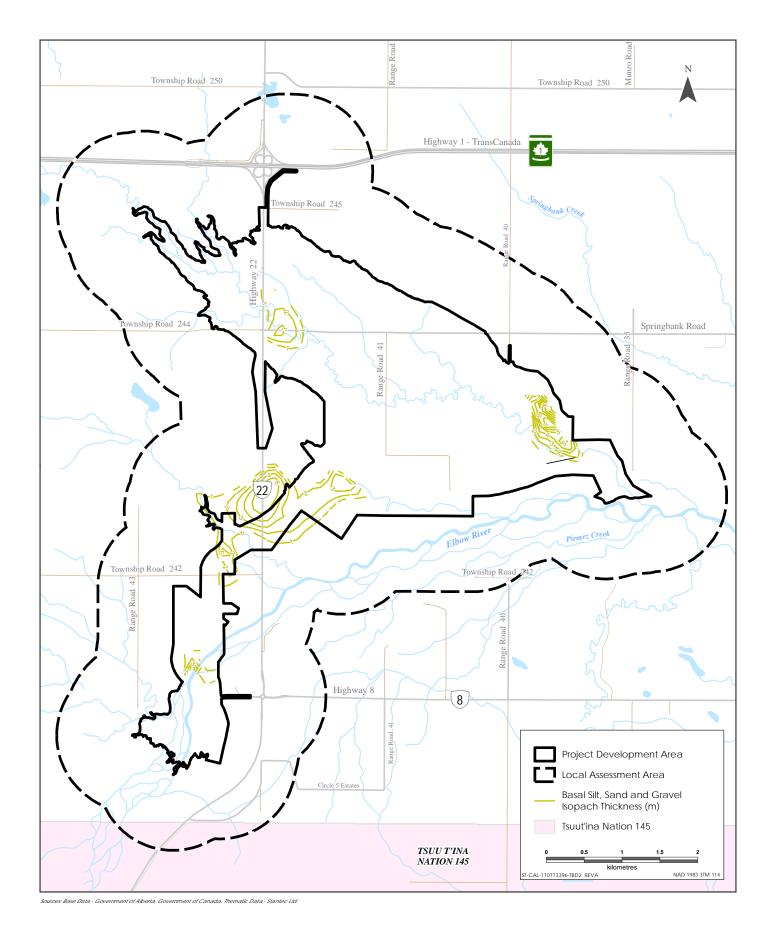




Figure 3-5 Distribution of Basal Silt, Sand and Gravel





Alberta transportation springbank off-stream reservoir project environmental impact assessment

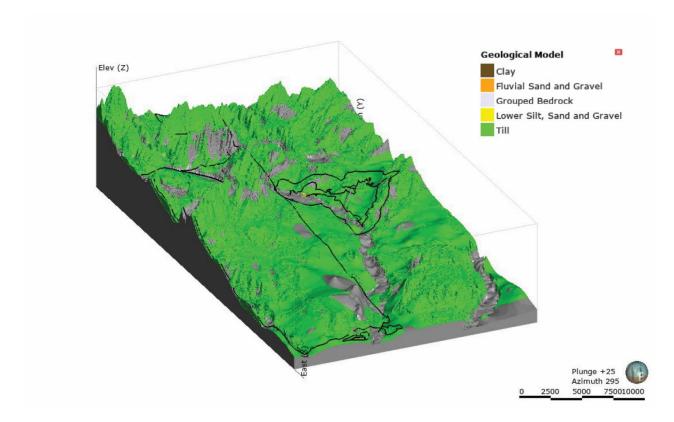
Isopach Map of the Basal Silt, Sand and Gravel

3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.1.2.2 Till

The unconsolidated deposits present beneath the majority of the RAA consist of Pleistocene Age glaciolacustrine clay and till (Fenton et al. 2013; Moran 1986). In the RAA, the till material was deposited by glacial ice as basal or lateral moraines. Based on the field observations and laboratory grain size analyses completed as part of the geotechnical drilling program, the till in the LAA is composed of a heterogeneous mixture of approximately equal parts clay and silt, a lower proportion of sand, and minor gravel. Silt and sand lenses are also present within the heterogeneous matrix. The till is described as generally stiff to very stiff or hard, medium to high plastic clay with silt and more minor sand.

Two main till sub-units are summarized as follows:

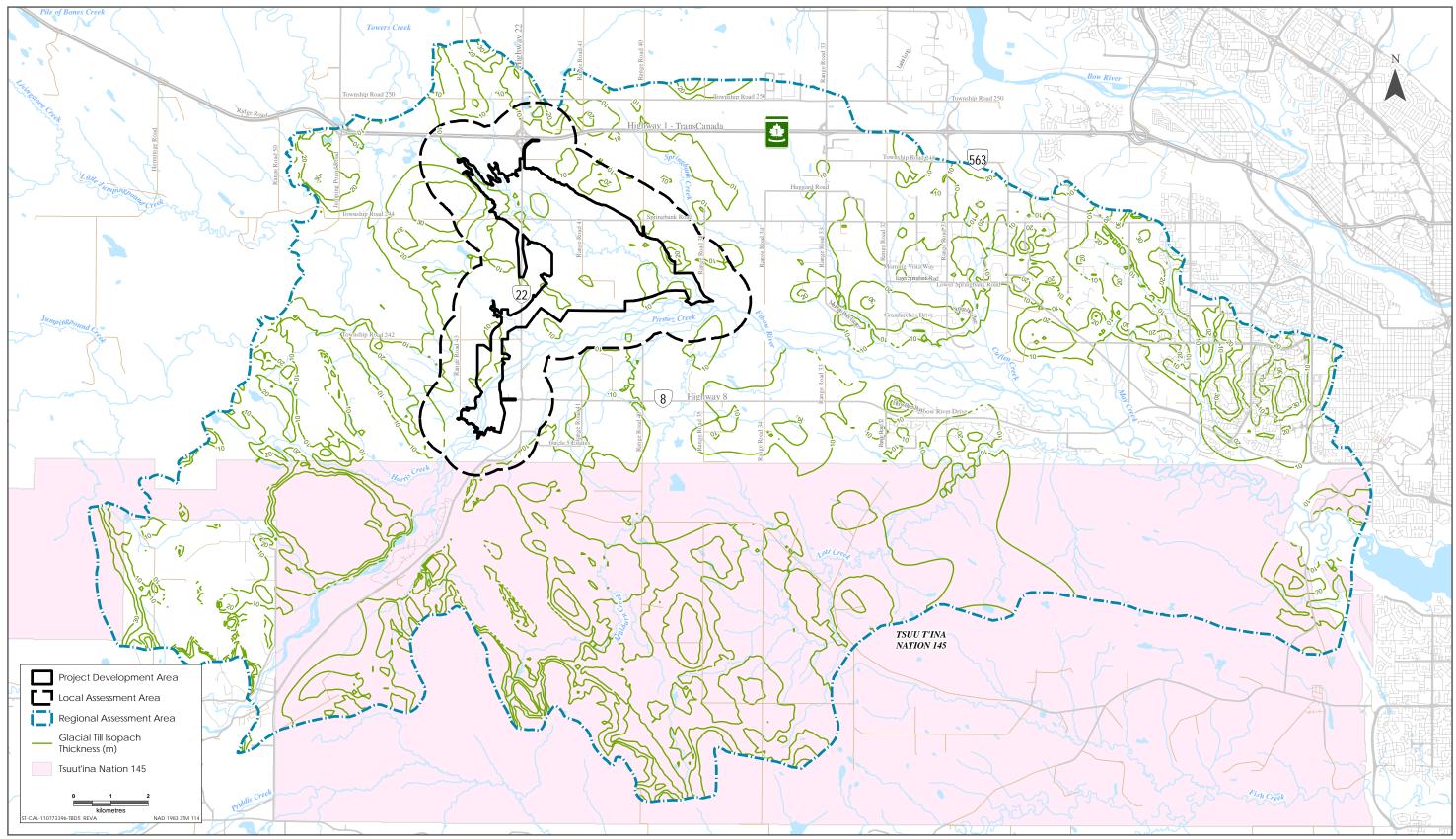

- Brown-grey subglacial till is dark brown to grey sandy, silty, clay with variable gravel. The till is described as hard with low to medium plasticity. The brow-grey subglacial till was encountered throughout the dam and diversion footprint. Cobble-sized clasts within the matrix were rounded to sub-rounded sandstones and carbonates.
- Upper brown till is a massive, matrix-supported, olive brown to brown, medium plastic clay, clay and silt with sand content increasing with depth. This unit was encountered in boreholes in the dam footprint and eastern portion of the diversion channel.

The till sub-units described above are not modelled in the 3D CSM due to their uncertain structure and because they share similar aquifer/aquitard properties.

The distribution of till across the RAA is depicted in green in Figure 3-7. The Tsuut'ina Nation Reserve, PDA, and the hydrogeology LAA are also shown as an overlay for reference. Figure 3-8 presents an isopach thickness map of the till material.



3D CSM Results for The Hydrostratigraphic FRamework May 2019








3D CSM Results for The Hydrostratigraphic FRamework May 2019





## Isopach Map of the Glacial Till

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.1.2.3 Glaciolacustrine Deposits

Glaciolacustrine clay overlies the till in the low-lying areas of the LAA. The silty clay was deposited in Glacial Lake Calgary, a proglacial lake formed by ice damming during the last deglaciation. The glaciolacustrine deposits are named the Calgary Formation (Moran 1986).

The distribution of this unit is presented in blue in Figure 3-9. The Tsuut'ina Nation Reserve, PDA, and the hydrogeology LAA are also shown as an overlay for reference. Figure 3-10 presents an Isopach thickness map of the glaciolacustrine unit. Within the LAA, the glaciolacustrine clay averaged 5.3 m thick in the boreholes where it was encountered.

Based on the field observations and laboratory grain size analyses, the glaciolacustrine clay in the LAA is composed of 50% to 70% clay, 30% to 40% silt and a minor proportion of sand. Typical of a lacustrine deposit, the clay was found to be laminated with silt and fine sand. This layering has resulted in relatively high hydraulic conductivities and anisotropy ratios (horizontal hydraulic conductivity: vertical hydraulic conductivity) compared to the underlying till; groundwater preferentially flows through the silt. The laminations and rhythmic bedding of the glaciolacustrine deposits can be observed along the banks of Elbow River in the RAA. Further discussion of hydraulic properties and groundwater flow is presented in Section 3.2.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

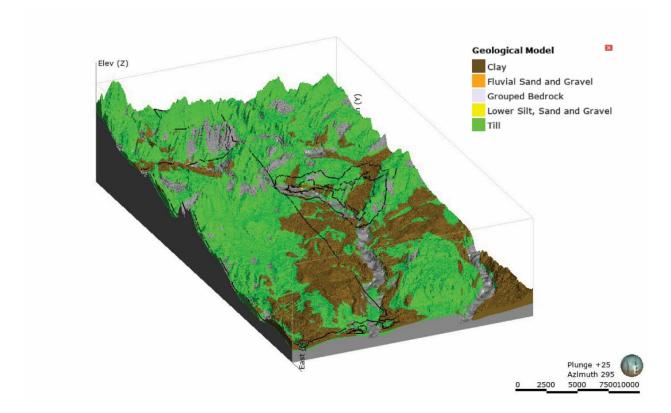
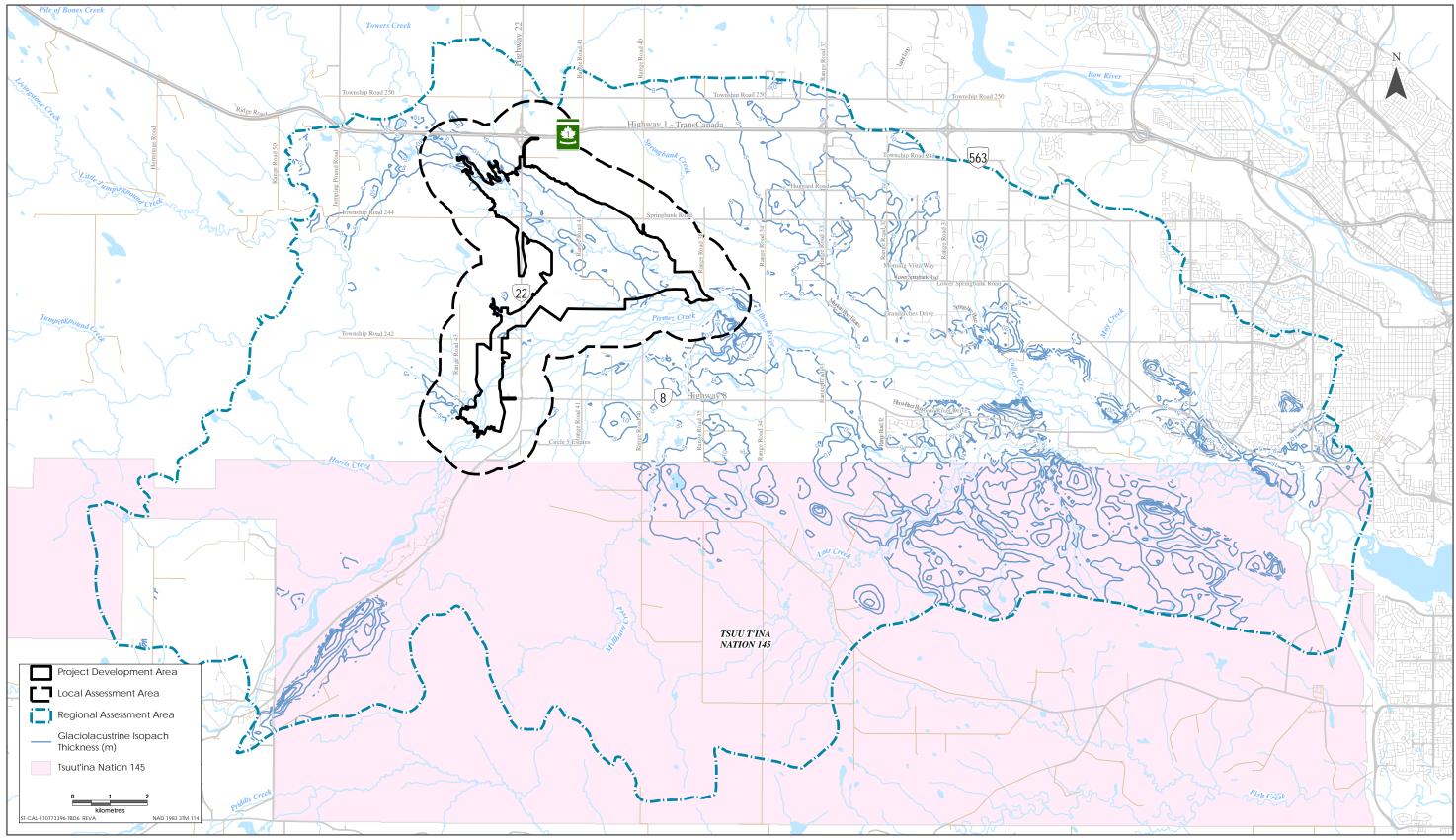




Figure 3-9 Distribution of Glaciolacustrine Deposits (Clay)





### Isopach Map of the Glaciolacustrine Deposits

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.1.2.4 Recent Fluvial Deposits

Post-glacial, fluvial channel sediments are in the Elbow River valley that extends across the RAA and in the Jumpingpound Creek channel in the western portion of the RAA. These sediments developed as the high-energy rivers, eroded and exported material from upstream areas and deposited coarse alluvium (sand and gravel) in the river channel. Localized areas of overbank deposits consisting of fluvial silt are also present (Moran 1986). The deposition of alluvium over Quaternary deposits or bedrock in the valleys resulted in the formation of alluvial aquifers, which are an important source of groundwater for the river and residents.

The alluvial aquifers provide temporary storage for water from Elbow River and Jumpingpound Creek during floods; the water is naturally released back into the rivers from bank storage after a flood recedes. Groundwater from the alluvial aquifer of Elbow River is essential in maintaining baseflow. Yields for the Elbow River alluvial aquifer range from 175 m<sup>3</sup>/day to 2,500 m<sup>3</sup>/day (Waterline 2011).

Geologically recent (post-glacial) fluvial deposits are depicted in orange in Figure 3-11, and they are described in the geotechnical logs for boreholes completed near the proposed diversion structure. The Tsuut'ina Nation Reserve, PDA, and the hydrogeology LAA are also shown as an overlay for reference on Figure 3-11. The fluvial deposits in this area are described as silty gravel with more minor sand, cobbles and boulders. An isopach map of the interpreted thickness of the fluvial deposits is presented in Figure 3-12.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

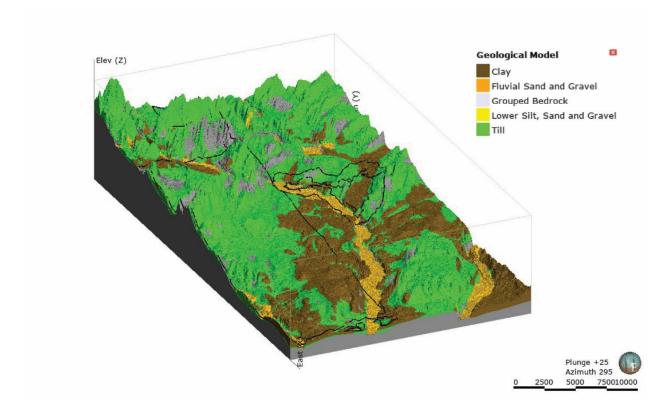
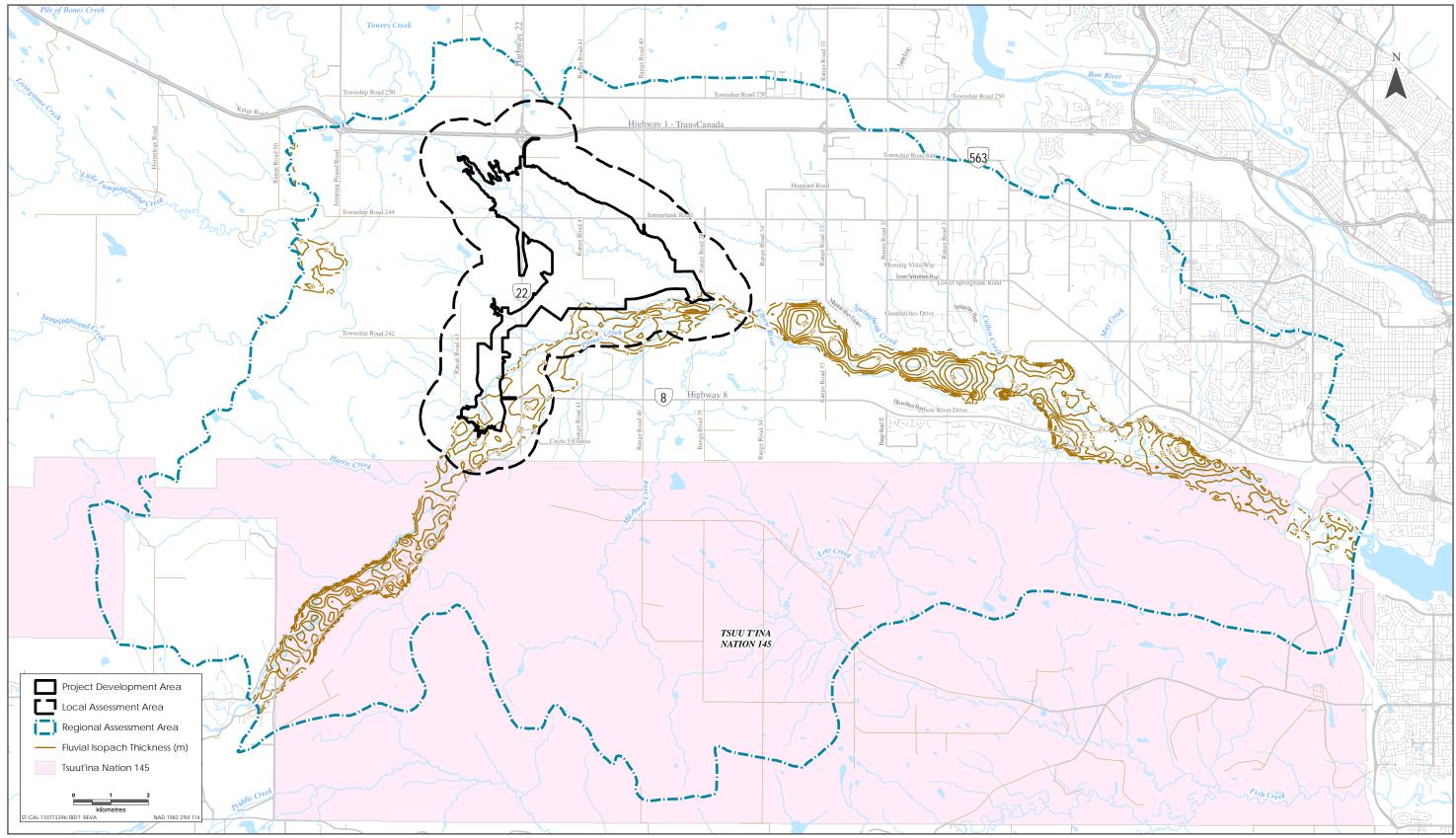




Figure 3-11 Distribution of Recent Fluvial Deposits





### Isopach Map of the Recent Fluvial Deposits

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

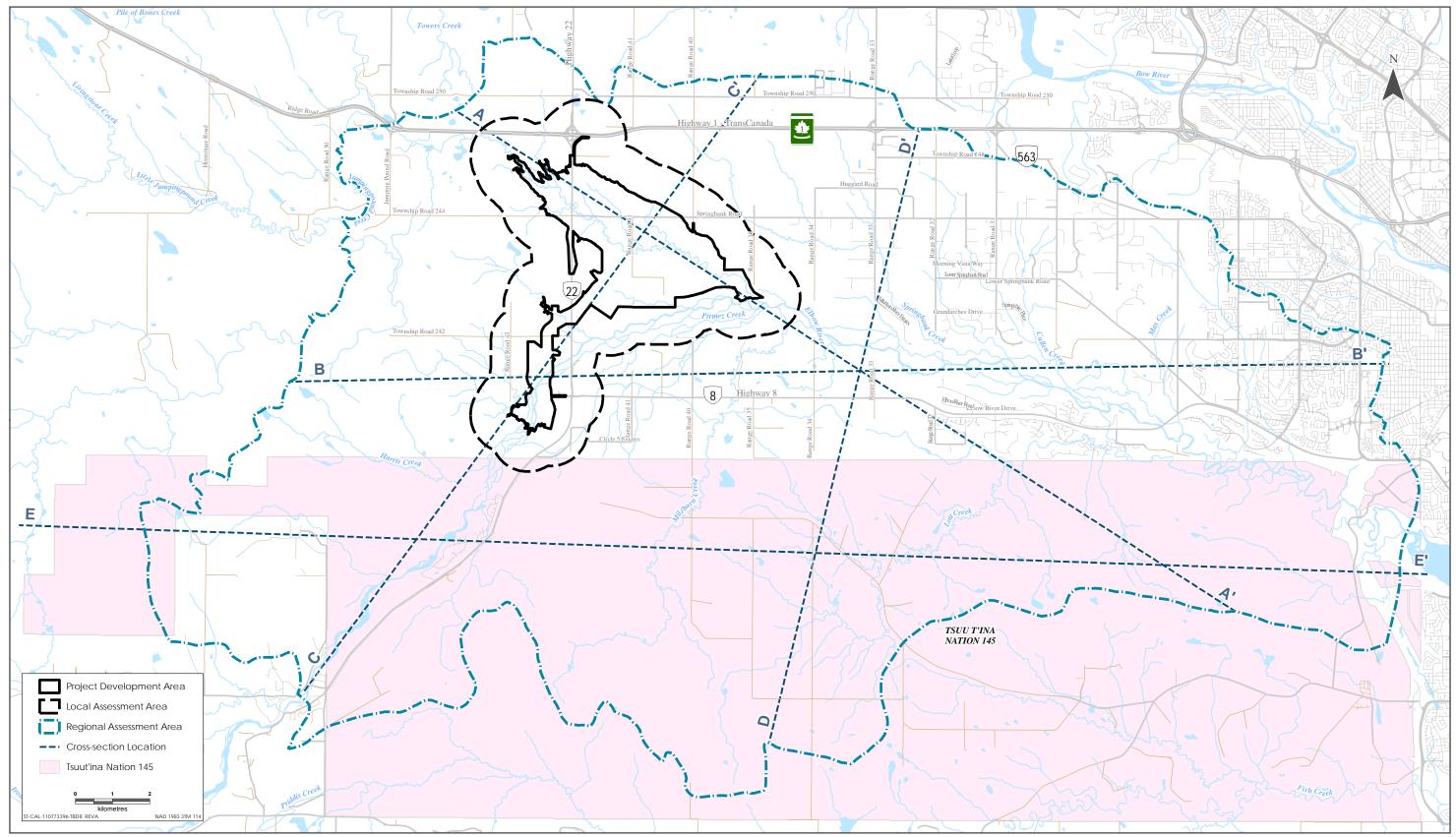
### 3.1.3 Cross-Sections

The locations of five hydrogeological cross-sections A–A' to E-E' in the RAA are shown on Figure 3-13. The locations of the cross-sections were chosen such that A-A' to C-C' intersect the PDA and LAA in different orientations. Sections D-D' and E-E' intersect other areas of the RAA that are not rendered in section by Sections A-A' through C-C'. The cross-section lines provide coverage throughout the RAA and used to generate the cross-section profiles presented in Figure 3-14 to Figure 3-18.

The cross-sections cut through the entire RAA and show the major hydrostratigraphic units from ground surface to the undifferentiated bedrock. The borehole traces presented on the sections are the locations of lithological data control points. Boreholes within 200 m to 500 m of each cross-section are projected onto the section (depending on the data density) and topographic change in and out of the plane of section. This was done to create clear images that did not project too many well traces on to section to reduce the obscuring effect on the rest of the image.

The cross-sections are annotated with notable features and boundaries including Tsuut'ina Nation Reserve 145, the PDA, LAA, and Elbow River. Cross-sections A-A' through C-C' include an inset of the PDA and LAA at a larger scale to see the detail and data control point density used to accurately model the PDA and LAA within the larger, regional-scale framework of the RAA. Cross-section B-B' (Figure 3-15) has an inset of the PDA and LAA focused on the diversion channel and shows the future channel geometry in cross-section. All cross-sections present both the interpreted water table surface and the interpreted bedrock potentiometric surface. Conceptual groundwater flow system arrows are also presented in cross-section to highlight groundwater flow divides at local, intermediate and regional scales. The conceptual flow arrows represent flow in section only. In some cases, the dominant flow vector direction would be perpendicular to the cross-section; e.g., flow is dominantly into the page, towards the Elbow River in cross-section E-E'.

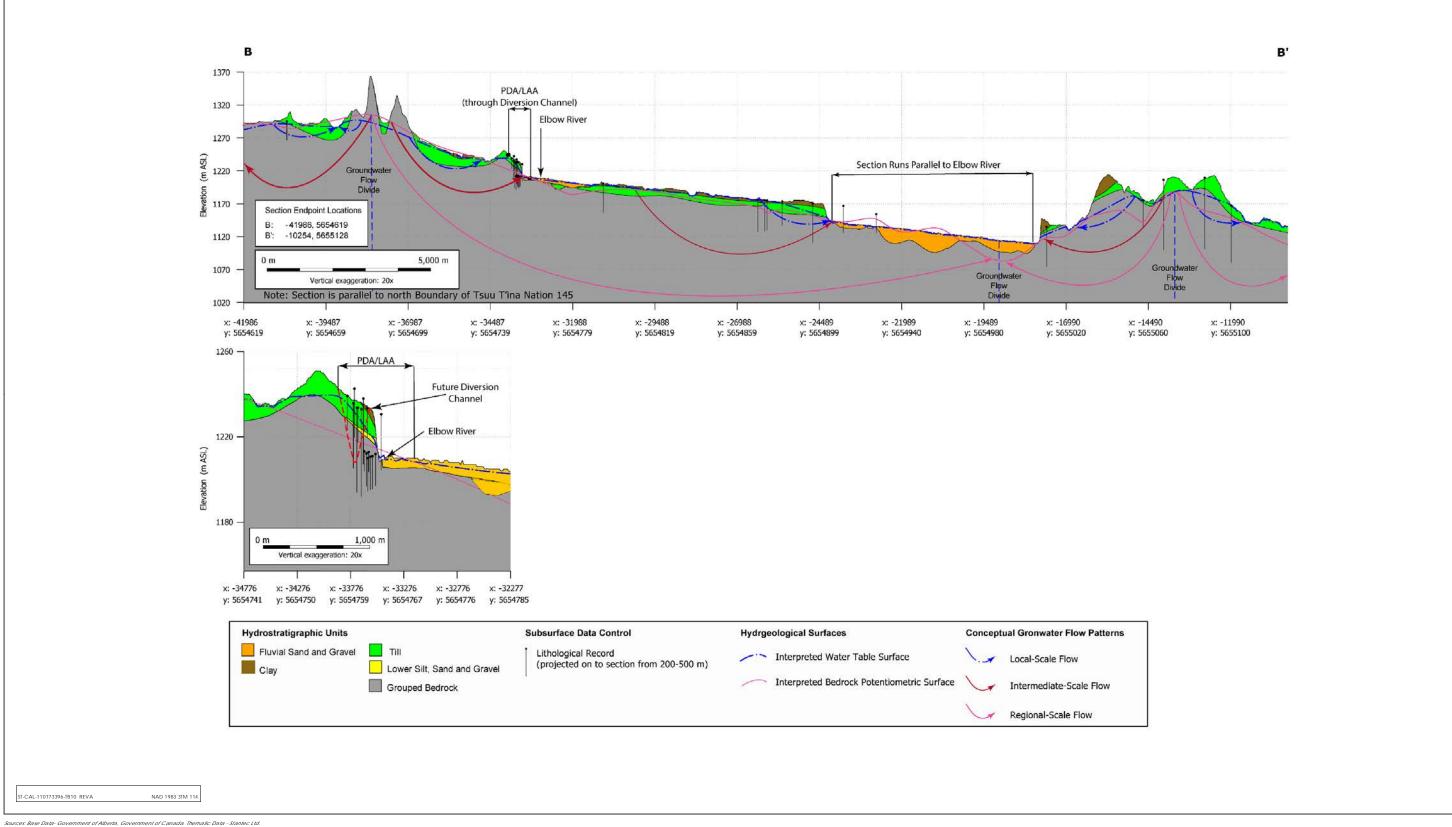
The cross-sections presented indicate several important concepts related to the hydrogeological framework and reinforce conceptual decisions related to application of boundary conditions in the numerical model presented in Sections 4.0 through 6.0. Key hydrogeological framework features used for the conceptual boundary conditions include:


- High topographic relief with variable land surface gradients are present within the RAA related to erosional unconformities and high energy fluvial processes.
- Limited lateral extent of low permeability confining layers lead to limited areas of interpreted confined conditions together with semi confined conditions evident in some areas. However, the majority of the RAA appears to act as an unconfined system with minor overpressures in areas with competent confining layer sediment.

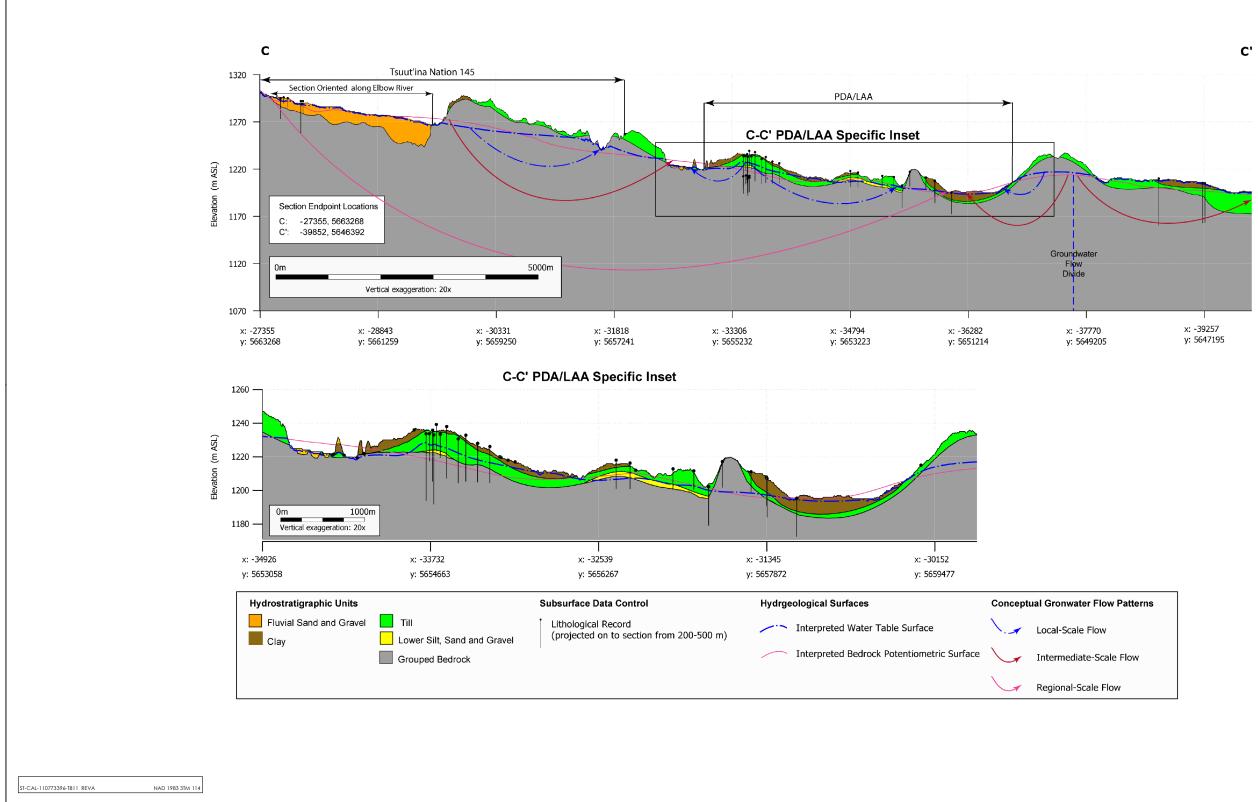


3D CSM Results for The Hydrostratigraphic FRamework May 2019

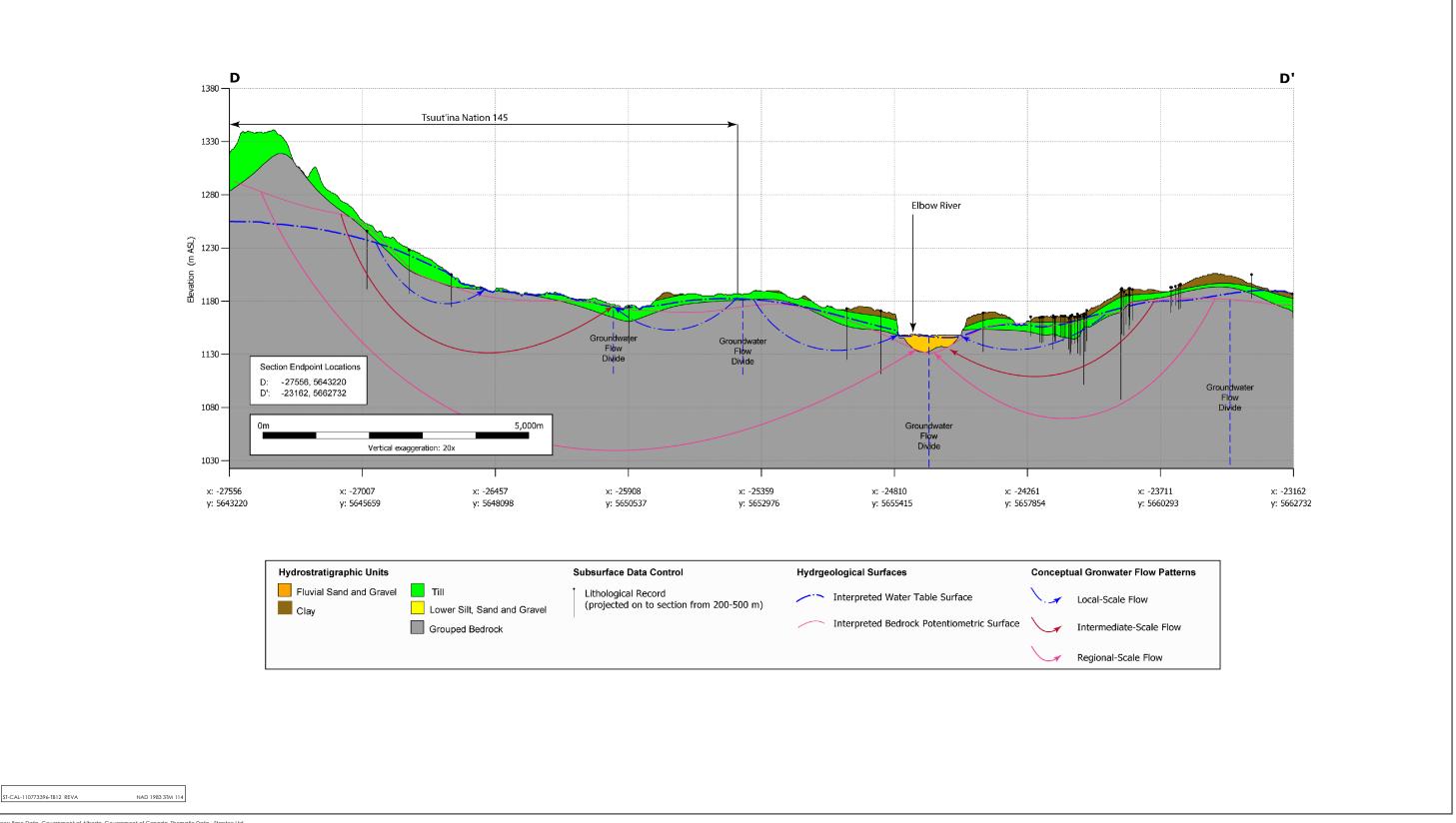
- Comparison of the interpreted water table surface to the bedrock potentiometric surface indicates there are potentially perched water tables in the unconsolidated sediment above bedrock, particularly in elevated recharge areas.
- The heads throughout the RAA appear to be very close to a hydrostatic pressure distribution and associated groundwater flow regime.
- In areas that there is a deviation from hydrostatic pressure distribution, there are generally two interpretive explanations:
  - Topographically elevated areas with water table elevation well above that of the bedrock potentiometric surface are related to development of perched aquifers, above the contiguous regional water table (generally hosted by the bedrock in elevated areas).
  - Areas where the potentiometric surface elevation exceeds that of the water table is likely to indicate semi-confined conditions.
- The regional water table is variably hosted by all hydrostratigraphic units given the topographic variability. In some topographically elevated areas, the unconsolidated material is unsaturated, and the water table is hosted by the bedrock. In other areas, the unconsolidated material hosts the water table. As such, head maps are not provided for specific hydrostratigraphic units, but rather an interpreted water table map and a bedrock potentiometric surface map is provided.



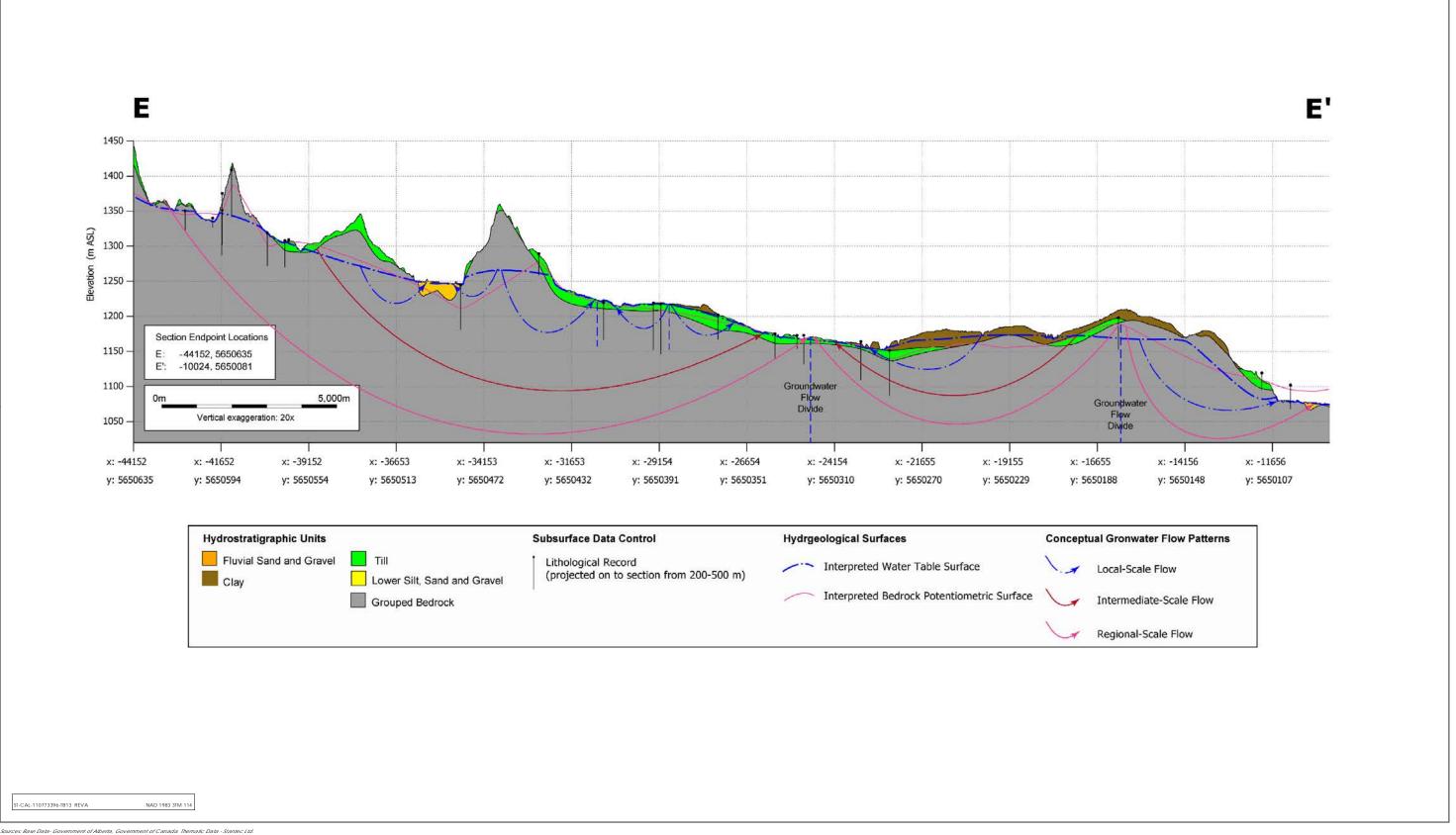




### Hydrostratigraphic Cross-section Locations




### Geological Cross-Section A-A'




### Geological Cross-Section B-B'



### Geological Cross-Section C-C'



### Geological Cross-Section D-D'



### Geological Cross-Section E-E'

3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.2 GROUNDWATER LEVELS AND FLOW REGIMES

Both the water table surface and the potentiometric surface were developed though geostatistical interpolation of water level measurements obtained during the 2016 groundwater monitoring program (see Section 2.5) along with water levels from the AWWID and surface water elevations of waterbodies within the RAA, based on LiDAR data. Further discussion of the methods used to create the potentiometric surfaces is provided in Section 2.6.

### 3.2.1 Hydraulic Conductivity

The hydraulic conductivity values of the material adjacent to the monitoring well completion intervals were based on the results of the single well response tests. The test results were interpreted using a combination of analytical methods and solutions depending on the characteristics of the aquifer or aquitard and the response curves generated. The analytical solutions used included Hvorslev (1951), Bouwer and Rice (1976), and the Kansas Geological Survey (KGS) model (Hyder et al. 1994). The response test analyses are presented in Attachment A. A summary of the hydraulic conductivity estimates is presented in Table 3-1.

|            |                                |                                   |                              | Estimated Hydraulic Conductivity<br>(m/s) |                                   |                           |
|------------|--------------------------------|-----------------------------------|------------------------------|-------------------------------------------|-----------------------------------|---------------------------|
| Well Name  | Completion<br>Depth<br>(m BGL) | Completion<br>Lithology           | Hydrostratigraphic<br>Unit   | Hvorslev<br>(1951)                        | KGS<br>(Hyder<br>et. al.<br>1994) | Bouwer-<br>Rice<br>(1976) |
| MW16-1-15  | 15.2                           | Sandstone                         | Bedrock                      | 1.2E-06                                   | 2.3E-06                           | -                         |
| MW16-4-22  | 21.6                           | Sandstone                         | Bedrock                      | 8.8E-07                                   | 1.9E-06                           | -                         |
| MW16-6-20  | 21.9                           | Claystone/Siltstone               | Bedrock                      | 2.8E-09                                   | 3.8E-09                           | -                         |
| MW16-8-19  | 18.6                           | Sandstone                         | Bedrock                      | 6.3E-07                                   | 2.2E-06                           | -                         |
| MW16-9-6   | 5.8                            | Glaciolacustrine<br>clay and silt | Glaciolacustrine<br>Deposits | 5.3E-08                                   | 2.2E-07                           | -                         |
| MW16-10-15 | 15.2                           | Till                              | Till                         | 2.5E-10                                   | 6.3E-10                           | -                         |
| MW16-18-10 | 10.6                           | Claystone                         | Bedrock                      | 4.2E-06                                   | 9.6E-06                           | -                         |
| MW16-19-19 | 18.6                           | Sandstone                         | Bedrock                      | 3.1E-06                                   | 9.2E-06                           | -                         |
| MW16-24-30 | 30.5                           | Sandstone                         | Bedrock                      | 1.5E-05                                   | -                                 | -                         |
| MW16-25-9  | 9.1                            | Till                              | Till                         | 2.4E-10                                   | -                                 | 8.2E-10                   |

### Table 3-1 Single Well Response Test Hydraulic Conductivity Estimates



3D CSM Results for The Hydrostratigraphic FRamework May 2019

Based on the single well response tests, the hydraulic conductivity of the unconsolidated deposits ranged from 2.4 x  $10^{-10}$  m/s in the till to 2.2 x  $10^{-7}$  m/s in the clay and silt of the glaciolacustrine deposits. Hydraulic conductivity estimates in the bedrock monitoring wells ranged from 2.8 x  $10^{-9}$  m/s in the siltstone and claystone to  $1.5 \times 10^{-5}$  m/s in the sandstone. The geometric mean hydraulic conductivity of the response tests completed in the bedrock wells (using the Hvorslev (1951) analysis) was  $8.7 \times 10^{-7}$  m/s.

The results of the 37 single-packer permeability tests completed as part of the geotechnical field investigation program are summarized in Table 3-2. The hydraulic conductivities estimated from the packer testing ranged from  $6.1 \times 10^{-8}$  m/s to  $6.5 \times 10^{-5}$  m/s, with a geometric mean value of  $1.2 \times 10^{-6}$  m/s.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

#### Table 3-2 Single Packer Permeability Test Hydraulic Conductivity Estimates

| Borehole<br>Name | Packer Test<br>Depth<br>(m BGL) | Completion Lithology              | Estimated<br>Hydraulic<br>Conductivity<br>(m/s) | Borehole<br>Name              | Packer Test<br>Depth<br>(m BGL) | Completion Lithology | Estimated<br>Hydraulic<br>Conductivity<br>(m/s) |
|------------------|---------------------------------|-----------------------------------|-------------------------------------------------|-------------------------------|---------------------------------|----------------------|-------------------------------------------------|
| D29              | 21.7-24.7                       | claystone/siltstone               | 2.6E-07                                         | D38                           | 15.2-18.2                       | siltstone/claystone  | 4.3E-05                                         |
|                  | 24.7-27.7                       | claystone/sandstone               | 6.1E-08                                         |                               | 18.7-21.7                       | claystone            | 3.0E-07                                         |
|                  | 27.2-30.2                       | claystone/siltstone/<br>Sandstone | 1.1E-07                                         | 1.1E-07<br>1.9E-07<br>2.5E-07 | 21.7-24.7                       | siltstone/claystone  | 3.2E-06                                         |
|                  | 30.7-33.7                       | claystone/siltstone               | 1.9E-07                                         |                               | 24.7-27.7                       | claystone/sandstone  | 4.5E-07                                         |
|                  | 33.7-36.7                       | claystone/sandstone               | 2.5E-07                                         |                               | 27.7-30.7                       | siltstone/claystone  | 1.9E-06                                         |
|                  | 36.7-39.7                       | claystone/sandstone               | 8.2E-08                                         |                               | 30.7-33.7                       | sandstone            | 2.3E-06                                         |
|                  | 39.7-42.7                       | sandstone/claystone               | 4.1E-07                                         |                               | 33.7-36.7                       | sandstone            | 2.8E-05                                         |
| D35              | 14.2-17.2                       | sandstone/claystone               | 6.5E-05                                         |                               | 36.7-39.7                       | siltstone/sandstone  | 4.9E-06                                         |
|                  | 17.2-20.2                       | siltstone/claystone               | 3.8E-06                                         |                               | 39.7-42.7                       | siltstone/claystone  | 1.5E-06                                         |
|                  | 20.2-23.2                       | claystone/siltstone               | 6.4E-07                                         |                               | 42.7-45.7                       | siltstone/claystone  | 3.8E-07                                         |
|                  | 23.2-26.2                       | siltstone/claystone               | 2.1E-06                                         | D51                           | 24.7-27.7                       | siltstone/claystone  | 3.2E-06                                         |
|                  | 26.2-29.2                       | sandstone                         | 9.0E-06                                         |                               | 27.7-30.8                       | claystone/sandstone  | 2.8E-06                                         |
|                  | 29.2-32.2                       | sandstone/claystone               | 9.0E-06                                         | D60                           | 21.6-23.1                       | sandstone            | 3.1E-07                                         |
|                  | 32.2-35.2                       | siltstone                         | 4.2E-06                                         |                               | 23.1-26.2                       | claystone/sandstone  | 1.8E-06                                         |
|                  | 35.2-38.2                       | claystone/siltstone               | 2.2E-07                                         |                               | 26.2-29.2                       | claystone            | 1.4E-07                                         |
|                  | 38.2-41.2                       | siltstone/sandstone               | 1.3E-06                                         |                               | 29.2-32.3                       | claystone/sandstone  | 2.4E-06                                         |
|                  | 41.2-44.2                       | sandstone/siltstone               | 1.4E-07                                         |                               | 32.3-35.3                       | claystone/sandstone  | 8.6E-06                                         |
|                  |                                 |                                   |                                                 |                               | 35.3-38.4                       | claystone/sandstone  | 3.8E-07                                         |
|                  |                                 |                                   |                                                 |                               | 42.1-45.1                       | claystone/sandstone  | 3.5E-07                                         |

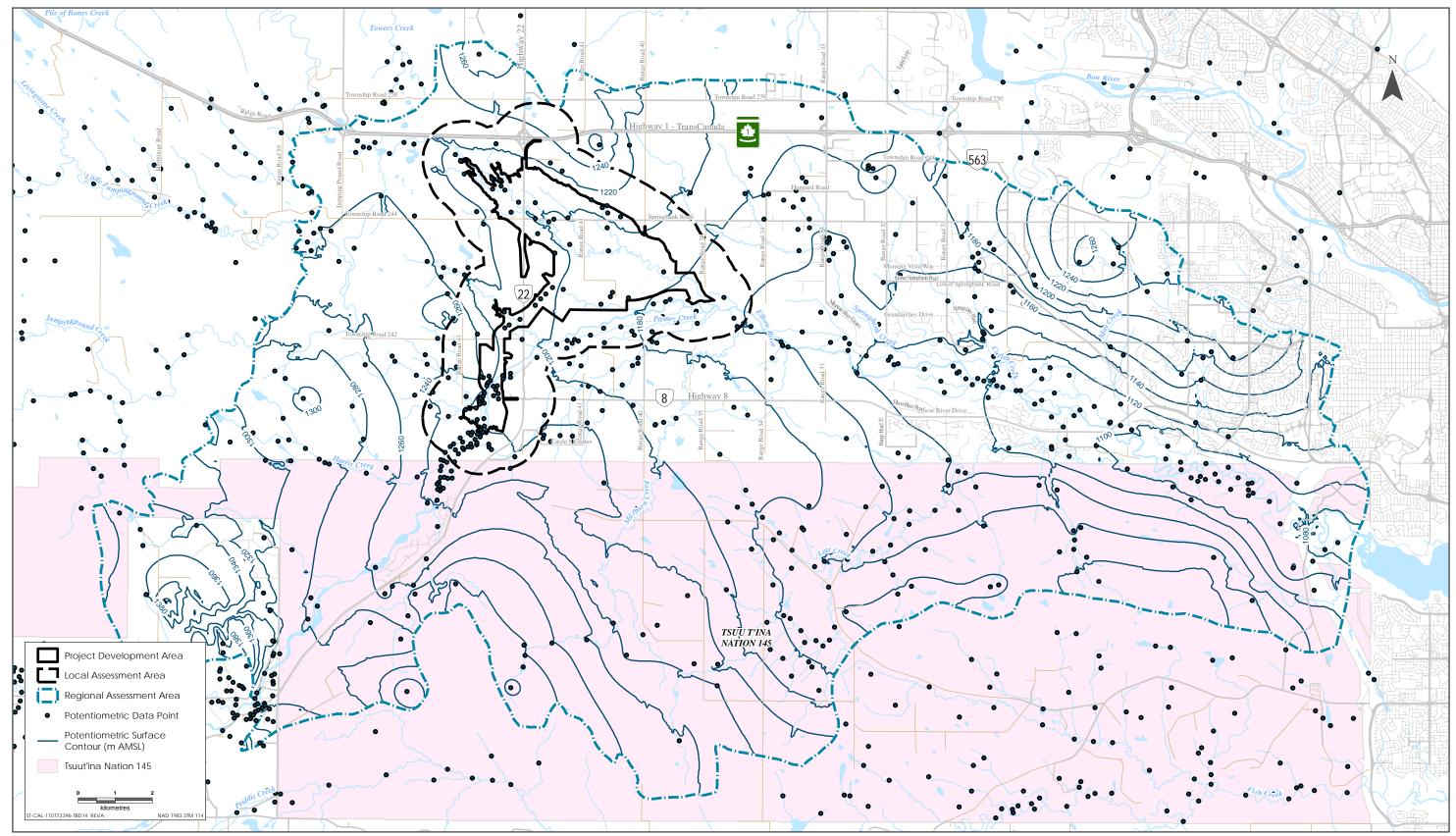


3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.2.2 Groundwater Flow in the Unconsolidated Glacial Deposits

The interpreted water table surface of the unconsolidated deposits is presented in Figure 3-19. The methods used to interpret the water table elevation are presented in Section 2.6. Project-specific field characterization data indicates groundwater elevations within the surficial deposits generally follow the topography and range from 0 m BGL, where the water table intersects ground surface at springs and along stream and river banks, to approximately 8.0 m BGL as measured in May 2017. The corresponding groundwater elevations range from approximately 1,380 m ASL in the topographically elevated areas in the of the RAA southwest to 1,080 m ASL along the eastern boundary of the RAA.

There is high potential for perched water table development within the RAA because of the following landscape and geological controls:


- permeability contrast created by an unconsolidated sediment veneer over the bedrock
- steep land surface gradients and erosional unconformities that truncate hydrostratigraphic units within the RAA
- mapped contact springs that indicate perched conditions in topographically elevated areas.

As such, the bedrock potentiometric surface is more representative of the reginal water table position, whereas the water table surface likely overestimates water table position in areas of elevated bedrock topography.

Groundwater flow direction is interpreted to be toward Elbow River across the majority of the RAA, except for areas 1) northwest where shallow groundwater flows west toward Jumpingpound Creek, 2) areas along the north side of the RAA across the flow divide, and 3) in the Bow River watershed where groundwater flows north. Horizontal gradients beneath the LAA range from 0.003 in the central portion of the reservoir to 0.1 in the southern portion of the LAA that is adjacent to the Elbow River near the diversion structure.

As noted above, the unconsolidated sediment above bedrock is also thought to host-perched water tables in which groundwater flow is typically dictated by local-scale topography where the permeability contrast exists to support development of perched groundwater.





### Water Table Elevation in the Unconsolidated Deposits

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

Average linear groundwater velocities for near-surface groundwater flow in the unconsolidated sediment above bedrock have been estimated as follows based on the hydraulic conductivities and apparent horizontal hydraulic gradients described above:

V = Ki/n

where: V is the average linear velocity (m/y)

K is the hydraulic conductivity (0.01 to 6.9 m/y in the unconsolidated glacial deposits) i is the estimated hydraulic gradient (0.003 to 0.1)

n is the assumed effective porosity of 0.3.

The average linear groundwater velocity in the unconsolidated glaciolacustrine deposits and till is estimated to range from less than .01 m/year to approximately 2.3 m/year. However, it should be noted that flow velocities through sand lenses within, or at the base of, the till could be higher.

### 3.2.3 Groundwater Flow in the Upper Bedrock Aquifers

The potentiometric surface of the bedrock aquifer is presented in Figure 3-20. The locations of the hydraulic head data control points used in the interpretation are also shown. Given the scale of the RAA, all head data from screened intervals located between the upper bedrock surface and less than 80 m BGL were used to interpolate the potentiometric surface. Applying further restriction on the depth range to isolate a narrower depth interval resulted in an overly sparse data density to effectively interpolate across the RAA. Potentiometric surface elevations range from approximately 1,400 m ASL in the southwest to 1,080 m ASL at the base of the Elbow River valley along the eastern boundary of the RAA.

The potentiometric surface elevation in the mountainous southwest area of the RAA is predicted above land surface between topographically elevated areas. This suggests the presence of locally perched bedrock aquifers in this area that are poorly hydraulically connected to the underlying regional bedrock aquifer. Areas like this are difficult to resolve in a regional study, given the uncertainty from limited data density and the inability to resolve localized permeability contrasts due to interbedding in the bedrock.

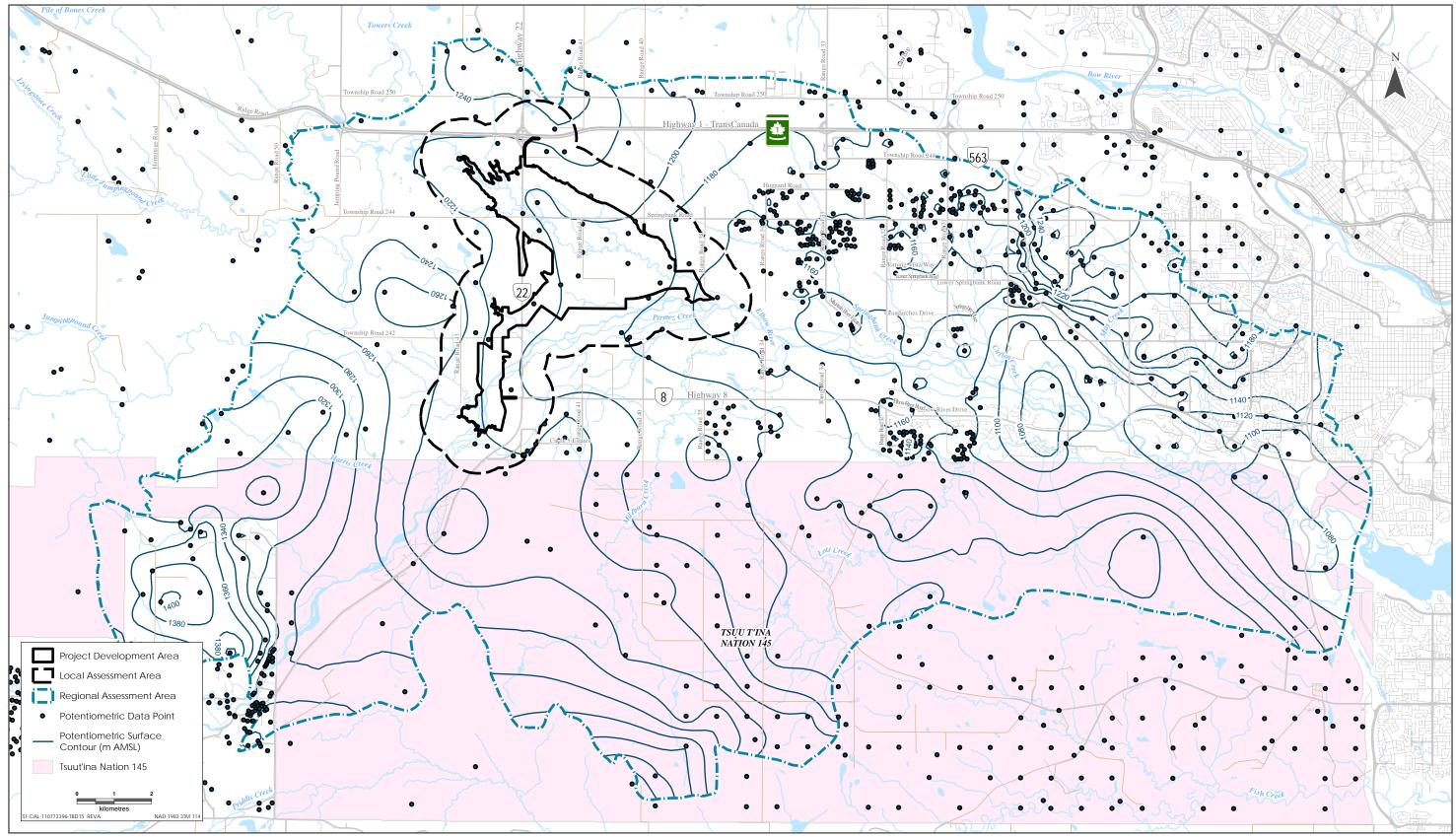
Despite the challenges presented by the topography, the potentiometric data highlight that the head difference between the elevated areas upstream of the PDA and LAA (south and southwest of the diversion structure) creates independent, local scale topographically-driven groundwater flow-systems within the RAA. These independent flow-systems are upstream and up-gradient, relative to hydraulic head of the RAA.

Groundwater flow direction in the bedrock is dominantly controlled by the bedrock surfacetopography. On the north side of Elbow River, the bedrock generally slopes towards the river, while being influenced by variation in the bedrock surface topography. There are some



3D CSM Results for The Hydrostratigraphic FRamework May 2019

topographic low areas in the bedrock on the north side of the river that focus groundwater flow in the bedrock beneath the PDA and LAA before trending towards Elbow River. The bedrock topography is significantly more complex on the south side of Elbow River and the flow patterns in the bedrock demonstrate radial flow away from elevated bedrock features. Correspondingly, the surface water drainage features to Elbow River on the south side appear to act as groundwater discharge features that focus flow between topographically-elevated bedrock features.


Groundwater elevations within the upper bedrock generally follow the topography although the relationship is not as strong as compared to the water table surface of the unconsolidated deposits. The potentiometric surface as shown in cross-section (Figures 3-14 to 3-18) and on Figure 3-20 demonstrate localized over-pressures and under-pressures likely related to heterogeneity and degree of hydraulic connection to Elbow River. However, there is regionally mappable areas in which confined conditions can be conclusively identified.

Horizontal gradients in the upper-bedrock aquifers beneath the LAA range from 0.005 in the central portion of the proposed reservoir to 0.02 in the southern portion of the LAA adjacent to Elbow River near the diversion structure.

The average linear groundwater velocity in the shallow bedrock is estimated to range from less than 0.01 cm/year in the unfractured portions of the claystone bedrock to approximately 30 m/year in the more permeable sandstone in the areas of higher hydraulic gradient near the Elbow River.

Yields calculated by HCL (2002) for wells completed in the bedrock aquifers in the disturbed belt in this area generally ranged from 10 m<sup>3</sup>/day to 75 m<sup>3</sup>/day.





### Potentiometric Surface of the Upper Bedrock

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

# 3.2.4 Vertical Hydraulic Gradients, Groundwater Springs and Recharge/Discharge Mapping

Vertical hydraulic gradients between the unconsolidated and bedrock deposits indicate the potential for upward-directed groundwater flow (discharge) at each of the five nested monitoring well locations. The vertical gradients ranged from 0.1 at MW16-6-11/MW16-6-20 to 1.9 at MW16-8-8/MW16-8-19.

In addition to the contact springs discussed in Section 3.2.2, the high magnitude vertical gradients likely result in artesian springs along the valley walls and in low-lying areas where the confining layers are thin or in areas of more permeable material. Nested monitoring well pair MW16-8-8/MW16-8-19 is located 35 m hydraulically upgradient of a groundwater spring. The lower hydraulic head measurements in the nested monitoring wells indicate the potential for upward directed groundwater flow and discharge at this location.

A number of springs were noted along the northeast side of the off-stream reservoir area, as indicated by yellow dots in Figure 3-21. Springs outside the PDA were mapped based on public data sources (indicated by blue dots in Figure 3-21) including the Alberta Geological Survey Springs Inventory (Stewart, 2009), and the springs records within the AWWID are also presented in Figure 3-21.

Based on field mapping, springs within the PDA are interpreted to be contact springs with groundwater flow in the unconsolidated deposits discharging where the underlying low permeability bedrock material is near surface along the valley wall. As groundwater flows along this bedrock/unconsolidated contact, downward flow is limited and the water discharges along the open slope, forming the springs evident at ground surface. The elevation of these springs ranges from approximately 1,205 m ASL in the southeast of the PDA to 1,225 m ASL farther northwest along the valley wall.

At least one contact spring was also identified along the southwest ridge of the off-stream reservoir. This spring location is plotted in Figure 3-21 and is at an elevation of approximately 1,211 m ASL.

A number of groundwater springs are also noted in the topographically elevated areas in the southwest portion of the RAA where conditions are favorable for contact spring development. This is likely related to perched water table development in the veneer of unconsolidated sediment situated on bedrock highs.

Two methods were used to evaluate the areas of the RAA that constitute groundwater recharge areas and groundwater discharge areas. The first method used to determine the patterns of recharge and discharge was to subtract the gridded potentiometric surface from the gridded water table surface and examine the head difference distribution shown as contours on



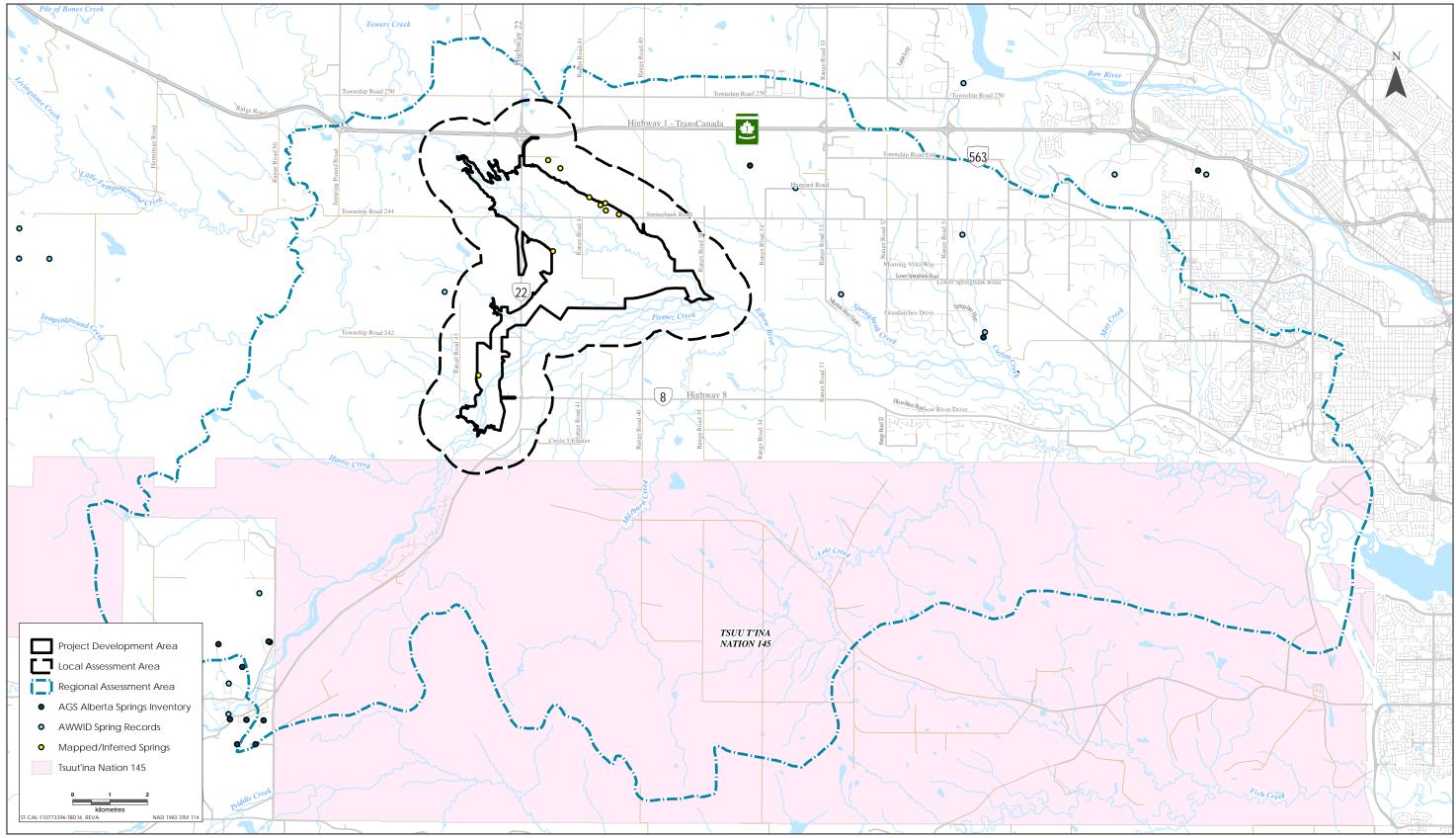
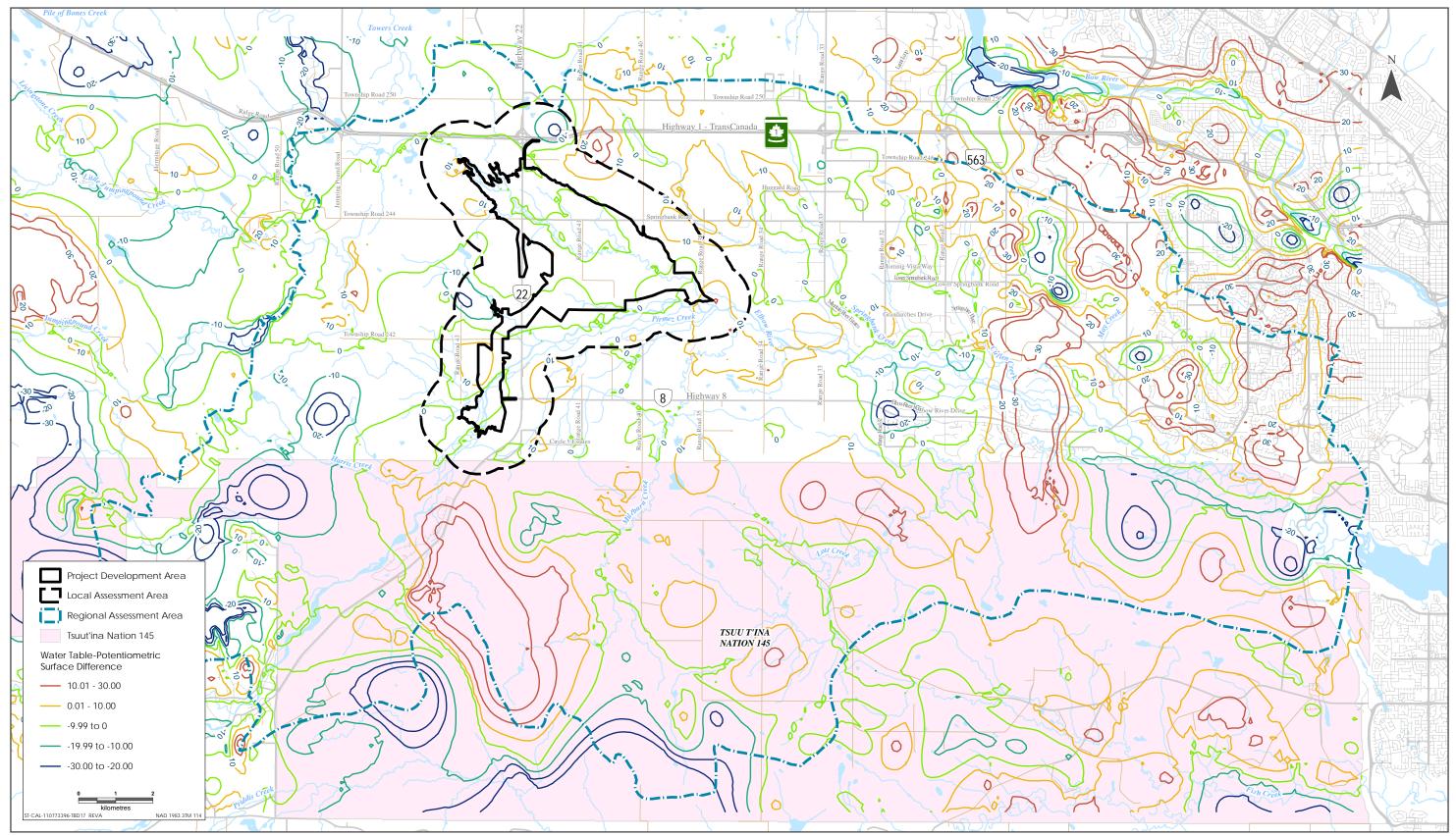

3D CSM Results for The Hydrostratigraphic FRamework May 2019

Figure 3-22. This approach highlights areas where the phreatic surface is different from the potentiometric surface. Where the potentiometric surface exceeds the water table elevation, discharge conditions are present. Conversely, where the deeper potentiometric surface indicates lower head than that of the water table, recharge conditions are present. Due to the scale of the recharge and discharge mapping and variable data density available, the resulting interpretation is a general guide for where such conditions may prevail.

There are challenges associated with mapping regional recharge and discharge patterns in the RAA with a large land area, large topographic variability and areas of limited data within the RAA. To overcome these challenges, depth-to-water mapping was used as an indicator of recharge and discharge areas. A depth to groundwater map was developed by subtracting the water table surface, as described in Section 3.2.2, from the land surface topography. Depth to groundwater is used as a proxy for recharge and discharge areas, since discharge areas typically have near surface water tables and, conversely, recharge areas have deep water table positions relative to the land surface.


Figure 3-23 shows the depth to groundwater as a colour scale with symbology chosen to highlight the discharge areas in the RAA (dark blue), midline areas of flow systems where the vertical gradient is near neutral or varies seasonally (shown in light grey-blue), and the recharge areas with high modeled depths to groundwater shown in the yellow-orange-red tones showing weak (yellow) to strong (red) recharge areas. Given the incision of the river sediments into the upper bedrock surface, the discharge features are observed near watercourses at the base of the valley with broad recharge areas at high elevations. This configuration of a discharge area adjacent to groundwater sink features like Elbow River is typical of a groundwater catchment area with steep topography and fluvial incision, such as is the case in the RAA.





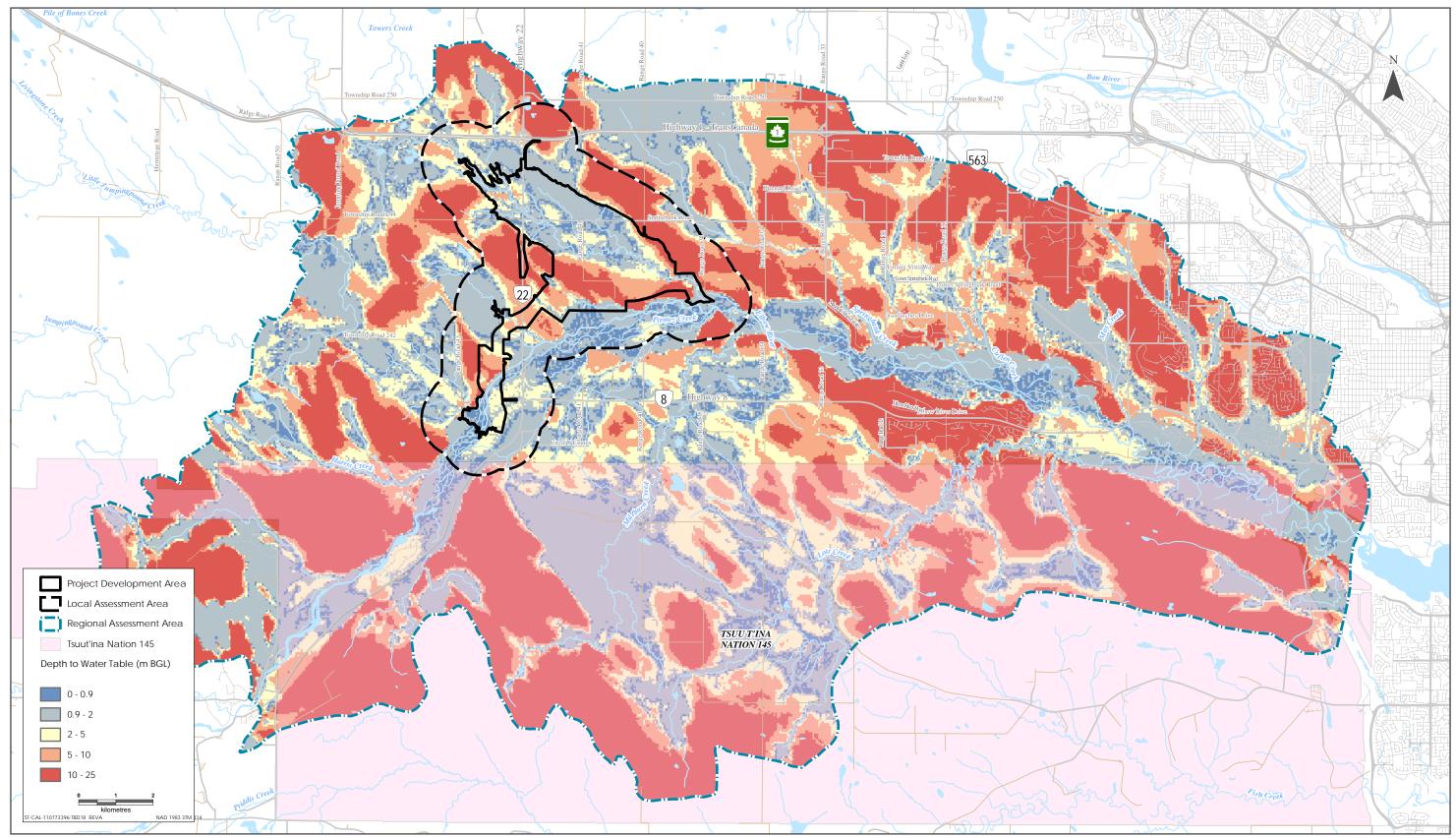

# Mapped Groundwater Spring Locations

Figure 3-21



Water Table-Potentiometric Surface Difference Mapping

Figure 3-22



# Depth to Groundwater and Recharge-Discharge Mapping

Figure 3-23

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

### 3.2.5 Groundwater Level Fluctuation

Groundwater levels fluctuate in response to various climatic and anthropogenic influences. Short-term fluctuations result from precipitation, seasonal effects (e.g., spring runoff, dry periods, frozen surface water) or transient groundwater pumping. Longer-term fluctuations are generally caused by climatic trends (e.g., prolonged drought or successive years of above normal precipitation) or groundwater production.

Hydrographs depicting change in groundwater levels over time have been prepared for 10 monitoring wells within the RAA. The data for the hydrographs was recorded using data logging pressure transducers installed in each of the wells and covers the period between October 7, 2016 and May 24, 2017. Hydrographs for monitoring wells completed in the unconsolidated materials above bedrock are presented in Figure 3-24 and the hydrographs of wells completed in bedrock, generally to greater depths, are presented in Figure 3-25 and Figure 3-26. The location of these monitoring wells is presented in Figure 2-2.

Water levels in the wells completed in the unconsolidated deposits generally showed the same seasonal trends (Figure 3-24), except for monitoring well MW16-17-5. The very low hydraulic conductivity adjacent to the screened interval of MW16-17-5 masks the effects of the natural variation. Following purging during the September 2016 monitoring, the water level slowly recovered toward a static level and continued recovering until February 16, 2017. An increase of approximately 1 m was observed over a one-hour period on February 16. Given the warm temperature of 16°C, the increase is attributed to a loss of surface seal integrity (either the cap or well seal) and meltwater entering the well. Because the water level in the well was then artificially high, the level decreased toward static over the period of February to May 2017.

The water level elevations in the remaining three monitoring wells completed in unconsolidated deposits increased or remained stable between October 2016 and December 2016. Water levels then decreased over the winter months reaching seasonal lows in March 2017 to April 2017. Water level increases were then observed during April and May. Water level fluctuations were less than 0.5 m in the three monitoring wells.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

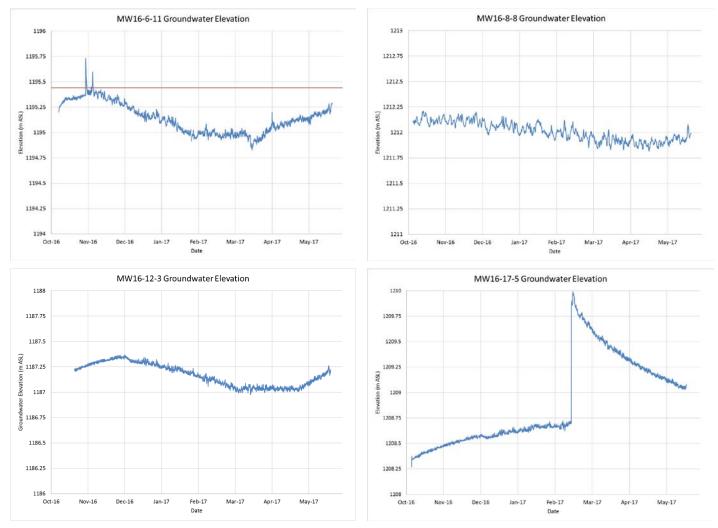



Figure 3-24 Hydrographs of Monitoring Wells Completed in Unconsolidated Deposits



3D CSM Results for The Hydrostratigraphic FRamework May 2019

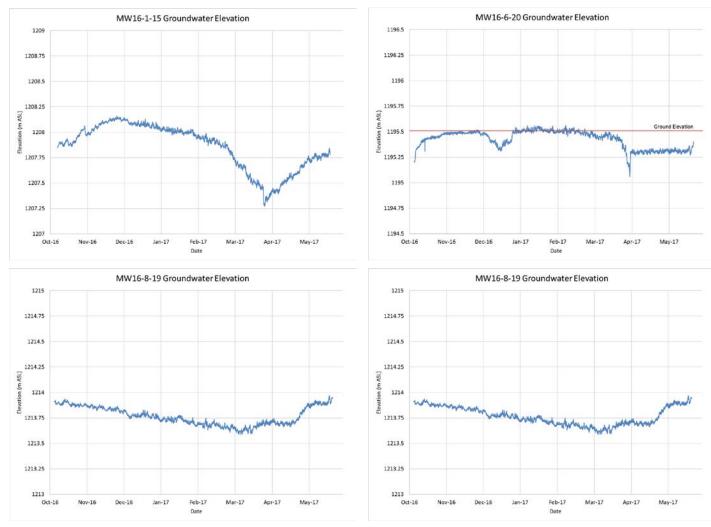



Figure 3-25 Hydrographs of Monitoring Wells Completed in Bedrock



3D CSM Results for The Hydrostratigraphic FRamework May 2019

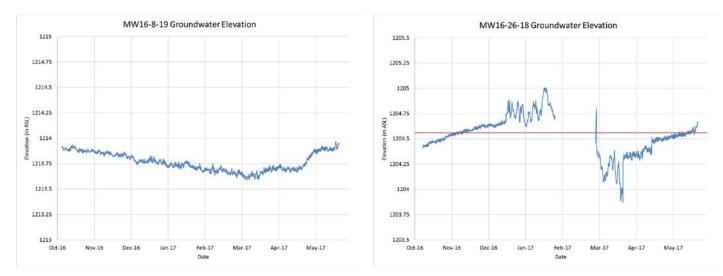
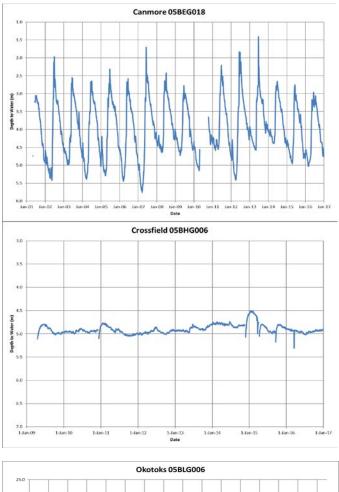



Figure 3-26 Hydrographs of Monitoring Wells Completed in Bedrock (continuation of Figure 3-25)



3D CSM Results for The Hydrostratigraphic FRamework May 2019

Water levels, or potentiometric elevations in the case of confined portions of the bedrock aquifers, exhibited seasonal trends similar to the unconsolidated deposits in a number of monitoring wells. In four of the six bedrock wells monitored, levels decreased between October 2016 and late March 2017 and then increased between late March 2017 to May 2017. However, MW16-6-20 had water levels that were at or near the ground surface throughout the year. In monitoring well MW16-26-18, the water level was also near or above the ground surface. As a result, freezing of the water within the casing and integrity issues caused some issues with the logger readings over the winter months. Water level fluctuations of up to 2 m were observed in the bedrock monitoring wells.


Over the long-term, regional scale groundwater levels at three Alberta Environment Groundwater Observation Well Network (GOWN) wells located in the Calgary area were evaluated. Hydrographs depicting historical water levels at the three GOWN wells are presented in Figure 3-27. The Canmore well (05BEG018) shows seasonal variability as a result of being installed in an unconfined fluvial aquifer. Water levels increased each spring, reaching a peak in June, and followed by a steady decrease over the remainder of the year and into the next spring. Water level fluctuations fluctuate by approximately 3 m over this annual cycle. The fluctuations are related to river levels because this well is in direct hydraulic connection with Bow River. Similar fluctuations would be expected in wells completed in the recent fluvial deposits near Elbow River.

The GOWN well at Crossfield ((05BHG006) shows considerably less variation than the Canmore well. The Crossfield well is completed to approximately 48 m BGL in interbedded shale and sandstone bedrock. Fluctuations of approximately 0.5 m are observed at this well over the 2009 to 2017 monitoring record with fluctuations independent of seasonal effects. No long-term trends are evident at this well.

At the Okotoks GOWN well (05BLG006), completed in sandstone to 38 m BGL, a relatively high degree of variation in water levels is noted along with an overall increasing trend. The water level in this well increased from a depth of approximately 31 m in 1986 to less than 27 m in 2016.



3D CSM Results for The Hydrostratigraphic FRamework May 2019



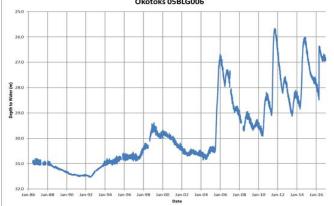



Figure 3-27 GOWN Well Hydrographs



3D CSM Results for The Hydrostratigraphic FRamework May 2019

# 3.3 GROUNDWATER USE

Groundwater use in the RAA is primarily from shallow bedrock aquifers with some wells also completed in the recent fluvial deposits along the Elbow River. Regional mapping by HCL (2002) indicated yields from the bedrock aquifers in the disturbed belt range from 10 m<sup>3</sup>/day to 75 m<sup>3</sup>/day. Yields from wells completed in the recent fluvial deposits along the Elbow River are expected to range from 175 m<sup>3</sup>/day to 2,500 m<sup>3</sup>/day (Waterline 2011).

The base of groundwater protection (BGP) is an estimate of the elevation of the base of the geological formation in which the groundwater is deemed useable with a total dissolved solids (TDS) concentration of less than 4,000 mg/L. West of the RAA, the BGP is defined as the base of the Paskapoo Formation; however, because the RAA lies within the disturbed belt of the Rocky Mountains, the AGS has set an arbitrary BGP of 600 m BGL.

Water well drillers records for groundwater wells completed in the expanded RAA were queried from the AWWID. A total of 2,140 unique well records were identified within the expanded RAA. A number of well record types were removed from the raw data such as abandoned test holes, dry holes, piezometers, and seismic test holes, which are not reflective of groundwater use.

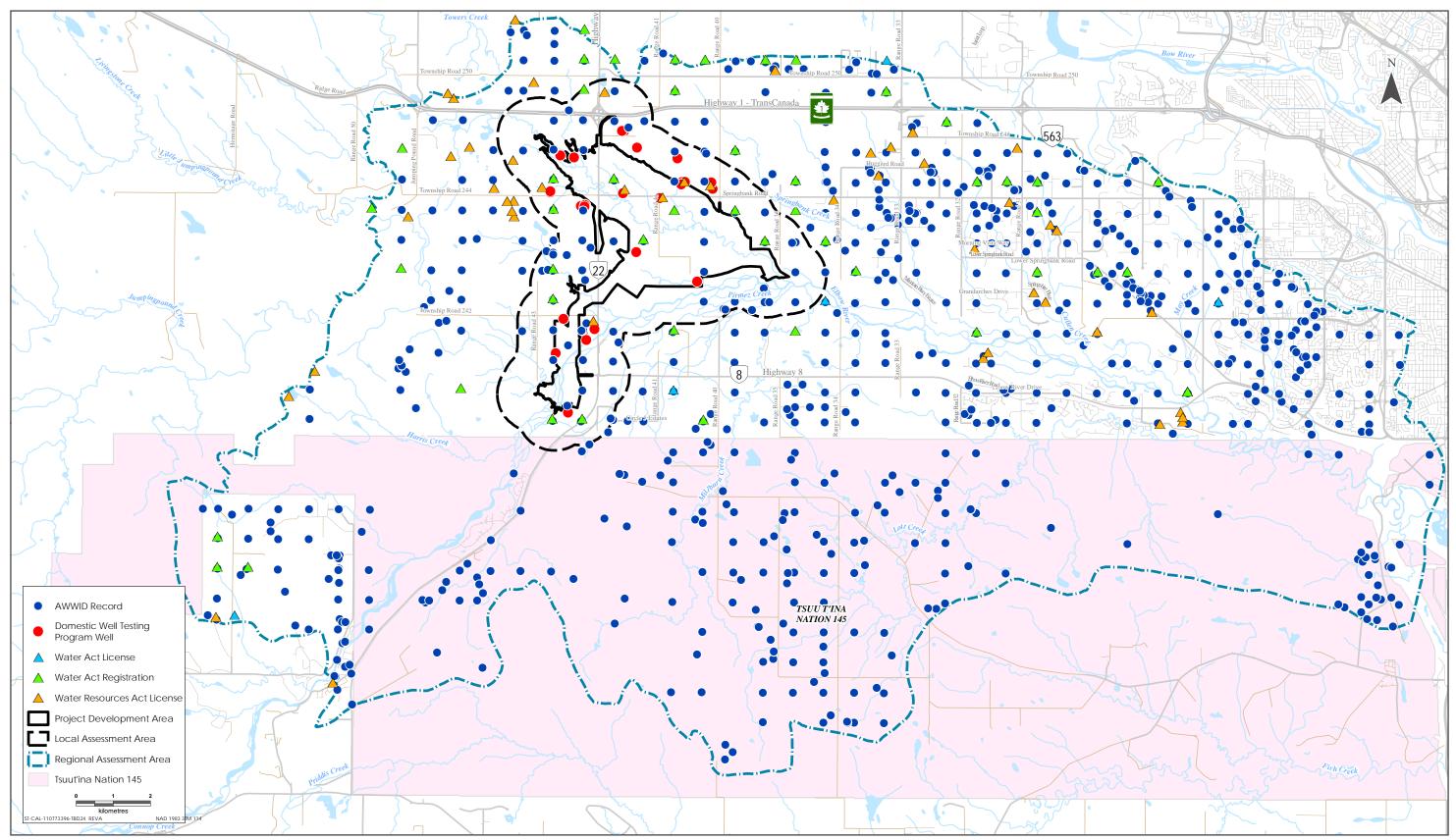
A total of 1,708 water well drilling records remained after removing irrelevant data. A summary of water well records is presented as additional information in Attachment B. The locations of the water well records are presented in Figure 3-28. A domestic water well testing program was completed, as requested by landowners, within the LAA. To adhere to land access agreements and confidentiality requested by landowners, data from specific locations are not presented, however the data were used in development of the 3D CSM. Wells that were verified in the field and monitored as part of the domestic well testing program are also indicated in Attachment B and their locations are presented in Figure 3-28.

The proposed use of the wells associated with the AWWID drilling records within the expanded are as follows:

- 1,458 for domestic use
- 71 for stock use
- 75 for domestic and stock use
- 15 for commercial purposes
- 16 for industrial purposes
- 5 for irrigation purposes
- 9 for municipal use
- 59 for unknown use



3D CSM Results for The Hydrostratigraphic FRamework May 2019


Water well depths ranged from 1.5 m BGL to 246 m BGL. Figure 3-29 presents a histogram of the total depth recorded on the drilling records. The number of wells completed in bedrock and unconsolidated units are also summarized in the figure. A total of 83 well records were for wells installed in unconsolidated deposits with completion depths ranging from 0 m BGL to 50 m BGL.

Groundwater diversion licenses and registrations (termed Approvals herein for simplicity) associated with the water well records in the RAA provide additional information on the nature and magnitude of water allocations. A total of 100 unique licenses and registrations are located in the expanded RAA as follows:

- 47 Water Resources Act licenses (Issued prior to 1999 Water Act)
- 5 Water Act licenses
- 48 Water Act registrations

Table 3-3 summarizes the groundwater licenses and registrations and their locations are presented in Figure 3-24. No Approvals are noted within the Tsuut'ina Nation Reserve because such approvals are exempted within Tsuut'ina Nation Reserve lands. Additional details for each groundwater Approval are provided in Attachment B.





AWWID Records: Alberta Water Well Information Database



# Groundwater Use Figure 3-28

3D CSM Results for The Hydrostratigraphic FRamework May 2019



3D CSM Results for The Hydrostratigraphic FRamework May 2019

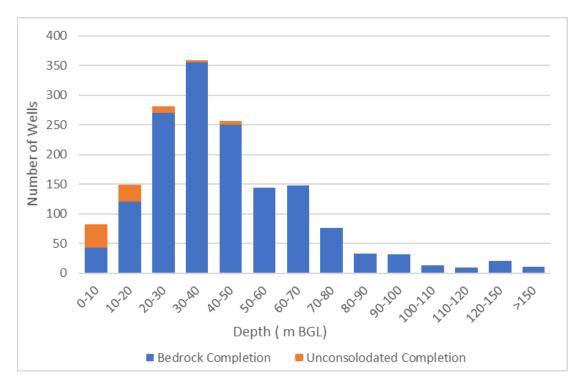



Figure 3-29 Histogram of Water Well Depth in the RAA

| Approval<br>No. | Type of Approval       | LSD | Q  | SEC | TWP | RNG | MER | Source          | Quantity<br>(m <sup>3</sup> /year) |
|-----------------|------------------------|-----|----|-----|-----|-----|-----|-----------------|------------------------------------|
| 73672           | Water Act License      | 0   | NE | 15  | 23  | 5   | 5   | Unnamed Aquifer | 12,775                             |
| 82749           | Water Act License      | 0   | SW | 16  | 24  | 2   | 5   | Unnamed Aquifer | 9,563                              |
| 157105          | Water Act License      | 0   | SE | 17  | 24  | 3   | 5   | Unnamed Aquifer | 311,643                            |
| 204789          | Water Act License      | 0   | NW | 1   | 24  | 4   | 5   | Unnamed Aquifer | 123                                |
| 229656          | Water Act License      | 0   | SE | 4   | 25  | 3   | 5   | Unnamed Aquifer | 1,250                              |
| 75112           | Water Act Registration | 0   | NW | 16  | 24  | 3   | 5   | Unnamed Aquifer | 245                                |
| 75322           | Water Act Registration | 0   | NW | 11  | 24  | 3   | 5   | Unnamed Aquifer | 365                                |
| 78333           | Water Act Registration | 0   | NW | 36  | 24  | 4   | 5   | Unnamed Aquifer | 130                                |
| 78548           | Water Act Registration | 0   | SE | 27  | 23  | 5   | 5   | Unnamed Aquifer | 130                                |
| 82946           | Water Act Registration | 0   | NE | 33  | 24  | 3   | 5   | Unnamed Aquifer | 175                                |
| 141013          | Water Act Registration | 0   | SE | 34  | 24  | 3   | 5   | Unnamed Aquifer | 868                                |
| 142093          | Water Act Registration | 0   | SW | 25  | 24  | 3   | 5   | Unnamed Aquifer | 335                                |

 Table 3-3
 Groundwater Licences and Registrations in the RAA



3D CSM Results for The Hydrostratigraphic FRamework May 2019

| Approval<br>No. | Type of Approval       | LSD | Q  | SEC | TWP | RNG | MER | Source          | Quantity<br>(m³/year) |
|-----------------|------------------------|-----|----|-----|-----|-----|-----|-----------------|-----------------------|
| 155886          | Water Act Registration | 0   | SE | 3   | 24  | 4   | 5   | Unnamed Aquifer | 3,155                 |
| 159603          | Water Act Registration | 0   | SW | 26  | 24  | 3   | 5   | Unnamed Aquifer | 585                   |
| 159911          | Water Act Registration | 0   | NW | 15  | 24  | 4   | 5   | Unnamed Aquifer | 235                   |
| 160591          | Water Act Registration | 0   | NW | 8   | 24  | 3   | 5   | Unnamed Aquifer | 1,240                 |
| 160646          | Water Act Registration | 0   | NW | 30  | 24  | 3   | 5   | Unnamed Aquifer | 1,090                 |
| 161324          | Water Act Registration | 0   | NW | 19  | 24  | 4   | 5   | Unnamed Aquifer | 1,562                 |
| 161384          | Water Act Registration | 0   | NE | 3   | 25  | 4   | 5   | Unnamed Aquifer | 1,085                 |
| 161483          | Water Act Registration | 0   | NE | 18  | 24  | 4   | 5   | Unnamed Aquifer | 326                   |
| 161570          | Water Act Registration | 0   | SW | 1   | 25  | 4   | 5   | Unnamed Aquifer | 1,295                 |
| 161619          | Water Act Registration | 0   | SE | 23  | 24  | 4   | 5   | Unnamed Aquifer | 655                   |
| 161634          | Water Act Registration | 0   | SW | 29  | 24  | 3   | 5   | Unnamed Aquifer | 1,310                 |
| 161660          | Water Act Registration | 0   | SE | 20  | 24  | 3   | 5   | Unnamed Aquifer | 330                   |
| 161875          | Water Act Registration | 0   | SE | 19  | 24  | 3   | 5   | Unnamed Aquifer | 3,300                 |
| 162017          | Water Act Registration | 0   | SW | 15  | 24  | 4   | 5   | Unnamed Aquifer | 2,630                 |
| 162213          | Water Act Registration | 0   | NW | 18  | 24  | 2   | 5   | Unnamed Aquifer | 25                    |
| 162868          | Water Act Registration | 0   | NW | 13  | 24  | 3   | 5   | Unnamed Aquifer | 2,389                 |
| 163116          | Water Act Registration | 0   | NW | 24  | 24  | 4   | 5   | Unnamed Aquifer | 4,910                 |
| 163271          | Water Act Registration | 0   | SW | 26  | 24  | 4   | 5   | Unnamed Aquifer | 2,635                 |
| 163401          | Water Act Registration | 0   | NW | 22  | 24  | 4   | 5   | Unnamed Aquifer | 1,293                 |
| 163402          | Water Act Registration | 0   | SE | 1   | 25  | 4   | 5   | Unnamed Aquifer | 4,166                 |
| 165012          | Water Act Registration | 0   | NW | 24  | 24  | 3   | 5   | Unnamed Aquifer | 59                    |
| 167739          | Water Act Registration | 0   | SW | 2   | 25  | 4   | 5   | Unnamed Aquifer | 1,080                 |
| 167951          | Water Act Registration | 0   | SE | 6   | 25  | 3   | 5   | Unnamed Aquifer | 3,605                 |
| 168294          | Water Act Registration | 0   | NE | 5   | 24  | 2   | 5   | Unnamed Aquifer | 160                   |
| 169793          | Water Act Registration | 0   | NW | 12  | 24  | 4   | 5   | Unnamed Aquifer | 1,710                 |
| 170103          | Water Act Registration | 0   | NE | 34  | 24  | 4   | 5   | Unnamed Aquifer | 942                   |
| 170135          | Water Act Registration | 0   | SE | 1   | 24  | 4   | 5   | Unnamed Aquifer | 492                   |
| 170644          | Water Act Registration | 0   | SW | 29  | 24  | 2   | 5   | Unnamed Aquifer | 435                   |
| 172175          | Water Act Registration | 0   | NE | 5   | 24  | 2   | 5   | Unnamed Aquifer | 303                   |
| 172207          | Water Act Registration | 0   | NE | 30  | 24  | 4   | 5   | Unnamed Aquifer | 87                    |
| 172660          | Water Act Registration | 0   | SE | 26  | 24  | 3   | 5   | Unnamed Aquifer | 1,265                 |

# Table 3-3 Groundwater Licences and Registrations in the RAA



3D CSM Results for The Hydrostratigraphic FRamework May 2019

| Approval<br>No. | Type of Approval            | LSD | Q  | SEC | TWP | RNG | MER | Source          | Quantity<br>(m³/year) |
|-----------------|-----------------------------|-----|----|-----|-----|-----|-----|-----------------|-----------------------|
| 172847          | Water Act Registration      | 0   | SW | 3   | 24  | 4   | 5   | Unnamed Aquifer | 1,980                 |
| 173095          | Water Act Registration      | 0   | NE | 18  | 24  | 2   | 5   | Unnamed Aquifer | 83                    |
| 174068          | Water Act Registration      | 0   | NE | 5   | 24  | 4   | 5   | Unnamed Aquifer | 466                   |
| 182509          | Water Act Registration      | 0   | SE | 3   | 25  | 4   | 5   | Unnamed Aquifer | 1,085                 |
| 183452          | Water Act Registration      | 0   | SW | 27  | 24  | 4   | 5   | Unnamed Aquifer | 1,965                 |
| 187243          | Water Act Registration      | 0   | NE | 22  | 23  | 5   | 5   | Unnamed Aquifer | 1,212                 |
| 194348          | Water Act Registration      | 0   | NW | 23  | 23  | 5   | 5   | Unnamed Aquifer | 90                    |
| 202163          | Water Act Registration      | 0   | SW | 5   | 25  | 3   | 5   | Unnamed Aquifer | 3,808                 |
| 333125          | Water Act Registration      | 0   | NW | 20  | 24  | 3   | 5   | Unnamed Aquifer | 1,905                 |
| 333126          | Water Act Registration      | 0   | NW | 19  | 24  | 3   | 5   | Unnamed Aquifer | 835                   |
| 27924           | Water Resources Act License | 16  |    | 23  | 24  | 3   | 5   | Unnamed Aquifer | 2,470                 |
| 23882           | Water Resources Act License | 11  |    | 7   | 24  | 2   | 5   | Unnamed Aquifer | 740                   |
| 23993           | Water Resources Act License | 16  |    | 28  | 24  | 3   | 5   | Unnamed Aquifer | 21,590                |
| 24023           | Water Resources Act License | 13  |    | 35  | 24  | 4   | 5   | Unnamed Aquifer | 13,560                |
| 24328           | Water Resources Act License | 0   | SW | 34  | 24  | 3   | 5   | Unnamed Aquifer | 2,470                 |
| 24342           | Water Resources Act License | 16  |    | 26  | 24  | 3   | 5   | Unnamed Aquifer | 620                   |
| 24545           | Water Resources Act License | 1   |    | 6   | 25  | 3   | 5   | Unnamed Aquifer | 2,470                 |
| 25968           | Water Resources Act License | 16  |    | 10  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                 |
| 27046           | Water Resources Act License | 7   |    | 5   | 24  | 2   | 5   | Unnamed Aquifer | 12,950                |
| 27047           | Water Resources Act License | 7   |    | 5   | 24  | 2   | 5   | Unnamed Aquifer | 1,230                 |
| 27048           | Water Resources Act License | 7   |    | 5   | 24  | 2   | 5   | Unnamed Aquifer | 9,870                 |
| 27049           | Water Resources Act License | 7   |    | 5   | 24  | 2   | 5   | Unnamed Aquifer | 185,020               |
| 27527           | Water Resources Act License | 4   |    | 12  | 24  | 5   | 5   | Unnamed Aquifer | 2,470                 |
| 27528           | Water Resources Act License | 10  |    | 2   | 24  | 5   | 5   | Unnamed Aquifer | 2,470                 |
| 27529           | Water Resources Act License | 11  |    | 28  | 24  | 4   | 5   | Unnamed Aquifer | 2,470                 |
| 27530           | Water Resources Act License | 14  |    | 21  | 24  | 4   | 5   | Unnamed Aquifer | 2,470                 |
| 27531           | Water Resources Act License | 11  |    | 32  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                 |
| 27532           | Water Resources Act License | 10  |    | 21  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                 |
| 27533           | Water Resources Act License | 10  |    | 21  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                 |
| 27534           | Water Resources Act License | 10  |    | 19  | 24  | 4   | 5   | Unnamed Aquifer | 13,560                |
| 27535           | Water Resources Act License | 11  |    | 32  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                 |

# Table 3-3 Groundwater Licences and Registrations in the RAA



3D CSM Results for The Hydrostratigraphic FRamework May 2019

| Approval<br>No. | Type of Approval            | LSD | Q  | SEC | TWP | RNG | MER | Source          | Quantity<br>(m <sup>3</sup> /year) |
|-----------------|-----------------------------|-----|----|-----|-----|-----|-----|-----------------|------------------------------------|
| 27536           | Water Resources Act License | 4   |    | 28  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                              |
| 27537           | Water Resources Act License | 14  |    | 21  | 24  | 4   | 5   | Unnamed Aquifer | 2,470                              |
| 27538           | Water Resources Act License | 16  |    | 33  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                              |
| 27539           | Water Resources Act License | 15  |    | 29  | 24  | 4   | 5   | Unnamed Aquifer | 1,230                              |
| 27540           | Water Resources Act License | 11  |    | 29  | 24  | 4   | 5   | Unnamed Aquifer | 2,470                              |
| 27546           | Water Resources Act License | 15  |    | 4   | 25  | 4   | 5   | Unnamed Aquifer | 1,230                              |
| 27701           | Water Resources Act License | 4   |    | 27  | 24  | 4   | 5   | Unnamed Aquifer | 2,460                              |
| 27702           | Water Resources Act License | 3   |    | 26  | 24  | 4   | 5   | Unnamed Aquifer | 2,460                              |
| 27703           | Water Resources Act License | 13  |    | 24  | 24  | 4   | 5   | Unnamed Aquifer | 7,400                              |
| 27704           | Water Resources Act License | 1   |    | 25  | 24  | 4   | 5   | Unnamed Aquifer | 4,940                              |
| 27705           | Water Resources Act License | 3   |    | 25  | 24  | 4   | 5   | Unnamed Aquifer | 7,400                              |
| 28591           | Water Resources Act License | 6   |    | 13  | 24  | 3   | 5   | Unnamed Aquifer | 11,100                             |
| 31714           | Water Resources Act License | 4   |    | 17  | 24  | 2   | 5   | Unnamed Aquifer | 27,140                             |
| 31829           | Water Resources Act License | 16  |    | 20  | 24  | 3   | 5   | Unnamed Aquifer | 4,930                              |
| 31838           | Water Resources Act License | 7   |    | 24  | 24  | 3   | 5   | Unnamed Aquifer | 6,170                              |
| 32318           | Water Resources Act License | 10  |    | 28  | 24  | 3   | 5   | Unnamed Aquifer | 12,330                             |
| 32320           | Water Resources Act License | 7   |    | 32  | 24  | 3   | 5   | Unnamed Aquifer | 3,700                              |
| 32862           | Water Resources Act License | 5   |    | 13  | 24  | 3   | 5   | Unnamed Aquifer | 8,630                              |
| 32996           | Water Resources Act License | 0   | SW | 23  | 24  | 3   | 5   | Unnamed Aquifer | 3,700                              |
| 33155           | Water Resources Act License | 11  |    | 24  | 24  | 3   | 5   | Unnamed Aquifer | 9,870                              |
| 33307           | Water Resources Act License | 0   | NE | 15  | 23  | 5   | 5   | Unnamed Aquifer | 2,470                              |
| 33514           | Water Resources Act License | 0   | NW | 27  | 24  | 3   | 5   | Unnamed Aquifer | 2,470                              |
| 33554           | Water Resources Act License | 0   | SE | 28  | 24  | 3   | 5   | Unnamed Aquifer | 2,273                              |
| 34574           | Water Resources Act License | 6   |    | 11  | 24  | 3   | 5   | Unnamed Aquifer | 20,970                             |
| 34575           | Water Resources Act License | 6   |    | 11  | 24  | 3   | 5   | Unnamed Aquifer | 40,710                             |
| 35448           | Water Resources Act License | 15  |    | 12  | 23  | 5   | 5   | Unnamed Aquifer | 1,230                              |

# Table 3-3 Groundwater Licences and Registrations in the RAA



3D CSM Results for The Hydrostratigraphic FRamework May 2019

# 3.4 GROUNDWATER CHEMISTRY

Groundwater chemistry was determined using data from the groundwater monitoring described in Section 2.5. All monitoring wells were sampled except for MW16-13-37, which could not be located and may have been destroyed. The full analytical suite of parameters described in Section 2.5 was analyzed for each monitoring well sampled except for MW16-12-3 and MW16-17-5 where, as a result of low yield, microbiological and hydrocarbon parameters were not analyzed. Additional analytical data from the domestic well testing program were also included for existing water chemistry. Table 3-4 presents the laboratory analytical results from Project-specific monitoring, and the analytical results from the domestic well testing program are listed in Table 3-5. Analytical data from the third party domestic well testing program are not included in this summary.

For comparison purposes, Table 3-4 includes the Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Alberta Tier 1 Guidelines) (AEP 2016) for fine-grained soils in an agricultural land use setting and the Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada 2014).

Figure 3-30 is a visual representation of TDS and major ion chemistry in the groundwater samples collected from monitoring wells in the LAA. The size of the symbols in the central portion of the piper diagram are scaled to represent the relative TDS concentration of the sample. TDS in all samples ranged from 440 mg/L to 6,900 mg/L. The water chemistry characteristics displayed in the diagram are described in the following subsections.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

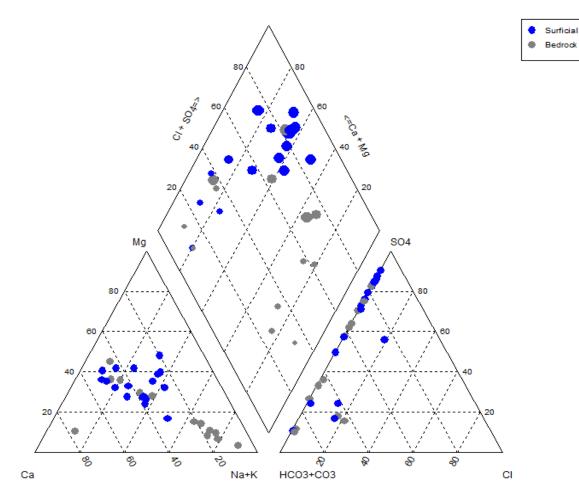



Figure 3-30 Diagram of Monitoring Well Chemistry



| Sample Location<br>Sample Date     |        |                                       |                           | MW16-2-6<br>30-Sep-16  | MW16-3-7<br>28-Sep-16                          | MW16-6-11<br>27-Sep-16    | MW16-7-5<br>27-Sep-16                          | MW16-8-8<br>4-Oct-16      | MW16-9-6<br>30-Sep-16                          | MW16-10-15<br>4-Oct-16    | MW16-11-15<br>30-Sep-16   | MW16-12-3<br>6-Oct-16     | MW16-16-11<br>3-Oct-16    | MW16-17-5<br>6-Oct-16                 | MW16-18-6<br>4-Oct-16               | MW16-19-8<br>27-Sep-16              | MW16-22-26<br>28-Sep-16   | MW16-23-14<br>29-Sep-16   | MW16-25-9<br>30-Sep-16                       |
|------------------------------------|--------|---------------------------------------|---------------------------|------------------------|------------------------------------------------|---------------------------|------------------------------------------------|---------------------------|------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------|-------------------------------------|-------------------------------------|---------------------------|---------------------------|----------------------------------------------|
| Aquifer<br>Lithology               | Units  | Health<br>Canada                      | AEP                       | Surficial<br>Sandstone | Surficial<br>Glaciolacustrine<br>Clay and Silt | Surficial<br>Glacial Till | Surficial<br>Glaciolacustrine<br>Clay and Silt | Surficial<br>Glacial Till | Surficial<br>Glaciolacustrine<br>Clay and Silt | Surficial<br>Glacial Till | Surficial<br>Glacial Till | Surficial<br>Glacial Till | Surficial<br>Glacial Till | Surficial<br>Glaciolacustrine<br>Clay | Surficial<br>Basal Silt and<br>Sand | Surficial<br>Basal Silt and<br>Sand | Surficial<br>Glacial Till | Surficial<br>Glacial Till | Surficial<br>Glacial Till                    |
| Calculated Parameters              |        |                                       |                           |                        | 1                                              |                           | 1                                              |                           | 1 1                                            |                           |                           |                           |                           |                                       |                                     |                                     |                           |                           | <u>.                                    </u> |
| Anion Sum                          | meq/L  | n/v                                   | n/v                       | 83                     | 32                                             | 43                        | 55                                             | 12                        | 21                                             | 45                        | 39                        | 33                        | 78                        | 110                                   | 13                                  | 32                                  | 26                        | 13                        | 13                                           |
| Cation Sum                         | meq/L  | n/v                                   | n/v                       | 83                     | 33                                             | 41                        | 49                                             | 12                        | 22                                             | 42                        | 38                        | 31                        | 75                        | 100                                   | 12                                  | 31                                  | 26                        | 14                        | 14                                           |
| Hardness (as CaCO3)                | mg/L   | n/v                                   | n/v                       | 2600                   | 950                                            | 1300                      | 1600                                           | 550                       | 930                                            | 1400                      | 1200                      | 1300                      | 2400                      | 3500                                  | 480                                 | 980                                 | 640                       | 540                       | 590                                          |
| Ion Balance                        | none   | n/v                                   | n/v                       | 1.0                    | 1.0                                            | 0.95                      | 0.90                                           | 1.0                       | 1.1                                            | 0.94                      | 0.98                      | 0.94                      | 0.95                      | 0.93                                  | 0.98                                | 0.96                                | 1.0                       | 1.0                       | 1.1                                          |
| Nitrate                            | mg/L   | 45 <sup>C</sup>                       | 13 <sup>D</sup>           | <0.22                  | 1.3                                            | < 0.044                   | <0.044                                         | 6.9                       | 0.065                                          | 0.12                      | < 0.044                   | 1.5                       | 0.14                      | 5.0                                   | 5.3                                 | 1.8                                 | 0.054                     | <0.044                    | 0.064                                        |
| Nitrate + Nitrite (as N)           | mg/L   | n/v                                   | 100 <sup>D</sup>          | 0.024                  | 0.30                                           | <0.020                    | <0.020                                         | 1.6                       | <0.020                                         | 0.027                     | <0.020                    | 0.34                      | 0.031                     | 1.3                                   | 1.2                                 | 0.42                                | <0.020                    | <0.020                    | <0.020                                       |
| Nitrite                            | mg/L   | 3 <sup>C</sup>                        | 0.06 <sup>D</sup>         | 0.078 <sup>D</sup>     | 0.051                                          | < 0.033                   | <0.033                                         | < 0.033                   | <0.033                                         | <0.033                    | < 0.033                   | <0.033                    | <0.033                    | 0.55 <sup>D</sup>                     | 0.10 <sup>D</sup>                   | <0.033                              | <0.033                    | < 0.033                   | <0.033                                       |
| Total Dissolved Solids             | mg/L   | ≤500 <sup>B</sup>                     | 500 <sup>D</sup>          | 5300 <sup>BD</sup>     | 2000 <sup>BD</sup>                             | 2700 <sup>BD</sup>        | 3400 <sup>BD</sup>                             | 640 <sup>BD</sup>         | 1200 <sup>BD</sup>                             | 2800 <sup>BD</sup>        | 2400 <sup>BD</sup>        | 1900 <sup>BD</sup>        | 4900 <sup>BD</sup>        | 6900 <sup>BD</sup>                    | 650 <sup>BD</sup>                   | 2000 <sup>BD</sup>                  | 1700 <sup>BD</sup>        | 680 <sup>BD</sup>         | 680 <sup>BD</sup>                            |
| BTEX and Petroleum Hydrocarbons    |        |                                       |                           |                        |                                                |                           |                                                |                           |                                                |                           |                           |                           |                           |                                       |                                     |                                     |                           |                           |                                              |
| Benzene                            | mg/L   | 0.005 <sup>C</sup>                    | 0.005 <sup>D</sup>        | 0.00044                | <0.00040                                       | < 0.00040                 | <0.00040                                       | < 0.00040                 | <0.00040                                       | < 0.00040                 | <0.00040                  | -                         | 0.0056 <sup>CD</sup>      | -                                     | <0.00040                            | <0.00040                            | < 0.00040                 | <0.00040                  | < 0.00040                                    |
| Toluene                            | mg/L   | 0.024 <sup>B</sup> 0.06 <sup>C</sup>  | 0.024 <sup>D</sup>        | <0.00040               | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                  | -                         | 0.024                     | -                                     | <0.00040                            | <0.00040                            | <0.00040                  | <0.00040                  | <0.00040                                     |
| Ethylbenzene                       | mg/L   | 0.0016 <sup>B</sup> 0.14 <sup>C</sup> | 0.0016 <sup>D</sup>       | <0.00040               | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                  | -                         | 0.0034 <sup>BD</sup>      | -                                     | 0.00062                             | <0.00040                            | <0.00040                  | <0.00040                  | <0.00040                                     |
| Xylene, m & p-                     | mg/L   | n/v                                   | n/v                       | <0.00080               | <0.00080                                       | <0.00080                  | <0.00080                                       | <0.00080                  | <0.00080                                       | <0.00080                  | <0.00080                  | -                         | 0.013                     | -                                     | 0.0020                              | <0.00080                            | <0.00080                  | <0.00080                  | <0.00080                                     |
| Xylene, o-                         | mg/L   | n/v                                   | D<br>s1                   | <0.00040               | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                                       | <0.00040                  | <0.00040                  | -                         | 0.0056                    | -                                     | 0.0010                              | <0.00040                            | <0.00040                  | <0.00040                  | <0.00040                                     |
| Xylenes, Total                     | mg/L   | 0.02 <sup>B</sup> 0.09 <sup>C</sup>   | 0.02 <sup>D</sup>         | <0.00080               | <0.00080                                       | <0.00080                  | <0.00080                                       | <0.00080                  | <0.00080                                       | <0.00080                  | <0.00080                  | -                         | 0.019                     | -                                     | 0.0030                              | <0.00080                            | <0.00080                  | <0.00080                  | <0.00080                                     |
| PHC F1 (C6-C10 range)              | mg/L   | n/v                                   | n/v                       | <0.10                  | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                     | -                         | <0.10                     | -                                     | <0.10                               | <0.10                               | <0.10                     | <0.10                     | <0.10                                        |
| PHC F1 (C6-C10 range) minus BTEX   | mg/L   | n/v                                   | 2.2 <sup>D</sup>          | <0.10                  | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                     | -                         | <0.10                     | -                                     | <0.10                               | <0.10                               | <0.10                     | <0.10                     | <0.10                                        |
| PHC F2 (>C10-C16 range)            | mg/L   | n/v                                   | 1.1 <sup>D</sup>          | 0.47                   | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                                          | <0.10                     | <0.10                     | -                         | <0.10                     | -                                     | <0.10                               | <0.10                               | <0.10                     | <0.10                     | <0.10                                        |
| Miscellaneous Inorganics           |        |                                       |                           |                        |                                                |                           |                                                |                           |                                                |                           |                           |                           |                           |                                       |                                     |                                     |                           |                           |                                              |
| Dissolved Organic Carbon (DOC)     | mg/L   | n/v                                   | n/v                       | 6.2                    | 8.0                                            | 4.3                       | 9.2                                            | 2.8                       | 4.7                                            | 4.2                       | 3.1                       | -                         | 4.6                       | -                                     | 4.9                                 | 6.3                                 | 3.3                       | 4.1                       | 5.6                                          |
| Electrical Conductivity, Lab       | µ\$/cm | n/v                                   | 1000 <sup>D</sup>         | 5900 <sup>D</sup>      | 2600 <sup>D</sup>                              | 3300 <sup>D</sup>         | 3900 <sup>D</sup>                              | 1100 <sup>D</sup>         | 1700 <sup>D</sup>                              | 3000 <sup>D</sup>         | 3100 <sup>D</sup>         | 2600 <sup>D</sup>         | 5400 <sup>D</sup>         | 6900 <sup>D</sup>                     | 1100 <sup>D</sup>                   | 2500 <sup>D</sup>                   | 2200 <sup>D</sup>         | 1100 <sup>D</sup>         | 1100 <sup>D</sup>                            |
| рН                                 | S.U.   | 6.5-8.5 <sup>B</sup>                  | 6.5-8.5 <sup>D</sup>      | 7.95                   | 8.16                                           | 7.53                      | 7.57                                           | 7.90                      | 7.88                                           | 7.65                      | 7.99                      | 7.97                      | 7.57                      | 7.81                                  | 8.01                                | 7.56                                | 8.04                      | 7.94                      | 8.11                                         |
| Anions                             |        |                                       |                           |                        |                                                |                           |                                                |                           |                                                | •                         |                           |                           | •                         |                                       |                                     |                                     |                           |                           |                                              |
| Alkalinity (P as CaCO3)            | mg/L   | n/v                                   | n/v                       | <0.50                  | < 0.50                                         | <0.50                     | <0.50                                          | <0.50                     | < 0.50                                         | <5.0                      | <0.50                     | <0.50                     | <0.50                     | < 0.50                                | <0.50                               | <0.50                               | <0.50                     | <0.50                     | <0.50                                        |
| Alkalinity, Total (as CaCO3)       | mg/L   | n/v                                   | n/v                       | 520                    | 450                                            | 330                       | 380                                            | 370                       | 510                                            | 380                       | 410                       | 410                       | 630                       | 520                                   | 420                                 | 420                                 | 180                       | 600                       | 470                                          |
| Alkalinity, Bicarbonate (as CaCO3) | mg/L   | n/v                                   | n/v                       | 630                    | 550                                            | 410                       | 470                                            | 450                       | 630                                            | 470                       | 500                       | 510                       | 770                       | 640                                   | 510                                 | 520                                 | 220                       | 730                       | 580                                          |
| Alkalinity, Carbonate (as CaCO3)   | mg/L   | n/v                                   | n/v                       | <0.50                  | <0.50                                          | <0.50                     | <0.50                                          | <0.50                     | <0.50                                          | <5.0                      | <0.50                     | <0.50                     | <0.50                     | <0.50                                 | <0.50                               | <0.50                               | <0.50                     | <0.50                     | <0.50                                        |
| Alkalinity, Hydroxide (as CaCO3)   | mg/L   | n/v                                   | n/v                       | <0.50                  | <0.50                                          | <0.50                     | <0.50                                          | <0.50                     | <0.50                                          | <5.0                      | <0.50                     | <0.50                     | <0.50                     | <0.50                                 | <0.50                               | <0.50                               | <0.50                     | <0.50                     | <0.50                                        |
| Sulfate                            | mg/L   | ≤500 <sub>i</sub> <sup>B</sup>        | 500 <sup>D</sup>          | 3500 CD <sup>BD</sup>  | 1100 CD <sup>BD</sup>                          | 1800 CD <sup>BD</sup>     | 2200 CD <sup>BD</sup>                          | 140                       | 490 CD                                         | 1800 CD <sup>BD</sup>     | 1500 CD <sup>BD</sup>     | 900 CD <sup>BD</sup>      | 3100 CD <sup>BD</sup>     | 4800 CD <sup>BD</sup>                 | 100                                 | 1100 CD <sup>BD</sup>               | 1100 CD <sup>BD</sup>     | 70                        | 150                                          |
| Chloride                           | mg/L   | ≤250 <sup>B</sup>                     | 100 <sup>D</sup>          | 6.0                    | 12                                             | 4.3                       | 14                                             | 60                        | 1.6                                            | 7.1                       | 1.7                       | 230 CD <sup>D</sup>       | 7.9                       | 8.7                                   | 72                                  | 1.9                                 | 4.9                       | 3.5                       | 8.2                                          |
| Nutrients                          |        |                                       |                           |                        |                                                |                           |                                                |                           |                                                |                           |                           |                           |                           |                                       |                                     |                                     |                           |                           |                                              |
| Ammonia (as N)                     | mg/L   | n/v                                   | 0.261-190 <sub>01</sub> D | 0.27                   | 0.20                                           | 0.37                      | 0.16                                           | 0.055                     | 0.16                                           | 0.59                      | 0.49                      | -                         | 0.60                      | -                                     | < 0.050                             | 0.070                               | 0.68                      | 0.14                      | 0.12                                         |
| Nitrite (as N)                     | mg/L   | 1 <sup>C</sup>                        | 0.06 <sup>D</sup>         | 0.024                  | 0.016                                          | <0.010                    | <0.010                                         | <0.010                    | <0.010                                         | <0.010                    | <0.010                    | <0.010                    | <0.010                    | 0.17 <sup>D</sup>                     | 0.031                               | <0.010                              | <0.010                    | <0.010                    | <0.010                                       |
| Nitrate (as N)                     | mg/L   | 10 <sup>C</sup>                       | 3 <sup>D</sup>            | <0.050 MI              | 0.29                                           | <0.010                    | <0.010                                         | 1.6                       | 0.015                                          | 0.027                     | <0.010                    | 0.34                      | 0.031                     | 1.1                                   | 1.2                                 | 0.42                                | 0.012                     | <0.010                    | 0.015                                        |
| Orthophosphate(as P)               | mg/L   | n/v                                   | n/v                       | 0.0041                 | 0.0099 OG                                      | <0.0030                   | 0.012 OG                                       | <0.0030                   | 0.0036                                         | <0.0030                   | <0.0030                   | -                         | 0.0045                    | -                                     | <0.0030                             | <0.0030                             | 0.0076 OG                 | <0.0030                   | 0.0086                                       |
| Phosphorus, Total (Dissolved)      | mg/L   | n/v                                   | n/v                       | 0.0094                 | 0.0067                                         | <0.0030                   | 0.0065                                         | 0.0045                    | 0.0059                                         | 0.0035                    | 0.0033                    | -                         | 0.011                     | -                                     | 0.0038                              | 0.0037                              | <0.0030                   | <0.0030                   | 0.016                                        |
| Total Kieldahl Nitrogen            | mg/L   | n/v                                   | n/v                       | 5.1 DB                 | 1.7 DB                                         | 6.5 DB                    | 0.62                                           | 0.95                      | 0.20                                           | 5.4 CD                    | 3.7 DB                    |                           | 14 DB                     |                                       | 1.3                                 | 0.70 DB                             | 0.97                      | 2.8 CD                    | 0.54 DB                                      |

| Sample Location            |           |                                   |                             | MW16-2-6               | MW16-3-7            | MW16-6-11          | MW16-7-5               | MW16-8-8                  | MW16-9-6               | MW16-10-15           | MW16-11-15                | MW16-12-3            | MW16-16-11           | MW16-17-5            | MW16-18-6           | MW16-19-8              | MW16-22-26             | MW16-23-14             | MW16-25-9             |
|----------------------------|-----------|-----------------------------------|-----------------------------|------------------------|---------------------|--------------------|------------------------|---------------------------|------------------------|----------------------|---------------------------|----------------------|----------------------|----------------------|---------------------|------------------------|------------------------|------------------------|-----------------------|
| -                          |           |                                   |                             |                        | 28-Sep-16           | 27-Sep-16          |                        | 4-Oct-16                  | 1                      | 4-Oct-16             |                           | 6-Oct-16             | 3-Oct-16             | 6-Oct-16             | 4-Oct-16            |                        |                        |                        | 30-Sep-16             |
| Sample Date                |           |                                   |                             | 30-Sep-16<br>Surficial | Surficial           | Surficial          | 27-Sep-16<br>Surficial | Surficial                 | 30-Sep-16<br>Surficial | Surficial            | 30-Sep-16                 | Surficial            | Surficial            | Surficial            | Surficial           | 27-Sep-16<br>Surficial | 28-Sep-16<br>Surficial | 29-Sep-16<br>Surficial | Surficial             |
| Aquifer<br>Lithology       |           |                                   |                             | Sandstone              | Glaciolacustrine    | Glacial Till       | Glaciolacustrine       | Glacial Till              | Glaciolacustrine       | Glacial Till         | Surficial<br>Glacial Till | Glacial Till         | Glacial Till         | Glaciolacustrine     | Basal Silt and      | Basal Silt and         | Glacial Till           | Glacial Till           | Glacial Till          |
| Linology                   |           | Health                            |                             | Sandstonic             | Clay and Silt       |                    | Clay and Silt          |                           | Clay and Silt          |                      |                           |                      |                      | Clay                 | Sand                | Sand                   |                        |                        | Cideidi III           |
|                            | Units     | Canada                            | AEP                         |                        |                     |                    |                        |                           |                        |                      |                           |                      |                      | ,                    |                     |                        |                        |                        |                       |
| Metals, Dissolved          |           |                                   |                             |                        | · · · · ·           |                    | ·                      |                           |                        |                      |                           |                      |                      | ·                    |                     |                        |                        | •                      |                       |
| Aluminum                   | mg/L      | 0.1/0.2 <sub>a</sub> <sup>B</sup> | 0.1/0.050 <sub>n2</sub> D   | 0.016                  | 0.0064              | 0.0041             | 0.0048                 | <0.0030                   | <0.0030                | 0.0042               | <0.0030                   | 0.0070               | 0.0056               | 0.0039               | <0.0030             | 0.0039                 | 0.0036                 | <0.0030                | 0.028                 |
| Antimony                   | mg/L      | 0.006 <sup>C</sup>                | 0.006 <sup>D</sup>          | 0.00073                | <0.00060            | <0.00060           | <0.00060               | <0.00060                  | <0.00060               |                      | <0.00060                  | <0.00060             | <0.00060             | 0.00062              | <0.00060            | <0.00060               | <0.00060               | <0.00060               | <0.00060              |
| Arsenic                    | mg/L      | 0.010 <sup>C</sup>                | 0.005 <sup>D</sup>          | 0.0044                 | 0.00078             | 0.00050            | 0.0010                 | <0.00020                  | 0.00093                | 0.0012               | 0.0012                    | 0.00092              | 0.00085              | 0.00053              | 0.00022             | 0.00030                | 0.00073                | 0.0056 <sup>D</sup>    | 0.00078               |
| Barium                     | mg/L      | 1.0 <sup>C</sup>                  | 1 <sup>D</sup>              | 0.018                  | 0.035               | 0.021              | 0.032                  | 0.039                     | 0.039                  | 0.022                | 0.016                     | 0.12                 | 0.026                | 0.041                | 0.075               | 0.013                  | 0.034                  | 0.12                   | 0.053                 |
| Beryllium                  | mg/L      | n/v                               | n/v                         | < 0.0010               | <0.0010             | <0.0010            | <0.0010                | < 0.0010                  | <0.0010                | <0.0010              | <0.0010                   | <0.0010              | <0.0010              | <0.0010              | < 0.0010            | <0.0010                | <0.0010                | <0.0010                | < 0.0010              |
| Boron                      | mg/L      | 5 <sup>C</sup>                    | 1.0 <sup>D</sup>            | 0.11                   | 0.10                | 0.13               | 0.12                   | 0.043                     | 0.14                   | 0.12                 | 0.10                      | 0.051                | 0.20                 | 0.12                 | 0.088               | 0.092                  | 0.098                  | 0.13                   | 0.099                 |
| Cadmium                    | mg/L      | 0.005 <sup>C</sup>                | 0.011/0.040 <sub>n2</sub> D | 0.000092               | 0.000036            | 0.000058           | 0.00013                | 0.000040                  | 0.000073               | 0.00010              | 0.000043                  | 0.000036             | 0.00014 NF           | 0.00028              | <0.000020           | 0.000057               | <0.000020              | 0.000033               | 0.000065              |
| Calcium                    | mg/L      | n/v                               | n/v                         | 390                    | 170                 | 310                | 250                    | 120                       | 220                    | 320                  | 290                       | 270                  | 440                  | 410                  | 86                  | 230                    | 170                    | 130                    | 140                   |
| Chromium                   | mg/L      | 0.05 <sup>C</sup>                 | 0.0049 <sub>s2</sub> D      | < 0.0010               | <0.0010             | <0.0010            | <0.0010                | <0.0010                   | 0.0043                 | < 0.0010             | <0.0010                   | <0.0010              | <0.0010              | <0.0010              | <0.0010             | <0.0010                | <0.0010                | <0.0010                | <0.0010               |
| Cobalt                     | mg/L      | n/v                               | n/v                         | 0.0060                 | 0.0023              | 0.0041             | 0.0051                 | 0.00057                   | 0.0037                 | 0.0043               | 0.0016                    | <0.00030             | 0.0037               | 0.00083              | <0.00030            | <0.00030               | 0.00087                | 0.0020                 | 0.0020                |
| Copper                     | mg/L      | ≤1.0 <sup>B</sup>                 | 0.007 <sup>D</sup>          | 0.00084                | 0.00085             | <0.00020           | 0.00097                | 0.00032                   | 0.00064                | <0.00020             | 0.00029                   | 0.0018               | 0.0097 <sup>D</sup>  | 0.0017               | 0.00067             | 0.00059                | <0.00020               | <0.00020               | 0.0011                |
| Iron                       | mg/L      | ≤0.3 <sup>B</sup>                 | 0.3 <sup>D</sup>            | <0.060                 | 0.17                | 0.11               | <0.060                 | <0.060                    | 0.13                   | <0.060               | 0.37 <sup>BD</sup>        | <0.060               | <0.060               | <0.060               | <0.060              | <0.060                 | 0.11                   | 0.50 <sup>BD</sup>     | 0.16                  |
| Lead                       | mg/L      | 0.010 <sup>C</sup>                | 0.068 <sub>n2</sub> D       | <0.00020               | <0.00020            | <0.00020           | <0.00020               | <0.00020                  | <0.00020               | <0.00020             | <0.00020                  | <0.00020             | <0.00020             | <0.00020             | <0.00020            | <0.00020               | <0.00020               | <0.00020               | <0.00020              |
| Lithium                    | mg/L      | n/v                               | n/v                         | 0.11                   | 0.057               | 0.049              | 0.077                  | <0.020                    | 0.030                  | 0.055                | 0.050                     | 0.030                | 0.15                 | 0.15                 | 0.026               | 0.029                  | 0.064                  | 0.032                  | 0.034                 |
| Magnesium                  | mg/L      | n/v                               | n/v                         | 400                    | 130                 | 140                | 230                    | 60                        | 94                     | 140                  | 110                       | 160                  | 320                  | 600 CD               | 63                  | 99                     | 54                     | 53                     | 59                    |
| Manganese                  | mg/L      | ≤0.05 <sup>B</sup>                | 0.05 <sup>D</sup>           | 1.5 <sup>BD</sup>      | 0.39 <sup>BD</sup>  | 0.85 <sup>BD</sup> | 0.81 <sup>BD</sup>     | 0.12 <sup>BD</sup>        | 0.93 <sup>BD</sup>     | 1.0 <sup>BD</sup>    | 0.77 <sup>BD</sup>        | 0.025                | 2.3 <sup>BD</sup>    | 0.39 <sup>BD</sup>   | 0.058 <sup>BD</sup> | 0.071 <sup>BD</sup>    | 0.51 <sup>BD</sup>     | 0.75 <sup>BD</sup>     | 0.23 <sup>BD</sup>    |
| Mercury                    | µg/L      | 1 <sup>C</sup>                    | 0.005 <sup>D</sup>          | <0.0020                | <0.0020             | <0.0020            | 0.0020                 | <0.0020                   | <0.0020                | <0.0020              | 0.0036                    | <0.0020              | <0.0020              | <0.0020              | <0.0020             | <0.0020                | <0.0020                | <0.0020                | 0.0035                |
| Molybdenum                 | mg/L      | n/v                               | n/v                         | 0.0071                 | 0.0020              | 0.0014             | 0.0026                 | 0.0011                    | 0.00082                | 0.0034               | 0.0015                    | 0.0021               | 0.0011               | 0.0015               | 0.0019              | 0.00060                | 0.0039                 | 0.0053                 | 0.0036                |
| Nickel                     | mg/L      | n/v                               | 0.40/3.6 <sub>n2</sub> D    | 0.016                  | 0.0065              | 0.0064             | 0.011                  | 0.0025                    | 0.0071                 | 0.013                | 0.0027                    | 0.0041               | 0.0066               | 0.0054               | 0.00099             | <0.00050               | 0.0018                 | 0.0053                 | 0.0067                |
| Phosphorus                 | mg/L      | n/v                               | n/v                         | <0.10                  | <0.10               | <0.10              | <0.10                  | <0.10                     | <0.10                  | <0.10                | <0.10                     | <0.10                | <0.10                | 0.11                 | <0.10               | <0.10                  | <0.10                  | <0.10                  | <0.10                 |
| Potassium                  | mg/L      | n/v                               | n/v                         | 9.4                    | 6.1                 | 8.5                | 5.9                    | 5.8                       | 5.6                    | 11                   | 6.0                       | 6.4                  | 15                   | 11                   | 2.4                 | 5.9                    | 7.1                    | 6.5                    | 6.6                   |
| Selenium                   | mg/L      | 0.05 <sup>C</sup>                 | 0.001 <sup>D</sup>          | 0.0013 <sup>D</sup>    | 0.00026             | 0.00044            | 0.00046                | <b>0.011</b> <sup>D</sup> | <0.00020               | 0.00038              | <0.00020                  | 0.0016 <sup>D</sup>  | 0.00038              | 0.034 <sup>D</sup>   | 0.0012 <sup>D</sup> | 0.056 <sup>CD</sup>    | 0.00023                | <0.00020               | 0.0014 <sup>D</sup>   |
| Silicon                    | mg/L      | n/v                               | n/v                         | 5.9                    | 5.1                 | 5.0                | 5.6                    | 4.2                       | 5.5                    | 4.5                  | 4.8                       | 6.1                  | 6.3                  | 5.2                  | 4.1                 | 3.6                    | 4.8                    | 6.5                    | 7.0                   |
| Silver                     | mg/L      | n/v                               | 0.0001 <sup>D</sup>         | <0.00010               | <0.00010            | < 0.00010          | <0.00010               | <0.00010                  | <0.00010               | <0.00010             | <0.00010                  | <0.00010             | <0.00010             | <0.00010             | <0.00010            | <0.00010               | <0.00010               | <0.00010               | <0.00010              |
| Sodium                     | mg/L      | ≤200 <sup>B</sup>                 | 200 <sup>D</sup>            | 690 CD <sup>BD</sup>   | 320 <sup>BD</sup>   | 330 <sup>BD</sup>  | 400 <sup>BD</sup>      | 25                        | 71                     | 330 <sup>BD</sup>    | 320 <sup>BD</sup>         | 110                  | 600 CD <sup>BD</sup> | 750 CD <sup>BD</sup> | 66                  | 260 <sup>BD</sup>      | 310 <sup>BD</sup>      | 59                     | 34                    |
| Strontium                  | mg/L      | n/v                               | n/v                         | 4.6                    | 1.6                 | 2.4                | 2.4                    | 0.90                      | 1.4                    | 3.4                  | 2.6                       | 1.1                  | 4.9                  | 4.7                  | 0.75                | 1.4                    | 2.4                    | 1.1                    | 0.74                  |
| Sulfur                     | mg/L      | n/v                               | n/v                         | 1200 CD                | 370                 | 580 CD             | 700 CD                 | 45                        | 180                    | 650 CD               | 480                       | 270                  | 1000 CD              | 1500 CD              | 29                  | 370                    | 350                    | 25                     | 49                    |
| Thallium                   | mg/L      | n/v                               | n/v                         | <0.00020               | <0.00020            | <0.00020           | <0.00020               | <0.00020                  | <0.00020               | <0.00020             | <0.00020                  | <0.00020             | <0.00020             | <0.00020             | <0.00020            | <0.00020               | <0.00020               | <0.00020               | <0.00020              |
| Tin                        | mg/L      | n/v                               | n/v                         | < 0.0010               | <0.0010             | <0.0010            | <0.0010                | <0.0010                   | <0.0010                | < 0.0010             | <0.0010                   | <0.0010              | <0.0010              | <0.0010              | <0.0010             | <0.0010                | <0.0010                | <0.0010                | <0.0010               |
| Titanium                   | mg/L      | n/v                               | n/v                         | <0.0010                | <0.0010             | <0.0010            | <0.0010                | <0.0010                   | <0.0010                | < 0.0010             | <0.0010                   | <0.0010              | <0.0010              | <0.0010              | <0.0010             | <0.0010                | <0.0010                | <0.0010                | <0.0010               |
| Uranium                    | mg/L      | 0.02 <sup>C</sup>                 | 0.01 <sup>D</sup>           | 0.040 <sup>CD</sup>    | 0.014 <sup>D</sup>  | 0.0085             | 0.020 <sup>D</sup>     | 0.011 <sup>D</sup>        | 0.0086                 | 0.012 <sup>D</sup>   | 0.0071                    | 0.010                | 0.033 <sup>CD</sup>  | 0.031 <sup>CD</sup>  | 0.011 <sup>D</sup>  | 0.013 <sup>D</sup>     | 0.0044                 | 0.0052                 | 0.014 <sup>D</sup>    |
| Vanadium                   | mg/L      | n/v                               | n/v                         | 0.0016                 | <0.0010             | <0.0010            | <0.0010                | < 0.0010                  | <0.0010                | <0.0010              | <0.0010                   | 0.0011               | <0.0010              | <0.0010              | <0.0010             | <0.0010                | <0.0010                | < 0.0010               | 0.0011                |
| Zinc                       | mg/L      | ≤5.0 <sup>B</sup>                 | 0.03 <sup>D</sup>           | 0.016                  | <0.0030             | <0.0030            | <0.0030                | <0.0030                   | <0.0030                | < 0.0030             | 0.0053                    | <0.0030              | <0.0030              | 0.0062               | <0.0030             | <0.0030                | <0.0030                | <0.0030                | < 0.0030              |
| Metals, Total              |           |                                   |                             |                        |                     |                    |                        |                           |                        |                      |                           |                      |                      |                      |                     |                        |                        |                        |                       |
| Mercury                    | µg/L      | 1 <sup>C</sup>                    | 0.005 <sup>D</sup>          | <6.0 DB                | <6.0 DB             | <20 DB             | <2.0 DB                | <20 DB                    | <0.020 DB              | <20 DB               | <6.0 DB                   | 0.30 DB <sup>D</sup> | <6.0 DB              | <0.20 DB             | <6.0 DB             | <2.0 DB                | <6.0 DB                | <20 DB                 | <2.0 DB               |
| Microbiological Parameters |           |                                   |                             |                        |                     |                    |                        |                           | <u></u>                |                      |                           |                      |                      |                      |                     |                        |                        |                        |                       |
| Escherichia coli (E.Coli)  | mpn/100mL | 0 <sup>A</sup>                    | n/v                         | <100 DB                | <10 DB              | <100               | <10                    | <100 DB                   | <1.0                   | <100 DB              | <100 DB                   | -                    | <100 DB              | -                    | <10 DB              | 63 <sup>A</sup>        | <10 DB                 | <10 DB                 | <10 DB                |
| Fecal Coliform             | mpn/100mL | n/v                               | n/v                         | <100 DB                | <10 DB              | <100 DB            | <10 DB                 | <100 DB                   | <1.0                   | 100 DB               | <100 DB                   | -                    | <100 DB              | -                    | <10 DB              | <10 DB                 | <10 DB                 | <10 DB                 | <10 DB                |
| Heterotrophic Plate Count  | cfu/mL    | n/v                               | n/v                         | 49000 DB               | 6000 >              | 56000 DB           | 920                    | 34000 DB                  | 1100                   | 6000 DB>             | 23000 DB                  | -                    | 50000 DB             | -                    | 4400 DB             | 6000 >                 | 6000 >                 | 20000 DB               | 7900 DB               |
| Total Coliforms            | mpn/100mL | 0^                                | n/v                         | <100 DB                | 450 DB <sup>A</sup> | 9300 <sup>A</sup>  | 1700 <sup>A</sup>      | <100 DB                   | 390 <sup>A</sup>       | 9100 DB <sup>A</sup> | 100 DB <sup>A</sup>       |                      | 200 DB <sup>A</sup>  |                      | 140 DB <sup>A</sup> | 280 <sup>A</sup>       | 2000 DB <sup>A</sup>   | 2400 DB> <sup>A</sup>  | 2400 DB> <sup>A</sup> |

| Sample Location                    |        |                                       |                           | MW16-27-12           | MW16-1-15            | MW16-4-22             | MW16-5-11 | MW16-6-20            | MW16-8-19         | MW16-14-33           | MW16-15-34        | MW16-18-10        | MW16-19-19            | MW16-20-21           | MW16-21-11             | MW16-23-36        | MW16-24-30        | MW16-26-18        |
|------------------------------------|--------|---------------------------------------|---------------------------|----------------------|----------------------|-----------------------|-----------|----------------------|-------------------|----------------------|-------------------|-------------------|-----------------------|----------------------|------------------------|-------------------|-------------------|-------------------|
| Sample Date                        |        |                                       |                           | 28-Sep-16            | 3-Oct-16             | 4-Oct-16              | 4-Oct-16  | 27-Sep-16            | 4-Oct-16          | 27-Sep-16            | 26-Sep-16         | 4-Oct-16          | 27-Sep-16             | 27-Sep-16            | 29-Sep-16              | 29-Sep-16         | 28-Sep-16         | 28-Sep-16         |
| Aquifer                            |        |                                       |                           | Surficial            | Bedrock              | Bedrock               | Bedrock   | Bedrock              | Bedrock           | Bedrock              | Bedrock           | Bedrock           | Bedrock               | Bedrock              | Bedrock                | Bedrock           | Bedrock           | Bedrock           |
| Lithology                          |        |                                       |                           | Glacial Till         | Sandstone            | Sandstone             | Sandstone | Claystone/           | Sandstone         | Siltstone/           | Siltstone         | Claystone         | Sandstone             | Sandstone            | Sandstone              | Siltstone         | Sandstone         | Claystone         |
|                                    |        | Health                                |                           |                      |                      |                       |           | Siltstone            |                   | Claystone            |                   |                   |                       |                      |                        |                   |                   |                   |
|                                    | Units  | Canada                                | AEP                       |                      |                      |                       |           |                      |                   |                      |                   |                   |                       |                      |                        |                   |                   |                   |
| Calculated Parameters              |        |                                       |                           |                      |                      |                       |           |                      |                   |                      |                   |                   |                       |                      |                        |                   |                   |                   |
| Anion Sum                          | meq/L  | n/v                                   | n/v                       | 25                   | 25                   | 54                    | 8.8       | 21                   | 15                | 45                   | 11                | 13                | 36                    | 25                   | 9.2                    | 14                | 13                | 14                |
| Cation Sum                         | meq/L  | n/v                                   | n/v                       | 22                   | 28                   | 50                    | 8.7       | 21                   | 14                | 160                  | 10                | 12                | 34                    | 24                   | 9.9                    | 14                | 14                | 14                |
| Hardness (as CaCO3)                | mg/L   | n/v                                   | n/v                       | 800                  | 1000                 | 1700                  | 340       | 340                  | 580               | 6700                 | 52                | 160               | 600                   | 740                  | 440                    | 180               | 160               | 140               |
| Ion Balance                        | none   | n/v                                   | n/v                       | 0.90                 | 1.1                  | 0.94                  | 0.99      | 0.98                 | 0.93              | 3.4                  | 0.95              | 0.93              | 0.95                  | 0.97                 | 1.1                    | 0.99              | 1.1               | 1.0               |
| Nitrate                            | mg/L   | 45 <sup>C</sup>                       | 13 <sup>D</sup>           | <0.044               | <0.044               | <0.044                | 3.3       | 0.086                | 3.1               | 0.072                | <0.044            | 0.51              | <0.044                | 0.085                | 21 <sup>D</sup>        | <0.044            | <0.044            | <0.044            |
| Nitrate + Nitrite (as N)           | mg/L   | n/v                                   | 100 <sup>D</sup>          | <0.020               | <0.020               | <0.020                | 0.76      | <0.020               | 0.70              | <0.020               | <0.020            | 0.13              | <0.020                | <0.020               | 4.8                    | <0.020            | <0.020            | <0.020            |
| Nitrite                            | mg/L   | 3 <sup>C</sup>                        | 0.06 <sup>D</sup>         | < 0.033              | <0.033               | <0.033                | <0.033    | < 0.033              | < 0.033           | < 0.033              | <0.033            | 0.054             | <0.033                | <0.033               | <0.033                 | <0.033            | <0.033            | < 0.033           |
| Total Dissolved Solids             | mg/L   | ≤500 <sup>B</sup>                     | 500 <sup>D</sup>          | 1400 <sup>BD</sup>   | 1600 <sup>BD</sup>   | 3400 <sup>BD</sup>    | 440       | 1400 <sup>BD</sup>   | 750 <sup>BD</sup> | 4700 <sup>BD</sup>   | 610 <sup>BD</sup> | 680 <sup>BD</sup> | 2200 <sup>BD</sup>    | 1500 <sup>BD</sup>   | 480                    | 850 <sup>BD</sup> | 730 <sup>BD</sup> | 870 <sup>BD</sup> |
| BTEX and Petroleum Hydrocarbons    |        | •                                     | I.                        |                      |                      |                       |           |                      |                   |                      |                   |                   |                       |                      |                        |                   |                   |                   |
| Benzene                            | mg/L   | 0.005 <sup>C</sup>                    | 0.005 <sup>D</sup>        | <0.00040             | <0.00040             | <0.00040              | 0.00055   | <0.00040             | < 0.00040         | <0.00040             | <0.00040          | <0.00040          | <0.00040              | 0.0010               | <0.00040               | <0.00040          | <0.00040          | < 0.00040         |
| Toluene                            | mg/L   | 0.024 <sup>B</sup> 0.06 <sup>C</sup>  | 0.024 <sup>D</sup>        | <0.00040             | <0.00040             | <0.00040              | 0.0013    | <0.00040             | <0.00040          | <0.00040             | <0.00040          | 0.0013            | <0.00040              | 0.00050              | <0.00040               | <0.00040          | <0.00040          | <0.00040          |
| Ethylbenzene                       | mg/L   | 0.0016 <sup>B</sup> 0.14 <sup>C</sup> | 0.0016 <sup>D</sup>       | <0.00040             | <0.00040             | <0.00040              | <0.00040  | <0.00040             | <0.00040          | <0.00040             | <0.00040          | 0.00068           | <0.00040              | <0.00040             | 0.00059                | <0.00040          | <0.00040          | <0.00040          |
| Xylene, m & p-                     | mg/L   | n/v                                   | n/v                       | <0.00080             | <0.00080             | <0.00080              | <0.00080  | <0.00080             | <0.00080          | <0.00080             | <0.00080          | 0.0029            | <0.00080              | <0.00080             | 0.00090                | <0.00080          | <0.00080          | <0.00080          |
| Xylene, o-                         | mg/L   | n/v                                   | D<br>s1                   | <0.00040             | <0.00040             | <0.00040              | <0.00040  | <0.00040             | <0.00040          | <0.00040             | <0.00040          | 0.0012            | <0.00040              | <0.00040             | 0.0010                 | <0.00040          | <0.00040          | <0.00040          |
| Xylenes, Total                     | mg/L   | 0.02 <sup>B</sup> 0.09 <sup>C</sup>   | 0.02 <sup>D</sup>         | <0.00080             | <0.00080             | <0.00080              | <0.00080  | <0.00080             | <0.00080          | <0.00080             | <0.00080          | 0.0041            | <0.00080              | <0.00080             | 0.0019                 | <0.00080          | <0.00080          | <0.00080          |
| PHC F1 (C6-C10 range)              | mg/L   | n/v                                   | n/v                       | <0.10                | <0.10                | <0.10                 | <0.10     | <0.10                | <0.10             | <0.10                | <0.10             | <0.10             | <0.10                 | <0.10                | <0.10                  | <0.10             | <0.10             | <0.10             |
| PHC F1 (C6-C10 range) minus BTEX   | mg/L   | n/v                                   | 2.2 <sup>D</sup>          | <0.10                | <0.10                | <0.10                 | <0.10     | <0.10                | <0.10             | <0.10                | <0.10             | <0.10             | <0.10                 | <0.10                | <0.10                  | <0.10             | <0.10             | <0.10             |
| PHC F2 (>C10-C16 range)            | mg/L   | n/v                                   | 1.1 <sup>D</sup>          | <0.10                | <0.10                | <0.10                 | <0.10     | <0.10                | <0.10             | <0.10                | <0.10             | <0.10             | <0.10                 | <0.10                | <0.10                  | <0.10             | <0.10             | <0.10             |
| Miscellaneous Inorganics           |        | ,.                                    |                           |                      |                      |                       |           |                      |                   |                      |                   |                   |                       |                      |                        |                   |                   | 1                 |
| Dissolved Organic Carbon (DOC)     | mg/L   | n/v                                   | n/v                       | 1.8                  | 2.6                  | 5.1                   | 2.8       | 4.1                  | 1.3               | 3.9                  | 1.7               | 2.6               | 3.9                   | 3.8                  | 4.8                    | 2.9               | 1.2               | 2.1               |
| Electrical Conductivity, Lab       | μ\$/cm | n/v                                   | 1000 <sup>D</sup>         | 2000 <sup>D</sup>    | 2100 <sup>D</sup>    | 4000 <sup>D</sup>     | 780       | 2000 <sup>D</sup>    | 1300 <sup>D</sup> | 2000 <sup>D</sup>    | 1000              | 1200 <sup>D</sup> | 3000 <sup>D</sup>     | 2100 <sup>D</sup>    | 800                    | 1300 <sup>D</sup> | 1100 <sup>D</sup> | 1300 <sup>D</sup> |
| pH                                 | S.U.   | 6.5-8.5 <sup>B</sup>                  | 6.5-8.5 <sup>D</sup>      | 7.77                 | 7.88                 | 7.52                  | 7.96      | 7.99                 | 7.74              | 7.80                 | 8.31              | 8.10              | 7.54                  | 7.59                 | 7.96                   | 8.22              | 8.19              | 8.29              |
| Anions                             | 0.01   | 0.0-0.0                               | 0.0-0.0                   | , ., ,               | 7.00                 | 7.02                  | 7.7.0     |                      | ,,,,,             | 7.00                 | 0.01              | 0.110             | 7.01                  | ,,                   | 7.00                   | 0.22              | 0.17              | 0.27              |
| Alkalinity (P as CaCO3)            | mg/L   | n/v                                   | n/v                       | <0.50                | <0.50                | <0.50                 | <0.50     | <0.50                | <0.50             | 81                   | <0.50             | <0.50             | <0.50                 | <0.50                | <0.50                  | <0.50             | <0.50             | <0.50             |
| Alkalinity, Total (as CaCO3)       | mg/L   | n/v                                   | n/v                       | 530                  | 300                  | 460                   | 380       | 260                  | 460               | 1500                 | 350               | 410               | 520                   | 450                  | 390                    | 290               | 460               | 260               |
| Alkalinity, Bicarbonate (as CaCO3) | mg/L   | n/v                                   | n/v                       | 650                  | 360                  | 570                   | 470       | 320                  | 560               | 1600                 | 430               | 500               | 640                   | 540                  | 470                    | 350               | 560               | 310               |
| Alkalinity, Carbonate (as CaCO3)   | mg/L   | n/v                                   | n/v                       | <0.50                | <0.50                | <0.50                 | <0.50     | <0.50                | <0.50             | 97                   | <0.50             | <0.50             | <0.50                 | <0.50                | <0.50                  | <0.50             | <0.50             | <0.50             |
| Alkalinity, Hydroxide (as CaCO3)   | mg/L   | n/v                                   | n/v                       | <0.50                | <0.50                | <0.50                 | <0.50     | <0.50                | <0.50             | <5.0                 | <0.50             | <0.50             | <0.50                 | <0.50                | <0.50                  | <0.50             | <0.50             | <0.50             |
| Sulfate                            | mg/L   | ≤500 <sup>,B</sup>                    | 500 <sup>D</sup>          | 690 CD <sup>BD</sup> | 910 CD <sup>BD</sup> | 2100 CD <sup>BD</sup> | 43        | 770 CD <sup>BD</sup> | 110               | 730 CD <sup>BD</sup> | 170               | 110               | 1200 CD <sup>BD</sup> | 760 CD <sup>BD</sup> | 50                     | 380 CD            | 160               | 400 CD            |
| Chloride                           | mg/L   | ≤250 <sup>B</sup>                     | 100 <sup>D</sup>          | 2.1                  | 3.8                  | 3.0                   | 4.8       | 4.0                  | 110 <sup>D</sup>  | 25                   | 3.4               | 78                | 1.7                   | 3.3                  | 4.6                    | 3.2               | <1.0              | 2.0               |
| Nutrients                          | mg/L   | S250                                  | 100                       | 2.1                  | 3.0                  | 5.0                   | 4.0       | 4.0                  | 110               | 23                   | 5.4               | 78                | 1.7                   | 5.5                  | 4.0                    | 5.2               | <1.0              | 2.0               |
|                                    |        |                                       | 0.0(1.100 D               | 0.00                 | -0.050               | 0.07                  | 0.0/0     | 0.40                 | -0.050            | 1.5                  | 0.00.4*           | -0.050            | 1.1                   | 0.57                 | -0.050                 | 0.00              | 0.07              |                   |
| Ammonia (as N)                     | mg/L   | n/v                                   | 0.261-190 <sub>n1</sub> D | 0.38                 | <0.050               | 0.96                  | 0.062     | 0.49                 | <0.050            | 1.5<br><0.010        | 0.99 A*           | <0.050            | 1.1<br><0.010         | 0.57<br><0.010       | <0.050                 | 0.83<br><0.010    | 0.86              | 0.64<br><0.010    |
| Nitrite (as N)                     | mg/L   | 1                                     | 0.06 <sup>D</sup>         | <0.010               | <0.010               | <0.010                | <0.010    | < 0.010              | <0.010            |                      | <0.010            | 0.017             |                       |                      | <0.010                 |                   | <0.010            |                   |
| Nitrate (as N)                     | mg/L   | 10 <sup>C</sup>                       | 3 <sup>D</sup>            | < 0.010              | < 0.010              | <0.010                | 0.76      | 0.020                | 0.70              | 0.016                | <0.010            | 0.12              | < 0.010               | 0.019                | <b>4.8<sup>D</sup></b> | <0.010            | <0.010            | < 0.010           |
| Orthophosphate (as P)              | mg/L   | n/v                                   | n/v                       | < 0.0030             | <0.0030              | <0.0030               | <0.0030   | < 0.0030             | < 0.0030          | 0.0039               | 0.0038            | <0.0030           | < 0.0030              | < 0.0030             | 0.0041 OG              | 0.0040 OG         | <0.0030           | < 0.0030          |
| Phosphorus, Total (Dissolved)      | mg/L   | n/v                                   | n/v                       | <0.0030              | <0.0030              | <0.0030 XN            | 0.0034    | <0.0030              | <0.0030           | 0.0073               | 0.0057            | <0.0030           | <0.0030               | <0.0030              | 0.013                  | 0.013             | <0.0030           | 0.0062            |
| Total Kjeldahl Nitrogen            | mg/L   | n/v                                   | n/v                       | 1.1                  | 1.5 DB               | 1.1                   | 7.5 DB    | 1.3                  | 1.3               | 38 CD                | 0.90 A*           | 18 CD             | 1.5 DB                | 11 DB                | 3.3 DB                 | 1.3               | 0.88              | 4.5 DB            |

|                            |           |                                            |                                        |                     |                     | 1                  | I                  | 1                   | 1                  | 1                   |                   | 1                   |                    | 1                  | I                   |                     | 1                   | <del>η</del>        |
|----------------------------|-----------|--------------------------------------------|----------------------------------------|---------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------|-------------------|---------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|
| Sample Location            |           |                                            |                                        | MW16-27-12          | MW16-1-15           | MW16-4-22          | MW16-5-11          | MW16-6-20           | MW16-8-19          | MW16-14-33          | MW16-15-34        | MW16-18-10          | MW16-19-19         | MW16-20-21         | MW16-21-11          | MW16-23-36          | MW16-24-30          | MW16-26-18          |
| Sample Date                |           |                                            |                                        | 28-Sep-16           | 3-Oct-16            | 4-Oct-16           | 4-Oct-16           | 27-Sep-16           | 4-Oct-16           | 27-Sep-16           | 26-Sep-16         | 4-Oct-16            | 27-Sep-16          | 27-Sep-16          | 29-Sep-16           | 29-Sep-16           | 28-Sep-16           | 28-Sep-16           |
| Aquifer                    |           |                                            |                                        | Surficial           | Bedrock             | Bedrock            | Bedrock            | Bedrock             | Bedrock            | Bedrock             | Bedrock           | Bedrock             | Bedrock            | Bedrock            | Bedrock             | Bedrock             | Bedrock             | Bedrock             |
| Lithology                  |           | Health                                     |                                        | Glacial Till        | Sandstone           | Sandstone          | Sandstone          | Claystone/          | Sandstone          | Siltstone/          | Siltstone         | Claystone           | Sandstone          | Sandstone          | Sandstone           | Siltstone           | Sandstone           | Claystone           |
|                            | Units     | Canada                                     | AEP                                    |                     |                     |                    |                    | Siltstone           |                    | Claystone           |                   |                     |                    |                    |                     |                     |                     |                     |
| Metals, Dissolved          |           |                                            |                                        |                     |                     |                    |                    |                     |                    |                     |                   |                     |                    |                    |                     |                     |                     | <u> </u>            |
| Aluminum                   | mg/L      | 0.1/0.2 <sup>B</sup>                       | 0.1/0.050 <sub>n2</sub> D              | <0.0030             | <0.0030             | <0.0030            | 0.011              | 0.0067              | <0.0030            | 0.016 NF XN         | 0.0040            | < 0.0030            | 0.0033             | 0.0040             | 0.0033              | 0.0074              | <0.0030             | 0.0037              |
| Antimony                   | mg/L      | 0.170.2 <sub>a</sub><br>0.006 <sup>C</sup> | 0.006 <sup>D</sup>                     | <0.00060            | <0.00060            | <0.00060           | <0.00060           | < 0.00060           | <0.00060           | 0.0021              | 0.0013            | <0.00060            | <0.00060           | < 0.00060          | <0.00060            | <0.00060            | <0.00060            | < 0.00060           |
| Arsenic                    | mg/L      | 0.000                                      | 0.005 <sup>D</sup>                     | 0.00036             | <0.00020            | 0.0017             | 0.0010             | 0.00043             | <0.00020           | 0.0017              | 0.0010            | 0.00039             | 0.00033            | 0.00043            | 0.00045             | 0.00035             | 0.0023              | <0.00020            |
| Barium                     | mg/L      | 1.0 <sup>C</sup>                           | 1 <sup>D</sup>                         | < 0.010             | 0.018               | < 0.010            | 0.068              | 0.031               | 0.054              | 3.8 <sup>CD</sup>   | 0.013             | 0.030               | <0.010             | 0.018              | 0.087               | 0.030               | 0.019               | <0.00020            |
| Beryllium                  | mg/L      | n/v                                        | n/v                                    | <0.010              | < 0.0010            | <0.010             | <0.0010            | <0.0010             | <0.0010            | <0.0010             | <0.0010           | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010             | <0.0010             | <0.010              |
| Boron                      | mg/L      | 5 <sup>°</sup>                             | 1.0 <sup>D</sup>                       | 0.13                | 0.078               | 0.11               | 0.036              | 0.093               | 0.043              | <2.0                | 0.040             | 0.14                | 0.13               | 0.076              | 0.061               | 0.086               | 0.089               | 0.13                |
| Cadmium                    | mg/L      | -                                          | 0.011/0.040 <sub>n2</sub> <sup>D</sup> | 0.000026            | <0.00020            | <0.000020          | <0.000020          | <0.00020            | 0.000029           | 0.000024            | <0.00020          | <0.000020           | <0.000020          | <0.00020           | 0.000073            | <0.00020            | <0.00020            | <0.000020           |
| Calcium                    | -         | 0.005 <sup>C</sup><br>n/v                  | 0.011/0.040 <sub>n2</sub><br>n/v       | 200                 | 230                 | 380                | 76                 | 76                  | 130                | 2300                | 14                | 38                  | 140                | 160                | 86                  | <0.000020<br>50     | 38                  | 40                  |
|                            | mg/L      |                                            | 0.0049 0                               | <0.0010             | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010            | <0.0010             | <0.0010           | 38<br><0.0010       | <0.0010            | <0.0010            | 86<br><0.0010       | -0.0010             | 38<br><0.0010       | 40<br><0.0010       |
| Chromium<br>Cobalt         | mg/L      | 0.05 <sup>C</sup><br>n/v                   | 0.0049 <sub>s2</sub> -                 | <0.0010             | <0.0010             | 0.00034            | <0.0010            | 0.00056             | <0.0010            | 0.00065             | <0.0010           | 0.00034             | <0.0010            | 0.00085            | 0.00062             | <0.0010             | <0.0010             | <0.0010             |
|                            | mg/L      |                                            |                                        | <0.0014             | <0.0012             | <0.00034           | <0.0010            | 0.00056             | <0.00030           | < 0.00085           |                   | < 0.00034           | <0.00030           | <0.00085           | 0.00082             | <0.00030            |                     | 0.00021             |
| Copper                     | mg/L      | ≤1.0 <sup>8</sup>                          | 0.007 <sup>D</sup><br>0.3 <sup>D</sup> | <0.00020            |                     | <0.00020           |                    |                     |                    | <0.00020            | <0.00020          |                     | <0.00020           | <0.00020           |                     |                     | <0.00020            |                     |
| Iron                       | mg/L      | ≤0.3 <sup>B</sup>                          |                                        |                     | <0.060              |                    | 0.061<br><0.00020  | <0.060<br><0.00020  | <0.060<br><0.00020 |                     | <0.060            | <0.060              |                    |                    | 0.078<br><0.00020   | <0.060<br><0.00020  | 0.14                | 0.15                |
| Lead                       | mg/L      | 0.010 <sup>C</sup>                         | 0.068 <sub>n2</sub> <sup>D</sup>       | <0.00020            | <0.00020            | <0.00020           |                    |                     |                    | <0.00020            | < 0.00020         | <0.00020            | <0.00020           | <0.00020           |                     |                     | <0.00020            | < 0.00020           |
| Lithium                    | mg/L      | n/v                                        | n/v                                    | 0.041<br>75         | 0.022               | 0.070              | <0.020<br>38       | 0.044<br>36         | <0.020             | <2.0<br>190         | 0.074             | 0.031               | 0.056              | 0.053<br>82        | 0.028<br>54         | 0.066<br>14         | 0.054<br>16         | 0.035               |
| Magnesium                  | mg/L      | n/v                                        | n/v                                    |                     | 0.88 <sup>BD</sup>  | 180                |                    |                     | 60                 |                     | 4.2               | 16                  | 62                 | -                  | -                   |                     | -                   |                     |
| Manganese                  | mg/L      | ≤0.05 <sup>B</sup><br>1 <sup>C</sup>       | 0.05 <sup>D</sup>                      | 0.41 <sup>BD</sup>  | 0.00                | 0.60 <sup>BD</sup> | 0.15 <sup>BD</sup> | 0.16 <sup>BD</sup>  | 0.0062             | 14 <sup>BD</sup>    | 0.028             | 0.20 <sup>BD</sup>  | 0.37 <sup>BD</sup> | 0.34 <sup>BD</sup> | 0.17 <sup>BD</sup>  | 0.083 <sup>BD</sup> | 0.067 <sup>BD</sup> | 0.083 <sup>BD</sup> |
| Mercury                    | µg/L      | i.                                         | 0.005 <sup>D</sup>                     | <0.0020             | 0.0029              | <0.0020            | <0.0020            | <0.0020             | < 0.0020           | <0.0020             | <0.0020           | <0.0020             | < 0.0020           | <0.0020            | <0.0020             | < 0.0020            | <0.0020             | <0.0020             |
| Molybdenum                 | mg/L      | n/v                                        | n/v                                    | 0.00058             | 0.0028              | 0.0016             | 0.012              | 0.0060              | 0.00085            | 0.028               | 0.018             | 0.0037              | 0.0012             | 0.0052             | 0.0010              | 0.0023              | 0.0014              | 0.0048              |
| Nickel                     | mg/L      | n/v                                        | 0.40/3.6 <sub>n2</sub> D               | 0.00062             | 0.0010              | <0.00050           | 0.0020             | <0.00050            | < 0.00050          | 0.0036              | <0.00050          | < 0.00050           | <0.00050           | <0.00050           | 0.0016              | <0.00050            | <0.00050            | <0.00050            |
| Phosphorus                 | mg/L      | n/v                                        | n/v                                    | <0.10               | <0.10               | <0.10              | <0.10              | <0.10               | <0.10              | 49                  | <0.10             | <0.10               | <0.10              | <0.10              | <0.10               | <0.10               | <0.10               | <0.10               |
| Potassium                  | mg/L      | n/v                                        | n/v                                    | 4.9                 | 4.8                 | 8.2                | 3.7                | 4.9                 | 5.7                | 53                  | 2.4               | 1.3                 | 5.9                | 8.9                | 7.6                 | 4.2                 | 4.0                 | 2.8                 |
| Selenium                   | mg/L      | 0.05 <sup>C</sup>                          | 0.001 <sup>D</sup>                     | <0.00020            | <0.00020            | <0.00020           | 0.0031             | <0.00020            | 0.0080             | 0.0011 <sup>b</sup> | 0.00065           | 0.00066             | <0.00020           | 0.00090            | 0.0019 <sup>D</sup> | <0.00020            | <0.00020            | <0.00020            |
| Silicon                    | mg/L      | n/v                                        | n/v                                    | 5.7                 | 4.7                 | 4.3                | 4.2                | 3.4                 | 3.7                | 25                  | 2.6               | 3.4                 | 3.4                | 4.0                | 4.7                 | 3.8                 | 3.6                 | 4.5                 |
| Silver                     | mg/L      | n/v                                        | 0.0001                                 | <0.00010            | <0.00010            | <0.00010           | <0.00010           | <0.00010            | <0.00010           | <0.00010            | <0.00010          | <0.00010            | <0.00010           | <0.00010           | <0.00010            | <0.00010            | <0.00010            | <0.00010            |
| Sodium                     | mg/L      | ≤200 <sup>8</sup>                          | 200 <sup>D</sup>                       | 140                 | 160                 | 370 <sup>BD</sup>  | 39                 | 320 <sup>BD</sup>   | 47                 | 410 <sup>BD</sup>   | 210 <sup>BD</sup> | 200 <sup>8</sup>    | 490 <sup>BD</sup>  | 210 <sup>BD</sup>  | 21                  | 230 <sup>BD</sup>   | 240 <sup>BD</sup>   | 250 <sup>BD</sup>   |
| Strontium                  | mg/L      | n/v                                        | n/v                                    | 1.6                 | 1.6                 | 6.0 CD             | 0.82               | 0.78                | 1.3                | 9.7                 | 0.25              | 0.27                | 2.1                | 2.0                | 1.1                 | 0.77                | 0.66                | 0.61                |
| Sulfur                     | mg/L      | n/v                                        | n/v                                    | 180                 | 340                 | 730 CD             | 13                 | 250                 | 29                 | 220                 | 51                | 33                  | 370                | 240                | 19                  | 120                 | 51                  | 130                 |
| Thallium                   | mg/L      | n/v                                        | n/v                                    | <0.00020            | <0.00020            | <0.00020           | <0.00020           | <0.00020            | <0.00020           | <0.00020            | <0.00020          | <0.00020            | <0.00020           | <0.00020           | <0.00020            | <0.00020            | <0.00020            | <0.00020            |
| Tin                        | mg/L      | n/v                                        | n/v                                    | <0.0010             | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010            | <0.0010             | <0.0010           | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010             | <0.0010             | <0.0010             |
| Titanium                   | mg/L      | n/v                                        | n/v                                    | <0.0010             | <0.0010             | <0.0010            | <0.0010            | <0.0010             | 0.0010             | 0.0020              | <0.0010           | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010             | <0.0010             | <0.0010             |
| Uranium                    | mg/L      | 0.02 <sup>C</sup>                          | 0.01 <sup>D</sup>                      | 0.0049              | 0.0054              | 0.0023             | 0.0053             | 0.0021              | 0.0053             | 0.012 <sup>D</sup>  | 0.00024           | 0.0064              | 0.00092            | 0.0032             | 0.0067              | 0.00010             | 0.00022             | 0.00013             |
| Vanadium                   | mg/L      | n/v                                        | n/v                                    | <0.0010             | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010            | <0.0010             | <0.0010           | <0.0010             | <0.0010            | <0.0010            | <0.0010             | <0.0010             | <0.0010             | <0.0010             |
| Zinc                       | mg/L      | ≤5.0 <sup>B</sup>                          | 0.03 <sup>D</sup>                      | <0.0030             | <0.0030             | <0.0030            | <0.0030            | <0.0030             | <0.0030            | 0.0036              | <0.0030           | <0.0030             | <0.0030            | <0.0030            | <0.0030             | <0.0030             | <0.0030             | <0.0030             |
| Metals, Total              |           |                                            | -                                      |                     |                     | 1                  | 1                  | 1                   | 1                  | 1                   |                   | 1                   |                    | 1                  |                     |                     | 1                   | <del></del>         |
| Mercury                    | µg/L      | 1 <sup>C</sup>                             | 0.005 <sup>D</sup>                     | <20 DB              | <2.0 DB             | <2.0 DB            | <20 DB             | <0.20 DB            | <0.10 DB           | <20 DB              | <0.10 DB          | <6.0 DB             | <0.20 DB           | <6.0 DB            | <20 DB              | <0.20 DB            | <0.0020             | <6.0 DB             |
| Microbiological Parameters |           |                                            | 1                                      |                     |                     |                    |                    |                     | [                  |                     |                   |                     |                    |                    |                     |                     |                     |                     |
| Escherichia coli (E.Coli)  | mpn/100mL | 0 <sup>A</sup>                             | n/v                                    | <10 DB              | <10 DB              | <2.0 DB            | <100 DB            | <1.0                | <1.0               | <20                 | <1.0              | <100 DB             | <10                | <100               | <10 DB              | 11^                 | <1.0                | <10 DB              |
| Fecal Coliform             | mpn/100mL | n/v                                        | n/v                                    | <10 DB              | <10 DB              | <2.0 DB            | <100 DB            | <1.0                | <1.0               | <20 DB              | <1.0              | <100 DB             | <10 DB             | <100 DB            | <10 DB              | 5.1                 | <1.0                | <10 DB              |
| Heterotrophic Plate Count  | cfu/mL    | n/v                                        | n/v                                    | 980                 | 4900 DB             | 550 DB             | 44000 DB           | 6000 >              | 620                | 6000 >              | 39                | 17000 DB            | 1700               | 17000 DB           | 3200 DB             | 400                 | 48                  | 6000 >              |
| Total Coliforms            | mpn/100mL | 0 <sup>A</sup>                             | n/v                                    | 850 DB <sup>A</sup> | 230 DB <sup>A</sup> | <2.0 DB            | <100 DB            | 2400 > <sup>A</sup> | 27 <sup>A</sup>    | 2300 <sup>A</sup>   | <1.0              | 310 DB <sup>A</sup> | 10 <sup>4</sup>    | 750 <sup>A</sup>   | 20 DB <sup>A</sup>  | 520 <sup>A</sup>    | 2.0 <sup>A</sup>    | 580 DB <sup>A</sup> |

#### Table 3-4

#### Summary of Groundwater Analytical Laboratory Results Indicator Parameters, Dissolved and Total Metals, Bacteriological Parameters

#### Notes:

Health Canada (2014). Guidelines for Canadian Drinking Water Quality - Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.

- <sup>A</sup> Guidelines for Canadian Drinking Water Quality Microbial Parameters
- <sup>B</sup> Guidelines for Canadian Drinking Water Quality Aesthetic Objectives/ Operational Guidelines
- <sup>c</sup> Guidelines for Canadian Drinking Water Quality Maximum Acceptable Concentration
- AEP Alberta Environment and Parks (AEP). 2016. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division 197 pp.
- D Table 2. Alberta Tier 1 Groundwater Remediation Guidelines Agricultural Fine
- **6.5<sup>A</sup>** Concentration exceeds the indicated standard.
- 15.2 Measured concentration did not exceed the indicated standard.
- <0.50 Laboratory reporting limit was greater than the applicable standard.
- < 0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit.
- n/v No standard/guideline value.
- Parameter not analyzed / not available.
- a This is an operational guidance value, designed to apply only to drinking water treatment plants using aluminum-based coagulants; it does not apply to naturally occuring aluminum found in groundwater. The operational guidance values of 0.1 mg/L applies to conventional treatment plants, and 0.2 mg/L applies to other types of treatment systems.
- j High levels (above 500 mg/L) can cause physiological effects such as diarrhoea or dehyrdration.
- n1 See Environmental Quality Guidelines for Alberta Surface Waters (ESRD, 2014) for further guidance on aquatic life pathway. (Equation, varies with pH and temperature)
- n2 Tier 1 guideline = lowest of aquatic life guideline and all other guidelines (See Appendix B of Alberta Environment and Parks (AEP). 2016. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy E See Environmental Quality Guidelines for Alberta Surface Waters (ESRD, 2014) for further guidance on aquatic life pathway. Aluminum, Cadmium and Nickel both have short and long term values which are repro
- Standard is applicable to total xylenes, and m & p-xylenes and o-xylenes should be summed for comparison.
   There is no applicable total Chromium guideline, therefore the value from Chromium (trivalent) is applied.
- S2 There is no app
   Greater than.
- A\* Ammonia greater than TKN. Results are within acceptable limits of precision.
- CD Detection limits raised due to dilution to bring analyte within the calibrated range
- DB Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.
- MI Detection limit was raised due to matrix interferences.
- NF Duplicate exceeds acceptance criteria due to sample non homogeneity.
- OG Orthophopshate greater than phosphate. Results within acceptable limits of precision.
- XN Matrix Spike exceeds acceptance limits, due to matrix interference. Reanalysis yields similar results.

3D CSM Results for The Hydrostratigraphic FRamework May 2019



| Table 3-5             |                                                           |
|-----------------------|-----------------------------------------------------------|
| Summary of Laboratory | Analytical Results from the Domestic Well Testing Program |

| Calculated Parameters              | Units     | Minimum    | Maximum   | Average | Standard<br>Deviation |
|------------------------------------|-----------|------------|-----------|---------|-----------------------|
| Hardness (as CaCO3)                | mg/L      | 56         | 780       | 348     | 213                   |
| Nitrate                            | mg/L      | <0.044     | 11        | NC      | NC                    |
| Nitrate + Nitrite (as N)           | mg/L      | <0.020     | 2.5       | NC      | NC                    |
| Nitrite                            | mg/L      | <0.033     | 0.089     | NC      | NC                    |
| Total Dissolved Solids             | mg/L      | 260        | 2800      | 761     | 680                   |
| Electrical Conductivity, Lab       | µ\$/cm    | 470        | 3800      | 1253    | 911                   |
| рН                                 | S.U.      | 7.56       | 8.13      | 7.88    | 0.21                  |
| Anions                             |           |            | -         |         |                       |
| Alkalinity (P as CaCO3)            | mg/L      | <0.50      | <0.50     | NC      | NC                    |
| Alkalinity, Total (as CaCO3)       | mg/L      | 150        | 1100      | 431     | 250                   |
| Alkalinity, Bicarbonate (as CaCO3) | mg/L      | 180        | 1300      | 523     | 295                   |
| Alkalinity, Carbonate (as CaCO3)   | mg/L      | <0.50      | <0.50     | NC      | NC                    |
| Alkalinity, Hydroxide (as CaCO3)   | mg/L      | <0.50      | <0.50     | NC      | NC                    |
| Sulfate                            | mg/L      | 36         | 1200      | 176     | 324                   |
| Chloride                           | mg/L      | 1.6        | 350       | 59      | 106                   |
| Fluoride                           | mg/L      | 0.1        | 0.62      | 0.24    | 0.15                  |
| Nutrients                          | <u> </u>  |            |           | •       |                       |
| Nitrite (as N)                     | mg/L      | <0.010     | 0.027     | NC      | NC                    |
| Nitrate (as N)                     | mg/L      | < 0.010    | 2.5       | NC      | NC                    |
| Metals, dissolved                  |           | 0.0.0      |           |         |                       |
| Aluminum                           | mg/L      | <0.0030    | 0.012     | NC      | NC                    |
| Antimony                           | mg/L      | <0.00060   | 0.012     | NC      | NC                    |
| Arsenic                            | mg/L      | <0.00080   | 0.00085   | NC      | NC                    |
|                                    |           |            |           |         | NC                    |
| Barium                             | mg/L      | < 0.05     | 0.082     | NC      |                       |
| Beryllium                          | mg/L      | <0.0010    | -         | NC      | NC                    |
| Boron                              | mg/L      | <0.020     | 0.14      | NC      | NC                    |
| Cadmium                            | mg/L      | <0.000020  | 0.000077  | NC      | NC                    |
| Calcium                            | mg/L      | 14         | 180       | 79      | 45                    |
| Chromium                           | mg/L      | < 0.0010   | 0         | NC      | NC                    |
| Cobalt                             | mg/L      | <0.00030   | 0.00046   | NC      | NC                    |
| Copper                             | mg/L      | <0.00020   | 0.013     | NC      | NC                    |
| Iron                               | mg/L      | <0.060     | 0.4       | NC      | NC                    |
| Lead                               | mg/L      | <0.00020   | 0.00099   | NC      | NC                    |
| Lithium                            | mg/L      | <0.020     | 0.14      | NC      | NC                    |
| Magnesium                          | mg/L      | 4.8        | 82        | 37      | 26                    |
| Manganese                          | mg/L      | <0.0040    | 0.18      | NC      | NC                    |
| Mercury                            | mg/L      | <0.0000200 | 0.0000025 | NC      | NC                    |
| Molybdenum                         | mg/L      | 0.00045    | 0.013     | 0.0024  | 0                     |
| Nickel                             | mg/L      | <0.00050   | 0.0024    | NC      | NC                    |
| Phosphorus                         | mg/L      | <0.10      | 0         | NC      | NC                    |
| Potassium                          | mg/L      | <0.6       | 7.1       | NC      | NC                    |
| Selenium                           | mg/L      | <0.0005    | 0.0059    | NC      | NC                    |
| Silicon                            | mg/L      | 1.6        | 4.3       | 2.7     | 1                     |
| Silver                             | mg/L      | <0.00010   | <0.00010  | NC      | NC                    |
| Sodium                             | mg/L      | 4.3        | 750       | 142     | 206                   |
| Strontium                          | mg/L      | 0.27       | 2.1       | 0.97    | 0.70                  |
| Sulfur                             | mg/L      | 10         | 270       | 47      | 72                    |
| Thallium                           | mg/L      | <0.00020   | <0.00020  | NC      | NC                    |
| lin                                | mg/L      | <0.0010    | < 0.0010  | NC      | NC                    |
| Titanium                           | mg/L      | <0.0010    | 0.007     | NC      | NC                    |
| Uranium                            | mg/L      | 0.00032    | 0.0061    | NC      | NC                    |
| Vanadium                           | mg/L      | < 0.0010   | 0.0011    | NC      | NC                    |
| Zinc                               | mg/L      | <0.0030    | 4         | NC      | NC                    |
| Bacteriological                    | iiig/L    | -0.0000    | т<br>Т    | 110     | ne                    |
| Escherichia coli (E.Coli)          | mpn/100mL | <1.0       | <1.0      | NC      | NC                    |
|                                    |           |            | NLU       | INC     | INC                   |

3D CSM Results for The Hydrostratigraphic FRamework May 2019

## 3.4.1 Groundwater Chemistry of the Unconsolidated Deposits

A total of 17 groundwater samples were collected from wells completed in the unconsolidated deposits in the LAA. The TDS concentrations in the unconsolidated deposits ranged from 640 mg/L to 6,900 mg/L, with an average concentration of 2,381 mg/L. These TDS concentrations exceeded both the Alberta Tier 1 Guidelines and the GCDWQ and are considered slightly to moderately saline. At three locations (MW16-2-6, MW16-16-11, MW16-17-5), the TDS concentrations exceeded the definition of "fresh water" (TDS less than 4,000 mg/L) under the Alberta's Water (Ministerial) Regulation.

Figure 3-30 indicates that there is no dominant cation characteristic of the unconsolidated deposits; samples are near the center of the lower left portion of the plot. Sodium concentrations are relatively high with 10 of 17 samples exceeding the 200 mg/L guidelines. Sulphate is the dominant anion in 12 samples with bicarbonate dominating the remaining five. The average sulphate concentration was 1,444 mg/L with the majority of samples exceeding both guidelines (500 mg/L). Chloride concentrations were low in the majority of samples ranging from 1.6 mg/L to 17 mg/L, except for MW16-12-3 (230 mg/L) and MW16-17-5 (72 mg/L).

Nutrient concentrations—ammonia, nitrate, nitrite, phosphate and total Kjeldahl nitrogen—were analyzed because they are contaminants of potential concern in agricultural settings. Nutrient concentrations were low in all samples except for MW16-17-5, which had nitrite-nitrogen above the Alberta Tier 1 Guideline. The nitrite concentration was 0.17 mg/L-N compared to a guideline value of 0.06 mg/L-N.

Dissolved metals concentrations were generally within the range of expected concentrations for monitoring wells completed in glacial deposits in southern Alberta. Iron concentrations exceeded the 0.3 mg/L guideline at three locations with a maximum concentration 0.5 mg/L. Manganese concentrations exceeded the guidelines (0.05 mg/L) in all samples except MW16-11-15 (with values ranging from 0.025 to 2.3 mg/L). Selenium concentrations exceeded the 0.001 mg/L Alberta Tier 1 Guideline in seven samples and exceeded the 0.05 mg/L GCDWQ in one sample from MW16-19-8. Uranium concentrations exceeded the 0.01 mg/L guidelines in 10 of 17 samples with values ranging from 0.0044 to 0.04 mg/L. Single exceedances of arsenic at MW16-23-14 and copper at MW16-16-11 were also noted with concentrations marginally exceeding guidelines.

Dissolved mercury was below the  $0.002 \ \mu g/L$  laboratory detection limit in 14 of 17 samples. Concentrations in the remaining three samples were marginally above the detection limit with values ranging from 0.002 to  $0.0036 \ \mu g/L$ . Total mercury was also analyzed in all samples; however, given the amount of sediment entrained in many of the samples as a result of the fine-grained aquifer material, the laboratory detection limits had to be raised for many samples. Detection limits ranged from  $0.02 \ \mu g/L$  to  $20 \ \mu g/L$ .



3D CSM Results for The Hydrostratigraphic FRamework May 2019

Hydrocarbon concentrations were below their respective guideline concentrations at all monitoring wells except for MW16-16-11. Benzene and ethylbenzene marginally exceeded guidelines with concentrations of 0.0055 and 0.0034 mg/L, respectively. The source of the hydrocarbon impacts is not known. Dissolved organic carbon concentrations ranged from 1.8 mg/L to 9.2 mg/L.

Bacteriological parameters including *Escherichia* coli (E. Coli), fecal coliform, total coliforms and heterotrophic plate counts (HPC) were enumerated for all samples. As with the mercury analyses described, sediment in the samples also affected the detection limits for the bacteriological parameters. While the detection limits were not low enough to determine if the water is safe for human consumption in most samples, it does provide general information on the bacteriological levels and potential for pre-existing impacts in the shallow groundwater.

HPCs were included in the analytical suite to provide information on the level of bacteriological activity across the LAA. HPC concentrations varied significantly from 920 cfu/100 mL at MW16-7-5 to 56,000 cfu/100 mL at MW16-6-11. No spatial or depth correlation was evident in the HPC data. E. coli concentrations were below the detection limits in all samples except MW16-19-8, which had an E. coli concentration of 63 mpn/100 mL, compared to the GCDWQ of 0 mpn/100 mL. Total coliform bacteria ranged from less than 100 mpn/100 mL to 9,300 mpn/100 mL. Fecal coliform bacteria were below the detection limit in all samples except MW16-10-5, which had a concentration of 100 mpn/100 mL.

# 3.4.2 Groundwater Chemistry of the Upper Bedrock Aquifers

A total of 14 groundwater samples were collected from Project-related monitoring wells completed in bedrock within the LAA. Samples collected from domestic water wells were also available from the domestic well testing program completed in April 2016.

The TDS concentrations in the bedrock deposits ranged from 440 mg/L to 4,700 mg/L, with an average concentration of 1,444 mg/L. The bedrock TDS concentrations are significantly lower than in the surficial deposits but still exceed both guidelines in 12 of the 14 samples and are considered slightly saline. The TDS exceeded the 4,000 mg/L Water (Ministerial) Regulation criteria for fresh water at MW16-14-33. TDS concentrations were lower in the 12 domestic wells sampled, with an average concentration of 761 mg/L.

Figure 3-30 indicates that sodium is the dominant cation in 8 of the 14 bedrock samples with the remaining samples plotting near the center of the lower left portion of the plot having no dominant cation. Sodium concentrations exceed the 200 mg/L guideline in 12 of the 15 samples, with an average concentration of 222 mg/L. Bicarbonate is the dominant anion in 7 of the 14 samples, with sulphate dominating the remaining. The average sulphate concentration was 564 mg/L, which is lower than in the surficial deposits. Chloride concentrations were low in the majority of samples, ranging from less than 1 mg/L to 78 mg/L, except for MW16-8-9, which had



3D CSM Results for The Hydrostratigraphic FRamework May 2019

a concentration of 110 mg/L. Similar chloride concentrations were noted in the domestic water wells, with an average concentration of 59 mg/L.

Nutrient concentrations were low in all bedrock groundwater samples except for one nitratenitrogen Alberta Tier 1 Guideline exceedance at MW16-21-5. The nitrite concentration at this monitoring well was 4.8 mg/L-N compared to a guideline value of 3 mg/L-N. Nitrate and nitrite concentrations were low and below guidelines in all domestic wells sampled.

Dissolved metals concentrations in the bedrock aquifers were relatively consistent across the LAA and similar to the surficial deposits with the exception of MW16-14-33, which had elevated barium (3.8 mg/L), iron (68 mg/L) and manganese (14 mg/L) concentrations. Iron concentrations exceeded the 0.3 mg/L guideline at three other locations, with a maximum concentration 2.6 mg/L. Manganese concentrations exceeded the guidelines (0.05 mg/L) in 12 of 14 samples. Selenium concentrations exceeded the 0.001 mg/L Alberta Tier 1 Guideline in four samples. Manganese and selenium exceedances were also noted in a number of domestic water wells sampled. Uranium concentrations were lower than in the surficial deposits with only one exceedance of the 0.01 mg/L guidelines at MW16-14-33, with a concentration of 0.012 mg/L.

Dissolved mercury was below the 0.002  $\mu$ g/L laboratory detection limit in 13 of 14 samples. Concentrations in the remaining monitoring well (MW16-1-15) was marginally above the detection limit, with a value of 0.0029  $\mu$ g/L. Total mercury concentrations were below the detection limits (0.1  $\mu$ g/L to 20  $\mu$ g/L) in all samples. Samples from the domestic wells also had mercury concentrations that were below the laboratory detection limits in 11 of 12 samples and marginally above the detection limit with a concentration of 0.000025 mg/L in the remaining sample.

No hydrocarbon concentration exceedances were noted in any of the bedrock groundwater samples. Dissolved organic carbon concentrations ranged from 1.2 mg/L to 5.1 mg/L.

HPC concentrations were generally lower than in the surficial deposits, as expected, and ranged from 39 cfu/100 mL at MW16-15-34 to 44,000 cfu/100 mL at MW16-5-11. Lower HPC concentrations were generally found in deeper bedrock wells. E. coli concentrations were below the detection limits in all samples except MW16-23-36, which had an E. coli concentration of 11 mpn/100 mL, compared to the GCDWQ of 0 mpn/100 mL. Total coliform bacteria ranged from less than 1 mpn/100 mL to 2,400 mpn/100 mL. Fecal coliform bacteria were below the detection limit in all samples except MW16-23-36, which had a concentration of 5.1 mpn/100 mL. Total coliform bacteria in the domestic wells were low, ranging from less than 1 mpn/100 mL to 24 mpn/100 mL in all samples, except one which had a concentration of 2,400 mpn/100 mL. E. coli concentrations were below the detection limit in all domestic well samples.



3D CSM Results for The Hydrostratigraphic FRamework May 2019

# 3.5 GROUNDWATER QA/QC RESULTS

Two duplicate samples were collected as part of the QA/QC program to evaluate the precision or reproducibility of the analytical data between samples. A summary of the QA/QC data and analysis is included along with the laboratory reports in Attachment C.

The relative percent difference (RPD) between the sample and duplicate results was calculated for each sample or, when the parameter result was within five times the detection limit, the absolute difference (AD) between the sample and duplicate was calculated. An RPD of 40% or less, or an AD of less than two times the detection limit, is considered acceptable for duplicate groundwater samples (CCME 2016).

A comparison of the duplicate sample results indicated that 99.3% (139 of 140 results) meet the criteria. The one parameter result that did not meet the criteria was the heterotrophic plate count for the duplicate sample from MW16-24-30. Overall the reproducibility of the data is good and the analytical results are considered valid.

Laboratory QA/QC procedures and analysis are included with the analytical results in Attachment D. The quality assurance reports include analysis of matrix spikes, QC standards, blanks and calibration checks.



3D CSM Results for The Hydrostratigraphic FRamework May 2019



Numerical Model Construction and Calibration May 2019

# 4.0 NUMERICAL MODEL CONSTRUCTION AND CALIBRATION

This section describes the numerical groundwater flow model that has been geographically expanded in accordance with the expansion of the RAA described in Section 2.

# 4.1 NUMERICAL MODELLING APPROACH

Numerical flow modelling using the finite element method (FEM) was selected over other potential analytical and numerical methods (e.g., finite difference method) due to the large size of the hydrogeology RAA, complex geologic framework, time-variable boundary conditions, and irregular geometry of the physiographic setting, and nature of the Project components. A numerical solution technique minimizes the number of simplifying assumptions that would be required using other analytical methods, thus yielding a more detailed depiction of the hydrogeologic setting and system response to the Project within the hydrogeology RAA.

The finite element subsurface flow and transport system (FEFLOW) is a numerical groundwater modelling system that is capable of modelling 3D groundwater flow and mass transport. FEFLOW was selected to simulate the groundwater flow because it is a well documented, well-tested numerical code capable of advanced simulation of regional and local groundwater systems due to its ability to simulate time-varying boundary conditions with variable mesh resolution within an irregular model domain.

A detailed description of the code is provided by WASY (2009). All parts of the FEFLOW code have passed an extensive benchmarking process, where simulated results are compared to those of other well-known simulation systems, analytical solutions or to observations from lab experiments whenever possible. The results of numerous benchmark tests are published in the Diersch (2014) and WASY (2009) documentation, along with a detailed description of the corresponding model setups and an extensive discussion of the results.

A FEFLOW model represents the groundwater flow through a saturated porous media (in this case, unconsolidated and bedrock materials), considering the hydraulic properties, subsurface geologic materials and associated physical parameters that govern the flow within the porous media. FEFLOW explicitly models flow through the primary porosity of a geologic material.

Flow through secondary porosity such as fractures in a porous media generally increases the permeability or hydraulic conductivity relative to the primary (matrix) permeability of a given porous media. Fracturing of porous media can occur for a variety of reasons, but the two applicable in the RAA are 1) weathering (areal exposure) of the lacustrine and till units and 2) fracturing of the bedrock units in highly deformed and topographically elevated bedrock features.



Numerical Model Construction and Calibration May 2019

For fractures related to weathering of the unconsolidated deposits, it is well documented (Hendry 1988; Ameli et al. 2015) that the fractures in a till generally decrease with depth and the permeability trends back towards matrix permeability. Approximately the upper 5 m of the porous media exposed to weathering have higher permeability and may contribute to interflow and or contact springs at the weathered/un-weathered interface due to the permeability contrast.

Bedrock fractures have a similar permeability enhancement effect as weathered tills. However, bedrock fractures are very difficult to map, particularly in highly deformed areas with veneers of unconsolidated material. Bedrock fractures generally date back to the mountain building period millions of years ago and remineralization can occur in fractures precluding the effects of secondary porosity.

Despite the acknowledgement that fracturing and secondary porosity exists, the scale of the model, coupled with the data type and data density used to characterize the model domain, precludes explicit implementation of secondary porosity in the numerical flow model. However, the effects of secondary porosity have been accounted for through parameterization of additional model layers incorporated into the model as is further discussed below.

# 4.2 NUMERICAL MODEL DOMAIN AND DISCRETIZATION

The domain of the numerical flow model encompasses the same region as the RAA. A 3D overview of the expanded numerical model domain is presented in Figure 4-1 for context. The numerical model domain was based on the geographic extent of the RAA and hydrogeologic interpretations described within the 3D CSM. The geologic units represented in the 3D CSM were ported into the FEFLOW model domain through export of 3D surfaces representing the various geologic contact surfaces between units. In this manner, the overall hydrogeologic framework of the 3D CSM is maintained within the FEFLOW model.



Numerical Model Construction and Calibration May 2019





### Figure 4-1 3D Overview of the RAA and Numerical Model Domain

The model's uppermost boundary is defined by the surface topography, which will change as a result of construction of the Project infrastructure. Two separate domains are required to model groundwater conditions, one prior to and the other after Project construction. The lateral extents of the two domains are identical, as is the 2D mesh that was generated (described below). However, the surface topography of the two domains differs slightly, but only in areas where the surface topography changes as a result of construction of the Project. The changes to surface topography are caused by construction of the diversion channel (which incises into the current land surface) and construction of the off-stream dam (which adds fill on top of the current land surface). These changes in surface topography elevations are based on the engineering design of these features.



Numerical Model Construction and Calibration May 2019

# 4.2.1 Discretization of the Model Domain

The numerical flow model domain was discretized into reasonably small elements to provide sufficient resolution within the model results such that potential effects of the Project on the groundwater system in the RAA could be characterized. The number of nodes within the domain determines both the computational efficiency and accuracy of the model. According to Istok (1989), a fine mesh is generally more accurate than a coarse mesh, but requires more detailed computations and effort. The selection of the appropriate mesh for the modelling was based on the need for required output resolution and numerical stability in areas of high topographic relief.

The 3D mesh generation process involved the following steps:

- 1. creating a FEFLOW supermesh from a defined model domain incorporating all the geometrical information required for the 3D groundwater flow model
- 2. generating a 2D surface mesh of the topographic extent of the area modelled
- 3. generating a 3D element mesh by projecting the 2D mesh into a multi-layer mesh so as to provide an accurate representation of the hydrostratigraphic units within the model domain

### 4.2.1.1 FEFLOW Supermesh

A FEFLOW supermesh defines the overall framework for internal 2D and 3D mesh generation. The supermesh comprises polygons, lines, and points which are based on geographic features of the model domain. The following spatial information was used as inputs for defining the FEFLOW supermesh:

- the off-stream dam, diversion channel, and floodplain berm design
- topography from the regional DEM and LiDAR data
- surface water features including creeks, rivers and waterbodies

# 4.2.1.2 2D Surface Mesh

The 2D surface mesh was refined with a higher density of nodes near Project infrastructure as well as waterbodies (e.g., Elbow River and its tributaries), as shown on Figure 4-2, Figure 4-3, and Figure 4-4. Nodal spacing varies from approximately 150 m where the mesh is coarse, to approximately 1 m where the mesh is fine.

The aspect ratio (the ratio of maximum to minimum element dimensions) was assigned to be small so that computed flow directions are not subject to large errors. Anderson and Woessner (1992) and lstok (1989) advocate the use of such modelling protocols.



Numerical Model Construction and Calibration May 2019

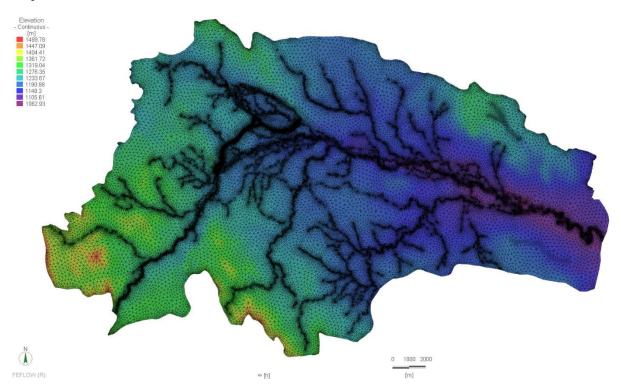



Figure 4-2 Overview of 2D Surface Mesh within the Numerical Model Domain



Numerical Model Construction and Calibration May 2019

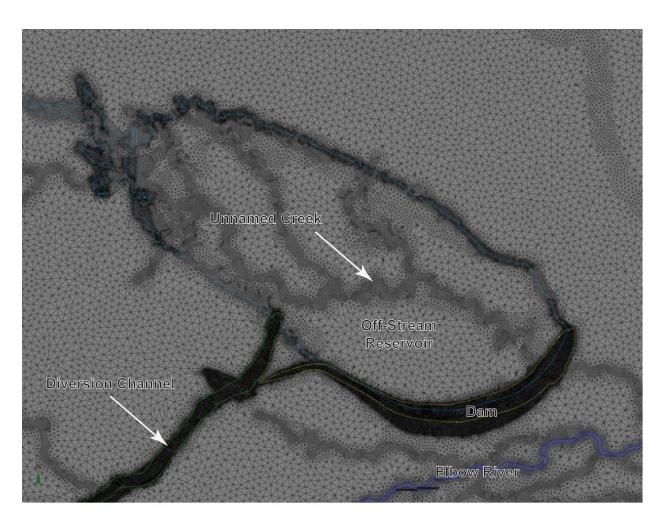



Figure 4-3 Refined 2D Mesh in the Vicinity of the Off-Stream Reservoir and Dam



Numerical Model Construction and Calibration May 2019

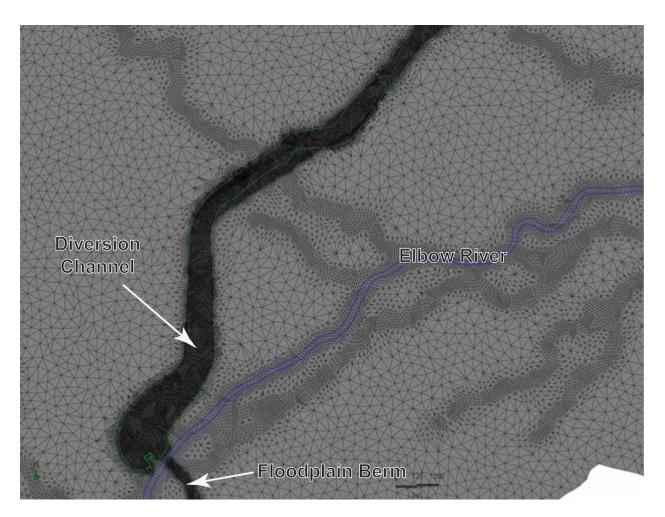



Figure 4-4 Refined 2D Mesh along the Diversion Channel and Elbow River



Numerical Model Construction and Calibration May 2019

## 4.2.1.3 3D Element Mesh

The 3D mesh was constructed by projecting the 2D mesh into 3D using the hydrostratigraphic structural surfaces derived from the 3D CSM to define the layers. The hydrostratigraphic surfaces are defined by identifying the contacts between the hydrostratigraphic units as interpreted within the 3D CSM.

The 3D mesh constructed for numerical simulation of groundwater flow has 2,110,800 nodes and 3,680,551 triangular elements. The number of elements was minimized, to the extent possible, to balance the numerical accuracy with the computational effort required

# 4.3 HYDROSTRATIGRAPHIC FRAMEWORK OF THE NUMERICAL MODEL

The hydrostratigraphic framework of the FEFLOW model domain is consistent with the framework that was interpreted within the 3D CSM.

## 4.3.1 Model Layers

A total of seven model layers were used to define the hydrostratigraphic units within the model. The model layers were developed based on the 3D CSM and are consistent with the interpreted geologic contacts. However, some hydrogeologic units were represented in the model by more than one layer, to allow for separate parameterization of the upper regions of a unit as compared to the lower regions. For example, the undifferentiated bedrock unit was represented in the model with two layers, and the upper layer of the bedrock (Layer 6) was assigned higher hydraulic conductivity values to reflect the potential for this unconformable surface to be fractured and of higher permeability than the underlying bedrock (Layer 7).

In areas of the model domain where a hydrostratigraphic unit is absent, the hydraulic properties of the model layer are assigned based on those of the underlying model layer. A minimum thickness of 0.1 m is assigned to the model elements where the hydrostratigraphic unit is absent. Layer 1 of the model was set in FEFLOW to "phreatic" mode. All other model layers were set as "unspecified" mode.



Numerical Model Construction and Calibration May 2019

## 4.3.2 Parameterization of Model Layers

Hydraulic conductivity values for each of the model layers were parameterized based upon the hydrogeologic framework developed within the 3D CSM and on results of the steady-state calibration runs. Spatially variable hydraulic conductivities were assigned in most model layers, depending upon the geologic materials being represented by that layer. In many areas where a given layer's thickness was at the minimum value (representing the absence of the hydrostratigraphic unit at that location), the hydraulic conductivity value was set to the value of the underlying layer (or layers in cases where multiple overlying units were absent as is the case where bedrock is outcropping).

Figure 4-5 through Figure 4-11 present the hydraulic conductivity distributions established in each of the seven model layers.

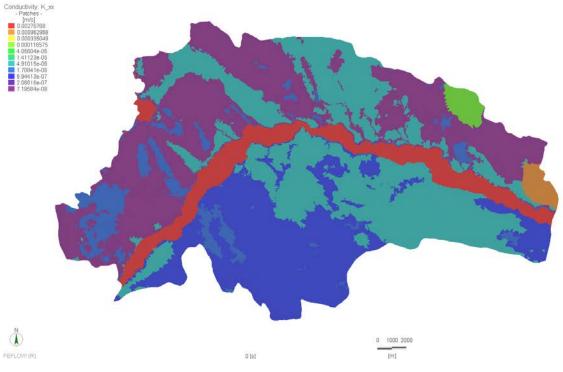



Figure 4-5 Hydraulic Conductivity Distribution in Layer 1



Numerical Model Construction and Calibration May 2019

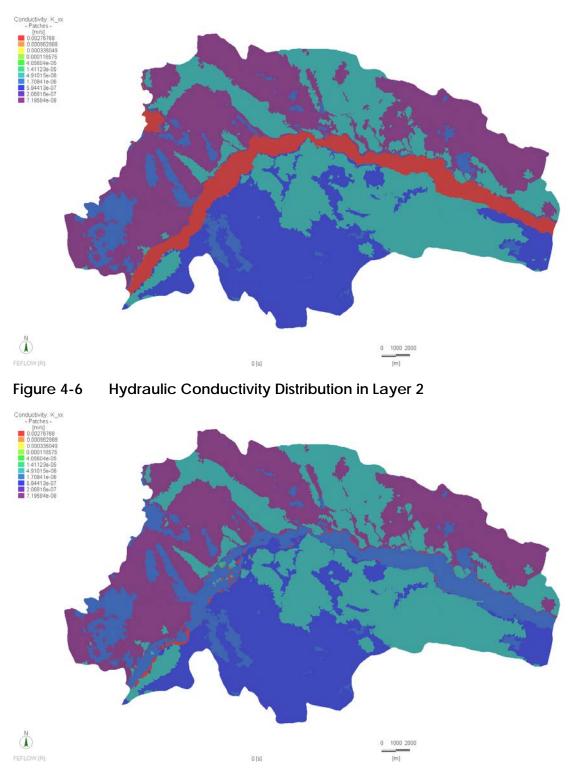



Figure 4-7 Hydraulic Conductivity Distribution in Layer 3



Numerical Model Construction and Calibration May 2019

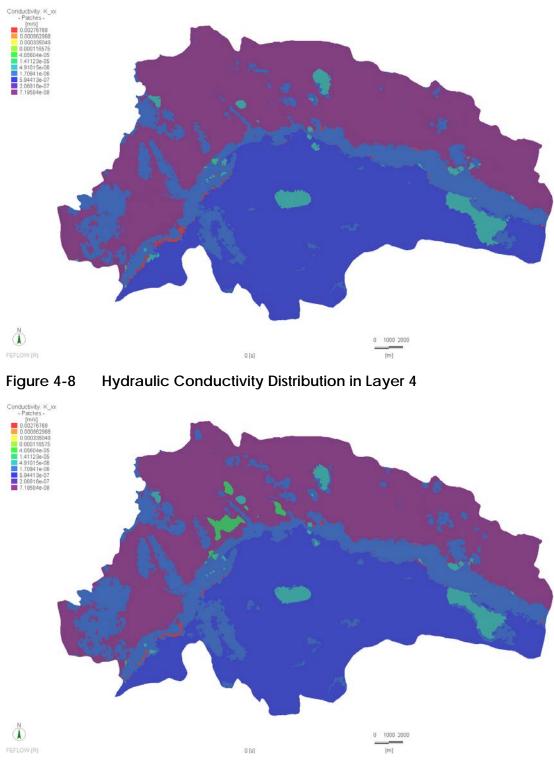



Figure 4-9 Hydraulic Conductivity Distribution in Layer 5

Stantec

Numerical Model Construction and Calibration May 2019

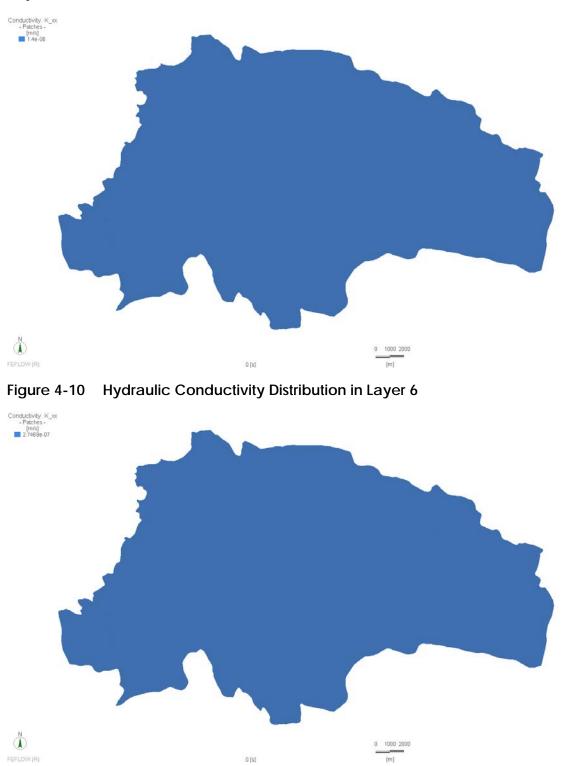
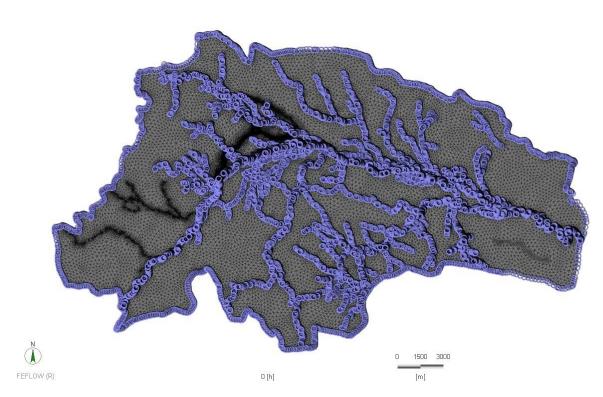


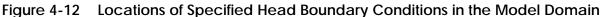

Figure 4-11 Hydraulic Conductivity Distribution in Layer 7



Numerical Model Construction and Calibration May 2019

# 4.4 NUMERICAL FLOW MODEL BOUNDARY CONDITIONS


Boundary conditions are mathematical descriptions of physical and hydraulic features that need to be defined to formulate the governing flow equations and allow them to be solved by the numerical flow model. Definition of appropriate model boundary conditions is an essential part of any groundwater modelling. Boundary conditions, which describe how flow enters or leaves the model across the outer edges of the model domain, are required around the model boundaries. The choice of boundary condition depends on the physical situation being simulated and the availability of data. Boundary conditions can be used to represent head or flux constraints on the hydrogeologic system being modeled. Boundary conditions were applied to the model domain based on the interpretations yielded from the 3D CSM developed for the Project as well as other supporting hydrologic information for the Elbow River basin.


## 4.4.1 Specified Head Boundaries

Specified head boundaries, also known as Dirchilet boundary conditions, were specified to the top layer of the model domain at some locations to represent surface water features. Specified head boundaries were also set within all model layers around the perimeter of the model domain. As shown on Figure 4-12, the specified heads in the top layer were assigned to surface water features in the domain, based on the elevation of the features determined from the DEM. Specified head values at these nodes were set to constant values for the steady-state simulation runs. Constant specified head values were also specified around the perimeter of the model domain to represent static conditions or groundwater flow divides related to the topographic driving forces at the edges of the domain.



Numerical Model Construction and Calibration May 2019





# 4.4.2 Specified Flux Boundaries

Specified flux boundaries, also known as Neumann boundaries, were used within the numerical model where the flux rate at a given node is specified. Specified fluxes can be set to a numerical value based on hydrogeologic interpretations derived from hydrologic or climatological sources of information.

A net recharge flux was added within the updated model to the top of the model domain. The land surface elevation gradient, type of soil and vegetation present at surface is an important factor in determining whether precipitation will run off, based on surface water flow processes, or enter the subsurface as groundwater recharge. Literature values for recharge appropriate for the region were used (Klassen et al., 2018). The recharge estimates produced in the First-Order Groundwater Availability Assessment for Southern Alberta were rigourously developed specifically to account for terrain characteristics such as depression focused recharge following the methods developed by the University of Calgary Farrow et al. (2014), Pavlovskii et al. (2017). The terrain analysis was used as in input parameter for a 1-D, multi-layer recharge simulation model referred to as the Versatile Soil Moisture Budget (VSMB) with a depression upland storage



Numerical Model Construction and Calibration May 2019

(DUS) module. In addition to the terrain analysis, the VSMB-DUS model is driven by meteorological data (e.g., hourly precipitation, air temperature, relative humidity), evapotranspiration parameters (e.g., growth curves), and soil properties (e.g., wilting point, field capacity; Klassen et al., 2018).

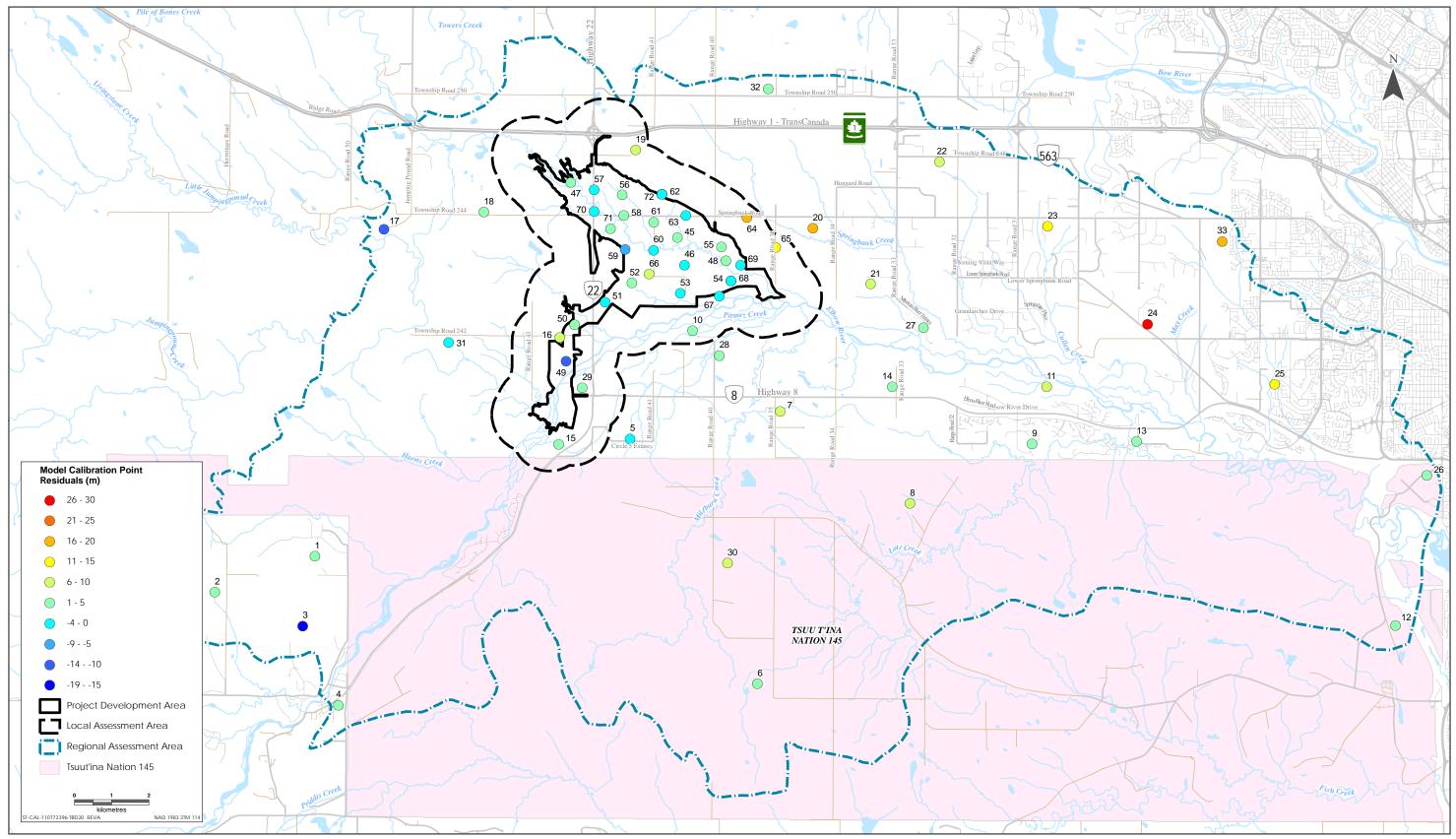
Groundwater recharge rates ranging from 12 mm/year to 25 mm/year were established by the regional groundwater study (Klassen et al. 2018). Given the regional nature of the study cited, and the large topographic variability of the RAA with many areas without significant depressions (i.e., well drained slopes without prairie-like depressions), the minimum recharge value of 12 mm/year was used. Relatively good model calibration resulted from application of 12 mm/year recharge, as assigned to the hydrostratigraphic units exposed at the top of the model domain.

# 4.5 NUMERICAL MODEL CALIBRATION

Model calibration is a process wherein certain model parameter(s) are altered in a systematic fashion and the model is run repeatedly until the modeled solution matches the field observed values within a range that is considered acceptable. Once the groundwater model is calibrated, the model is used to simulate and predict groundwater conditions for proposed scenarios. In this instance, the numerical model was calibrated to represent steady-state groundwater conditions.

A hybrid calibration approach was used that combined automated parameter estimation, facilitated by using the parameter estimation code (PEST) module, together with professional judgement and interpretation of the calibration results. This involved a process where a flow simulation was carried out, the resulting groundwater heads were compared to observed heads, and the model input parameters were re-adjusted to achieve better agreement with observed (field-measured groundwater head) conditions. Prior to numerical model calibration, the range of uncertainty in the parameters contained within the conceptual hydrogeologic model was evaluated and considered during the calibration process.

Calibration of the model considered both observed head measurements at specific calibration points (described below) as well as 3D surfaces of both the water table and potentiometric surfaces, as they were interpreted within the 3D CSM. In this manner, the calibration of the model was optimized at calibration points and in between calibration points based on an interpretation of the water table or potentiometric surface.




Numerical Model Construction and Calibration May 2019

## 4.5.1 Calibration Points

Model calibration was assessed by comparing simulated water levels to groundwater water measurements obtained from Project fieldwork in the fall of 2016, as well as from select AWWID records. Data were also used from Project-specific monitoring wells installed for use as calibration points within the LAA. A subset of AWWID wells were chosen as calibration points in the RAA. The AWWID points were chosen based on their spatial relevance to the Project, using well records with appropriate well completion details and representative water levels.





Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Location of Calibration Targets within RAA

Figure 4-13

Numerical Model Construction and Calibration May 2019



Numerical Model Construction and Calibration May 2019

## 4.5.2 Steady-State Residual Analysis

At each of the calibration points, residuals were calculated by subtracting the observed head value from the simulated head value. Positive residuals indicate that the model simulated a head value higher than the observed value, while negative residuals indicate that the model simulated a head value lower than the observed value. Table 4-1 presents the final residuals calculated at the end of the calibration process.

| Calibration Point ID | Observed Head<br>(m ASL) | Simulated Steady-State Head<br>(m ASL) | Residual<br>(m) |  |
|----------------------|--------------------------|----------------------------------------|-----------------|--|
| 1                    | 1330.26                  | 1333.62                                | 3.36            |  |
| 2                    | 1361.43                  | 1362.07                                | 0.64            |  |
| 3                    | 1382.24                  | 1363.26                                | -18.98          |  |
| 4                    | 1300.95                  | 1301.15                                | 0.20            |  |
| 5                    | 1227.29                  | 1226.79                                | -0.50           |  |
| 6                    | 1246.93                  | 1249.18                                | 2.25            |  |
| 7                    | 1182.86                  | 1189.43                                | 6.57            |  |
| 8                    | 1164.91                  | 1174.90                                | 9.99            |  |
| 9                    | 1132.71                  | 1135.30                                | 2.59            |  |
| 10                   | 1181.95                  | 1184.85                                | 2.90            |  |
| 11                   | 1117.00                  | 1123.27                                | 6.27            |  |
| 12                   | 1110.85                  | 1113.59                                | 2.74            |  |
| 13                   | 1105.19                  | 1108.74                                | 3.55            |  |
| 14                   | 1160.81                  | 1161.13                                | 0.32            |  |
| 15                   | 1220.93                  | 1225.19                                | 4.26            |  |
| 16                   | 1215.26                  | 1222.13                                | 6.87            |  |
| 17                   | 1243.81                  | 1232.29                                | -11.52          |  |
| 18                   | 1236.33                  | 1239.54                                | 3.21            |  |
| 19                   | 1228.81                  | 1234.04                                | 5.23            |  |
| 20                   | 1161.71                  | 1178.06                                | 16.35           |  |
| 21                   | 1150.76                  | 1158.89                                | 8.13            |  |
| 22                   | 1182.11                  | 1191.49                                | 9.38            |  |
| 23                   | 1173.73                  | 1188.60                                | 14.87           |  |
| 24                   | 1131.53                  | 1159.67                                | 28.14           |  |
| 25                   | 1141.89                  | 1155.46                                | 13.57           |  |

#### Table 4-1 Observed versus Simulated Heads and Calculated Residuals



Numerical Model Construction and Calibration May 2019

| Calibration Point ID | Observed Head<br>(m ASL) | Simulated Steady-State Head<br>(m ASL) | Residual<br>(m) |  |
|----------------------|--------------------------|----------------------------------------|-----------------|--|
| 26                   | 26 1104.37 1108.82       |                                        | 4.45            |  |
| 27                   | 1143.79                  | 1146.66                                | 2.87            |  |
| 28                   | 1183.33                  | 1184.49                                | 1.16            |  |
| 29                   | 1207.29                  | 1211.04                                | 3.75            |  |
| 30                   | 1215.48                  | 1221.06                                | 5.58            |  |
| 31                   | 1255.60                  | 1255.14                                | -0.46           |  |
| 32                   | 1199.20                  | 1202.10                                | 2.90            |  |
| 33                   | 1219.80                  | 1235.08                                | 15.28           |  |
| 45                   | 1192.75                  | 1193.94                                | 1.19            |  |
| 46                   | 1193.06                  | 1192.29                                | -0.77           |  |
| 47                   | 1207.83                  | 1208.99                                | 1.16            |  |
| 48                   | 1187.23                  | 1189.17                                | 1.94            |  |
| 49                   | 1226.12                  | 1212.15                                | -13.97          |  |
| 50                   | 1208.97                  | 1213.41                                | 4.44            |  |
| 51                   | 1212.69                  | 1208.99                                | -3.70           |  |
| 52                   | 1198.88                  | 1202.18                                | 3.30            |  |
| 53                   | 1193.00                  | 1188.78                                | -4.22           |  |
| 54                   | 1186.74                  | 1183.86                                | -2.88           |  |
| 55                   | 1190.50                  | 1190.87                                | 0.37            |  |
| 56                   | 1203.52                  | 1203.95                                | 0.43            |  |
| 57                   | 1209.22                  | 1207.72                                | -1.50           |  |
| 58                   | 1199.89                  | 1200.13                                | 0.24            |  |
| 59                   | 1208.32                  | 1201.61                                | -6.71           |  |
| 60                   | 1195.28                  | 1194.83                                | -0.45           |  |
| 61                   | 1198.14                  | 1198.79                                | 0.65            |  |
| 62                   | 1212.02                  | 1211.46                                | -0.56           |  |
| 63                   | 1204.29                  | 1201.04                                | -3.25           |  |
| 64                   | 1175.75                  | 1194.28                                | 18.53           |  |
| 65                   | 1172.94                  | 1183.97                                | 11.03           |  |
| 66                   | 1191.40                  | 1196.59                                | 5.19            |  |
| 67                   | 1182.94                  | 1182.30                                | -0.64           |  |

## Table 4-1Observed versus Simulated Heads and Calculated Residuals



Numerical Model Construction and Calibration May 2019

| Calibration Point ID | Observed Head<br>(m ASL) | Simulated Steady-State Head<br>(m ASL) | Residual<br>(m) |
|----------------------|--------------------------|----------------------------------------|-----------------|
| 68                   | 1187.18                  | 1183.84                                | -3.34           |
| 69                   | 1186.37                  | 1185.57                                | -0.80           |
| 70                   | 1204.66                  | 1203.09                                | -1.57           |
| 71                   | 1200.97                  | 1203.06                                | 2.09            |
| 72                   | 1213.88                  | 1211.45                                | -2.43           |

## Table 4-1Observed versus Simulated Heads and Calculated Residuals

Four statistical parameters were used to evaluate the degree of fit, including the mean residual, mean absolute residual, the normalized root mean squared residual (NRMS) and the correlation coefficient. A groundwater model is considered to be calibrated adequately if the:

- mean error is close to zero
- absolute mean error is as small as possible in consideration of the scale of the model
- NRMS residual is less than 10% (Spitz and Moreno 1996)
- correlation coefficient is close to the perfect correlation value of one

The statistical measures of the calibration to the water level data are reported in Table 4-2. In evaluating the fit between the observed and the simulated water levels, the RMS error is usually regarded as the best measure (Anderson and Woessner 1991). The RMS error is calculated as the average of the squared differences between the measured and the simulated water levels. If the ratio of the RMS error to the total water level differential over the model area is small (e.g., less than 10%), then the errors are only a small part of the overall hydraulic response of the model. In this simulation, the ratio of the RMS error to the total water level differential (2.8%) is markedly less than the recommended 10% threshold.

## Table 4-2 Residual Statistics from Steady-State Calibration

| Parameter                             | Value  |  |
|---------------------------------------|--------|--|
| Number of Observations                | 61     |  |
| Mean Residual                         | 2.62 m |  |
| Absolute Mean Residual                | 5.18 m |  |
| Normalized Root Mean Squared Residual | 2.8%   |  |
| Correlation Coefficient               | 0.99   |  |



Numerical Model Construction and Calibration May 2019

Based on the residual statistics presented in Table 4-2, the statistical calibration targets were achieved, indicating good calibration of the model.

In addition to the residual statistics presented above, graphical examination of residuals was also completed to compare observed versus simulated heads at each of the calibration points. A cross plot of observed versus simulated heads can be used to assess the "goodness of fit" of the simulated heads relative the observed heads at calibration points through visual examination of the points relative to a line of perfect fit. Figure 4-14 presents a cross plot of the observed versus simulated heads at the end of model calibration and a line of perfect fit (red dotted line).

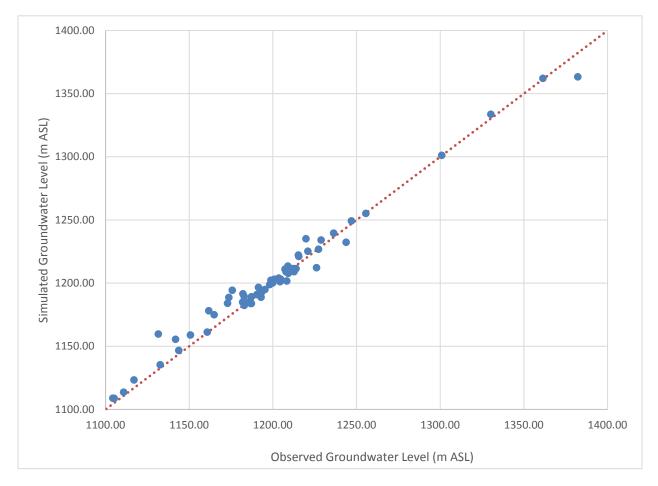



Figure 4-14 Comparison of Observed versus Simulated Groundwater Levels



Numerical Model Construction and Calibration May 2019

From Figure 4-14, the simulated head values for all calibration points are situated close to the line of perfect fit. The distribution of points in the cross plot also indicate that the residuals are reasonable in all areas of the model. No systemic clustering of data off the line of perfect fit is observed, nor are any trends in the residuals noted, both of which indicate no systemic bias in the calibration.

Systemic bias in the simulations can be also evaluated by comparing the residuals to the simulated water levels. Figure 4-15 presents a plot of the residual values at each of the calibration points versus its simulated head. The plot indicates that residuals are distributed both above and below the zero line, again indicating no systemic bias in the calibration.

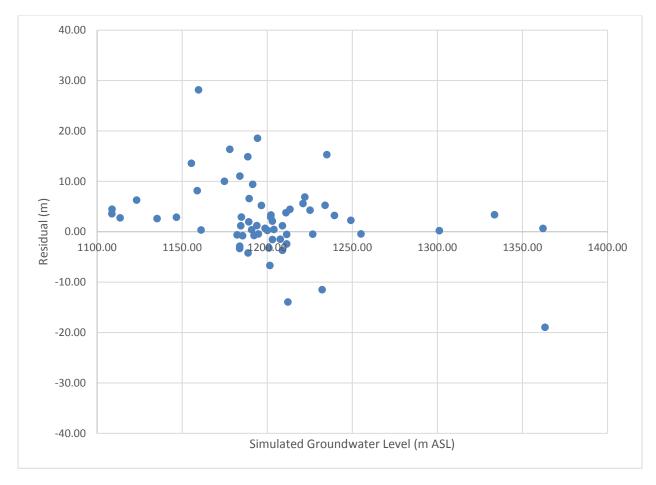



Figure 4-15 Comparison of Residuals to Simulated Water Levels



Numerical Model Construction and Calibration May 2019

## 4.5.3 Calibrated Model Parameters

The values of the hydrogeologic parameters that were determined from the calibration process are presented in Table 4-3. The hydraulic conductivity and specific storage values for the various hydrostratigraphic units generated by the model during calibration are within the ranges expected for the geologic materials based on measured and literature values.

| Hydrostratigraphic Unit      | Hydraulic Conductivity<br>(m/s) | Specific Storage<br>(1/m) | Specific Yield<br>(Dimensionless) |  |
|------------------------------|---------------------------------|---------------------------|-----------------------------------|--|
| Clay                         | 5.1E-06                         | 3.5E-03                   | 0.07                              |  |
| Fluvial sand and gravel      | 2.8E-03                         | 2.3E-05                   | 0.25                              |  |
| Grouped Bedrock layer 6      | 1.4E-06                         | 1.1E-05                   | 0.17                              |  |
| Grouped Bedrock layer 7      | 2.7E-07                         | 1.1E-05                   | 0.17                              |  |
| Lower silt, sand and gravel  | 8.3E-05                         | 2.3E-05                   | 0.2                               |  |
| Till North                   | 7.2E-08                         | 4.0E-03                   | 0.04                              |  |
| Till South                   | 7.2E-07                         | 4.0E-03                   | 0.04                              |  |
| Till-high conductivity North | 8.3E-05                         | 3.8E-03                   | 0.04                              |  |
| Till-high conductivity East  | 1.0E-04                         | 3.8E-03                   | 0.04                              |  |

### Table 4-3Calibrated Parameters



Model Simulations of Potential Effects on Groundwater May 2019

# 5.0 MODEL SIMULATIONS OF POTENTIAL EFFECTS ON GROUNDWATER

# 5.1 OVERVIEW OF MODELLED SCENARIOS

The calibrated FEFLOW model was used to simulate hydrogeologic conditions in the RAA under four different flow scenarios within the Elbow River, representing the following:

- flow conditions during non-flood periods of average flow in Elbow River
- flow conditions during the design flood, based on the 2013 flood

The hydrographs depicting flow rates within the Elbow River during the design flood are shown in Figure 5-1. Hydrographs for the 1:00 year and 1:10 year floods are also provided for reference. The time frame starts at an arbitrary point such that the hydrographs can be compared to each other to understand the relative dynamics of the flow scenarios that were modelled.

Numerical groundwater modelling of each of the floods is based on the Project diversion operational rules and modelled surface water elevations derived from the hydrodynamic model used for the surface water effects assessment in Volume 3B, Section 7 in the EIA (i.e., Elbow River water levels used in the model were derived from the surface water modelling). Partial diversion of water from the river starts when river flows exceed 160 m<sup>3</sup>/s and the diversion rates increase until flows in the diversion channel reach a maximum of 600 m<sup>3</sup>/s. Flow remaining in the river above 760 m<sup>3</sup>/s (160 m<sup>3</sup>/s plus 600 m<sup>3</sup>/s) is allowed to pass downstream, while 600 m<sup>3</sup>/s is continuously diverted into the diversion channel until the reservoir is full.

For both the dry operations and design floods, two FEFLOW simulation runs were completed to represent hydrogeologic conditions without the Project and with the Project, yielding a total of four simulation runs; these are listed in Table 5-1. The EEX-series of simulations (baseline conditions) represent the hydrogeologic system in the RAA under non-flood and flood scenarios. The PPX-series of simulations (Project operation) represent the hydrogeologic system in the RAA under non-flood and flood scenarios. The PPX-series of simulations (Project operation) represent the hydrogeologic system in the RAA under flows with the operating major Project features (diversion channel, off-stream reservoir and dam) represented in the model.



Model Simulations of Potential Effects on Groundwater May 2019

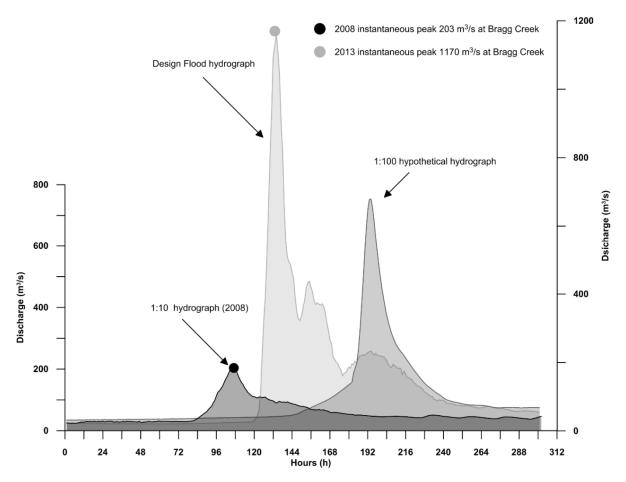



Figure 5-1 Design Flood, 1:100 Year Flood and 1:10 Year Flood Hydrographs (from Volume 4, Appendix J, Section 2, Figure 2-4)

 Table 5-1
 Summary of Numerical Groundwater Model Simulation Runs

|                                       | Numerical Model Simulation Run              |              |                    |                   |
|---------------------------------------|---------------------------------------------|--------------|--------------------|-------------------|
| Flow Condition in Elbow<br>River      | Without Project<br>(Baseline<br>Conditions) | With Project | Simulation<br>Mode | Effects Evaluated |
| Average Flow Conditions<br>(No Flood) | EEXO                                        | PPX0         | Steady-State       | Dry Operations    |
| Design Flood                          | EEX1                                        | PPX1         | Transient          | Flood Operations  |



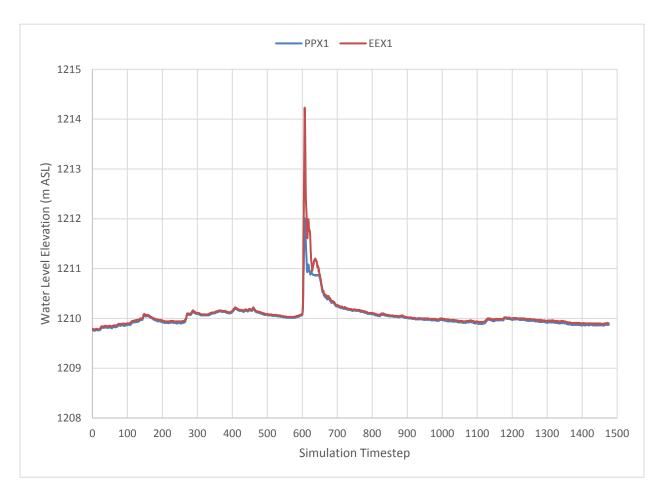
Model Simulations of Potential Effects on Groundwater May 2019

# 5.2 TRANSIENT SIMULATION PERIODS AND TIMESTEPS

The transient simulations were run within the FEFLOW model using a constant time step over the entire simulation period. The simulation period was set to provide adequate time prior to the arrival of the flood and then incorporating the entire flood, water retention time in the off-stream reservoir, and associated water release times from the reservoir. Additional simulation time was added to represent the post-flood period following complete release of water from the off-stream reservoir such that recovery of groundwater levels could be simulated. Table 5-2 presents the transient simulation timesteps used.

| Table 5-2 | Summary of Transient Simulation Timesteps |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

| Simulation<br>Name | Timestep Used                                          | Number of<br>Timesteps in<br>Simulation | Timestep at<br>Onset of Flood<br>Condition | Timestep at<br>Peak Level in<br>the Off-Stream<br>Reservoir | Timestep at<br>Off-Stream<br>Reservoir<br>Empty |
|--------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| EEX1/PPX1          | 0.5 hour simulation<br>stepping with<br>2 hour outputs | 1,476                                   | 603                                        | 649                                                         | 1,349                                           |


# 5.3 TIME VARYING SPECIFIED HEAD BOUNDARY CONDITIONS

In each of the transient simulations, the specified head boundary conditions representing water in Elbow River, the diversion channel and off-stream reservoir were varied over each timestep in the simulation. Water level hydrographs at key points within these features were generated from the hydrodynamic model. These hydrographs were used to define the time variability of the specified heads used in the transient simulations.

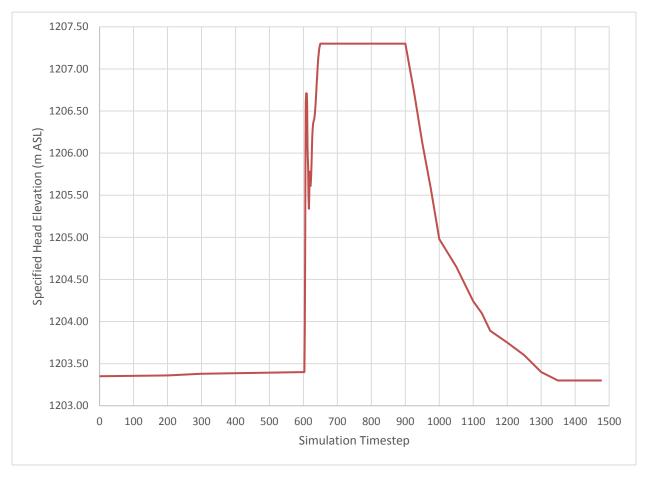
By way of example, Figure 5-2 presents example hydrographs used to define the time varying boundary conditions in the Elbow River for the PPX1 and EEX1 simulations. The hydrographs in this example represent water levels at a point just downstream of the diversion inlet structure. Comparison of the PPX1 and EEX1 hydrographs highlights a reduction (approximately 2 m at peak flow) in water levels within Elbow River during the peak of a design flood (when the Project is in flood operations). Soon after peak flows within Elbow River begin to subside, the two hydrographs re-converge, coinciding with the cessation of diversion into the off-stream reservoir.



Model Simulations of Potential Effects on Groundwater May 2019



## Figure 5-2 Example of Hydrographs Used for Time Varying Specified Head Boundary Conditions in Elbow River


Time varying specified head levels were also assigned to nodes within the diversion channel and off-stream reservoir based on simulated results from the hydrodynamic model. In these areas, time varying specified heads were only assigned for the PPX-series of simulations because the water level influence they represent are only relevant for the simulation runs where the Project infrastructure is present (i.e. they do not need to be represented in the EEX-series of simulations because infrastructure does not exist in those scenarios; that is without the Project in place). Further, the time varying specified head values were only applied for timesteps within the simulation while the Project was in operation.



Model Simulations of Potential Effects on Groundwater May 2019

Figure 5-3 presents an example hydrograph used to define the time-varying specified head boundary conditions in the diversion channel near its outlet into the off-stream reservoir. This hydrograph represents water levels variations within both the diversion channel and in the reservoir (once it has filled). This hydrograph illustrates:

- onset of water diversion into the off-stream reservoir
- followed by a plateau representing maximum flows in the diversion channel
- declining water levels as the diversion rates decline
- followed by an increase in water levels in the reservoir until the reservoir is full
- holding water within the reservoir
- final decline of water levels as the low-level outlet gate is opened and the reservoir drains

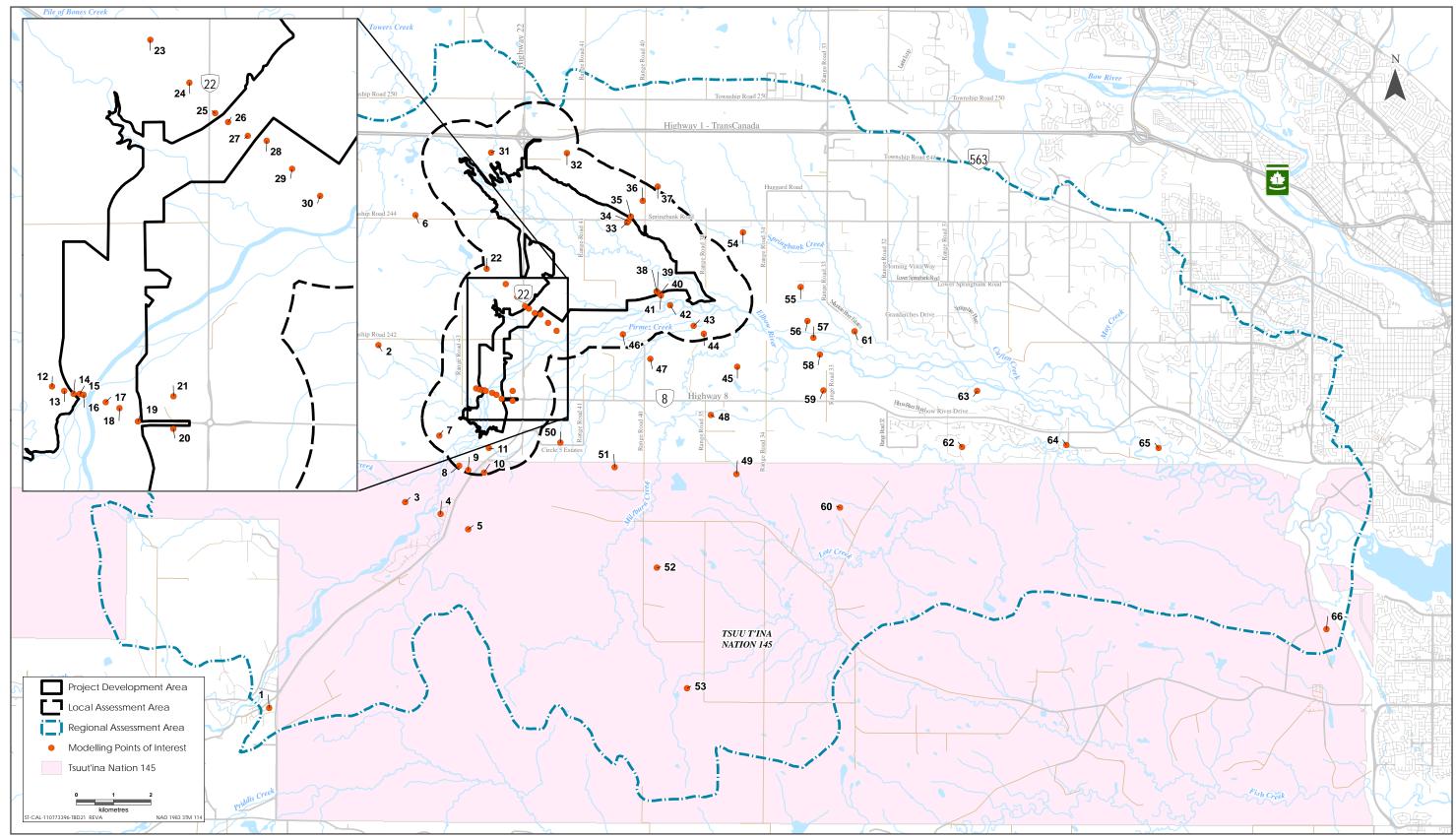


### Figure 5-3 Example Hydrograph Used for Time Varying Specified Head Boundary Conditions in Diversion Channel



Model Simulations of Potential Effects on Groundwater May 2019

# 5.4 POINTS OF INTEREST USED FOR TIME SERIES EVALUATION


A total of 67 points of interest were chosen across the LAA and RAA to evaluate potential effects on groundwater levels from the construction and operation of the Project. The points are presented in Figure 5-4 and were chosen as follows:

- A line of 9 points located perpendicular and across the diversion structure were used to evaluate potential water levels changes in the fluvial deposits in the Elbow River valley and farther out into the adjacent clay, till and bedrock units.
- A line of 9 points located perpendicular and across the diversion channel were used to evaluate the effects of construction (excavation) and operation of the channel (flood and non-flood conditions).
- A line of 8 points located perpendicular and across the dam were used to evaluate the propagation of water level changes through the dam structure and downgradient to Elbow River as well as points south of the river to confirm that the effects do not propagate beyond the fluvial deposits.
- A line of 5 points located perpendicular and across the bedrock ridge on the northeast side of the dam area were used to evaluate potential propagation of effects through the ridge in that area.
- 12 points located on the Tsuut'ina Nation Reserve were used to address concerns raised by that Nation.

The remaining 24 points were distributed across the LAA and RAA to include both upland and lowland areas of the domain as well as to include points within the various geological units. The points do not correlate with monitoring well locations.

Following each of the transient simulations, the calculated heads at each of the points of interest were extracted from the model output files, such that simulated hydrographs could be developed for interpretation. Selected simulated hydrographs are presented in the following subsection for the time variation of water levels at a given location.





Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

## Points of Interest Used for Interpretation of Time-Series Evaluation

Figure 5-4

Model Simulations of Potential Effects on Groundwater May 2019



Model Simulations of Potential Effects on Groundwater May 2019

# 5.5 INTERPRETATION OF MODEL SIMULATIONS

Following each of the simulation runs, output files from FEFLOW were exported for post processing and interpretation. Each of the output files detail simulated potentiometric heads at each of the model nodes either at steady-state conditions (EEX0/PPX0 runs) or at each time step of the simulation for transient simulations (EEX1/PPX1). These output files were examined using spatial analysis tools to generate interpolated 3D potentiometric surfaces (at steady-state or at various timesteps of interest in the simulation) that were then imported into the 3D CSM. Through examination of the 3D potentiometric surfaces over time, the dynamics of the hydrogeologic system in the RAA could be understood for the eight simulation runs.

To understand the potential changes in the groundwater system that could be attributable to the Project, the EEX run was compared to the corresponding PPX run to derive maps of the net change in head. For example, to examine potential changes in the groundwater system attributable to the Project during the design flood, the EEX1 simulated heads were subtracted from the PPX1 simulated heads to derive the net change in head for each timestep under examination. In this manner, changes in groundwater levels due to the Project alone could be isolated from changes due to a flood alone.

## 5.5.1 Average Flow Conditions Scenarios (EEX0/PPX0)

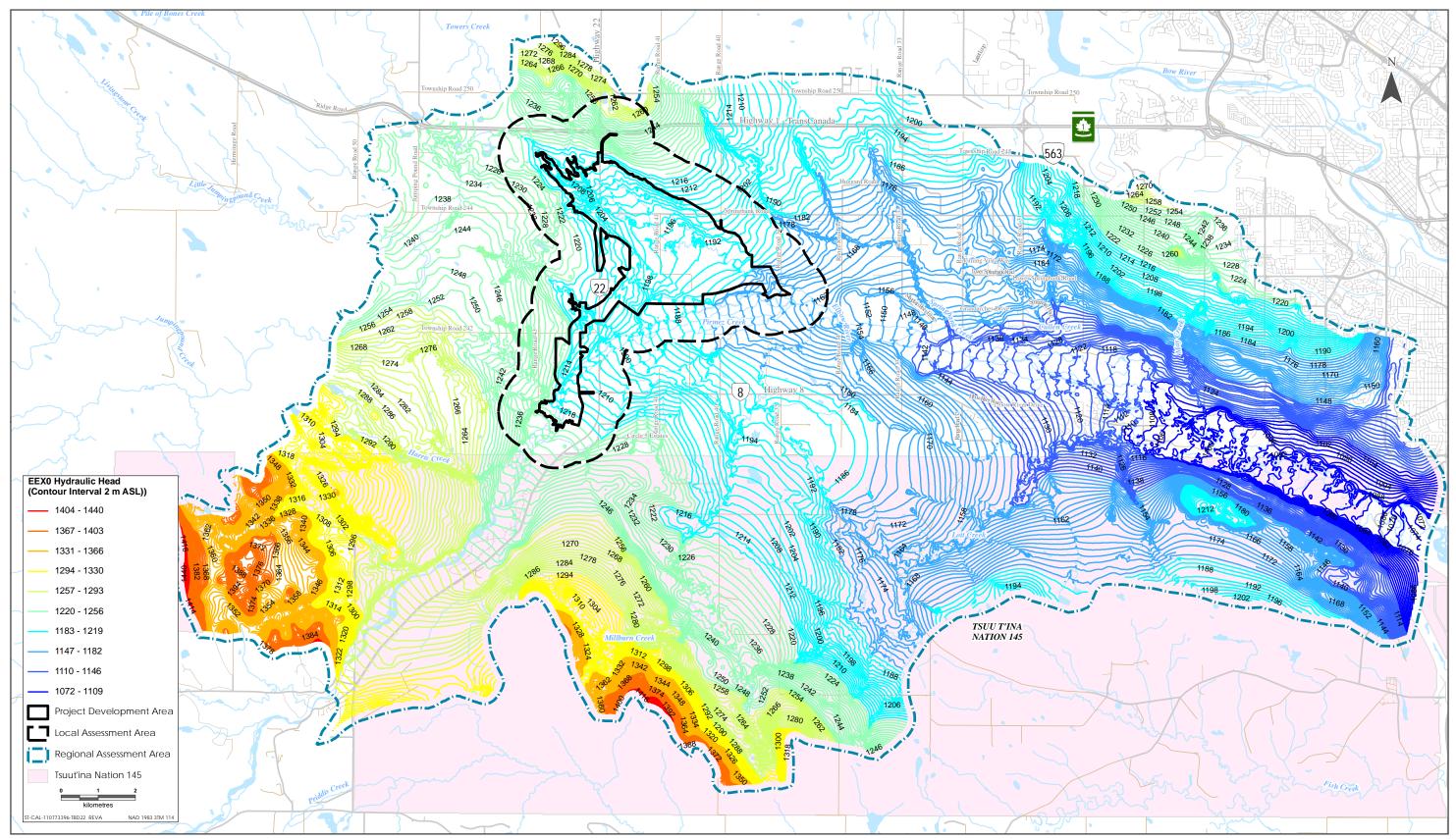
The EEX0 model output simulates groundwater conditions under average non-flood flow conditions in Elbow River, based on the baseline, pre-Project topography. Steady-state head distributions for the EEX0 simulation are presented in Figure 5-5.

Examination of the steady-state head distribution for the EEX0 simulation reveals general agreement with the groundwater flow interpretations derived from the 3D CSM. The EEX0 simulation results confirm that the predominant flow divide in the RAA is Elbow River and its associated fluvial deposits. At the scale of the RAA, groundwater movement is from upland areas toward Elbow River. Smaller scale local flow systems are also observed near tributary systems.

The PPX0 model output simulates groundwater conditions under non-flood average flow conditions in Elbow River, based on post-Project construction topography, where the diversion channel and dam structure have been added to the model domain. Figure 5-6 presents the steady-state head distributions for the PPX0 simulation.

The net change in head that would be attributable to the Project during dry operations is derived through subtraction of the PPX0 simulated heads from the EEX0 simulated heads. This was achieved through subtracting interpolated grids of the two simulated surfaces to yield a simulated net change in head grid. Figure 5-7 presents the simulated net change in head derived from both the EEX0 and PPX0 outputs.

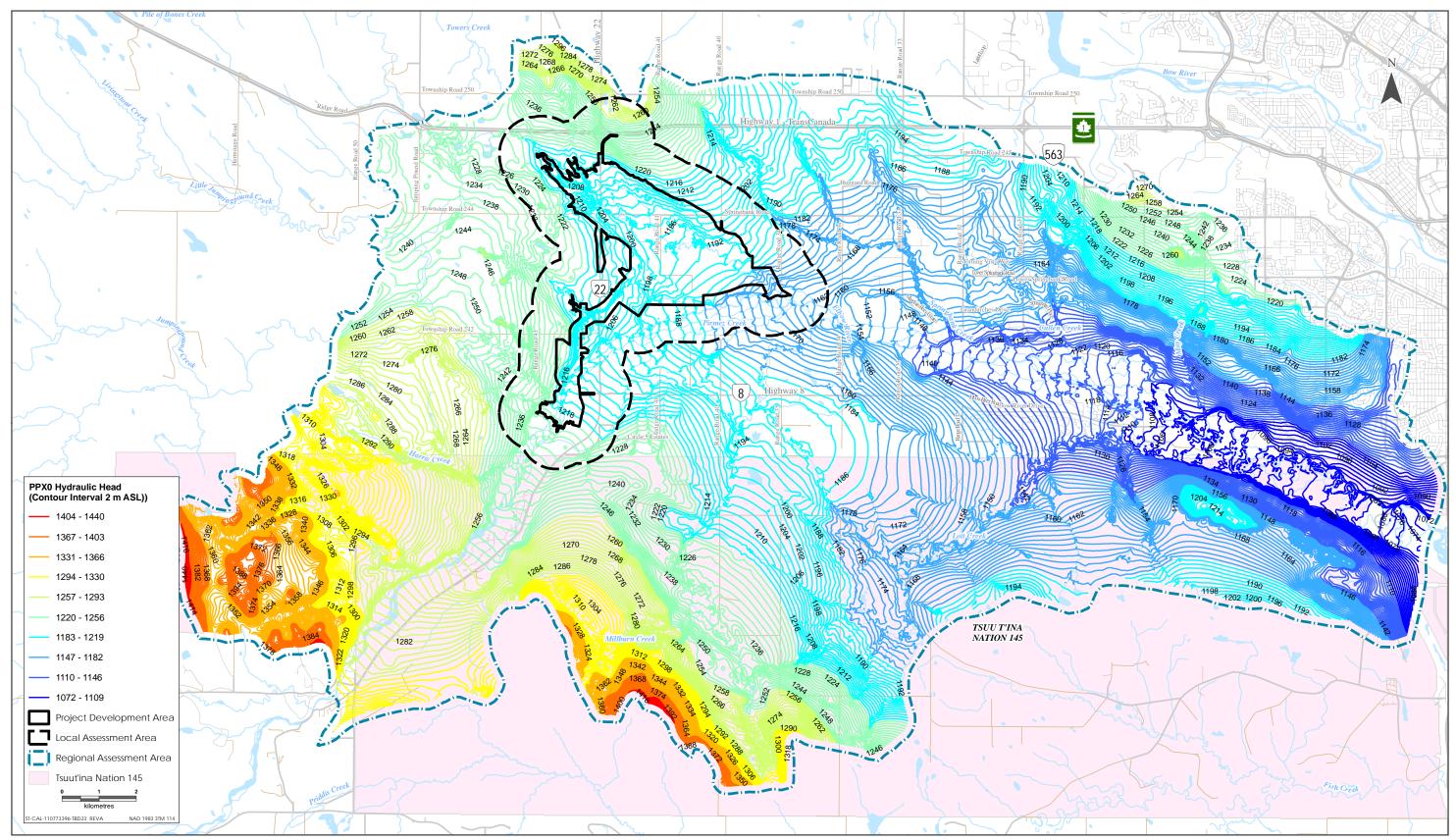



Model Simulations of Potential Effects on Groundwater May 2019

From Figure 5-7, changes in head during dry operations are expected in areas near Project infrastructure, primarily near the diversion channel. Negative net change in groundwater levels are indicative of drawdowns caused by incision of the diversion channel through the subsurface. Slow seepage into the diversion channel over time would locally lower groundwater levels to the levels simulated in the PPX0 simulation. The maximum drawdowns noted within the diversion channel area are approximately -8.5 m. Drawdowns were greater (i.e. more lowering) near the upstream side of the diversion channel near its inlet, and in areas along the channel where channel incision into the existing topography would be greatest.

The extent of the net change in head as depicted in Figure 5-7 varies depending on location, but the net changes is restricted to within the LAA and north of the Elbow River. The propagation of effects through the subsurface is controlled by the magnitude of drawdown and the hydraulic properties of the underlying geologic units. Areas where the drawdown effects propagate farther away from the diversion channel are underlain by the more permeable basal sand and gravel unit.

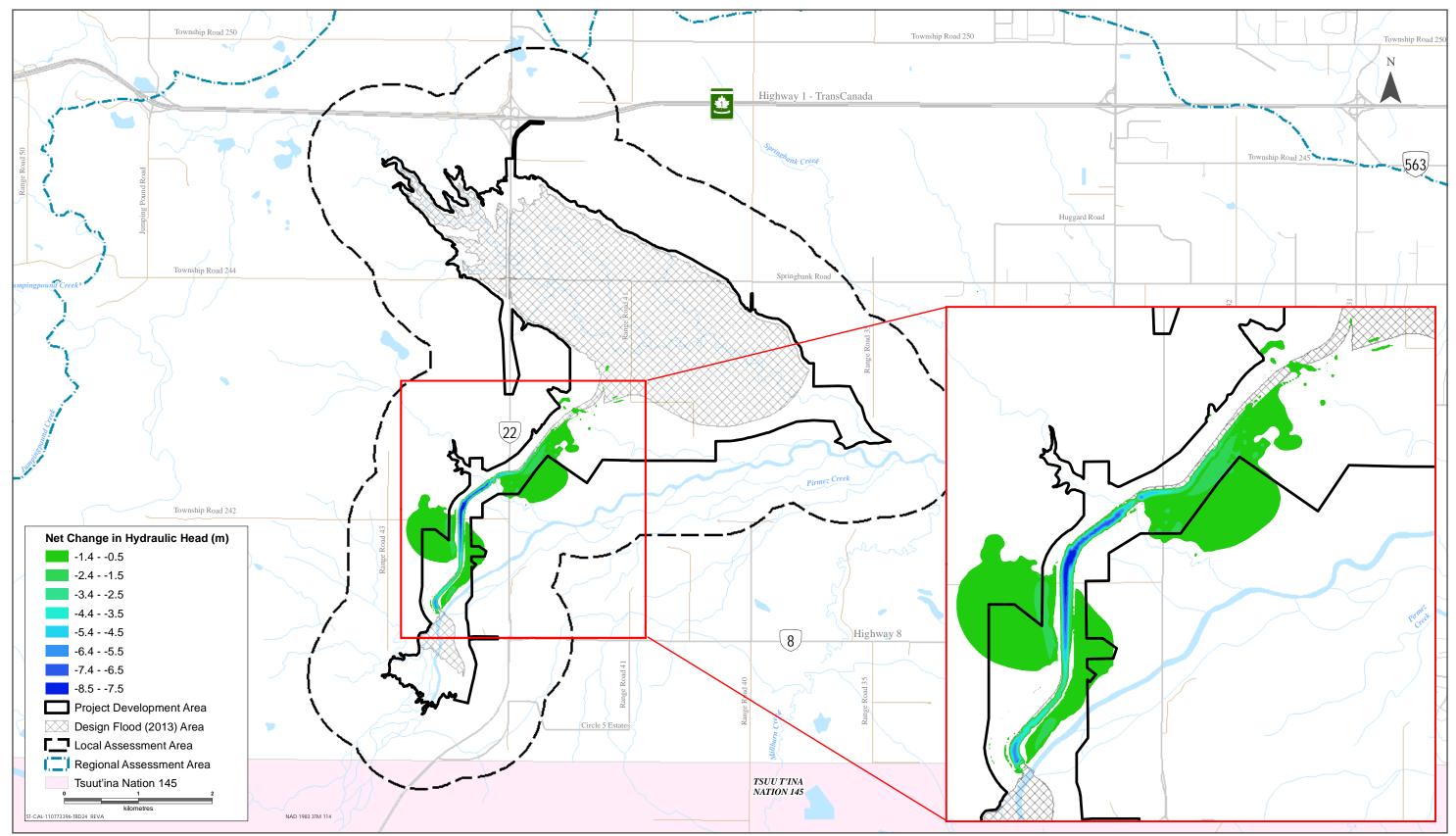
An estimate of groundwater seepage rates into the diversion channel (when dry) was obtained through examination of steady-state flux rates at nodes that fall within the diversion channel. Based on the net flux at nodes within the diversion channel extracted from the PPX0 simulation, the estimated groundwater seepage rate into the channel is 0.013 m<sup>3</sup>/s. This would represent an estimate of groundwater flows that are "intercepted" by the diversion channel when dry. These changes in groundwater discharge to Elbow River would not be perceptible, given the mean monthly flows in Elbow River are approximately 3 m<sup>3</sup>/s to 4 m<sup>3</sup>/s during winter months when flow is the lowest.






ment of Canada. Thematic Data - Stantec Ltd. Sources: Base Data- Government of Alberta, Gove

Simulated Steady State Heads for the EEX0 Scenario


Figure 5-5



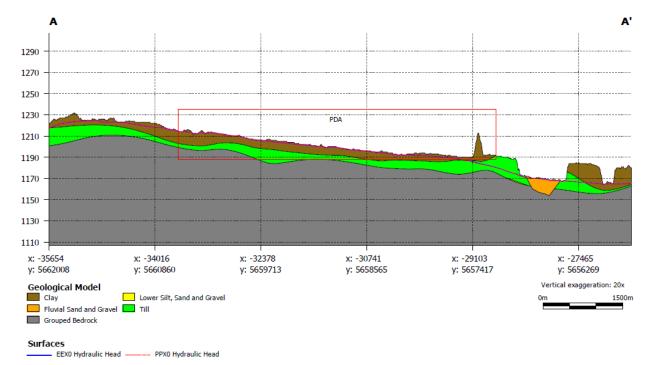
ment of Canada. Thematic Data - Stantec Ltd. Sources: Base Data- Government of Alberta, Gove

Simulated Steady State Heads for the PPX0 Scenario

Figure 5-6



Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.


Simulated Net Change in Head for the PPX0/EEX0 Scenario Figure 5-7

Model Simulations of Potential Effects on Groundwater May 2019



Model Simulations of Potential Effects on Groundwater May 2019

Figure 5-8, Figure 5-9, and Figure 5-10 present local scale geologic cross sections through PDA. The locations of these three cross sections are shown on Figure 3-13 and are consistent with the cross section locations presented in the 3D CSM. The length of these cross sections has been limited to the LAA, such that greater resolution in these areas is provided (as compared to the regional scale cross sections presented in Section 3.1.3). These cross sections present both the EEX0 (without Project) and PPX0 (with Project) simulated groundwater levels such that they can be compared, and the modelled change in level can be observed in profile along with the ground surface topography and underlying hydrogeologic structure. The ground surface topography used in these cross sections represents the post-Project conditions, with the diversion channel and dam included (though not applicable for the EEX0 simulation).



## Figure 5-8 Local Scale Cross Section A-A' Through the Off-stream Reservoir for PPX0/EEX0 Scenarios



Model Simulations of Potential Effects on Groundwater May 2019

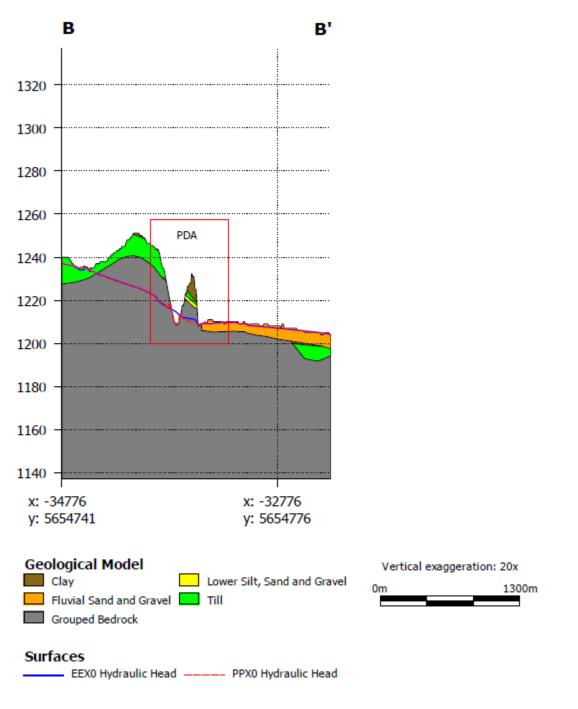
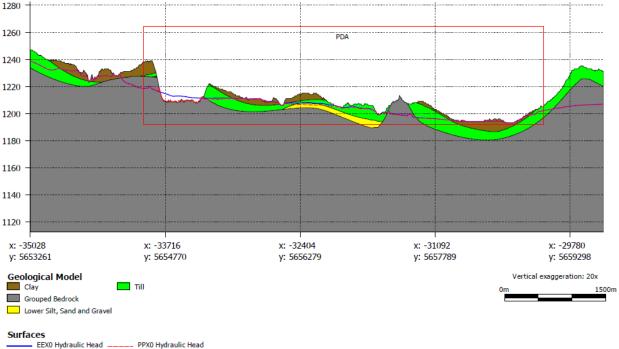




Figure 5-9 Local Scale Cross Section B-B' Through Diversion Channel for PPX0/EEX0 Scenarios





Model Simulations of Potential Effects on Groundwater



#### Local Scale Cross Section C-C' Through Diversion Channel and Off-stream Figure 5-10 **Reservoir for PPX0/EEX0 Scenarios**

These three cross sections reveal little change between the PPX0 and EEX0 simulated steadystate heads across the LAA. Areas where drawdown in groundwater levels occur are limited to areas near the diversion channel.

#### 5.5.2 Design Flood Scenarios (EEX1/PPX1)

The EEX1 model output is a transient simulation of groundwater conditions under design flood conditions in Elbow River, based on the baseline, pre-Project topography. This simulation is designed to understand the effects on the groundwater system caused by a design flood in the absence of any Project infrastructure. Figure 5-3 presents an example hydrograph of a varying specified head boundary condition node within the diversion channel, near its outlet to the offstream reservoir. This figure illustrates how water levels in the diversion channel and off-stream reservoir varied over the simulation.

Because the EEX1 simulation is a transient simulation, modelled head values at each of the model nodes are calculated at each timestep of the simulation. Figure 5-11 presents the simulated head distribution across the model domain at the 650 timestep, which was selected to highlight conditions when the off-stream reservoir is full and water levels within it are at their

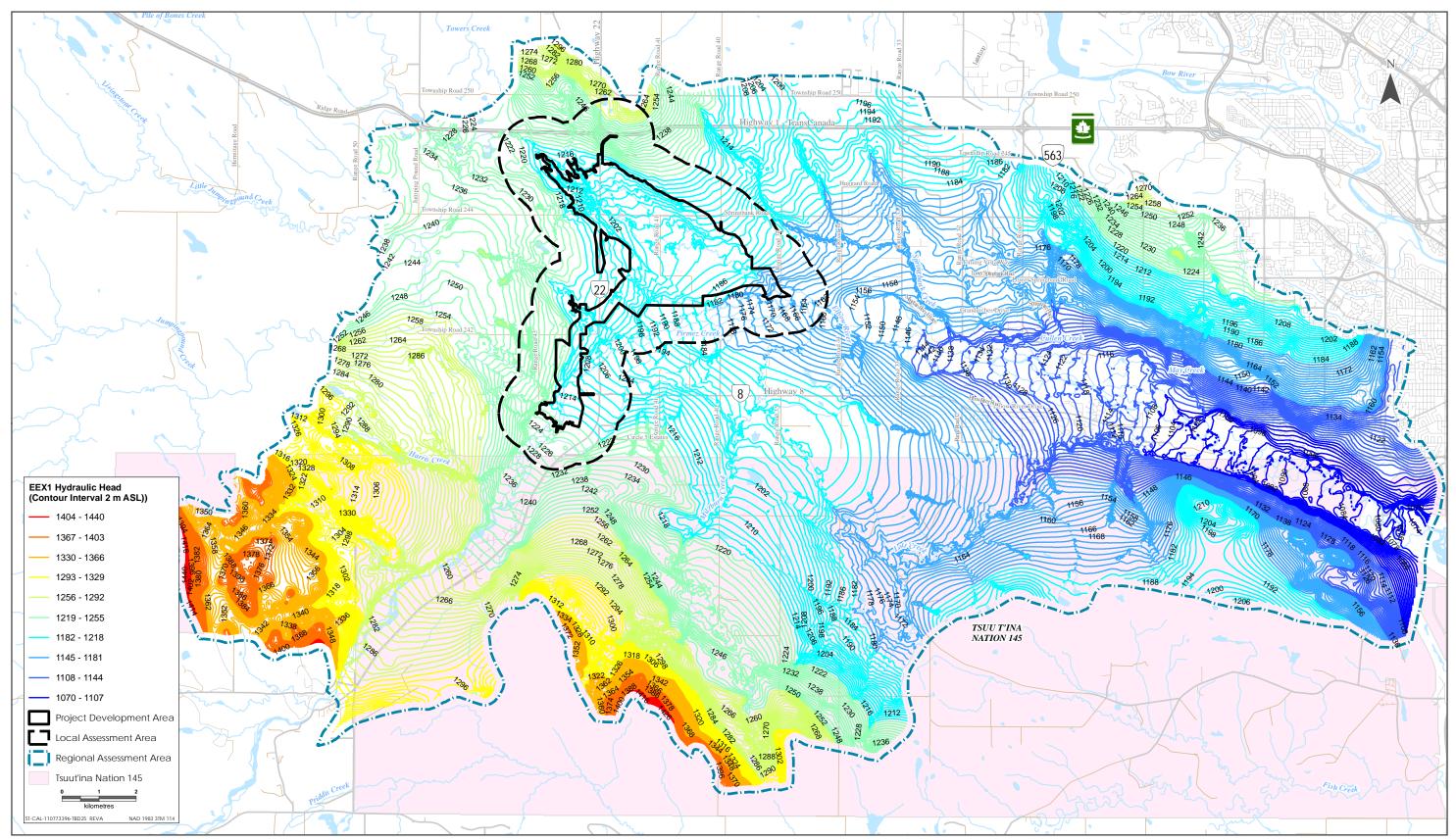


C'

Model Simulations of Potential Effects on Groundwater May 2019

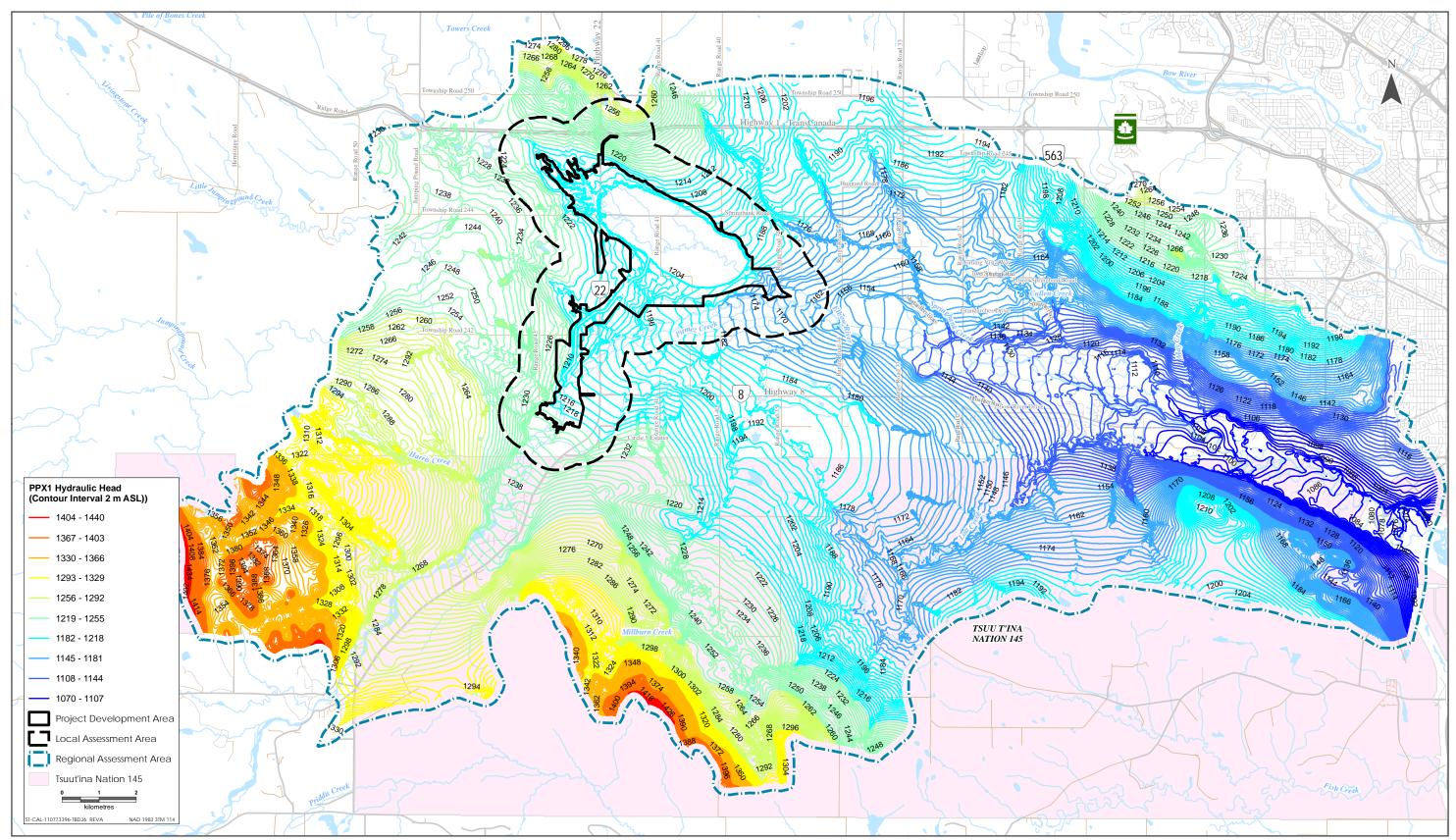
highest (though this is not applicable in this simulation as it represents pre-project construction conditions; however the same timestep is presented such that it can be compared to the PPX1 simulation at the same timestep).

Examination of Figure 5-11 indicates that although a flood is near its peak in Elbow River, the simulated heads within the model domain are very similar to those of the non-flood conditions. Areas where groundwater levels are changed (relative to the non-flood EEX0 scenario) occur within the Elbow River valley within the fluvial deposits near the river where water levels are higher and appear to respond to a flood. Such changes in water level due to a flood are relatively small (3 m to 4 m) relative to the total change in head across the RAA (approximately 360 m). As such, regional scale changes in flow patterns are not expected during a flood, given the short duration and relatively small change exhibited.


The PPX1 model output is a transient simulation of groundwater conditions under design flood conditions in Elbow River, based on the post-Project topography, where the diversion channel and dam structure have been added to the model domain. This simulation is designed to understand the effects on the groundwater system caused by a design flood and operation of the Project.

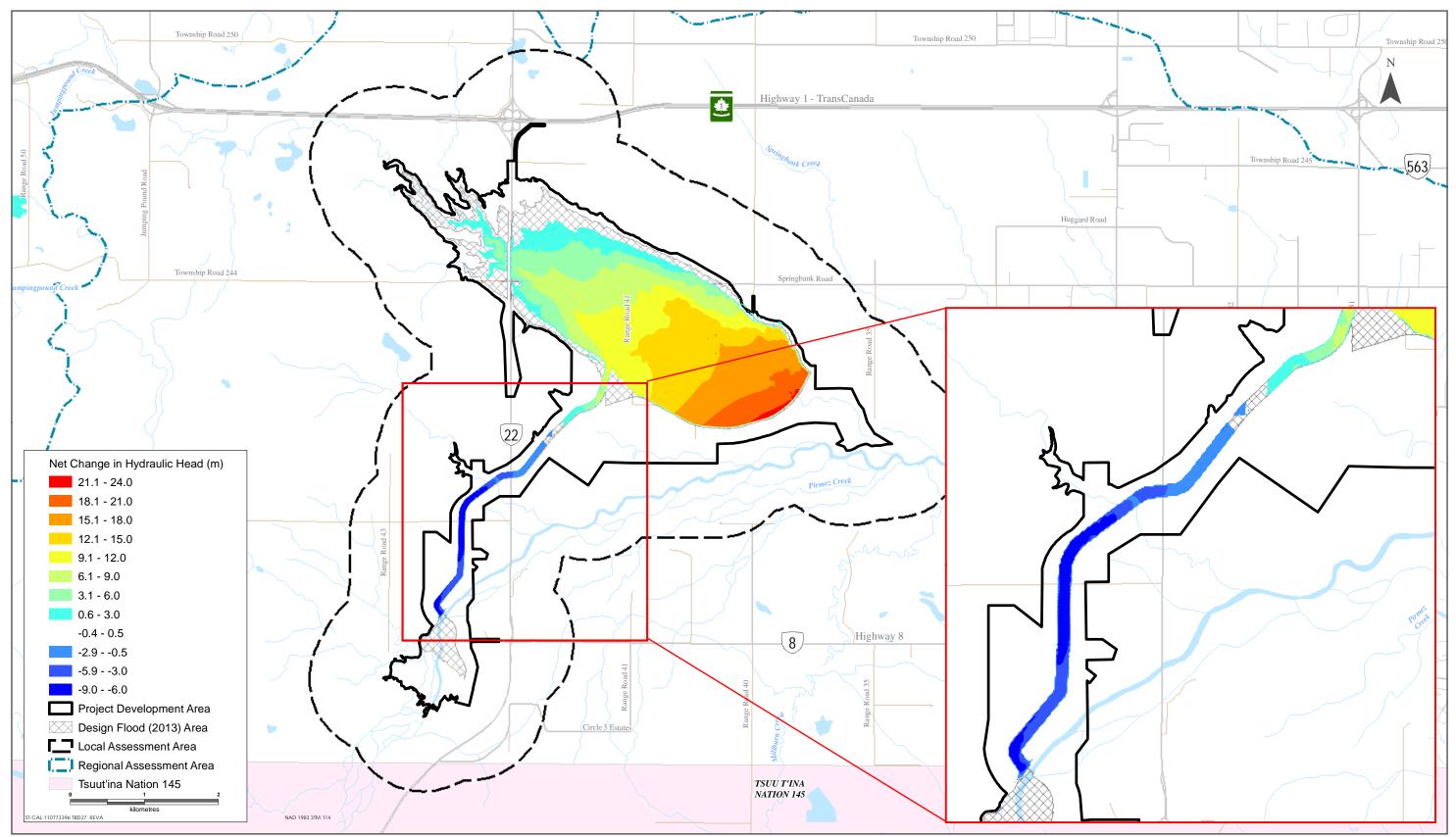
Because the PPX1 simulation is a transient simulation, modelled head values at each of the model nodes are calculated at each timestep of the simulation. Figure 5-12 presents the simulated head distribution across the model domain at the 650 timestep, which was selected to highlight conditions when the off-stream reservoir is full and water levels within it are at their highest.

From Figure 5-12, localized changes in groundwater levels are expected near Project infrastructure including the diversion channel and off-stream reservoir. Localized changes in groundwater flow patterns would be expected near these features relative to the flow patterns inferred from the EEX1 simulation. Groundwater flow patterns near the off-stream reservoir would be expected to change due to the mounding effect caused by retention of water and increased local heads. Flow patterns in this area would exhibit radially outward directed flow before returning to the general regional flow direction toward Elbow River.


The net change in head that would be attributable to the Project during a design flood is derived through subtraction of the PPX1 simulated heads (at timestep 650) from the EEX1 simulated heads (also at timestep 650). This was achieved through subtracting interpolated grids of the two simulated surfaces to yield a simulated net change in head grid. Figure 5-13 presents the simulated net change in head derived from both the EEX1 and PPX1 outputs at the 650 timestep.






nent of Canada. Thematic Data - Stantec Ltd. nment of Alberta, Gov Sources: Base Data- Gover

Simulated Head Distribution for the EEX1 Scenario at Timestep 650 Figure 5-11



ment of Canada. Thematic Data - Stantec Ltd. Sources: Base Data- Government of Alberta, Gove

Simulated Head Distribution for the PPX1 Scenario at Timestep 650 Figure 5-12



Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Simulated Net Change in Head for the PPX1/EEX1 Scenarios at Timestep 650 Figure 5-13

Model Simulations of Potential Effects on Groundwater May 2019



Model Simulations of Potential Effects on Groundwater May 2019

From Figure 5-13, net changes in head are expected near the diversion channel and off-stream reservoir. Near the upstream areas of the diversion channel, groundwater levels are expected to be up to 9 m lower compared to pre-Project conditions. In areas within the off-stream reservoir, groundwater levels are expected to be up to 24 m higher near the upstream toe of the dam structure, with decreasing net changes in a northwesterly direction toward higher elevation (i.e. uphill) areas of the reservoir. In all cases, the lateral extent of the net change in head is within the LAA and north of Elbow River (except for a small area of net negative change near the diversion inlet structure). Net negative change (drawdown) is still exhibited in these areas of the diversion channel because even when flowing during diversion, water levels are below the baseline elevations.

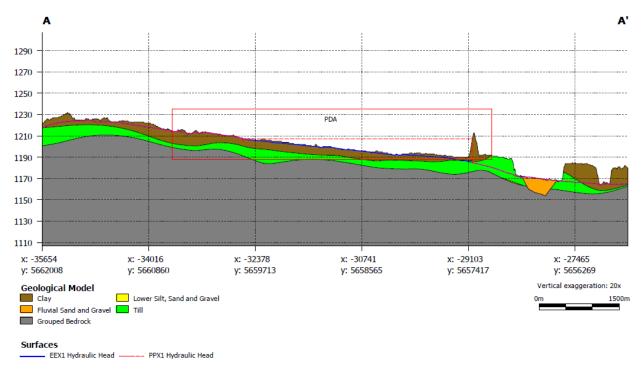

An estimate of seepage out of the reservoir area when full and just prior to commencement of release (when seepage rates out of the reservoir area would be at their maximum) was obtained through examination of the flux values at each of the nodes within the reservoir. Summation of the net fluxes yielded an estimated seepage rate of 426 m<sup>3</sup>/day out of the reservoir. Even if all this seepage ends up as discharge in Elbow River, the additional flux would not be perceptible relative to flows in Elbow River during a design flood, which reaches an instantaneous peak flow of 1,170 m<sup>3</sup>/s (equivalent to approximately 1.01x10<sup>8</sup> m<sup>3</sup>/day).

Figure 5-14, Figure 5-15, and Figure 5-16 present local scale geologic cross sections through the PDA The locations of these three cross sections are shown on Figure 3-13 and are consistent with the cross section locations presented in the 3D CSM. The length of these cross sections has been limited to the LAA, such that greater resolution in these areas is provided (as compared to the regional scale cross sections presented in Section 3.1.3). These cross sections present both the EEX1 (without Project) and PPX1 (with Project) simulated groundwater levels (at the 650 timestep) such that they can be compared/. The modelled change in level can be observed in profile along with the ground surface topography and underlying hydrogeologic structure. The ground surface topography used in these cross sections represents the post-Project conditions with the diversion channel and dam included (though not applicable for the EEX0 simulation).

Examination of the cross sections presenting the PPX1/EEX1 simulated water levels again show that changes in simulated groundwater levels are limited to areas near the diversion channel and off-stream reservoir, where divergence between the EEX1 and PPX1 surfaces occurs.



Model Simulations of Potential Effects on Groundwater May 2019



### Figure 5-14 Local Scale Cross Section A-A' Through the Off-stream Reservoir for PPX1/EEX1 Scenarios at Timestep 650



Model Simulations of Potential Effects on Groundwater May 2019

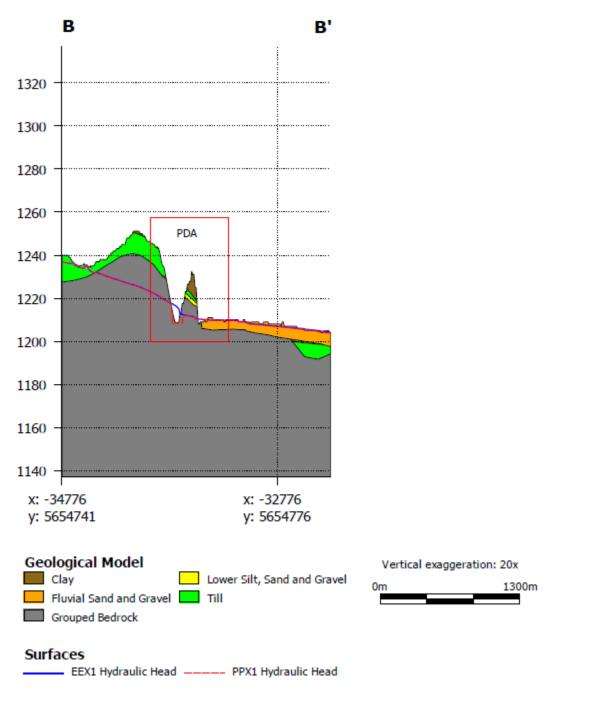




Figure 5-15 Local Scale Cross Section B-B' Through Diversion Channel for PPX1/EEX1 Scenarios at Timestep 650





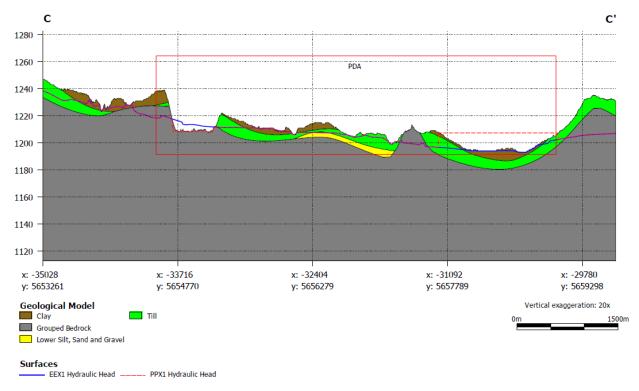



Figure 5-16 Local Scale Cross Section C-C' Through Diversion Channel and Off-stream Reservoir for PPX1/EEX1 Scenarios at Timestep 650



Summary and Conclusions May 2019

# 6.0 SUMMARY AND CONCLUSIONS

Compared to the hydrogeology assessment in the EIA, the interpretation of baseline information has now been enhanced to:

- highlight the complex groundwater flow regimes in the expanded RAA
- provide additional mapping of geologic units
- incorporate expanded cross sections highlighting hydrogeologic features in southern areas of the RAA
- expand mapping of water table and potentiometric surfaces
- provide additional interpretation of recharge/discharge areas
- provide an updated inventory of potential groundwater use in the expanded RAA

Expansion of the RAA to include areas south of Elbow River has reaffirmed the original interpretations of baseline information derived for the original (smaller) RAA. The major hydrogeologic control of the groundwater flow systems within the expanded RAA continues to be the Elbow River and its associated fluvial deposits.

The numerical groundwater flow model has been updated to expand the model domain to the expanded RAA, to adjust model parameters in response to information requests from AEP, CEA Agency, and feedback from Indigenous groups. Once the model had been updated with additional information from expanded areas of the RAA and re-parameterized, it was recalibrated again using an updated dataset covering the expanded RAA.

Results of the steady-state calibration indicate good agreement between observed water levels and simulated water levels, both at calibrations points and between them based on comparison to interpreted water table and potentiometric surfaces derived from the 3D CSM. Residual statistics and graphical examination of residuals were used to evaluate the calibration and both confirm adequate model calibration and a lack of systemic bias in the residuals.

The calibrated groundwater flow model provided simulated flow scenarios representing both non-flood conditions (PPX0/EEX0) when the Project is not in operation, as well as a design flood representing flood conditions when the Project is in operation. The design flood (EEX1/PPX1) represents the greatest change in groundwater conditions in the RAA.

Simulation results for the non-flood scenario (EEX0/PPX0) highlight potential changes in groundwater levels resulting from construction and dry operation of the Project. The net change in groundwater levels for these scenarios and they are found to be limited to areas near the diversion channel, due to drawdown of water levels caused by incision of the diversion channel



Summary and Conclusions May 2019

below the baseline groundwater levels. Maximum simulated drawdown (lowering of water levels) was approximately -8.5 m within the diversion channel near its inlet and in areas where its incision into ground surface would be deepest. The lateral extent of the drawdowns is limited to within the LAA in all areas. The net flux into the diversion channel (when dry) is estimated to be 0.013 m<sup>3</sup>/s, which would not be perceptible given the mean monthly flows in Elbow River are approximately 3 m<sup>3</sup>/s to 4 m<sup>3</sup>/s during winter months when flow is the lowest.

For a design flood, when the effects on groundwater would be their greatest, effects on groundwater levels occur in localized areas near the diversion channel, dam structure, and offstream reservoir. Changes in groundwater levels range from a lowering of approximately 9 m within the diversion channel, to an increase of 24 m near the upstream toe of the dam. In all cases, the lateral extent of the net change in head is within the LAA and north of Elbow River (except for a small area of net negative change near the diversion inlet structure). Seepage rate out of the off-stream reservoir (when full and just prior to commencement of release) is estimated to be approximately 426 m<sup>3</sup>/day. Assuming all this incremental seepage discharges to Elbow River, it would not be perceptible compared to flow rates in the Elbow River during a design flood, which reach an instantaneous peak flow of 1,170 m<sup>3</sup>/s (equivalent to approximately 1.01x10<sup>8</sup> m<sup>3</sup>/day).

The understanding of groundwater conditions has been refined across an expanded RAA, including areas south of the Elbow River and on Tsuut'ina Nation Reserve lands. The simulation results from the updated model, while expanded in extent, show that effects on groundwater levels do not extend in a southerly direction across the Elbow River valley.

The overall significance determination for the hydrogeology effects assessment does not change and remains not significant.



References May 2019

# 7.0 REFERENCES

- Ameli, A., McDonnell, J., and Bishop, K. 2016. The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution. HYDROLOGICAL PROCESSES Hydrol. Process. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/hyp.10777
- Anderson, M.P. and W.W. Woessner. 1991. Applied Groundwater Modeling. Academic Press, 381 pp.
- Alberta Geology Survey. 1980. Sheet 150: Surficial Geology of Alberta Foothills and Rocky Mountains
- AMEC (AMEC Environment and Infrastructure). 2014. Preliminary Geotechnical Investigation Report – Off-Stream Dam Project – Springbank Alberta. Prepared for Alberta Transportation, May 2014.
- Bouwer, H. and R.C. Rice. 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- CCME (Canadian Council of Ministers of the Environment. 2016. Guidance Manual for the Environmental site Characterization in Support of Environmental and Human Health Risk Assessment.
- Diersch, H.J. 2014. FEFLOW Finite element modeling of flow, mass, and heat transport in porous and fractured media. Springer-Verlag 2014. DOI 10.1007/978-642-38739-5.
- Farrow, C.R. 2014. Winter surficial processes and groundwater recharge in the southern Alberta Prairies; MSc thesis, University of Calgary, 195 p.
- Fenton, M.M., E.J. Waters, S.M. Pawley, N. Atkinson, D.J. Utting and K. Mckay. 2013. Surficial geology of Alberta; Alberta Energy Regulator, AER/AGS Map 601, scale 1:1 000 000
- Glass, D. J. [editor]. 1990. Lexicon of Canadian Stratigraphy, Volume 4: Western Canada, including British Columbia, Alberta, Saskatchewan and southern Manitoba. Canadian Society of Petroleum Geologists, Calgary.
- Grasby, S.E., Z. Chen, A.P. Hamblin, P.R.J. Wozniak and A.R. Sweet. 2008. Regional Characterization of the Paskapoo bedrock aquifer system, southern Alberta. Canadian Journal of Earth Sciences, Vol 45. pp1501-1516



References May 2019

- Hamblin, A. P. 2010. Scollard/Willow Creek/Coalspur Formations: Summary of Literature and Concepts. Geological Survey of Canada, Open File 6555.
- HCL (Hydrogeological Consultants Ltd.) 2002. M.D. of Rocky View No. 44 Part of the South Saskatchewan River Basin Tp 021 to 029, R25 to 29, W4M & Tp 023 to 029, R01 to 06, W5M Regional Groundwater Assessment. March 2002.
- Hendry, M. 1988. Hydrogeology of Clay Till in a Prairie Region of Canada. Ground Water. 26. 607-614..
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
- Hyder, Z., J.J. Butler, Jr., C.D. McElwee and W. Liu. 1994. Slug tests in partially penetrating wells, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.
- Jerzykiewicz, T. 1997. Stratigraphic Framework of the Uppermost Cretaceous to Paleocene Strata of the Alberta Basin. Bulletin 510. Geological Survey of Canada.
- Klassen, J., J.E. Liggett, I. Pavlovskii and P. Abdrakhimova. 2018. First-order groundwater availability assessment for southern Alberta; Alberta Energy Regulator / Alberta Geological Survey, AER/AGS Open File Report 2018-09, 37 p.
- Langenberg, C.W., F.J. Hein, K. Bieber, J. Losert, H. Berhane and D.K. Cotterill. 2000. Regional geology of the Upper Blairmore Group and Bow Island Formation: a subsurface study in southwestern Alberta; Alberta Energy and Utilities Board, EUB/AGS Earth Sciences Report 2000-06, 68 p.
- MacCormack, K.E., N. Atkinson and S. Lyster. 2015. Map 602: Bedrock Topography of Alberta, Canada. Scale 1,000,000
- Moran, S. 1986. Surficial geology of the Calgary urban area; Alberta Research Council, ARC/AGS Bulletin 53, 57 p.
- Pana, D.I. and R. Elgr. 2013. Geology of the Alberta Rocky Mountains and Foothills; Energy Resources Conservation Board, ERCB/AGS Map 560, scale 1:500,000.
- Pavlovskii, I., S. Noorduijn and M. Hayashi. 2017. Regional-scale mapping of a depressionfocussed groundwater recharge rate in the prairie landscape of Alberta.; GeoOttawa 2017, 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, October 1-4, 2017, Ottawa, Canada, 6 p.



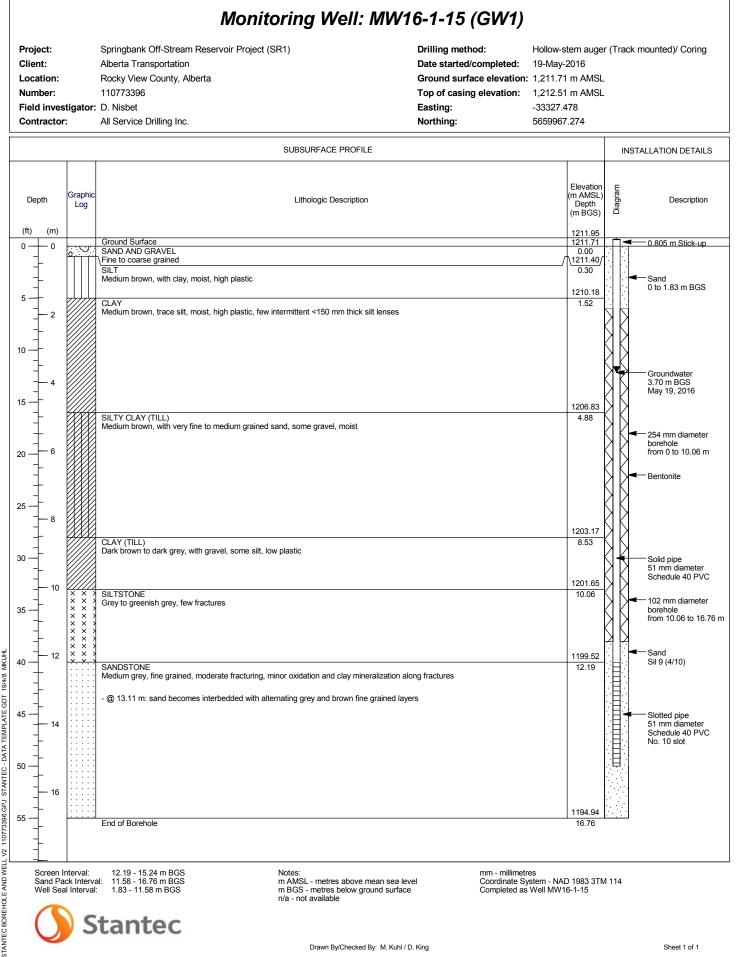
References May 2019

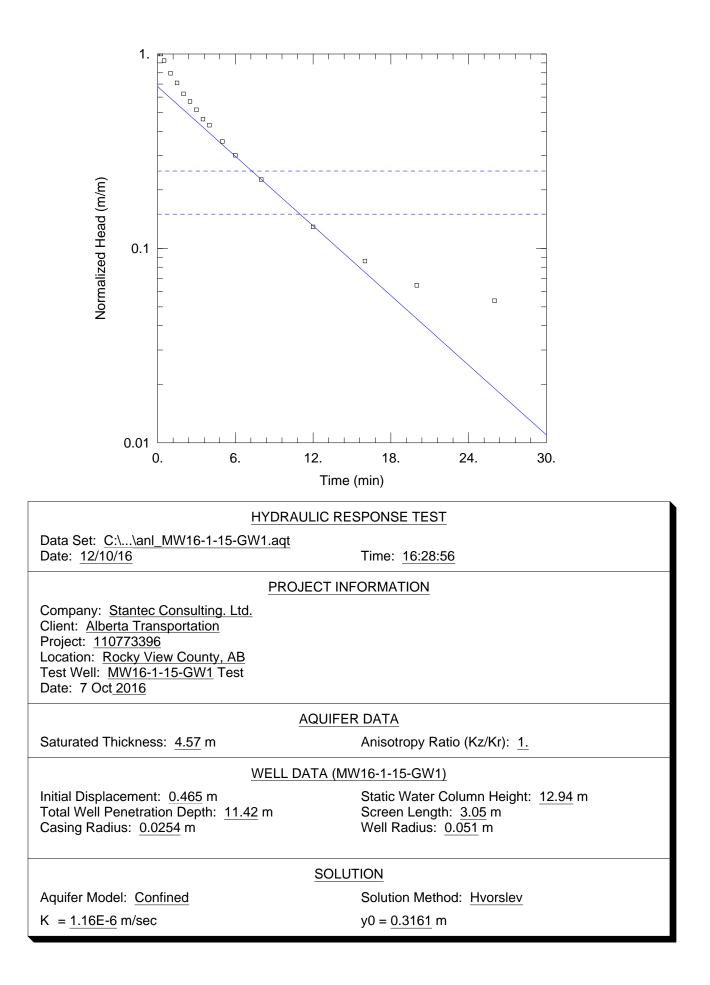
- Prior, G.J., B. Hathway, P.M. Glombick, D.I. Pană, C.J. Banks, D.C. Hay, C.L. Schneider, M. Grobe, R. Elgr. and J.A. Weiss. 2013. Bedrock geology of Alberta; Alberta Energy Regulator, AER/AGS Map 600, scale 1:1 000 00
- Shetsen, I. 1987. Sheet 207: Quaternary Geology of Southern Alberta. Scale: 1500,000
- Spitz, K. and J. Moreno. 1996. A Practical Guide to Groundwater and Solute Transport Modeling. John Wiley & Sons Inc. New York.
- Toop, D.C. and N.N. de la Cruz, 2002. Hydrogeology of the Canmore Corridor and Northwestern Kananaskis Country, Alberta; Alberta Environment, Hydrogeology Section, Edmonton, Alberta; Report to Western Economic Partnership Agreement, Western Economic Diversification Canada.
- WASY. 2009. Institute for Water Resources Planning and Systems Research Ltd. FEFLOW 5.3: Finite Element Subsurface Flow & Transport Simulation System. Reference Manual, User's Manual and White Papers, Berlin, Germany.
- Waterline (Waterline Resources Inc.). 2011. Groundwater Evaluation and Monitoring Plan Elbow River Watershed Sub-regions Twps 018 to 024, Rges 29W4 to 09W5 Alberta. Prepared for Alberta Environment. Calgary, Alberta.

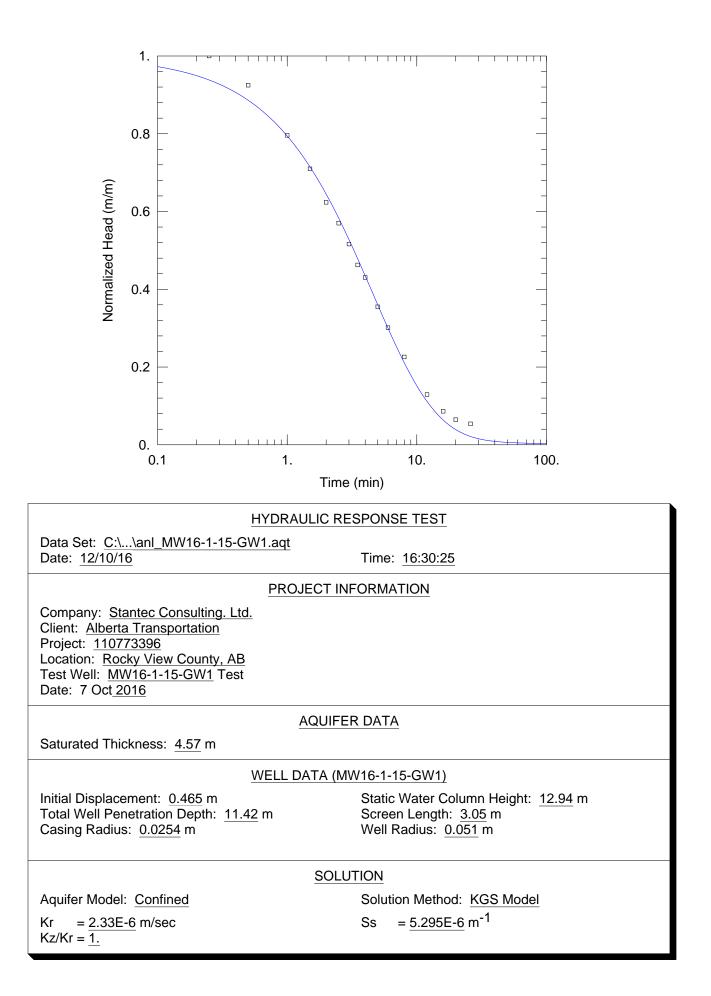


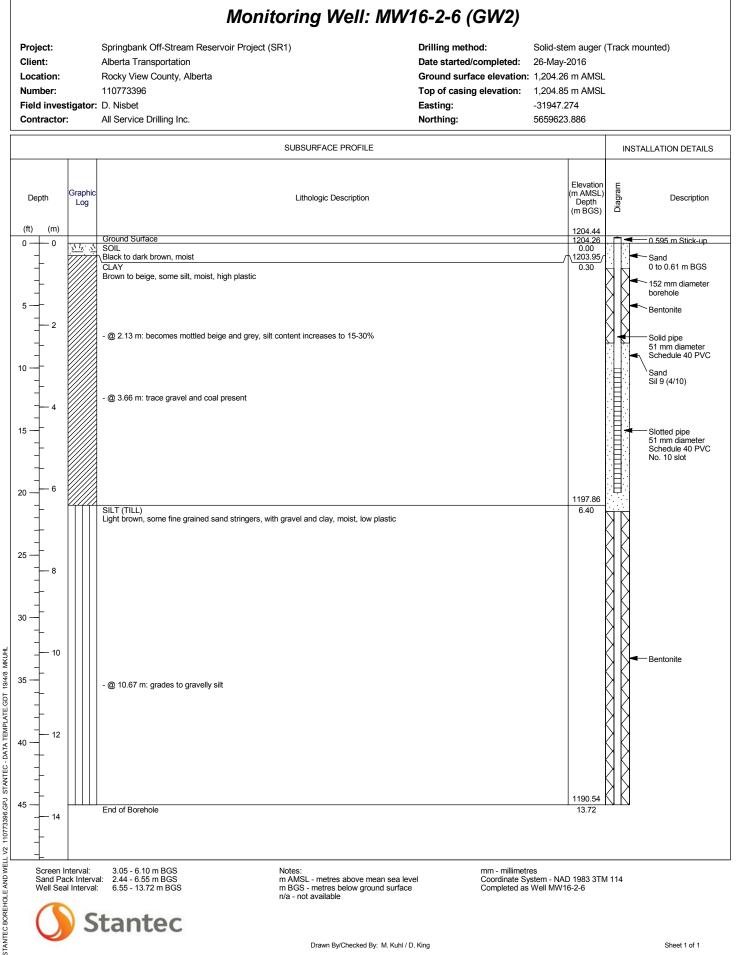
References May 2019

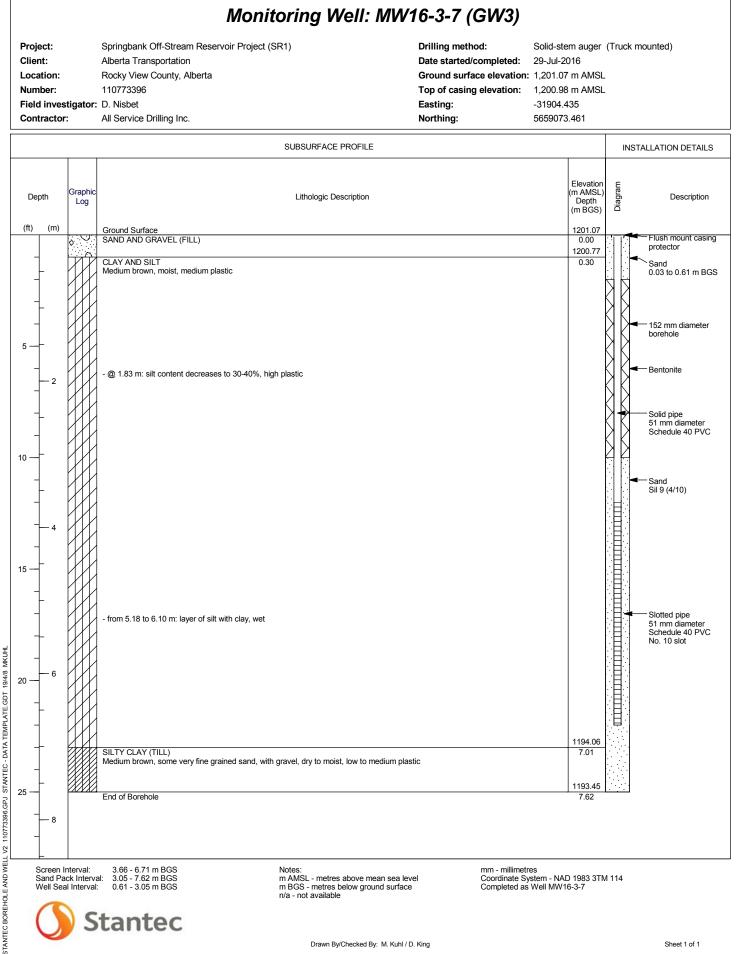



Attachment A Borehole Logs and Response Test Analysis May 2019


# Attachment A BOREHOLE LOGS AND RESPONSE TEST **ANALYSIS**





Attachment A Borehole Logs and Response Test Analysis May 2019














#### Monitoring Well: MW16-4-22 (GW4) Project: Springbank Off-Stream Reservoir Project (SR1) Drilling method: Hollow-stem auger (Track mounted)/ Coring Date started/completed: Client: Alberta Transportation 20-May-2016 Rocky View County, Alberta Ground surface elevation: 1,204.30 m AMSL Location: 110773396 1,204.96 m AMSL Number: Top of casing elevation: Easting: -32259.324 Field investigator: D. Nisbet All Service Drilling Inc. Northing: 5658717.399 Contractor: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSL Depth Lithologic Description Description Depth Log (m BGS (ft) (m) 1204.50 Ground Surface TOPSOIL 1204.30 0.662 m Stick-up 0 0 <u>117. 11</u> 0.00 1203.99 CLAY 0.30 Light to medium brown, with silt, moist, high plastic Sand 0 to 1.22 m BGS 5 Bentonite $\geqslant$ F Groundwater 2.38 m BGS May 20, 2016 10 Cuttings and sand 1.83 to 4.88 m BGS 15 254 mm diameter borehole from 0 to 12.80 m 20 1197.59 SILTY CLAY (TILL) 6.71 Medium brown, some very fine to fine sand, with gravel, moist, high plastic 25 STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHI @ 8.23 m: trace coal present 30 Solid pipe 51 mm diameter Schedule 40 PVC @ 9.45 m: sand component increases to 15-30% very fine to fine sand 10 35 1193.32 SILT AND CLAY (TILL) 10.97 With very fine to fine sand, with gravel, dry to slighly moist, friable Bentonite 18.59 - 21.64 m BGS 18.29 - 21.95 m BGS Screen Interval: Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-4-22 Sand Pack Interval: Well Seal Interval: 21.95 - 22.86 m BGS n/a - not available Stantec

# Monitoring Well: MW16-4-22 (GW4)

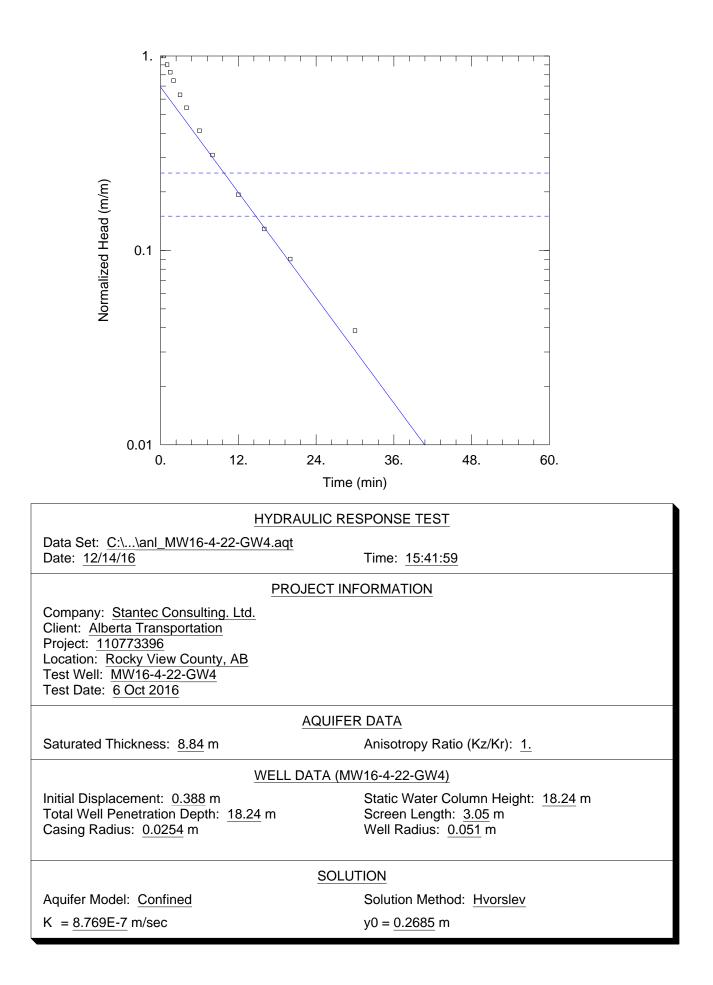
Project: Springbank Off-Stream Reservoir Project (SR1) Alberta Transportation Client: Location: Rocky View County, Alberta 110773396 Number: Field investigator: D. Nisbet All Service Drilling Inc. Contractor:

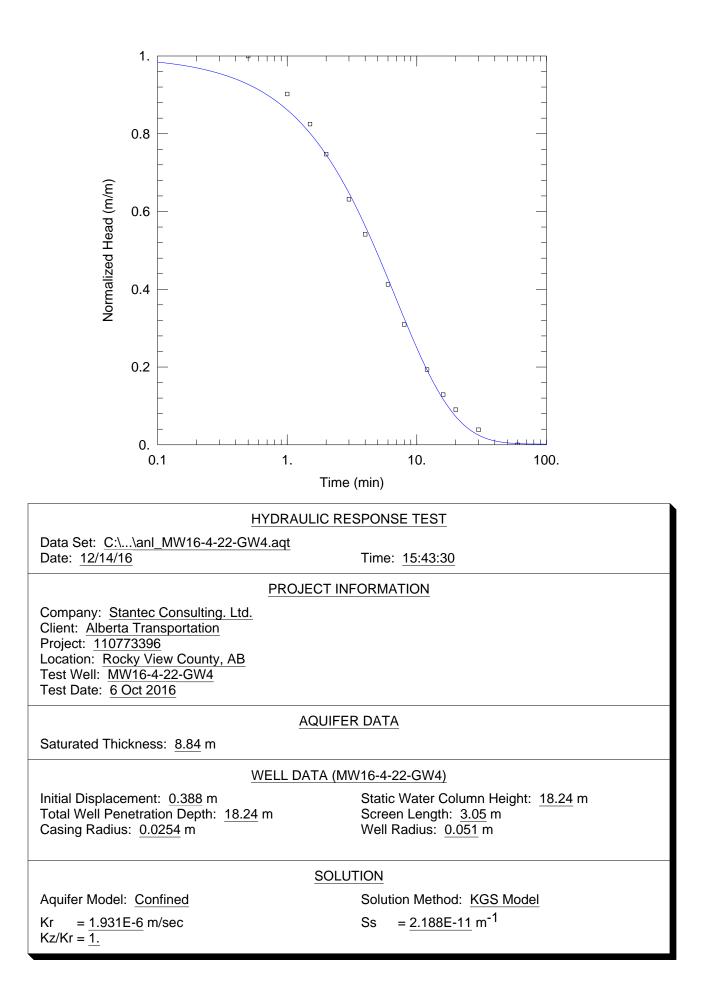
| Drilling method:          | Hollow-stem a |
|---------------------------|---------------|
| Date started/completed:   | 20-May-2016   |
| Ground surface elevation: | 1,204.30 m A  |
| Top of casing elevation:  | 1,204.96 m A  |
| Easting:                  | -32259.324    |
| Northing:                 | 5658717.399   |

m auger (Track mounted)/ Coring 16 AMSL AMSL

| 16     17.98 m: medium grained layers interbedded with finer grained layers become present     18     - @ 17.98 m: medium grained layers interbedded with finer grained layers become present     - @ 20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures     - @ 20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures     - @ 20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures     - @ 21.24     - @ 21.24     - @ 21.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUBSURFACE PROFILE                                                                          |                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 40       12       1191.49         51       SANDSTONE       12.80         45       14       12.80         46       14       12.80         50       14       12.80         50       16       14.94 m: sandstone becomes slightly banded with alternating light grey and dark grey layers, no oxidation present         50       16       18         60       19       - @ 17.98 m: medium grained layers interbedded with finer grained layers become present         60       - 20       - @ 20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures         70       22       X X X SUTSTONE         70       22       X X X SUTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log                                                                                         | Lithologic Description                                                                                                                                                                                                  |  |
| 45 - 14<br>50 - 16<br>55 - 16<br>60 - 18<br>60 - 18<br>60 - 18<br>60 - 18<br>60 - 18<br>70 - 20<br>70 - 22<br>70 |                                                                                             | and, with gravel, dry to slighly moist, friable  1191.49  12.80                                                                                                                                                         |  |
| 50       -16         -16       -0         -17       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0         -18       -0 <td< td=""><td><br/>14<br/>14<br/><br/></td><td>ne becomes slightly banded with alternating light grey and dark grey layers, no oxidation present</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>14<br>14<br><br>                                                                        | ne becomes slightly banded with alternating light grey and dark grey layers, no oxidation present                                                                                                                       |  |
| 60     -@ 17.98 m: medium grained layers interbedded with finer grained layers become present       60     -@       65     -20       -@     20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures       70     -@       22     X X       SILTSTONE       22     X X       24     X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | - 102 mm diameter<br>borehole<br>from 12.80 to 22.86 m                                                                                                                                                                  |  |
| 65 - 20 @ 20.12 m: sand begins to coarsen to medium grained sandstone, some clay along fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | grained layers interbedded with finer grained layers become present                                                                                                                                                     |  |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                          | Schedule 40 PVC                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | ured and altered<br>eralization along fractures     21.64     21.64       1182.05     1182.05       22.25     1181.74       22.55     1181.74       22.56     1181.74       1181.74     22.56       1181.74     1181.74 |  |

 Screen Interval:
 18.59 - 21.64 m BGS


 Sand Pack Interval:
 18.29 - 21.95 m BGS


 Well Seal Interval:
 21.95 - 22.86 m BGS



Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available

mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-4-22





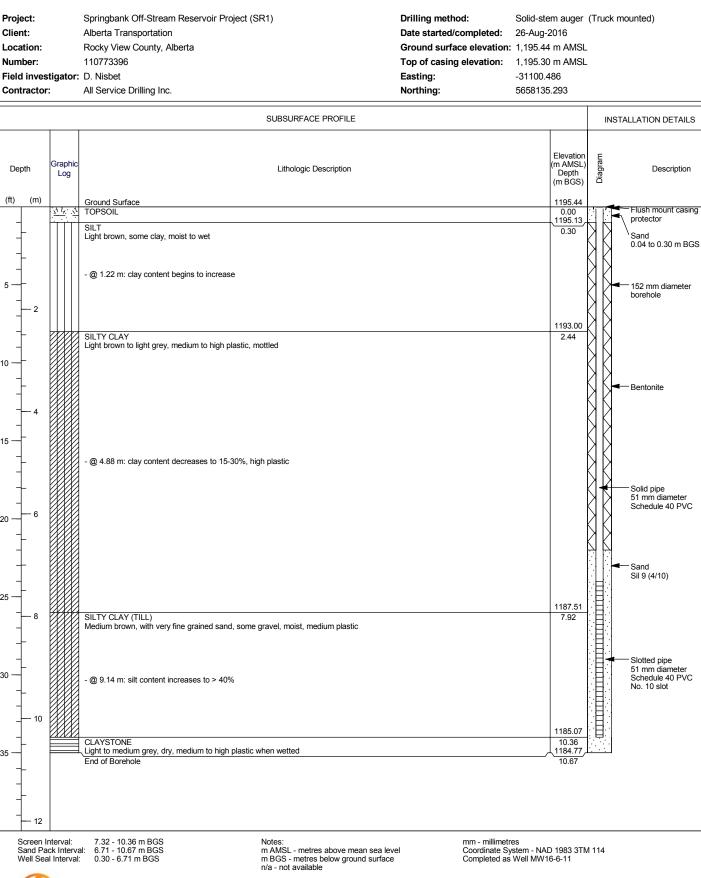
# Monitoring Well: MW16-5-11 (GW5)

Project: Springbank Off-Stream Reservoir Project (SR1) Client: Alberta Transportation Location: Rocky View County, Alberta 110773396 Number: Field investigator: D. Nisbet All Service Drilling Inc. Contractor:

| Drilling method:          | Solid-stem aug |  |  |  |
|---------------------------|----------------|--|--|--|
| Date started/completed:   | 09-Jun-2016    |  |  |  |
| Ground surface elevation: | 1,210.63 m AM  |  |  |  |
| Top of casing elevation:  | 1,211.30 m AM  |  |  |  |
| Easting:                  | -31863.152     |  |  |  |
| Northing:                 | 5658164.716    |  |  |  |

ger (Track mounted)/ Coring /ISL /ISL

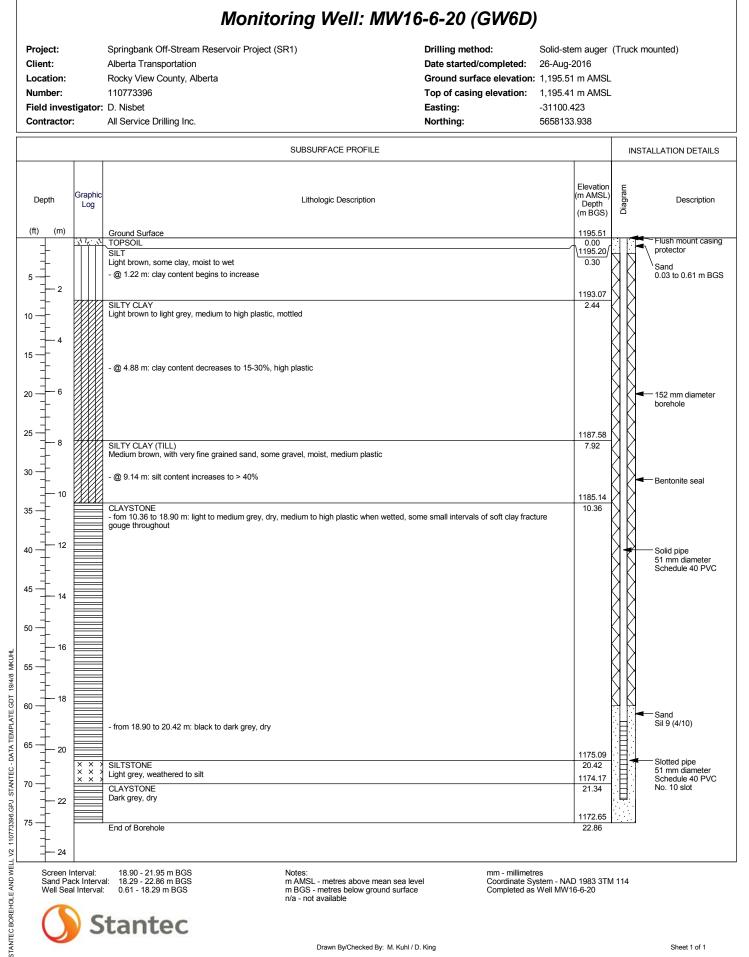
| SUBSURFACE PROFILE                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INSTALLATION DETAILS                      | _                                                                |   |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|---|
| Depth                                                                                               | Graphic<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elevation<br>(m AMSL)<br>Depth<br>(m BGS) | _) Description                                                   |   |
| (ft) (m)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ground Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1210.83                                   | 3<br>3 .                                                         |   |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _TOPSOIL<br>SILTY CLAY (TILL)<br>Medium brown, some very fine grained sand, with gravel, moist, low plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1210.63<br>0.00<br>1210.33/<br>0.30       | Sand<br>0 to 0.61 m BGS                                          |   |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLAY<br>Mottled brown and grey, some gravel, some silt, moist, high plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1207.28<br>3.35                           | R R                                                              |   |
| 15                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1205.45                                   | 5 Bentonite                                                      |   |
| 20 <u>-</u> 6                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SANDSTONE<br>brown, very fine to fine grained, few fractures with minor oxidation, massive<br>- @ 5.49 : oxidized clay infill in 50 mm fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.18                                      | 51 mm diameter<br>Schedule 40 PVC                                |   |
| 25 8                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - @ 7.01 m: becomes silty, finer grained, with dark and light brown cross-bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Sand<br>∴ Sand<br>∴ Sil 9 (4/10)                                 |   |
| 30                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>- @ 8.23 m: 50 mm coal seam, sandstone becomes massive again, few irregular coal stringers</li> <li>- @ 8.84 m: coarsens to a fine grained sandstone, very few fractures, weakly bedded</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                  |   |
| 35 — 10<br>                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Slotted pipe<br>51 mm diameter<br>Schedule 40 PVC<br>No. 10 slot |   |
| 40                                                                                                  | ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·         ·       ·       ·       ·       ·       ·       · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                  |   |
| 45                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 102 mm diameter<br>borehole<br>from 5.18 to 22.86 r              | m |
| 50 —<br>—<br>— 16                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>- @ 15.24 m: exhibits black and brown fine planar laminated beds, becomes very fine grained</li> <li>- @ 16.15 m: beds become irregular and highly deformed, exhibits minor displacement along fractures, microfolds in some bedding</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                  |   |
| 55 —<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100.04                                   | Bentonite                                                        |   |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLAYSTONE<br>Dark grey, highly fractured, altered to clay along fractures, brittle<br>from 18.90 to 19.20 m: few 13 to 38 mm thick coal seams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1192.34<br>18.29<br>1191.43<br>19.20      |                                                                  |   |
| 65 - 20<br>- 20                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SANDSTONE<br>Grey, fine grained, becomes finer towards bottom of unit, weakly bedded<br>CLAYSTONE<br>Dark grey, highly fractured, altered to clay along fractures, brittle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1190.82<br>19.81                          |                                                                  |   |
| 70 —<br>22                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1188.99<br>21.64<br>1188.38               | $+\times$                                                        |   |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLAYSTONE CLAYSTONE Altered to clay along fractures, brittle Charger highly fractured, altered to clay along fractures, brittle Charger highly fractured altered to clay along fractures, brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures brittle Charger highly fractures at the clay along fractures at the clay at the cl | 1188.38<br>22.25<br>1187.77<br>22.86      |                                                                  |   |
| 24                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                  |   |

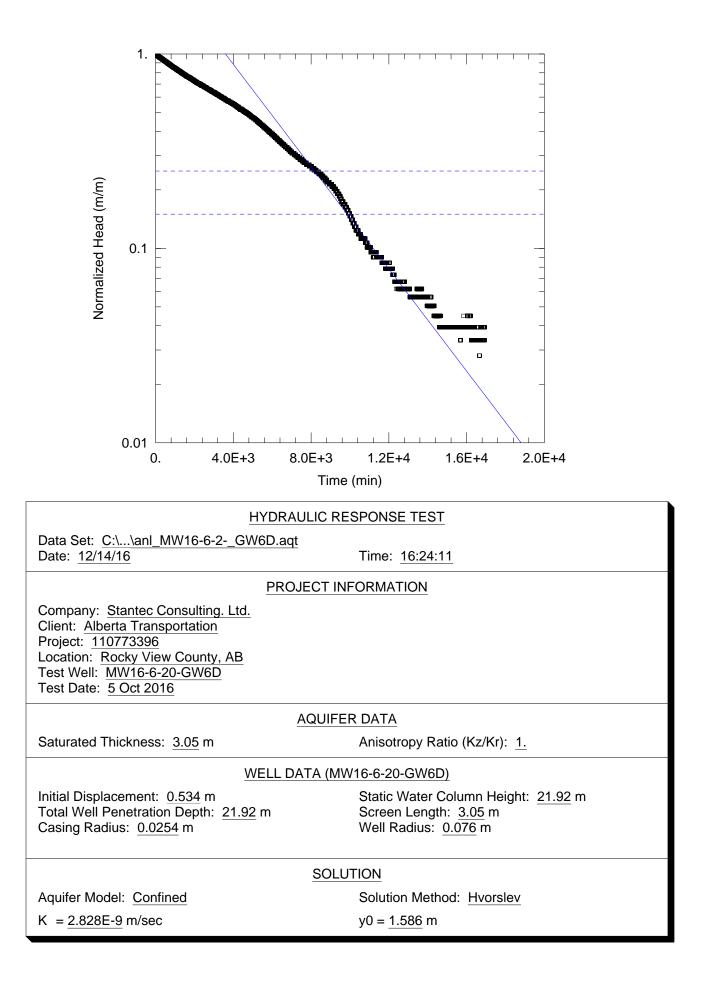

Screen Interval:8.23 - 11.28 m BGSSand Pack Interval:7.62 - 11.28 m BGSWell Seal Interval:0.61 - 7.62 m BGS

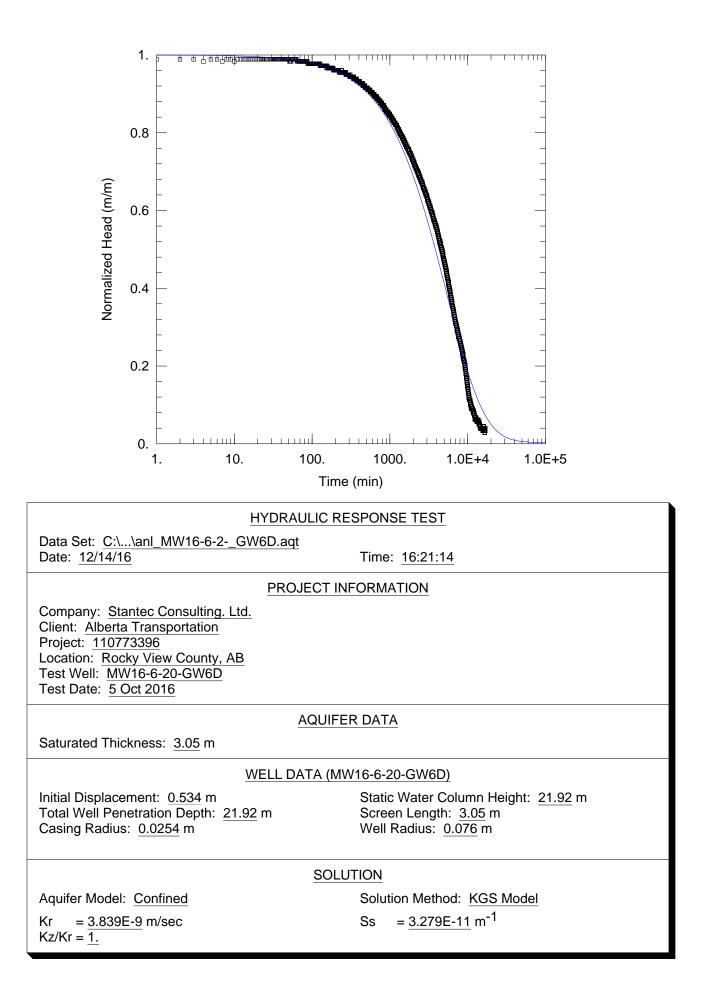
STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHL

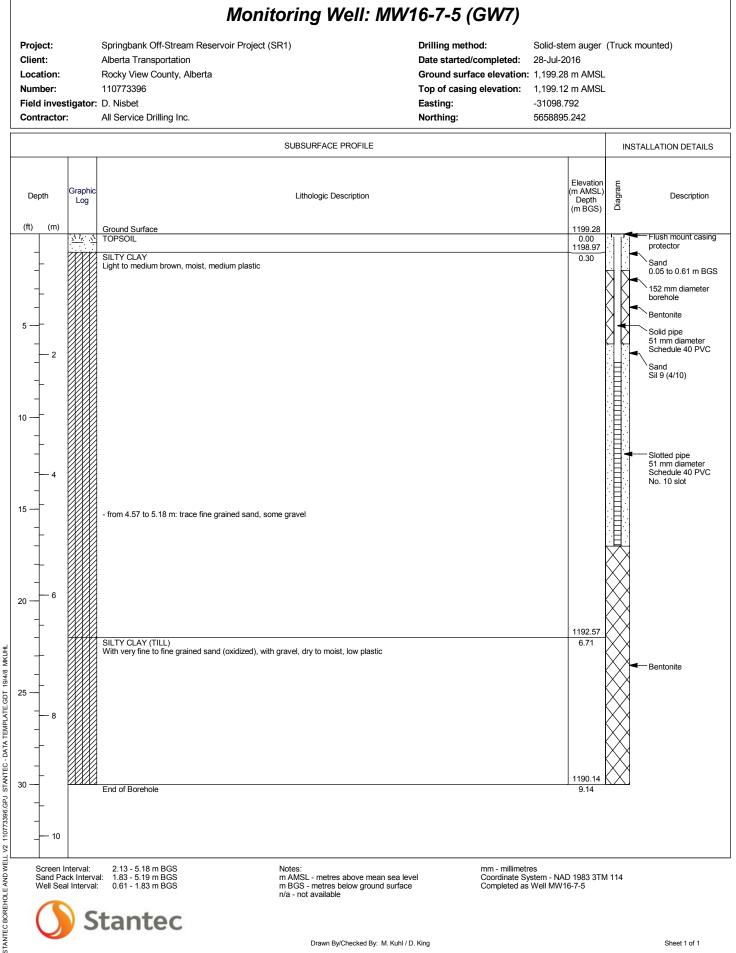


Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available


mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-5-11





Monitoring Well: MW16-6-11 (GW6S)




STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHL





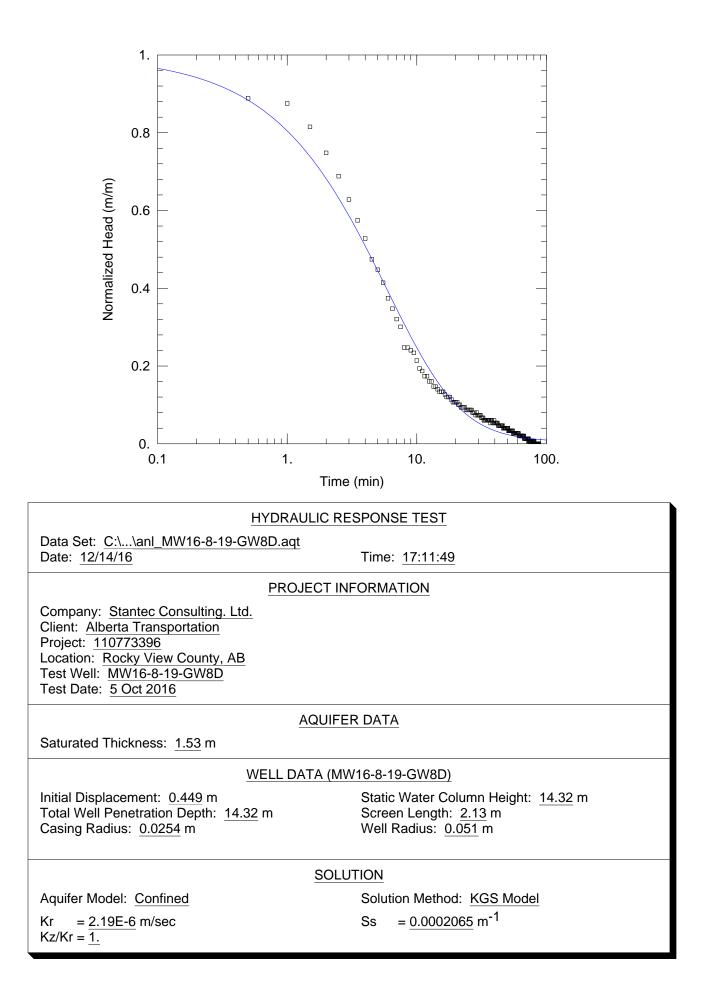


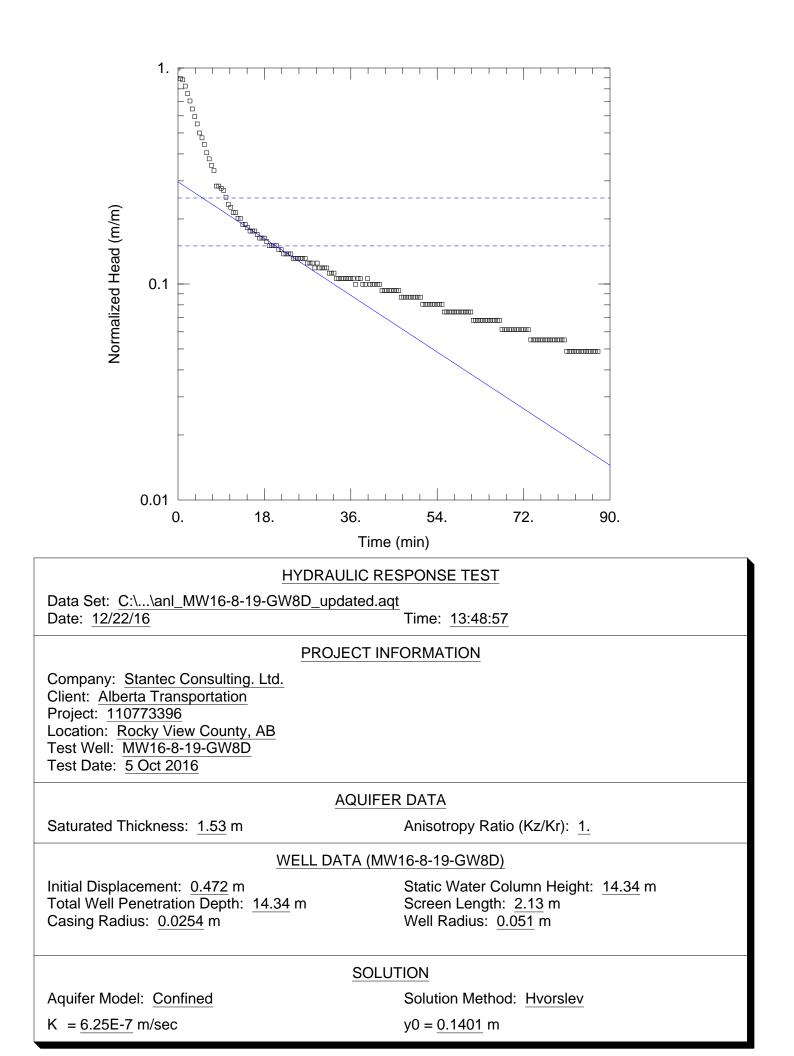


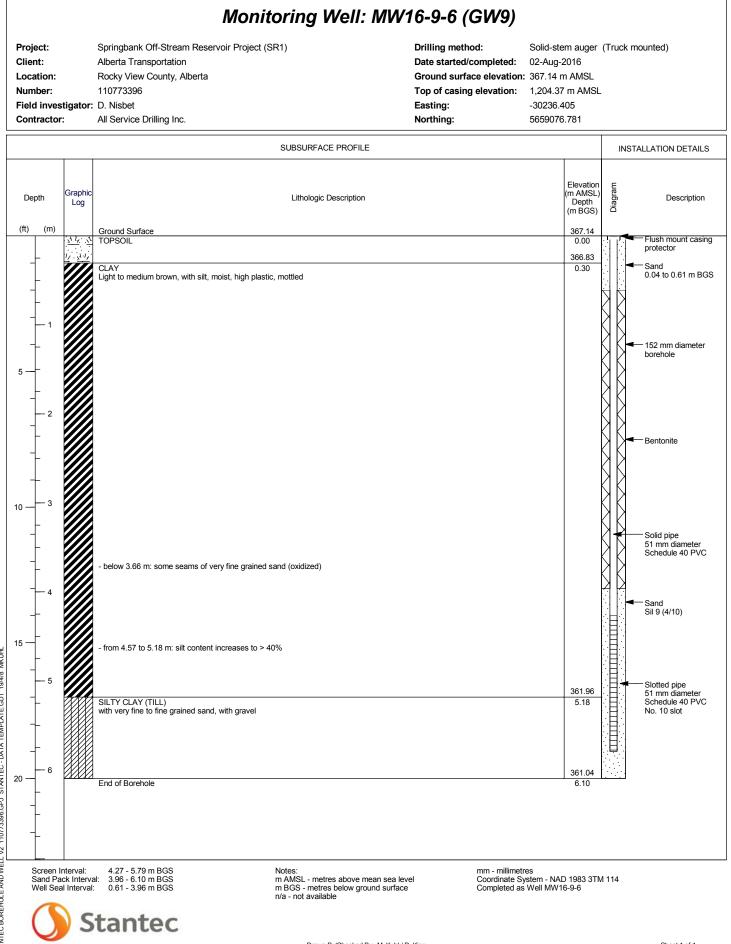
#### Monitoring Well: MW16-8-8 (GW8S) Project: Springbank Off-Stream Reservoir Project (SR1) Drilling method: Hollow-stem auger (Track mounted) Client: Alberta Transportation Date started/completed: 25-May-2016 Rocky View County, Alberta Ground surface elevation: 1,218.16 m AMSL Location: Top of casing elevation: 1,218.67 m AMSL 110773396 Number: Easting: -30875.717 Field investigator: D. Nisbet All Service Drilling Inc. Northing: 5659641.119 Contractor: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSL Depth Lithologic Description Description Depth Log (m BGS) (ft) (m) 1218.31 Ground Surface SOIL 1218.16 0.516 m Stick-up 0 -· 0 <u>, 17. . . 1</u> 0.00 Black, dry 1217.85 SILT (TILL) Sand 0.30 0 to 0.61 m BGS Brown to light brown, some gravel, with clay, dry, low plastic, friable 5 2 254 mm diameter borehole - @ 2.44 m: some very fine grained sand seams become present 10 Bentonite - @ 3.35 m: becomes moist 15 Solid pipe 51 mm diameter Schedule 40 PVC STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHI Sand - @ 5.79 m: red to orange, trace oxidized silt stringers Sil 9 (4/10) 6 20 Groundwater 6.27 m BGS May 25, 2016 1211.45 SILT AND SAND 6.71 - Slotted pipe 51 mm diameter Brown, very fine grained, saturated 1211.15 SILTY CLAY (TILL) Light to medium brown, with gravel, dry, low plastic 7.01 Schedule 40 PVC No. 10 slot 25 1210.23 End of Borehole 7.92 8 6.10 - 7.62 m BGS 5.49 - 7.92 m BGS 0.61 - 5.49 m BGS Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface Screen Interval: mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-8-8 Sand Pack Interval: Well Seal Interval: n/a - not available Stantec

# Monitoring Well: MW16-8-19 (GW8D)

Project: Springbank Off-Stream Reservoir Project (SR1) Client: Alberta Transportation Rocky View County, Alberta Location: Number: 110773396 Field investigator: D. Nisbet All Service Drilling Inc. Contractor:


STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHL

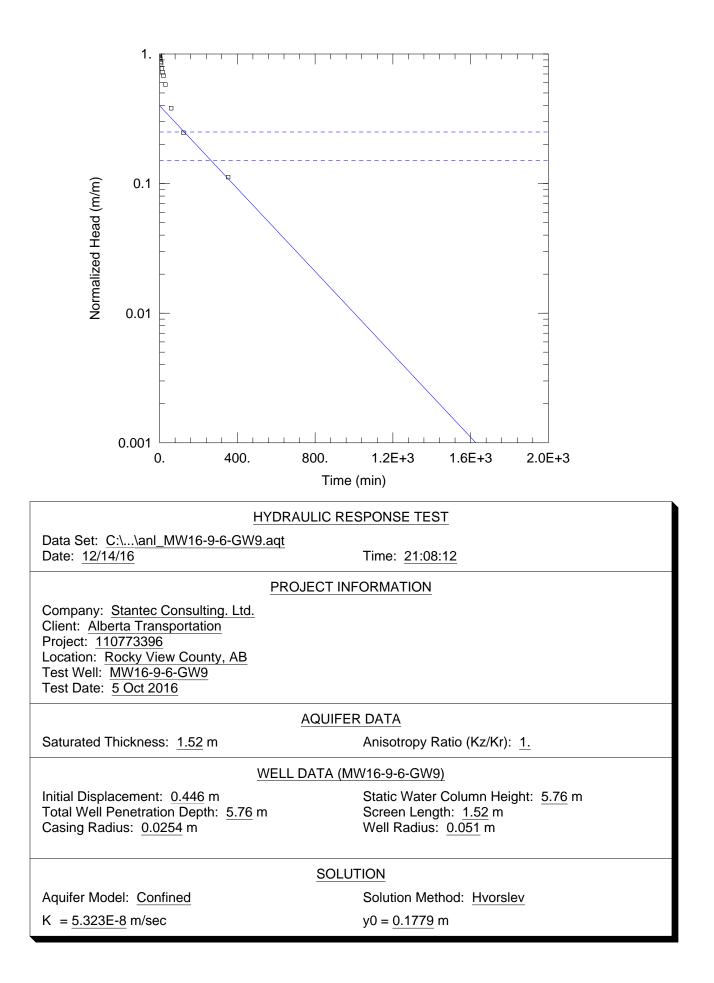

**Stantec** 

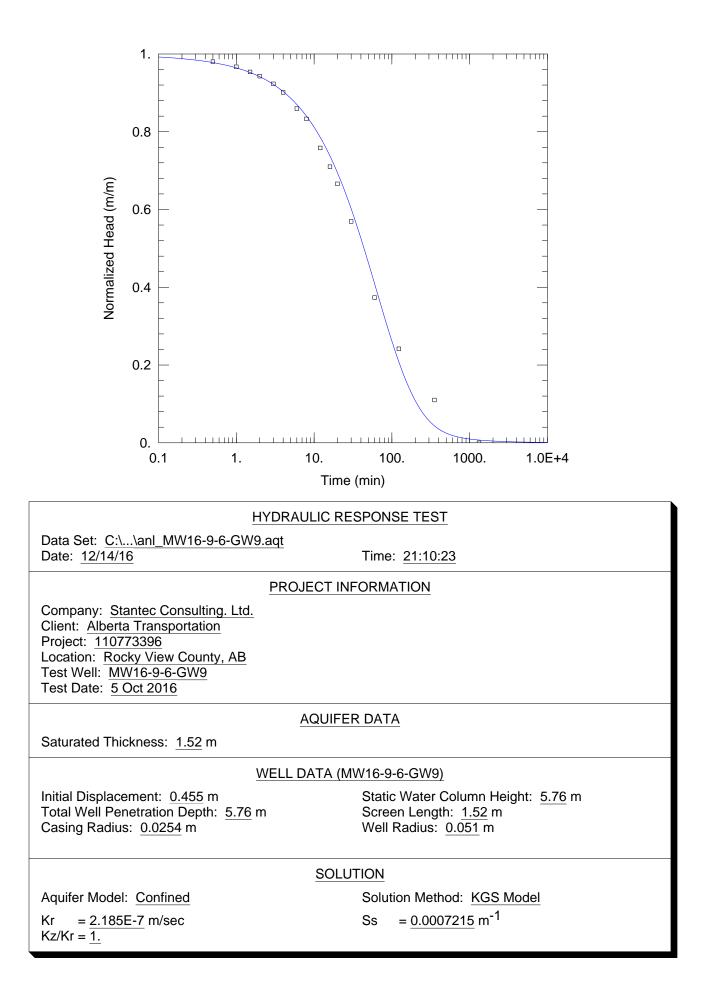

#### Drilling method: Date started/completed: 25-May-2016 / 26-May-2016 Ground surface elevation: 1,218.13 m AMSL Top of casing elevation: 1,218.66 m AMSL Easting: Northing:

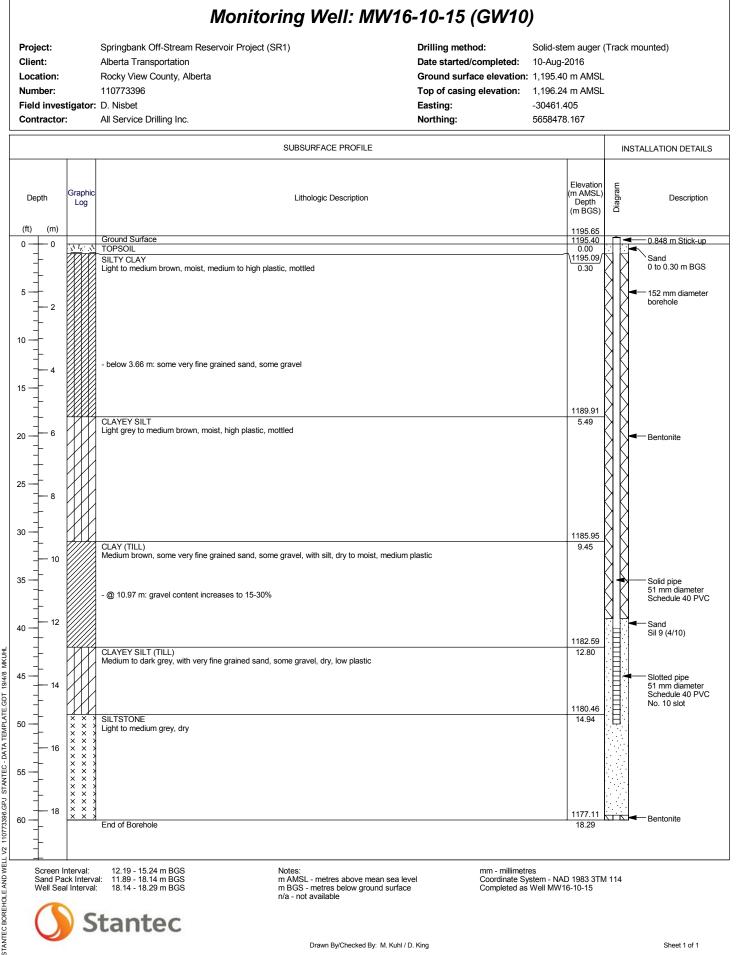
Hollow-stem auger (Track mounted)/ Coring -30877.454 5659641.18

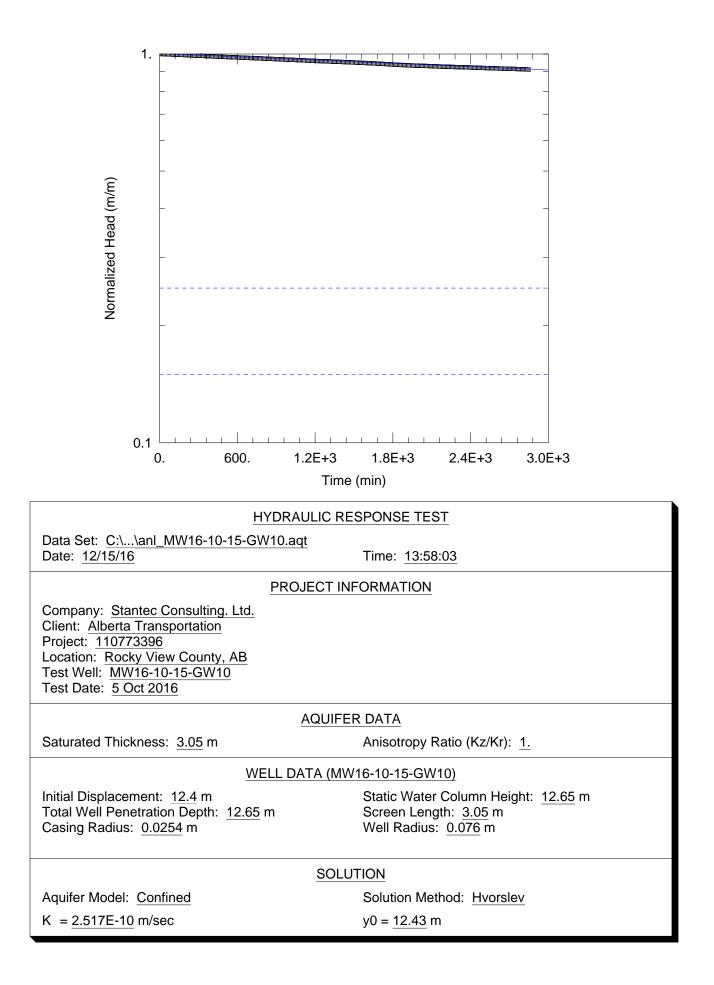
|                     |                                           | SUBSURFACE PROFILE                                                                                                                   |                                                      | INSTALLATION DETAILS                                               |   |
|---------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|---|
| Depth<br>(ft) (m)   | Graphic<br>Log                            | Lithologic Description                                                                                                               | Elevation<br>(m AMSL)<br>Depth<br>(m BGS)<br>1218.29 | SL) E Description                                                  |   |
|                     | <u> </u>                                  | SOIL<br>SOIL<br>Black, dry<br>SILT (TILL)<br>Brown to light brown, some gravel, with clay, dry, low plastic, friable                 | 121813<br>0.00<br>(1217.82/<br>0.30                  |                                                                    |   |
|                     |                                           | <ul> <li>@ 2.44 m: some very fine grained sand seams become present</li> <li>@ 3.35 m: becomes moist</li> </ul>                      |                                                      | 254 mm diameter<br>borehole<br>from 0 to 8.53 m                    |   |
|                     |                                           | - @ 5.79 m: red to orange, trace oxidized silt stringers                                                                             |                                                      | Groundwater<br>4.81 m BGS<br>May 25/26, 2016                       |   |
|                     |                                           | SILT AND SAND<br>Brown, very fine grained, saturated<br>SILTY CLAY (TILL)<br>Light to medium brown, with gravel, dry, low plastic    | 1211.42<br>6.71<br>1211.12/<br>7.01                  | 2<br>2/<br>Sil 9 (4/10)                                            |   |
| 30                  |                                           | SILTSTONE<br>Light brown to beige, dry, friable<br>CLAYSTONE<br>Light to medium grey, few fructures                                  | 1209.59<br>8.53<br>1208.68<br>9.45                   | Bentonite                                                          |   |
| 10<br>              |                                           | - @ 10.36 m: becomes highly weathered, with abundant fractures, orangish brown clay mineralization along fracture surfaces SILTSTONE | 1206.85<br>11.28                                     |                                                                    |   |
|                     |                                           | Grey to dark grey, finely interbedded light and dark layers, unfractured                                                             |                                                      | 102 mm diameter<br>borehole<br>from 8.53 to 20.42 t                | m |
| 50                  |                                           | SANDSTONE                                                                                                                            | 1201.36                                              |                                                                    |   |
|                     | × × × ×                                   | CLAY<br>Black, high plastic<br>SILTSTONE                                                                                             | 1199.84<br>18.29<br>(\1199.53/<br>18.59              | 4 Slotted pipe<br>51 mm diameter<br>Schedule 40 PVC<br>No. 10 slot |   |
| 65 - 20<br>- 20<br> |                                           | Grey to greenish grey, dry, friable, clay alteration along fracture surfaces End of Borehole                                         | 1197.71<br>20.42                                     | 1 Bentonite                                                        |   |
| Sand P              | Interval:<br>ack Interval<br>eal Interval |                                                                                                                                      | D 1983 3TM<br>16-8-19                                | TM 114                                                             |   |

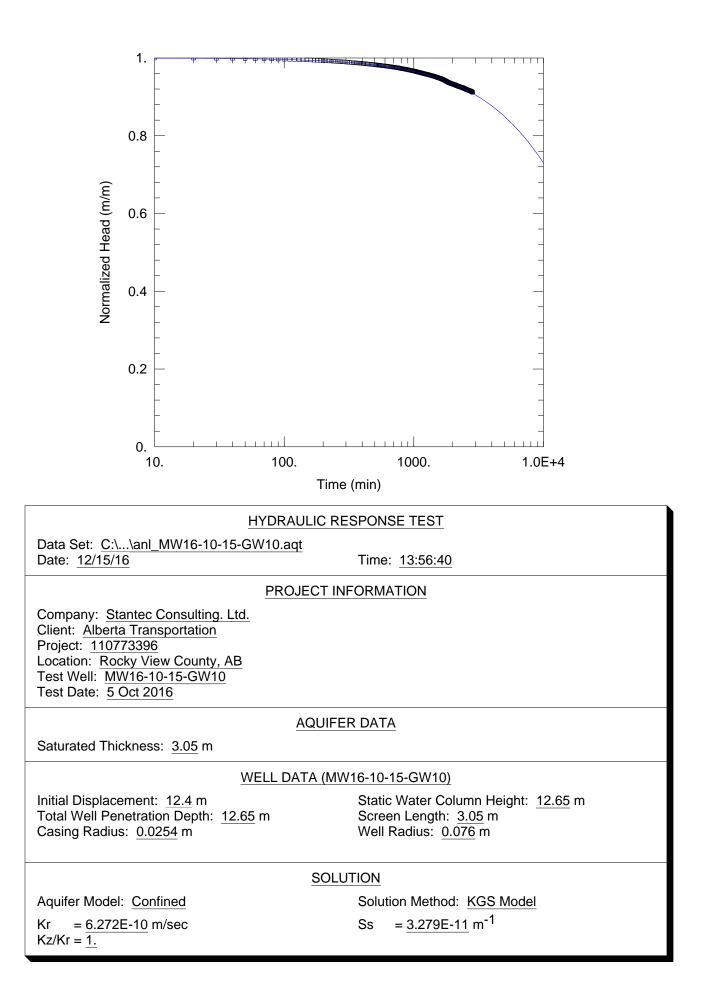


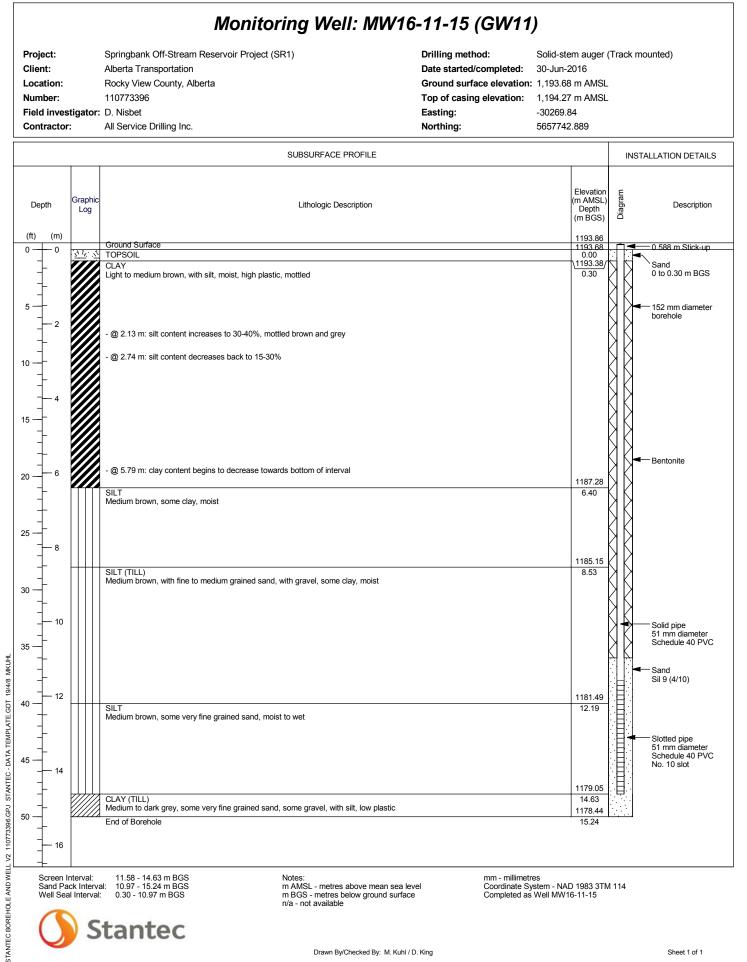


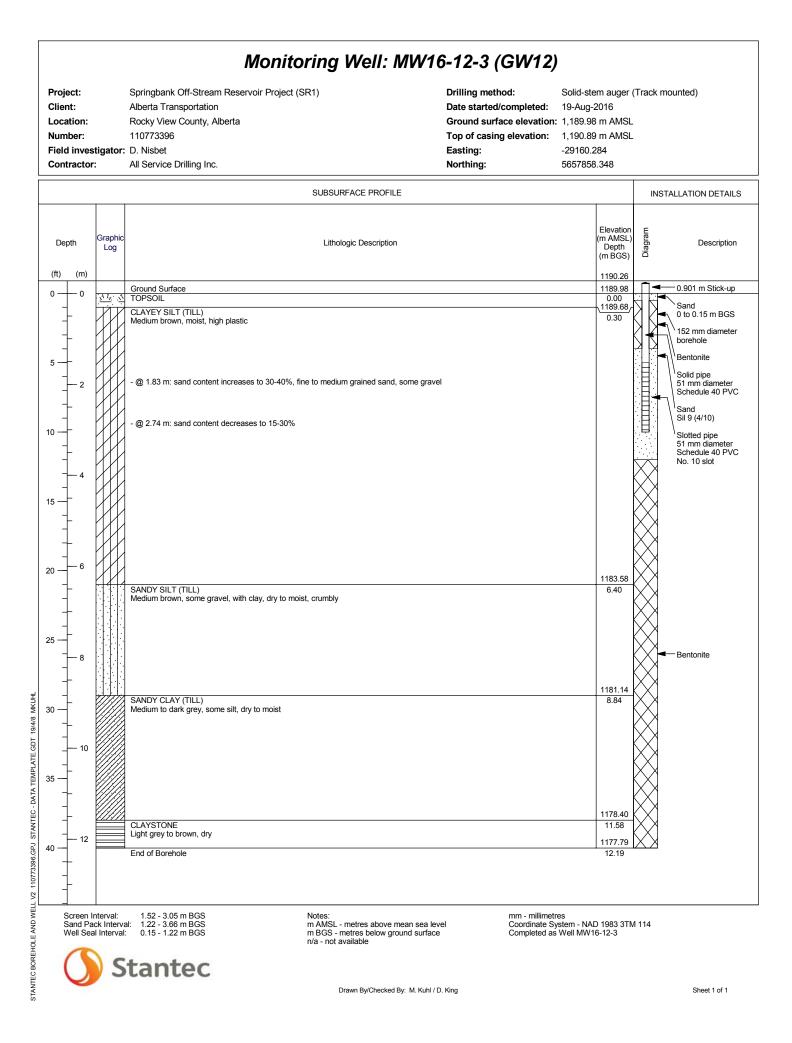





STANTEC BOREHOLE AND WELL V2 110773396.GPJ STANTEC - DATA TEMPLATE.GDT 19/4/8 MKUHI


Drawn By/Checked By: M. Kuhl / D. King


Sheet 1 of 1











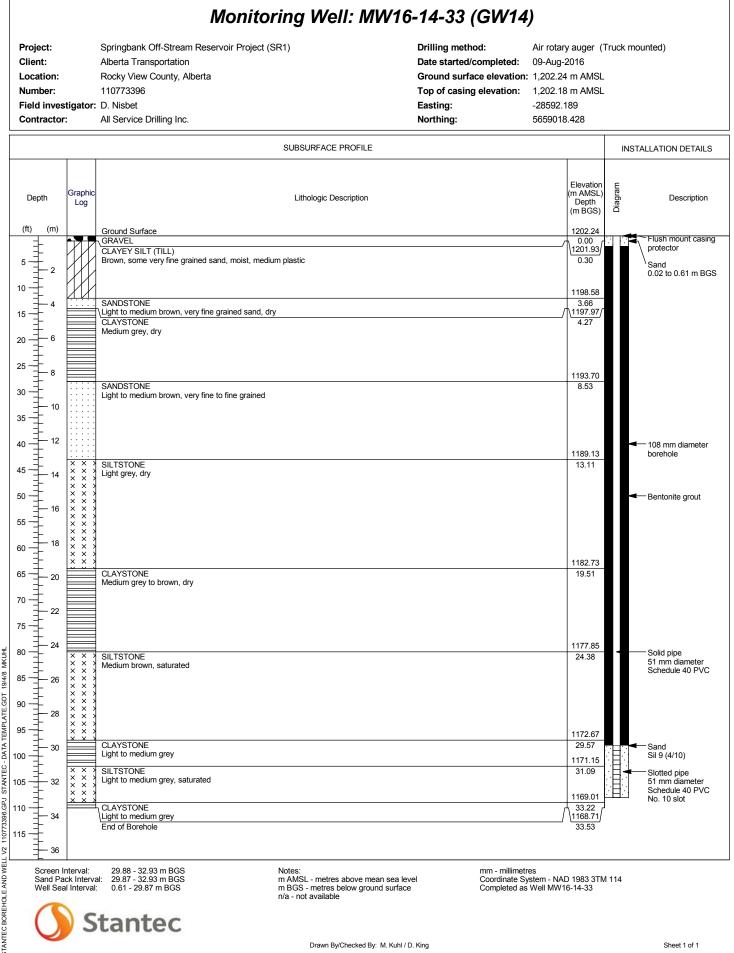



## Monitoring Well: MW16-13-37 (GW13)

Springbank Off-Stream Reservoir Project (SR1) Project: Client: Alberta Transportation Location: Rocky View County, Alberta 110773396 Number: Field investigator: D. Nisbet All Service Drilling Inc. Contractor:

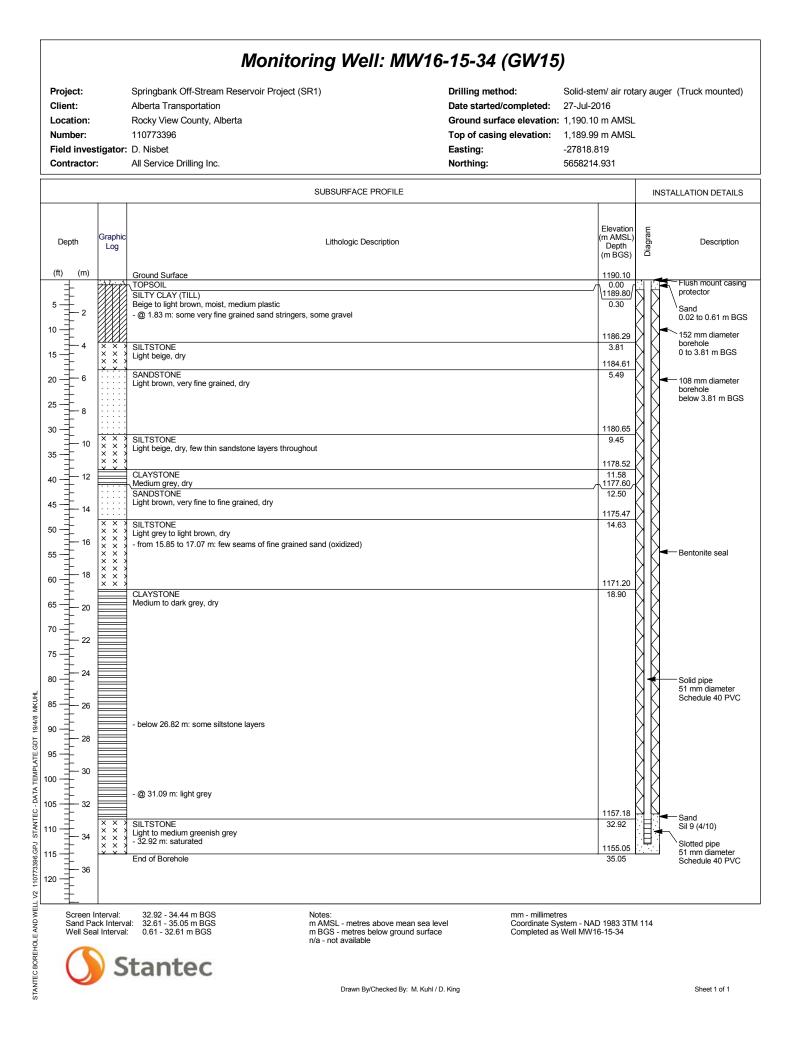
MKUH

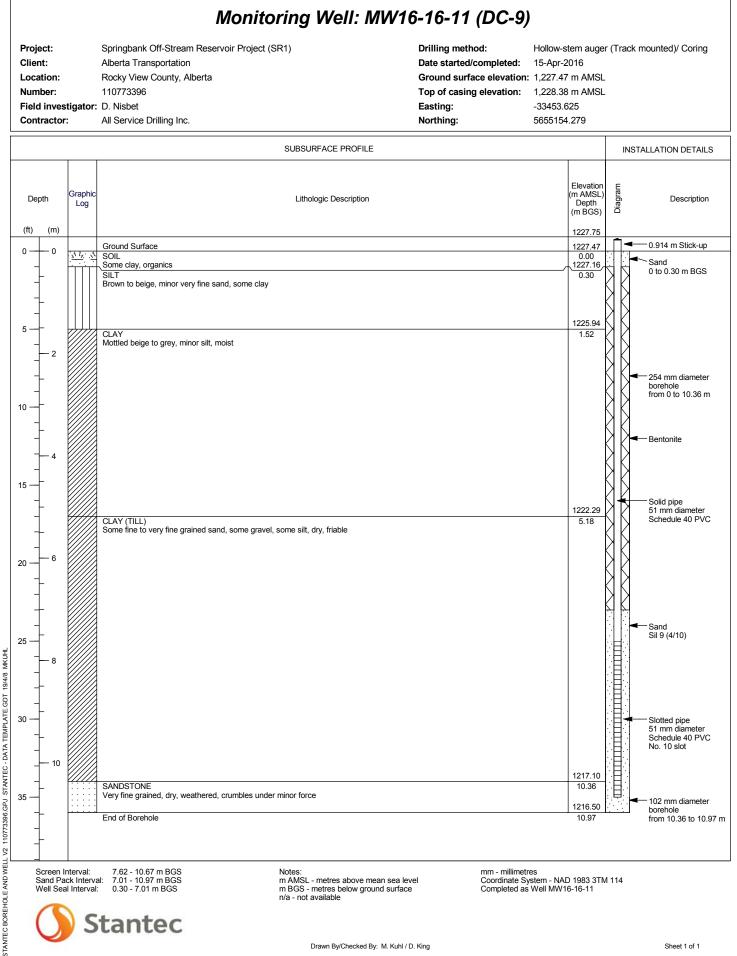
19/4/8


110773396.GPJ

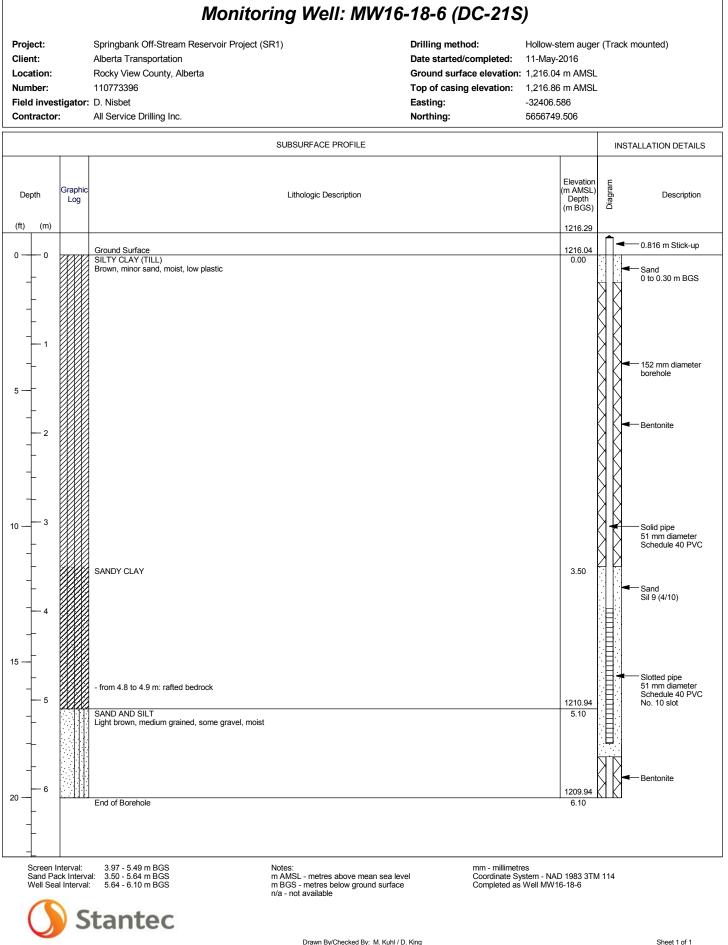
Stantec

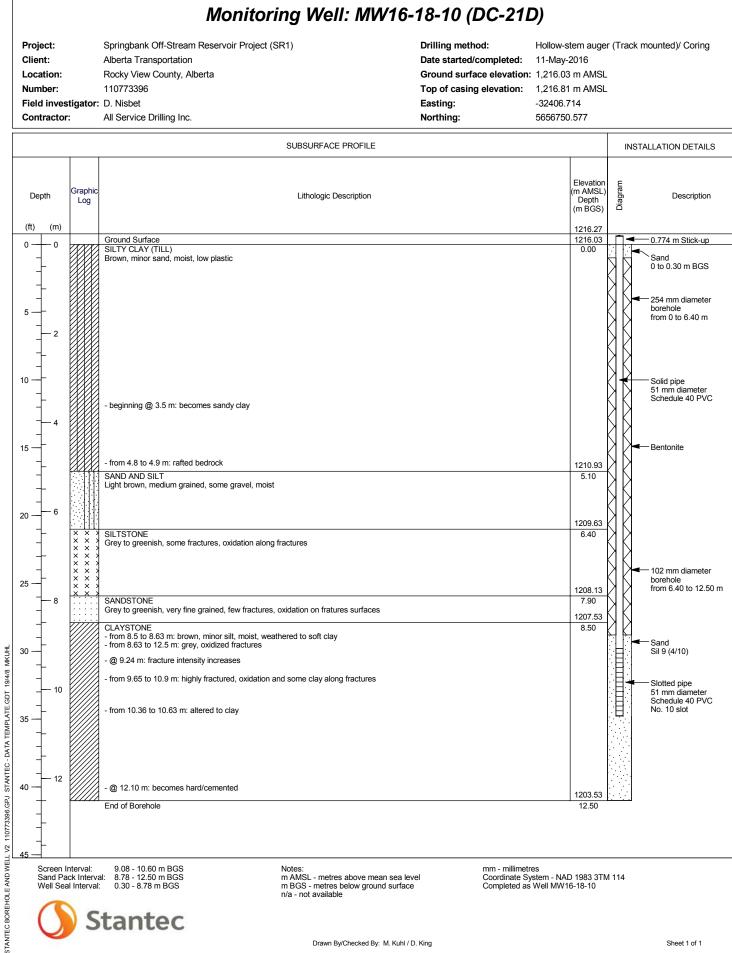
#### Drilling method: Date started/completed: Ground surface elevation: 1,222.34 m AMSL Top of casing elevation: Easting: n/a Northing: n/a

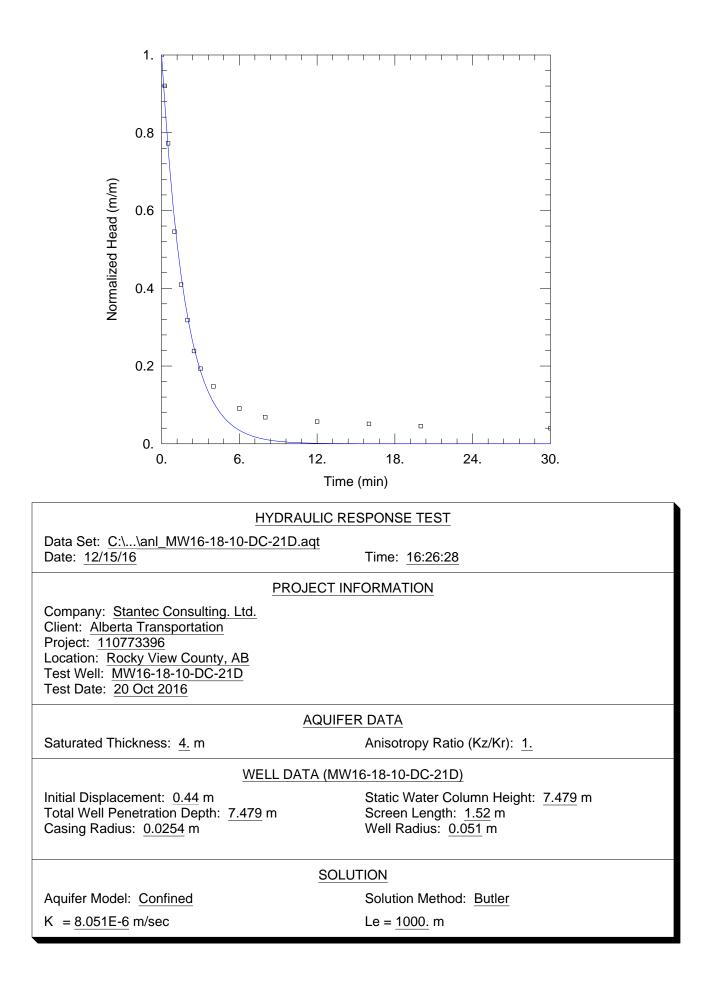

Air rotary auger (Truck mounted) 08-Aug-2016 / 09-Aug-2016 0.00 m AMSL


SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSI Lithologic Description Description Depth Depth Log (m BGS (ft) (m) Ground Surface 1222.34 Flush mount casing GRAVEL (FILL) 0.00 protector CLAYEY SILT (TILL) 1222.04 5 Mottled light and medium brown, some very fine grained sand (slightly oxidized), dry to moist, medium plastic 0.30 2 0 to 0.30 m BGS @ 2.13 m: some gravel 10 @ 3.66 m: sand content increases to 15-30% 4 15 20 6 1214.72 25 SANDSTONE 7.62 8 Very fine to fine grained, dry 30 from 9.14 to 9.75 m: saturated 1212.59 10 CLAYSTONE 9.75 35 Medium brown, drv 1211.06 below 10.36 m: few moist zones weathered to clay \*\*\*\* 11 28 \*\*\*\*\*\* SILTSTONE 12 40 Light grey, dry, friable - @ 12.80 m: saturated 108 mm diameter borehole 45 14 50 16 55 Bentonite grout 1204.97 CLAYSTONE 17.37 18 Medium grey to brown, some zones weathered to clay, other zones dry, friable 60 65 20 - below 20.12 m: dry 70 22 75 24 80 Solid pipe 1197.35 51 mm diameter Schedule 40 PVC SILTSTONE 24.99 \*\*\*\*\* \*\*\*\*\* Light to medium grey, in some zones fractured and weathered to silt 85 26 90 28 1193.08 95 × GDT CLAYSTONE 29.26 30 Light to medium grey, dry, some fractured and weathered zones STANTEC - DATA TEMPLATE. 100 105 below 31.70 m: completely dry 32 Sand 110 Sil 9 (4/10) 34 1187.59 SILTSTONE 115 ×× 34.75 Slotted pipe Light grey, saturated 1186.38 51 mm diameter Schedule 40 PVC 36 CLAYSTONE 35.97 120 No. 10 slot Light to medium grey 1185.77 End of Borehole 36.58 38 125 STANTEC BOREHOLE AND WELL V2 mm - millimetres Coordinate System - NAD 1983 3TM 114 Screen Interval: 33.53 - 36.58 m BGS 32.92 - 36.58 m BGS Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface Sand Pack Interval Well Seal Interval: 0.30 - 32.92 m BGS n/a - not available



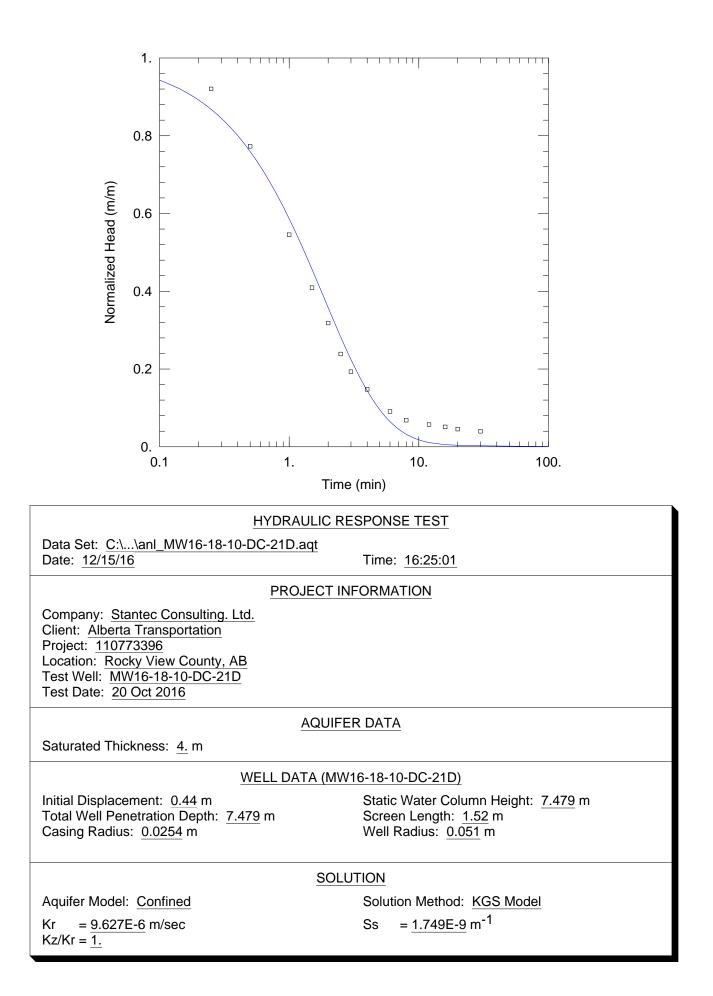

110773396.GPJ STANTEC BOREHOLE AND WELL V2

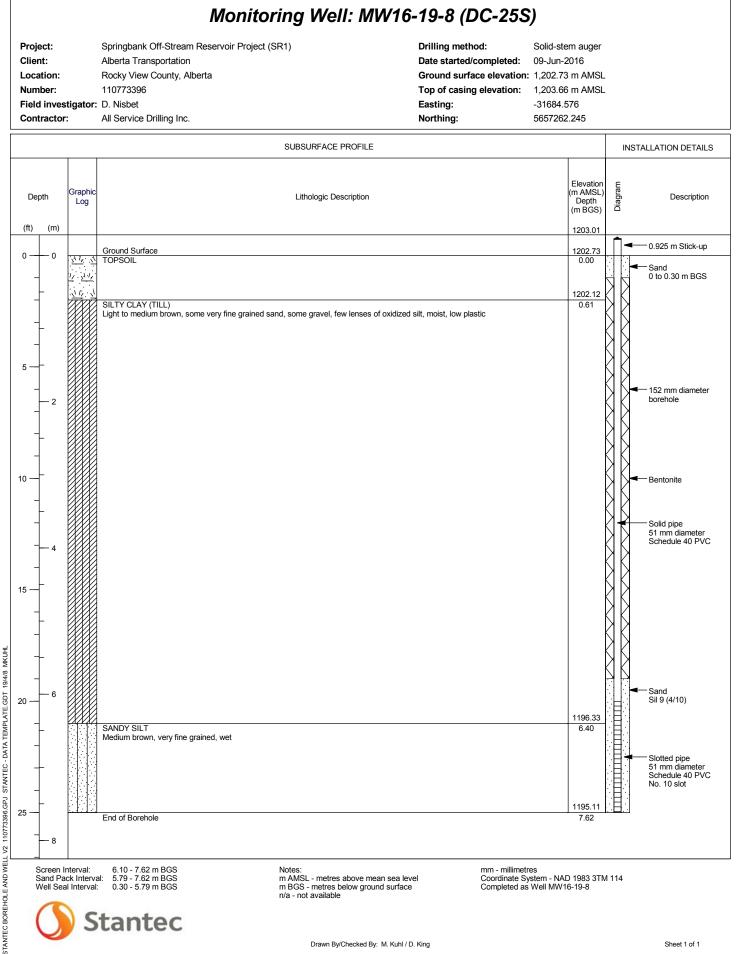

MKUHL











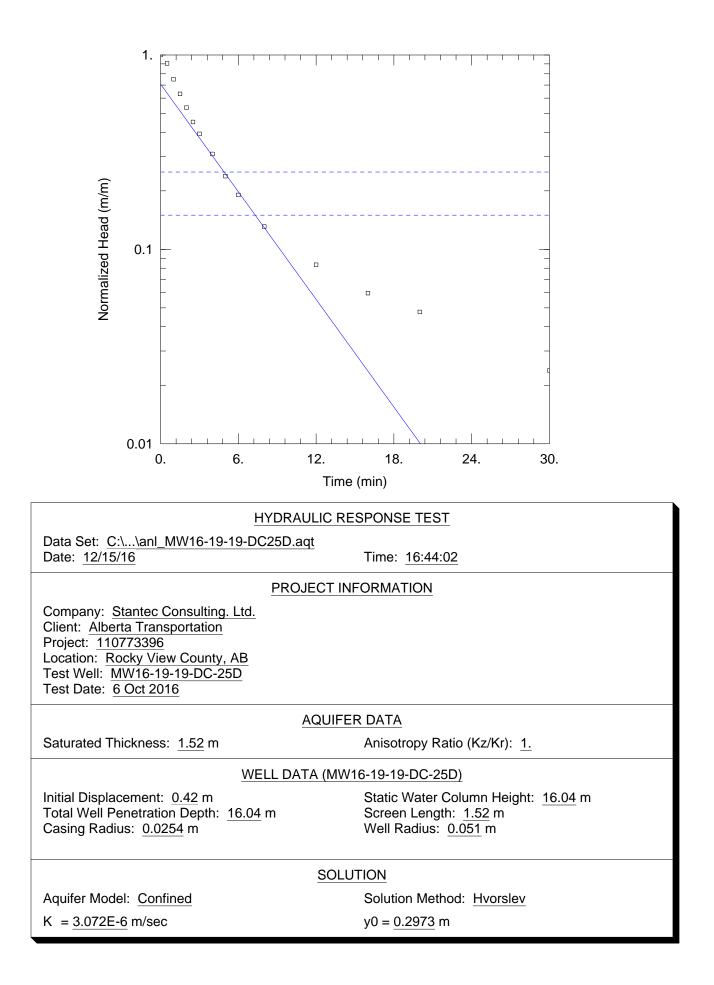


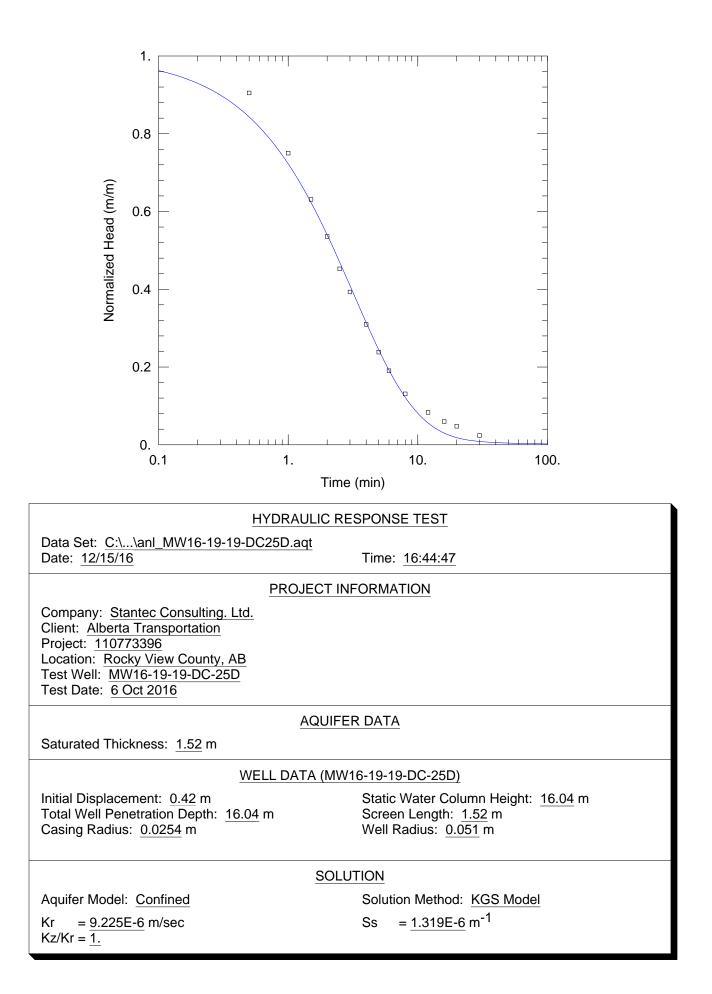


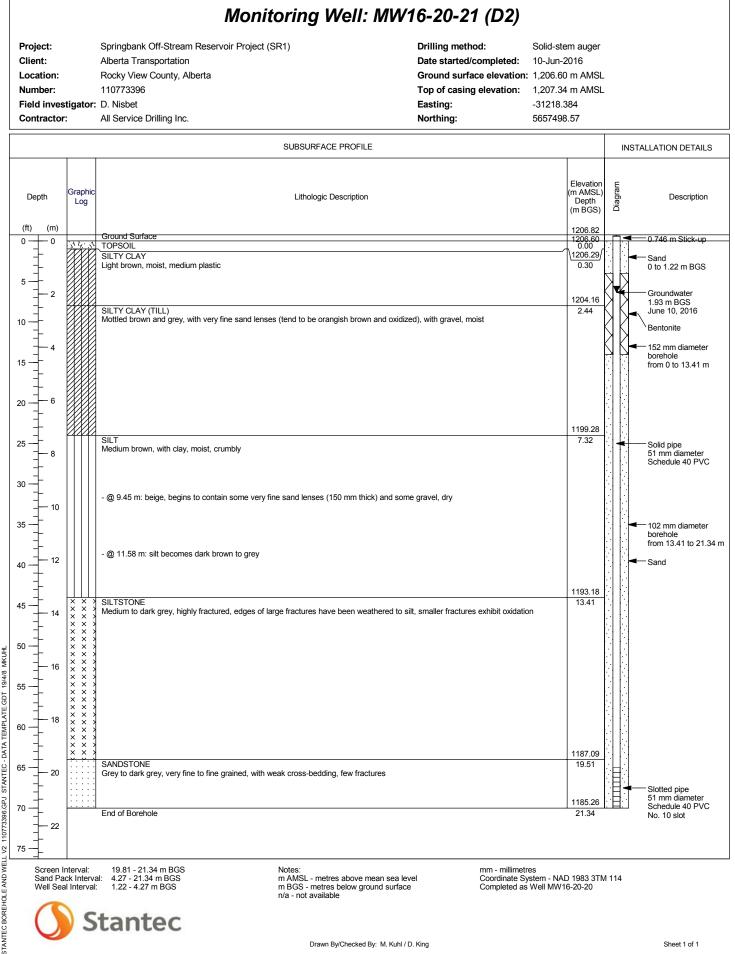





# Monitoring Well: MW16-19-19 (DC-25D)


Project: Springbank Off-Stream Reservoir Project (SR1) Client: Alberta Transportation Location: Rocky View County, Alberta 110773396 Number: Field investigator: D. Nisbet


| Drilling method:          | Hollow-stem auge |
|---------------------------|------------------|
| Date started/completed:   | 08-Jun-2016      |
| Ground surface elevation: | 1,202.80 m AMS   |
| Top of casing elevation:  | 1,203.71 m AMS   |
| Easting:                  | -31684.489       |
| Northing:                 | 5657263.177      |


er (Track mounted)/ Coring

All Service Drilling Inc. Contractor: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSI Lithologic Description Description Depth Depth Log (m BGS) (ft) (m) 1203.07 Ground Surface 1202.80 -0.913 m Stick-up 0 - 0 N. 14. N TOPSOIL 1202.19 Sand SILTY CLAY (TILL) 0 to 0.61 m BGS 0.61 Light to medium brown, some very fine grained sand, some gravel, few lenses of oxidized silt, moist, low plastic 5 2 10 254 mm diameter borehole from 0 to 10.36 m BGS - @ 3.66 m: gravel content increases to 15-30% 15 6 20 1196.40 SANDY SILT 6.40 Groundwater Medium brown, very fine grained, wet 6.57 m BGS June 08, 2016 25 8 Bentonite seal 30 10 1192.43 SANDSTONE 10.36 35 Light to medium brown, very fine to fine grained, few fractures, reddish orange oxidation 102 mm diameter borehole from 10.36 to 23.16 m 12 40 - @ 12.50 m: becomes grey, few thin black stringers and minor cross-bedding 1189.69 CLAYSTONE 13.11 Medium to dark grey, highly fractured, few 150 to 300 mm thick intervals of clay alteration in zones of intense fracturing Solid pipe 51 mm diameter Schedule 40 PVC 45 14 50 F - @ 15.54 m: 300 mm thick interval of green to grevish siltstone, minor bioturbation, few shell fragments 16 55 1185.73 @ 16.76 m: 150 mm thick seam of anthracite present Sand 17.07 Sil 9 (4/10) SANDSTONE Green to greyish, very fine to fine grained, planar bedding, few fractures, no oxidation 18 Slotted pipe 60 1184.20 51 mm diameter Schedule 40 PVC CLAYSTONE 18.59 Medium grey to dark grey, highly fractured, clay alteration along fractures, friable No. 10 slot 65 20 Bentonite 70 - @ 21.64 m: becomes hard and cohesive, few fractures 22 75 1179.63 End of Borehole 23 16 24 80 Screen Interval: Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface mm - millimetres 17.07 - 18.59 m BGS Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-19-19 Sand Pack Interval 16.76 - 18.67 m BGS Well Seal Interval: 0.61 - 16.76 m BGS n/a - not available

Stantec





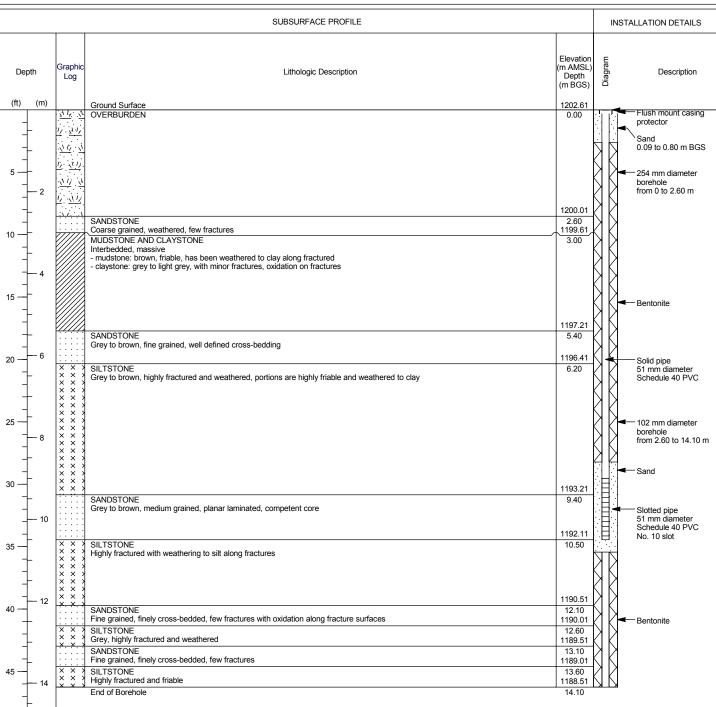


## Monitoring Well: MW16-21-11 (D9)

 Project:
 Springbank Off-Stream Reservoir Project (SR1)

 Client:
 Alberta Transportation

 Location:
 Rocky View County, Alberta


 Number:
 110773396

 Field investigator:
 D. Nisbet

 Contractor:
 All Service Drilling Inc.

| Drilling method:          | Hollow-stem a |
|---------------------------|---------------|
| Date started/completed:   | 01-May-2016   |
| Ground surface elevation: | 1,202.61 m A  |
| Top of casing elevation:  | 1,202.30 m A  |
| Easting:                  | -30383.805    |
| Northing:                 | 5656987.083   |

Hollow-stem auger (Track mounted)/ Coring 01-May-2016 I,202.61 m AMSL I,202.30 m AMSL 30383.805



MKUH

Screen Interval: 9.00 - 10.50 m BGS Sand Pack Interval: 8.60 - 10.80 m BGS Well Seal Interval: 10.80 - 14.10 m BGS

**Stantec** 

Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-21-11

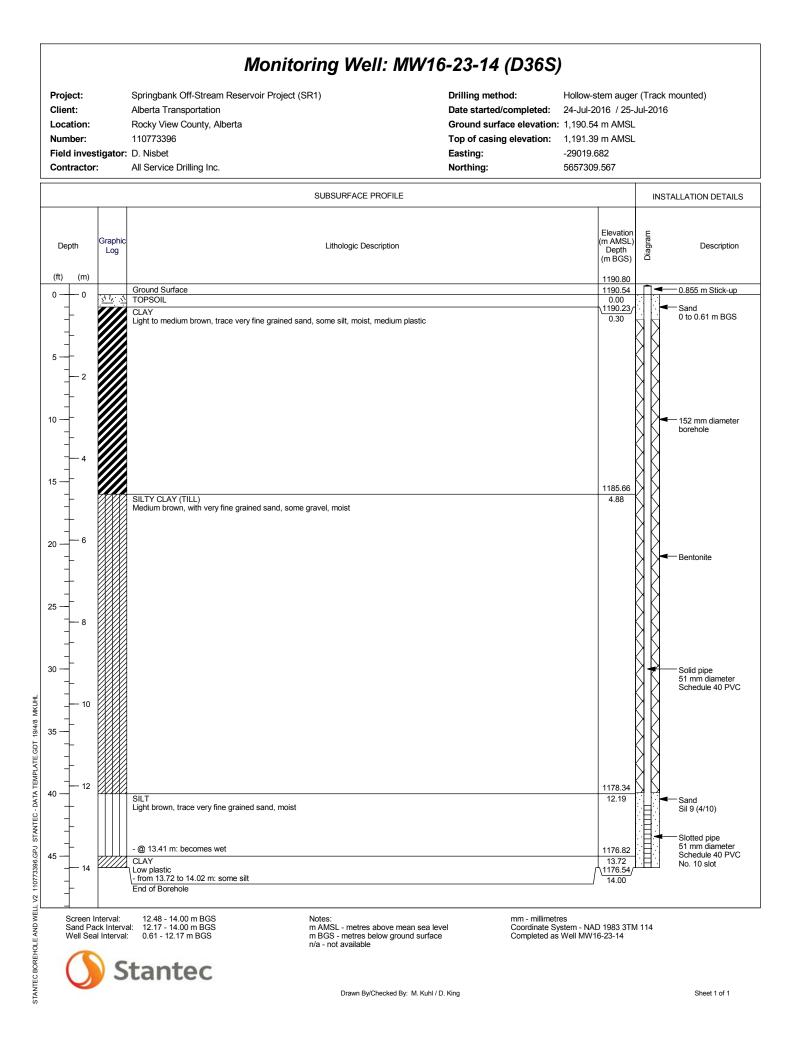
# Monitoring Well: MW16-22-26 (D27)

 Project:
 Springbank Off-Stream Reservoir Project (SR1)

 Client:
 Alberta Transportation

 Location:
 Rocky View County, Alberta

 Number:
 110773396


 Field investigator:
 D. Nisbet

 Contractor:
 All Service Drilling Inc.

| Drilling method:          | Solid-stem a |
|---------------------------|--------------|
| Date started/completed:   | 21-Jul-2016  |
| Ground surface elevation: | 1,190.70 m A |
| Top of casing elevation:  | 1,191.62 m A |
| Easting:                  | -29330.853   |
| Northing:                 | 5656907.343  |

Solid-stem auger (Track mounted) 21-Jul-2016 / 22-Jul-2016 1,190.70 m AMSL 1,191.62 m AMSL -29330.853 5656907.343

|                     |                                                | SUBSURFACE PROFILE                                                                                                                                                                                                                                            |                                           | INSTALLATION DETAILS                             |
|---------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|
| Depth               | Graphic<br>Log                                 | Lithologic Description                                                                                                                                                                                                                                        | Elevation<br>(m AMSL)<br>Depth<br>(m BGS) | ) Description                                    |
| (ft) (m)            |                                                | Ground Surface                                                                                                                                                                                                                                                | 1190.98                                   | . 🗖 🗲 0.917 m Stick-up                           |
|                     | <u>x<sup>1</sup> /y</u> . <u>x<sup>1</sup></u> |                                                                                                                                                                                                                                                               | 1190.70<br>0.00<br>1190.09/               | Sand                                             |
| 5                   |                                                | - from 0.61 to 2.44 m: beige to light brown, with silt, moist, high plastic                                                                                                                                                                                   | 0.61                                      | 0 to 0.15 m BGS                                  |
| 2                   |                                                | - from 2.44 to 10.06 m: medium brown, trace fine grained sand, trace gravel, some silt, medium plastic                                                                                                                                                        |                                           | AA                                               |
| 10                  |                                                |                                                                                                                                                                                                                                                               |                                           | ЯЙ                                               |
| 15                  |                                                |                                                                                                                                                                                                                                                               |                                           | RR                                               |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | BB                                               |
| 20 - 6              |                                                |                                                                                                                                                                                                                                                               |                                           | 152 mm diameter<br>borehole                      |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | borenoie                                         |
| 25 8                |                                                |                                                                                                                                                                                                                                                               |                                           |                                                  |
| 30                  |                                                |                                                                                                                                                                                                                                                               |                                           |                                                  |
|                     |                                                | SILTY CLAY                                                                                                                                                                                                                                                    | 1180.64                                   | -51 53                                           |
| 35                  |                                                | Medium brown, some very fine grained sand, trace gravel, medium plastic, minor oxidation within sand stringers<br>@ 11.28 m: sand content increases to 15-30%, gravel content increases to 5-15%                                                              | 1179.43                                   |                                                  |
| 40 - 12             |                                                | SANDY SILT<br>Medium brown, with gravel, dry to moist, friable                                                                                                                                                                                                | -/ 11.28                                  | Bentonite                                        |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | ЯИ                                               |
| 45 - 14             |                                                |                                                                                                                                                                                                                                                               |                                           | RR                                               |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | ВК                                               |
| 50                  |                                                |                                                                                                                                                                                                                                                               |                                           | N N                                              |
| 55 -                |                                                | - below 15.85 m: dry                                                                                                                                                                                                                                          |                                           | K K                                              |
|                     |                                                | SANDY SILT (TILL)                                                                                                                                                                                                                                             | 1173.02<br>17.68                          | -44                                              |
| 60 - 18             |                                                | Medium to dark grey, some gravel, with clay, dry, medium plastic                                                                                                                                                                                              | 17.00                                     | Solid pipe<br>51 mm diameter                     |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | Schedule 40 PVC                                  |
|                     |                                                |                                                                                                                                                                                                                                                               | 1169.98                                   | R                                                |
| 70 -                |                                                | SILTY CLAY (TILL)<br>Dark grey, with gravel, dry to moist, medium plastic                                                                                                                                                                                     | 20.73                                     | N N                                              |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           | Groundwater Level                                |
| 75                  |                                                |                                                                                                                                                                                                                                                               |                                           | July 22, 2016                                    |
| 80 - 24             |                                                |                                                                                                                                                                                                                                                               |                                           | Sand<br>⊒                                        |
|                     |                                                |                                                                                                                                                                                                                                                               | 1164.80                                   | Slotted pipe                                     |
| 85 - 26             |                                                | SILTSTONE<br>Light to medium grey                                                                                                                                                                                                                             | 25.91                                     | 51 mm diameter<br>Schedule 40 PVC<br>No. 10 slot |
| 90                  | × × ×<br>× × ×                                 |                                                                                                                                                                                                                                                               | 1163.27                                   |                                                  |
|                     |                                                | End of Borehole                                                                                                                                                                                                                                               | 27.43                                     |                                                  |
| 95                  |                                                |                                                                                                                                                                                                                                                               |                                           |                                                  |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           |                                                  |
| Screen I<br>Sand Pa | ick Interva                                    | 22.86 - 25.91 m BGS     Notes:     mm - millimetres       al:     22.56 - 27.43 m BGS     m AMSL - metres above mean sea level     Coordinate System - N       al:     22.56 - 27.43 m BGS     m AMSL - metres above mean sea level     Coordinate System - N | AD 1983 3TN                               | M 114                                            |
| vven Sea            | al Interval                                    | : 0.15 - 22.56 m BGS m BGS m BGS - metres below ground surface Completed as Well MW<br>n/a - not available                                                                                                                                                    | 10-22-20                                  |                                                  |
|                     | S                                              | tantec                                                                                                                                                                                                                                                        |                                           |                                                  |
|                     |                                                |                                                                                                                                                                                                                                                               |                                           |                                                  |



### Monitoring Well: MW16-23-36 (D36D)

 Project:
 Springbank Off-Stream Reservoir Project (SR1)

 Client:
 Alberta Transportation

 Location:
 Rocky View County, Alberta

 Number:
 110773396

 Field investigator:
 D. Nisbet

# Drilling method:Hollow-stem augerDate started/completed:24-Jul-2016 / 25-Ground surface elevation:1,190.56 m AMSLTop of casing elevation:1,191.33 m AMSLEasting:-29019.349Northing:5657308.346

Hollow-stem auger (Track mounted)/ Coring 24-Jul-2016 / 25-Jul-2016 1,190.56 m AMSL 1,191.33 m AMSL -29019.349 5657308.346

All Service Drilling Inc. Contractor: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSI Lithologic Description Description Depth Depth Log (m BGS (ft) (m) 1190.79 Ground Surfac 0.764 m Stick-up 0 - 0 119856 TOPSOIL CLAY 1190.26 Sand 5 2 Light to medium brown, trace very fine grained sand, some silt, moist, medium plastic 0.30 0 to 0.61 m BGS 10 4 1185 69 15 SILTY CLAY (TILL) Medium brown, with very fine grained sand, some gravel, moist 4.88 20 6 25 8 30 152 mm diameter 10 borehole 35 1178.37 12 40 SILT 12.19 Light brown, trace very fine grained sand, moist 1176.85 45 - @ 13.41 m: becomes wet CLAY 13.72 1175.36 14 50 Low plastic - from 13.72 to 14.02 m: some silt 15.24 16 1173.56 55 from 14.02 to 15.20 m: light grey, dry to damp, mottled SANDSTONE 17.00 Bentonite 18 Medium brown, highly fractured 60 CLAYSTONE Grey, highly fractured, clay fracture gouge present 65 - 20 70 22 1167.41 75 SANDSTONE 23.15 24 Medium brown to grey 1165.91 80 ×××××× \* \* \* \* \* \* \* \* \* \* SILTSTONE 24 65 Grey, some oxidation on fractured surfaces 85 26 90 × × × × × × 28 - from 28.05 to 28.45 m: highly fractured - below 28.45 m: some bedding present 95 30 1159.66 100 Solid pipe SANDSTONE 51 mm diameter 30.90 Schedule 40 PVC Grey, fine grained 1158.71 105 32 Т MUDSTONE 31.85 Grey to dark grey, fractured 110 34 115 Sand \_ 36 Sil 9 (4/10) 120 Slotted pipe 51 mm diameter 38 125 1151.41 Schedule 40 PVC No. 10 slot SILTSTONE 39.15 130 ×× × × × × × × 40 Grey, fractured Bentonite 135 ×× - from 41.05 to 41.65 m: some bedding 42 1148 01 140 MUDSTONE 42.55 Grey, fractured 44 145 1144.84 150 46 End of Borehole 45.72 155 48 35.70 - 37.20 m BGS 35.00 - 37.80 m BGS mm - millimetres Screen Interval: Notes Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-23-36 m AMSL - metres above mean sea level Sand Pack Interval Well Seal Interval: 0.61 - 35.00 m BGS m BGS - metres below ground surface

n/a - not available

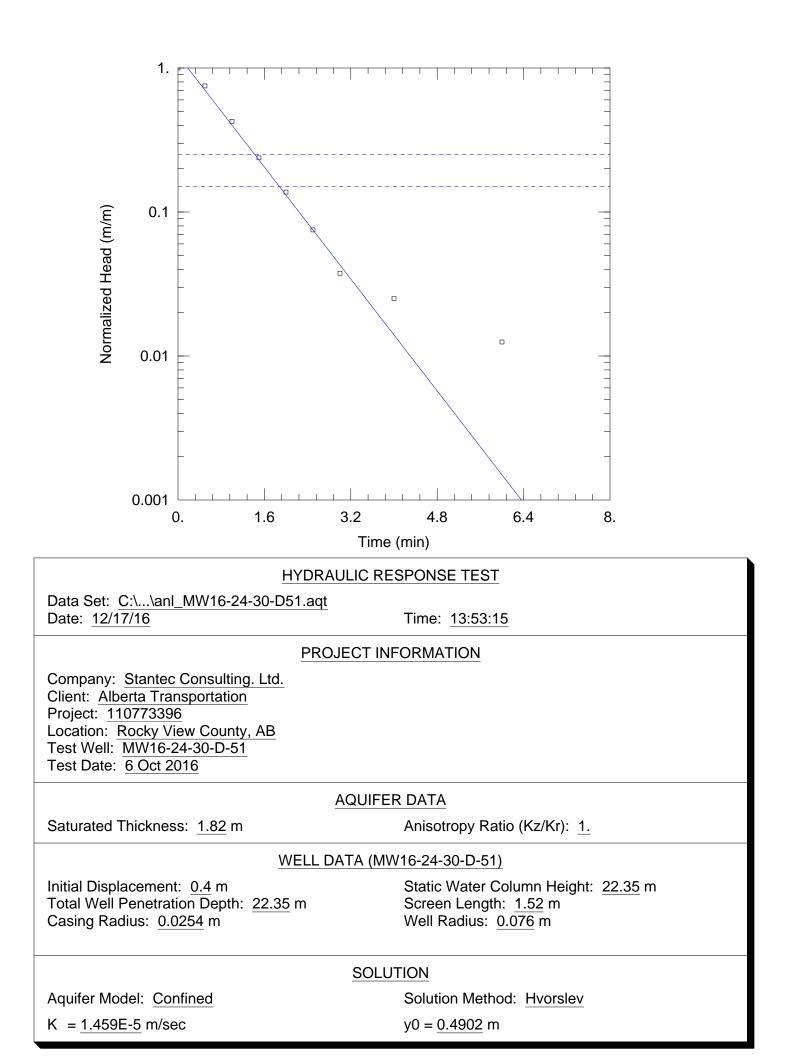
Stantec

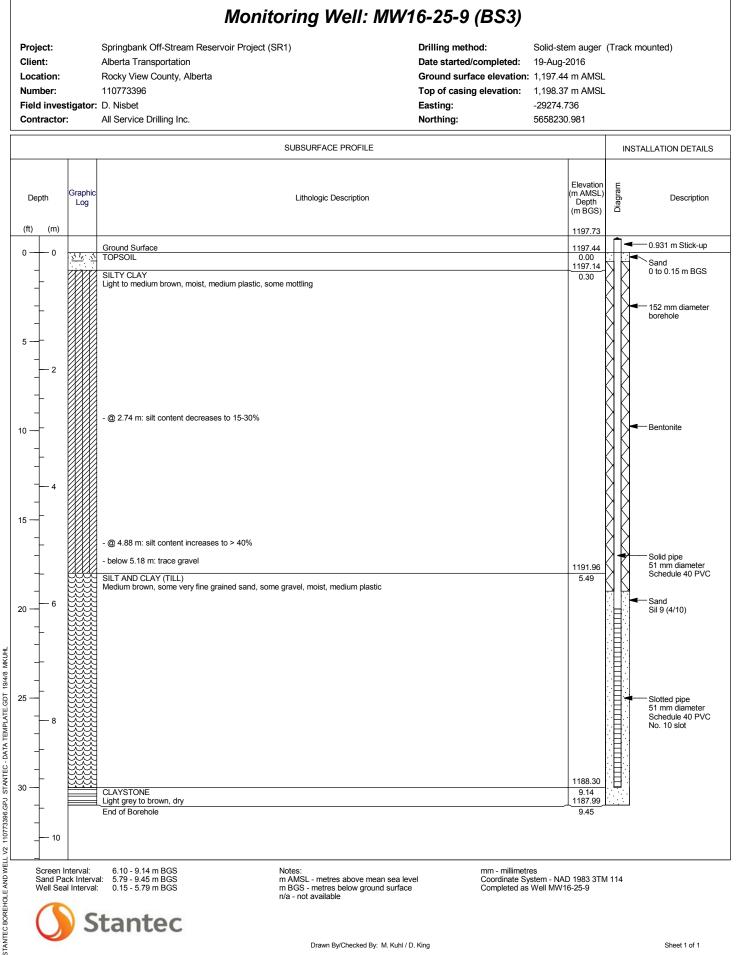
MKUH

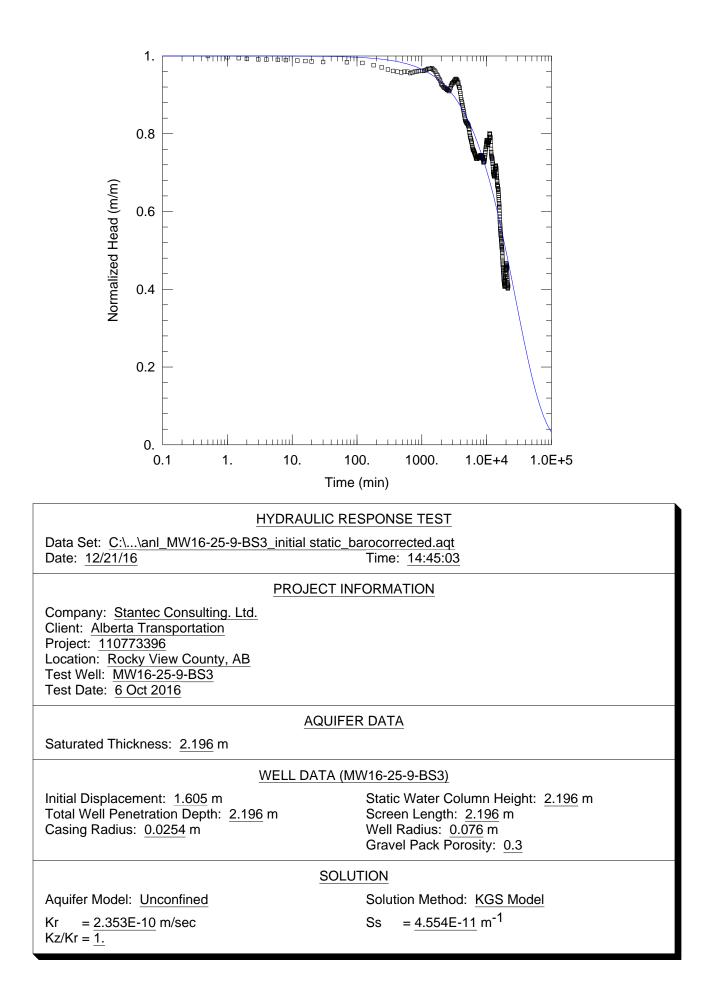
19/4/8

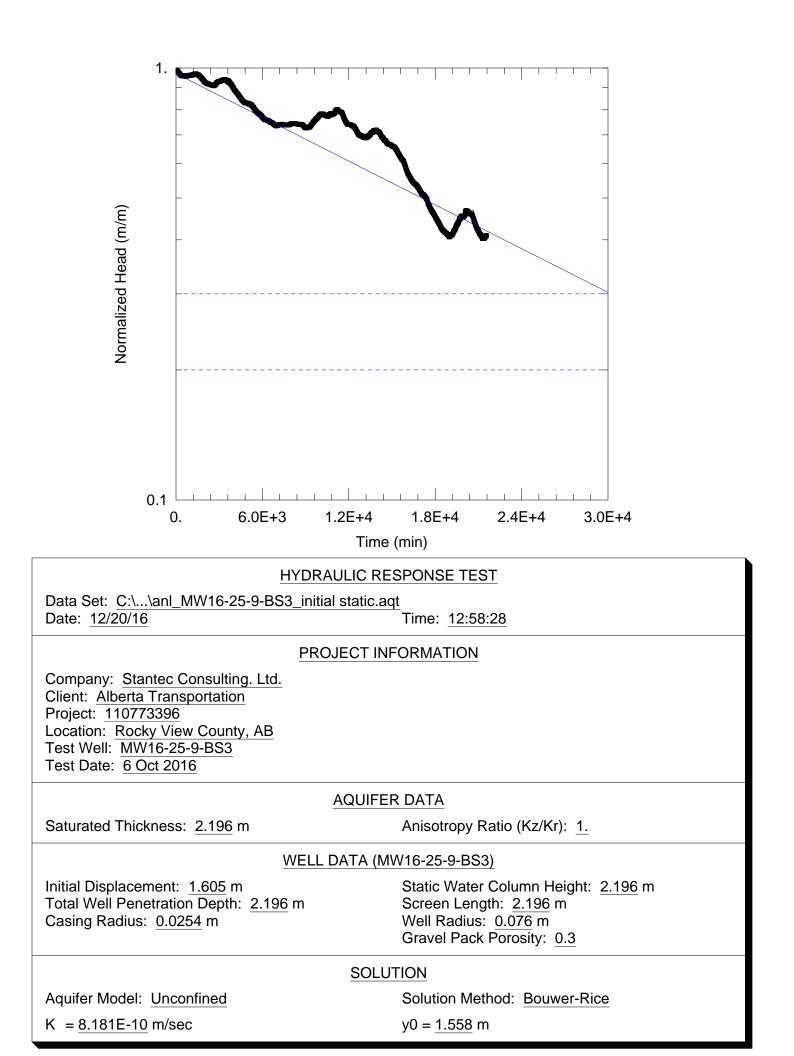
GDT

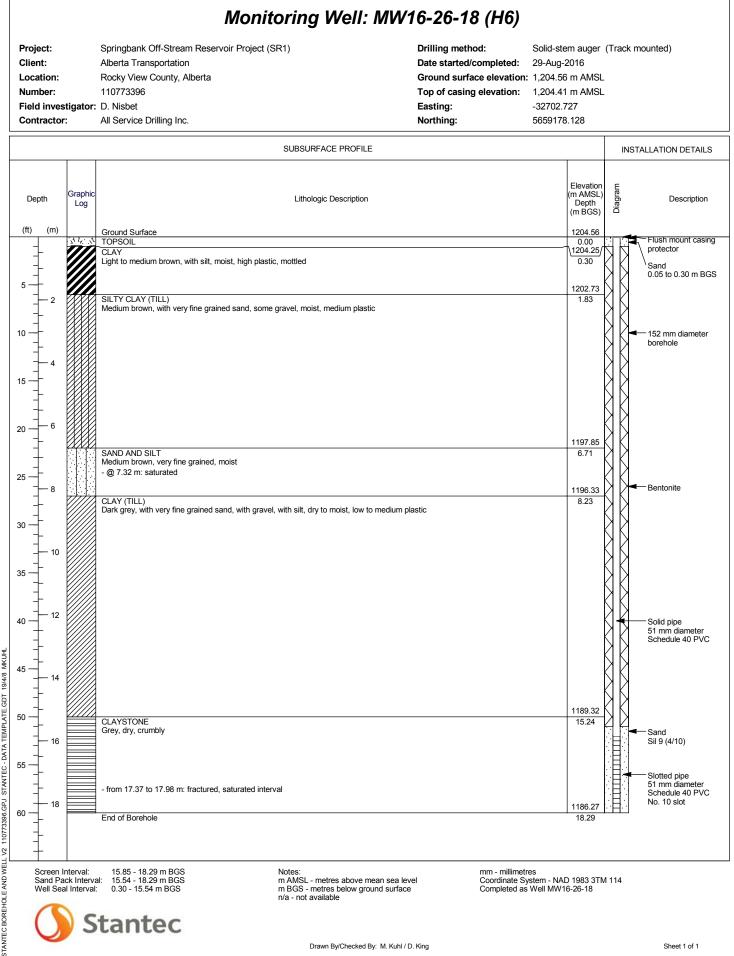
#### Monitoring Well: MW16-24-30 (D51) Springbank Off-Stream Reservoir Project (SR1) Project: Drilling method: Hollow-stem auger / Coring Client: Alberta Transportation Date started/completed: 19-Jul-2016 / 20-Jul-2016 Location: Rocky View County, Alberta Ground surface elevation: 1,194.50 m AMSL 110773396 Number: Top of casing elevation: 1,195.35 m AMSL -28761.753 Field investigator: D. Nisbet Easting: All Service Drilling Inc. Northing: 5657740.483 Contractor: SUBSURFACE PROFILE INSTALLATION DETAILS Elevation Diagram Graphi m AMSI Lithologic Description Description Depth Depth Log (m BGS (ft) (m) 1194.76 Ground Sur - 0. 853 m Stick-up 0 0 1194,50 0.00 TOPSOIL 1194.19 SII T Sand With sand, trace gravel, dry to damp 0.30 0 to 0.61 m BGS 5 1192.25 2 CLAY 2.25 Medium brown, trace sand and gravel, low plastic, minor oxidation, mottled 10 15 6 20 152 mm diameter borehole 25 8 Groundwater Level 8.39 m BTOC 30 July 20, 2016 10 35 12 - @ 11.9 m: becomes sandy 40 1180.80 45 14 SAND 13.70 Some gravel, some clay, dry, oxidized Bentonite 1179.30 50 SILTSTONE 15.20 ×××× ×××× Light to medium grey, areas with high fracture intensity, some oxidation along larger fractures 16 55 1177.30 SANDSTONE 17.20 Brown to grey, planar bedded 18 60 65 20 70 Solid pipe 51 mm diameter Schedule 40 PVC 22 MKUH 75 1171.33 19/4/8 SILTSTONE 23.16 ××××× ×××× Light to medium grey, areas with high fracture intensity, some oxidation along larger fractures - below 24.08 m: fine planar laminations 24 80 GDT - below 24.69 m: grainsize begins to decrease towards bottom of interval 1169.20 - DATA TEMPLATE. CLAYSTONE 25.30 85 26 Dark to medium grey, some fracturing, minor weathering along fractures 1168.29 ×××× SILTSTONE 26.21 Light to medium grey, highly fractured, faint laminations and cross-bedding 1167 07 90 - below 27.13 m: some lenses of very fine grained sandstone 27.43 28 CLAYSTONE STANTEC -Medium grey, highly fractured and weathered to clay throughout interval 1165.54 Sand 95 SANDSTONE 28.96 Sil 9 (4/10) Medium grey, very fine to fine grained, competent, few fractures 30 Slotted pipe 51 mm diameter 110773396.GPJ \_ 1163.71 100 End of Borehole Schedule 40 PVC 30.78 No. 10 slot 105 32 STANTEC BOREHOLE AND WELL V2

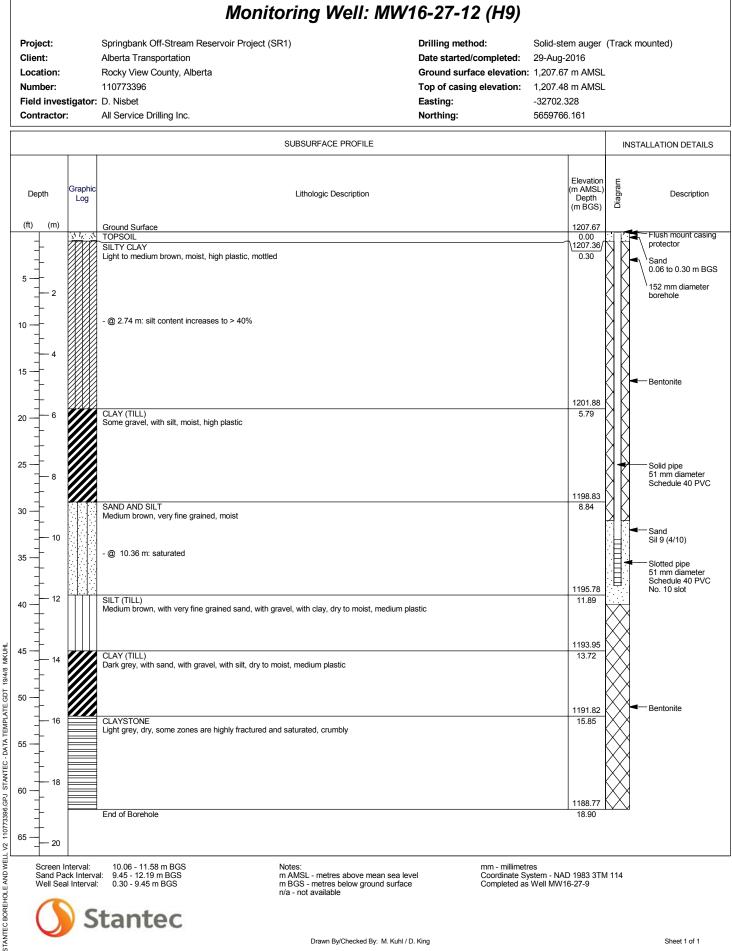

Screen Interval: Sand Pack Interval Well Seal Interval:


28.96 - 30.48 m BGS 28.50 - 30.78 m BGS 0.61 - 28.50 m BGS





Notes: m AMSL - metres above mean sea level m BGS - metres below ground surface n/a - not available


mm - millimetres Coordinate System - NAD 1983 3TM 114 Completed as Well MW16-24-30














## SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment B Water Well Drilling Records May 2019

## Attachment B WATER WELL DRILLING RECORDS



## SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment B Water Well Drilling Records May 2019



| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 339046                   | 18-Jun-02        | Domestic         | SW               | 5       | 24       | 2     | 5        | 24.4             |                                |
| 340302                   | 29-Mar-02        | Other            | SW               | 5       | 24       | 2     | 5        | 13.7             |                                |
| 340303                   | 20-Dec-01        | Domestic         | SW               | 17      | 24       | 2     | 5        | 61.0             |                                |
| 340304                   | 22-Mar-02        | Stock            | NW               | 1       | 24       | 4     | 5        | 35.1             |                                |
| 341222                   | 11-May-99        | Domestic         | SE               | 9       | 24       | 2     | 5        | 54.9             |                                |
| 341276                   | 24-Nov-98        | Domestic         | 5                | 5       | 24       | 3     | 5        | 44.2             |                                |
| 341315                   | 20-Apr-00        | Domestic         | NE               | 1       | 24       | 3     | 5        | 82.3             |                                |
| 341316                   | 25-Apr-00        | Domestic         | SE               | 2       | 24       | 3     | 5        | 59.4             |                                |
| 341341                   | 14-Jul-00        | Domestic         | SE               | 15      | 24       | 2     | 5        | 83.8             |                                |
| 341365                   | 14-Aug-00        | Domestic         | SW               | 28      | 24       | 3     | 5        | 22.9             |                                |
| 341366                   | 15-Sep-00        | Domestic         | NE               | 16      | 24       | 4     | 5        | 41.1             |                                |
| 341435                   | 25-Jun-98        | Domestic         | NE               | 20      | 24       | 3     | 5        | 34.1             |                                |
| 341454                   | 23-Oct-98        | Domestic         | SW               | 30      | 24       | 2     | 5        | 76.2             |                                |
| 341458                   | 25-Nov-98        | Domestic         | NW               | 5       | 24       | 3     | 5        | 22.9             |                                |
| 341480                   | 25-Nov-98        | Domestic         | SE               | 2       | 24       | 4     | 5        | 26.2             |                                |
| 341491                   | 31-Mar-99        | Domestic         | NE               | 12      | 23       | 5     | 5        | 24.4             |                                |
| 341497                   | 01-Apr-99        | Domestic         | NW               | 16      | 24       | 2     | 5        | 83.8             |                                |
| 341510                   | 30-Nov-00        | Domestic         | SE               | 2       | 24       | 4     | 5        | 59.4             |                                |
| 341524                   | 30-Jan-01        | Domestic         | SW               | 26      | 24       | 3     | 5        | 59.4             |                                |
| 341634                   | 05-Jul-02        | Domestic         | SE               | 34      | 24       | 3     | 5        | 73.2             |                                |
| 341638                   | 03-May-00        | Domestic         | NW               | 27      | 24       | 3     | 5        | 23.2             |                                |
| 341639                   | 29-Aug-02        | Domestic         | SE               | 10      | 24       | 4     | 5        | 42.7             |                                |
| 341641                   | 26-Sep-02        | Stock            | SW               | 22      | 24       | 4     | 5        | 48.8             |                                |
| 341648                   | 04-Nov-02        | Domestic         | SW               | 4       | 25       | 3     | 5        | 30.5             |                                |
| 341649                   | 05-Nov-02        | Domestic         | SW               | 4       | 25       | 3     | 5        | 42.7             |                                |
| 349020                   | 07-Nov-07        | Domestic         | NE               | 25      | 24       | 3     | 5        | 53.3             |                                |
| 349161                   | 09-Aug-89        | Stock            | SW               | 26      | 24       | 3     | 5        | 70.1             |                                |
| 349174                   | 30-Aug-89        | Stock            | NE               | 21      | 24       | 4     | 5        | 59.4             |                                |
| 349186                   | 18-Nov-92        | Domestic         | SE               | 21      | 24       | 2     | 5        | 91.4             |                                |
| 349188                   | 23-Nov-92        | Domestic         | NE               | 12      | 23       | 5     | 5        | 19.8             |                                |
| 349217                   | 30-Aug-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 33.5             |                                |
| 349218                   | 04-Oct-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 36.6             |                                |
| 349219                   | 04-Oct-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 27.4             |                                |
| 349220                   | 05-Oct-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 25.9             |                                |
| 349235                   | 26-Jul-88        | Domestic         | NE               | 20      | 24       | 3     | 5        | 53.3             |                                |
| 349236                   | 25-Jul-88        | Domestic         | NE               | 20      | 24       | 3     | 5        | 51.8             |                                |
| 349237                   | 28-Jul-88        | Domestic & Stock | SE               | 2       | 24       | 3     | 5        | 67.1             |                                |
| 349247                   | 30-Sep-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 36.6             |                                |
| 349248                   | 29-Aug-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 36.6             |                                |
| 349259                   | 29-Sep-88        | Domestic         | NW               | 16      | 24       | 2     | 5        | 73.2             |                                |
| 349267                   | 08-Apr-88        | Domestic & Stock | SE               | 22      | 24       | 4     | 5        | 39.6             | L                              |
| 349272                   | 01-Jun-88        | Stock            | SW               | 27      | 24       | 4     | 5        | 45.7             | Yes                            |
| 349277                   | 31-Mar-88        | Domestic         | NW               | 22      | 24       | 3     | 5        | 35.1             |                                |
| 349300                   | 01-Feb-93        | Domestic         | NW               | 23      | 24       | 3     | 5        | 32.0             |                                |
| 349308                   | 22-Sep-87        | Stock            | SW               | 26      | 24       | 4     | 5        | 48.8             | Yes                            |
| 349381                   | 24-Nov-87        | Domestic         | NW               | 23      | 24       | 3     | 5        | 30.5             | . 33                           |
| 349393                   | 26-Dec-82        | Domestic         | SE               | 27      | 24       | 3     | 5        | 53.3             |                                |
| 349407                   | 01-Nov-85        | Domestic         | NE               | 20      | 24       | 3     | 5        | 36.6             |                                |
| 349411                   | 21-Oct-85        | Domestic         | NW               | 20      | 24       | 3     | 5        | 33.5             |                                |
| 349442                   | 04-Sep-87        | Domestic         | SW               | 28      | 24       | 3     | 5        | 25.9             |                                |
| 349461                   | 28-Jan-85        | Domestic & Stock | SE               | 34      | 24       | 3     | 5        | 97.5             | L                              |
| 349515                   | 09-Feb-87        | Domestic         | NE               | 12      | 24       | 5     | 5        | 12.2             | L                              |
| 349513                   | 12-Apr-85        | Stock            | NE               | 28      | 23       | 4     | 5        | 33.5             | L                              |
| 349530                   | 12-Apr-85        | Domestic         | NE               | 28      | 24       | 4     | 5        | 15.2             |                                |
| 349532                   | 19-Apr-85        | Domestic         | NE               | 17      | 24       | 4     | 5        | 76.2             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 349564                   | 12-Nov-85        | Domestic         | SE               | 26      | 24       | 3     | 5        | 64.0             |                                |
| 349567                   | 28-Apr-86        | Domestic & Stock | SW               | 28      | 24       | 3     | 5        | 45.7             |                                |
| 349568                   | 17-Apr-86        | Domestic & Stock | SW               | 28      | 24       | 3     | 5        | 45.7             |                                |
| 349569                   | 30-Apr-86        | Domestic & Stock | SW               | 28      | 24       | 3     | 5        | 45.7             |                                |
| 349587                   | 04-Jun-87        | Domestic & Stock | NW               | 21      | 23       | 4     | 5        | 18.3             |                                |
| 349588                   | 09-Apr-87        | Domestic & Stock | SW               | 20      | 23       | 3     | 5        | 35.1             |                                |
| 349601                   | 20-Nov-87        | Domestic         | NW               | 23      | 24       | 3     | 5        | 30.5             |                                |
| 349655                   | 19-Oct-00        | Domestic         | SW               | 16      | 24       | 2     | 5        | 70.1             |                                |
| 349659                   | 06-Jun-94        | Domestic         | NE               | 16      | 24       | 2     | 5        | 61.0             |                                |
| 349749                   | 25-Aug-87        | Domestic         | NE               | 12      | 23       | 4     | 5        | 21.3             |                                |
| 349754                   | 17-May-95        | Domestic         | SE               | 13      | 23       | 5     | 5        | 29.6             |                                |
| 349788                   | 12-May-93        | Domestic         | SE               | 26      | 24       | 3     | 5        | 106.7            |                                |
| 349799                   | 07-May-93        | Domestic         | NE               | 19      | 23       | 3     | 5        | 21.3             |                                |
| 349810                   | 04-Jun-93        | Domestic         | SE               | 10      | 24       | 2     | 5        | 67.1             |                                |
| 349830                   | 25-Jul-95        | Stock            | NW               | 22      | 24       | 3     | 5        | 67.1             |                                |
| 349833                   | 16-Nov-95        | Domestic         | NE               | 16      | 24       | 3     | 5        | 46.3             |                                |
| 349834                   | 17-Nov-95        | Domestic         | NE               | 28      | 24       | 3     | 5        | 21.0             |                                |
| 349841                   | 20-Nov-95        | Domestic         | SW               | 26      | 24       | 3     | 5        | 27.4             |                                |
| 349880                   | 03-May-96        | Domestic         | SE               | 16      | 24       | 2     | 5        | 61.0             |                                |
| 349905                   | 19-Jul-96        | Domestic         | SW               | 10      | 24       | 2     | 5        | 74.7             |                                |
| 349908                   | 03-Jul-96        | Domestic         | NE               | 20      | 24       | 3     | 5        | 36.6             |                                |
| 349916                   | 07-Jul-96        | Domestic         | NE               | 9       | 24       | 2     | 5        | 73.2             |                                |
| 349933                   | 16-Aug-96        | Domestic         | SE               | 2       | 24       | 4     | 5        | 64.0             |                                |
| 349986                   | 09-May-97        | Domestic         | NE               | 21      | 24       | 3     | 5        | 32.0             |                                |
| 349995                   | 03-Jul-97        | Domestic         | NE               | 26      | 23       | 5     | 5        | 65.5             |                                |
| 350004                   | 06-Aug-97        | Domestic         | 15               | 16      | 24       | 2     | 5        | 56.1             |                                |
| 350038                   | 28-Oct-97        | Domestic         | SE               | 21      | 24       | 2     | 5        | 91.4             |                                |
| 350048                   | 10-Nov-97        | Industrial       | SE               | 21      | 24       | 2     | 5        | 79.2             |                                |
| 350053                   | 30-Aug-16        | Domestic         | SE               | 13      | 23       | 5     | 5        | 89.9             |                                |
| 350054                   | 03-Feb-98        | Domestic         | NW               | 36      | 24       | 4     | 5        | 88.4             |                                |
| 350069                   | 23-Apr-98        | Domestic         | NE               | 16      | 24       | 2     | 5        | 65.5             |                                |
| 350168                   | 02-Aug-89        | Domestic         | SW               | 2       | 24       | 3     | 5        | 30.5             |                                |
| 350169                   | 14-Feb-90        | Domestic         | SE               | 26      | 24       | 3     | 5        | 39.6             |                                |
| 350172                   | 22-Feb-90        | Stock            | NE               | 26      | 24       | 3     | 5        | 11.6             |                                |
| 350173                   | 23-Feb-90        | Stock            | NE               | 26      | 24       | 3     | 5        | 18.3             |                                |
| 350354                   | 23-Feb-90        | Domestic         | SW               | 22      | 24       | 3     | 5        | 18.3             |                                |
| 350355                   | 21-Feb-90        | Domestic         | SW               | 22      | 24       | 3     | 5        | 23.8             |                                |
| 350444                   | 06-Apr-90        | Domestic         | NE               | 23      | 23       | 2     | 5        | 55.5             |                                |
| 350557                   | 10-Apr-90        | Domestic         | SW               | 26      | 24       | 3     | 5        | 30.5             |                                |
| 350571                   | 26-Mar-90        | Domestic & Stock | NE               | 4       | 25       | 4     | 5        | 69.2             |                                |
| 350659                   | 12-Mar-90        | Domestic         | 1                | 15      | 24       | 2     | 5        | 42.7             |                                |
| 350660                   | 08-Feb-90        | Domestic         | SW               | 22      | 24       | 3     | 5        | 18.3             |                                |
| 350661                   | 02-Mar-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 54.9             |                                |
| 350662                   | 03-Mar-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 36.6             |                                |
| 350663                   | 04-Mar-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 42.7             |                                |
| 350901                   | 16-May-90        | Domestic         | NE               | 13      | 23       | 5     | 5        | 35.1             |                                |
| 350927                   | 04-May-90        | Domestic         | SW               | 2       | 24       | 3     | 5        | 32.0             |                                |
| 351071                   | 07-Jun-90        | Domestic         | 10               | 26      | 23       | 5     | 5        | 73.2             |                                |
| 351072                   | 11-Apr-90        | Domestic         | SE               | 25      | 24       | 3     | 5        | 54.9             |                                |
| 351072                   | 04-May-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 28.3             |                                |
| 351118                   | 28-May-90        | Domestic         | 2                | 10      | 24       | 2     | 5        | 71.6             |                                |
| 351119                   | 04-Jun-90        | Domestic         | NW               | 10      | 24       | 2     | 5        | 68.6             |                                |
| 351120                   | 08-Jun-90        | Domestic         | NW               | 10      | 24       | 2     | 5        | 45.7             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 351121                   | 22-May-90        | Domestic         | SE               | 25      | 24       | 3     | 5        | 67.1             |                                |
| 351122                   | 20-Apr-10        | Domestic         | 8                | 25      | 24       | 3     | 5        | 88.4             |                                |
| 351124                   | 27-Apr-90        | Domestic         | NE               | 33      | 24       | 3     | 5        | 19.8             |                                |
| 351158                   | 17-Apr-90        | Stock            | SE               | 3       | 25       | 4     | 5        | 121.9            |                                |
| 351159                   | 18-Apr-90        | Domestic         | SW               | 3       | 25       | 4     | 5        | 49.4             |                                |
| 351462                   | 05-Jan-90        | Domestic         | NE               | 22      | 23       | 5     | 5        | 17.4             |                                |
| 351463                   | 08-Jan-90        | Domestic         | NW               | 25      | 23       | 5     | 5        | 48.2             |                                |
| 351466                   | 22-Dec-89        | Domestic         | NW               | 3       | 24       | 3     | 5        | 50.9             |                                |
| 351467                   | 21-Nov-89        | Domestic         | SW               | 25      | 24       | 3     | 5        | 42.7             |                                |
| 351468                   | 08-Nov-89        | Domestic         | SE               | 26      | 24       | 3     | 5        | 37.8             |                                |
| 351469                   | 09-Feb-90        | Domestic         | SE               | 26      | 24       | 3     | 5        | 41.1             |                                |
| 351471                   | 30-Oct-89        | Domestic         | SW               | 26      | 24       | 3     | 5        | 24.4             |                                |
| 351482                   | 06-Jun-90        | Domestic         | NW               | 16      | 24       | 2     | 5        | 54.9             |                                |
| 351483                   | 07-Jun-90        | Domestic         | SW               | 2       | 24       | 3     | 5        | 54.9             |                                |
| 351484                   | 15-Jun-90        | Domestic         | SW               | 2       | 24       | 3     | 5        | 54.9             |                                |
| 351486                   | 08-May-90        | Domestic         | SW               | 2       | 24       | 3     | 5        | 32.0             |                                |
| 351509                   | 04-Jan-90        | Domestic         | SE               | 6       | 25       | 3     | 5        | 41.8             |                                |
| 351623                   | 01-May-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 24.4             |                                |
| 351667                   | 14-Jun-90        | Domestic         | NW               | 19      | 24       | 2     | 5        | 98.1             |                                |
| 351846                   | 07-Jul-90        | Domestic         | NE               | 12      | 23       | 5     | 5        | 32.0             |                                |
| 352069                   | 14-Apr-90        | Domestic         | SE               | 25      | 24       | 3     | 5        | 48.8             |                                |
| 352070                   | 01-May-90        | Domestic         | SW               | 28      | 24       | 3     | 5        | 24.4             |                                |
| 352124                   | 13-Sep-90        | Domestic         | NW               | 25      | 24       | 3     | 5        | 57.9             |                                |
| 352157                   | 17-Jul-90        | Domestic         | SE               | 13      | 24       | 3     | 5        | 4.6              |                                |
| 352158                   | 14-Sep-90        | Domestic         | SW               | 34      | 24       | 3     | 5        | 25.6             |                                |
| 352478                   | 25-Sep-90        | Domestic         | SW               | 24      | 23       | 2     | 5        | 78.9             |                                |
| 352722                   | 27-Sep-90        | Domestic         | 15               | 21      | 24       | 3     | 5        | 19.5             |                                |
| 352723                   | 27-Sep-90        | Domestic         | 15               | 21      | 24       | 3     | 5        | 19.5             |                                |
| 353033                   | 09-Oct-90        | Domestic         | SW               | 23      | 23       | 2     | 5        | 54.9             |                                |
| 353410                   | 13-Sep-85        | Domestic         | SW               | 10      | 24       | 2     | 5        | 24.4             |                                |
| 353411                   | 14-Sep-82        | Domestic         | SE               | 17      | 24       | 2     | 5        | 48.8             |                                |
| 353412                   | 11-Aug-81        | Domestic         | SW               | 1       | 24       | 3     | 5        | 45.7             |                                |
| 353413                   | 30-Nov-89        | Domestic         | NE               | 9       | 24       | 3     | 5        | 59.4             |                                |
| 353414                   | 09-Mar-89        | Domestic         | NW               | 26      | 24       | 3     | 5        | 54.9             |                                |
| 353474                   | 04-Sep-90        | Domestic         | NW               | 23      | 24       | 3     | 5        | 24.4             |                                |
| 353979                   | 11-Jun-90        | Domestic & Stock | SW               | 15      | 24       | 4     | 5        | 62.5             |                                |
| 353980                   | 10-Dec-90        | Domestic         | SW               | 25      | 24       | 3     | 5        | 30.5             |                                |
| 354350                   |                  | Domestic         | NE               | 13      | 23       | 5     | 5        | 3.7              |                                |
| 354351                   |                  | Domestic         | NE               | 13      | 23       | 5     | 5        | 1.5              |                                |
| 354354                   |                  | Domestic         | NE               | 4       | 24       | 2     | 5        | 38.1             |                                |
| 354355                   |                  | Domestic         | NW               | 19      | 24       | 2     | 5        |                  |                                |
| 354359                   | 27-Oct-87        | Domestic & Stock | SE               | 2       | 25       | 4     | 5        | 36.6             |                                |
| 355123                   | 21-Dec-90        | Domestic         | SE               | 26      | 24       | 3     | 5        | 24.4             |                                |
| 355124                   | 22-Dec-90        | Domestic         | SE               | 26      | 24       | 3     | 5        | 29.6             |                                |
| 355935                   | 14-Mar-91        | Domestic         | 9                | 16      | 24       | 3     | 5        | 61.0             |                                |
| 356257                   |                  | Domestic         | SW               | 1       | 24       | 3     | 5        | 61.0             |                                |
| 356258                   |                  | Domestic         | SW               | 5       | 24       | 3     | 5        |                  |                                |
| 356259                   |                  | Domestic         | SW               | 5       | 24       | 3     | 5        | 50.3             |                                |
| 356260                   |                  | Domestic         | NW               | 14      | 24       | 3     | 5        | 23.0             |                                |
| 356261                   |                  | Domestic         | NW               | 16      | 24       | 3     | 5        |                  |                                |
| 356262                   |                  | Domestic         | SE               | 21      | 24       | 3     | 5        |                  |                                |
| 356263                   |                  | Domestic         | NW               | 22      | 24       | 3     | 5        |                  |                                |
| 356264                   |                  | Domestic         | NE               | 23      | 24       | 3     | 5        | 33.5             |                                |
| 356265                   | 1                | Domestic         | SE               | 23      | 24       | 3     | 5        | 30.0             |                                |
| 356267                   |                  | Domestic         | SE               | 26      | 24       | 3     | 5        |                  |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified |
|--------------------------|------------------------|------------------|------------------|---------|----------|-------|----------|------------------|-------------------|
| 356268                   |                        | Domestic         | NW               | 27      | 24       | 3     | 5        | 24.4             |                   |
| 356269                   |                        | Domestic         | SW               | 28      | 24       | 3     | 5        | 30.5             |                   |
| 356270                   |                        | Domestic         | NW               | 30      | 24       | 3     | 5        |                  |                   |
| 356276                   |                        | Domestic         | NW               | 11      | 24       | 4     | 5        |                  |                   |
| 356356                   |                        | Domestic         |                  | 25      | 23       | 3     | 5        | 23.8             |                   |
| 356357                   |                        | Domestic         | NW               | 31      | 23       | 3     | 5        |                  |                   |
| 356363                   |                        | Domestic         | NE               | 4       | 24       | 2     | 5        |                  |                   |
| 356364                   |                        | Domestic         | SE               | 6       | 24       | 2     | 5        |                  |                   |
| 356365                   |                        | Domestic         | NW               | 9       | 24       | 2     | 5        |                  |                   |
| 356366                   |                        | Domestic         | SE               | 10      | 24       | 2     | 5        | 83.8             |                   |
| 356367                   |                        | Domestic         | SW               | 10      | 24       | 2     | 5        |                  |                   |
| 356368                   |                        | Domestic         | NW               | 10      | 24       | 2     | 5        |                  |                   |
| 356369                   |                        | Domestic         | NE               | 10      | 24       | 2     | 5        | 32.0             |                   |
| 356370                   |                        | Domestic         | NW               | 16      | 24       | 2     | 5        | 02.0             |                   |
| 356371                   |                        | Domestic         | NE               | 18      | 24       | 2     | 5        |                  |                   |
| 356544                   | 06-Feb-91              | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                   |
| 356545                   | 27-Feb-91              | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                   |
| 356546                   | 04-Mar-91              | Domestic         | NE               | 21      | 24       | 3     | 5        | 29.9             |                   |
| 356547                   | 07-Mar-91              | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                   |
| 357257                   | 22-Mar-91              | Domestic         | SE               | 15      | 24       | 2     | 5        | 79.2             |                   |
| 357258                   | 05-Apr-91              | Domestic         | NW               | 18      | 24       | 2     | 5        | 39.6             |                   |
| 357367                   | 03-Apr-71<br>08-May-91 | Domestic         | SE               | 27      | 24       | 5     | 5        | 38.1             |                   |
| 357729                   | 31-Aug-90              | Domestic & Stock | SE               | 27      | 23       | 3     | 5        | 54.9             |                   |
| 357782                   | 29-Jul-87              | Domestic         | NE               | 12      | 23       | 5     | 5        | 17.1             |                   |
| 357783                   | 21-Sep-89              | Stock            | NW               | 21      | 23       | 4     | 5        | 26.8             |                   |
| 357974                   | 27-May-91              | Domestic         | NE               | 12      | 24       | 5     | 5        | 32.0             |                   |
| 357975                   | 18-Jun-91              | Domestic         | SW               | 4       | 23       | 3     | 5        | 35.1             |                   |
| 358138                   | 11-May-91              | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                   |
| 358138                   | 26-Jun-91              | Domestic         | NW               | 21      | 24       | 3     | 5        | 24.4             |                   |
| 358139                   |                        |                  | NW               | 23      | 24       | 3     | 5        | 24.4             |                   |
|                          | 26-Jun-91              | Domestic         |                  |         |          |       |          |                  |                   |
| 358263                   | 12-May-94              | Stock            | NW               | 15      | 24       | 2     | 5        | 164.6            |                   |
| 358465                   | 03-Aug-91              | Domestic         | NW               | 19      | 24       | 2     | 5        | 111.3            |                   |
| 358467                   | 18-Jul-91              | Domestic         | SW               | 2       | 24       | 3     | 5        | 48.8             |                   |
| 358468                   | 18-Jul-91              | Domestic         | SW               | 2       | 24       | 3     | 5        | 47.2             |                   |
| 358469                   | 19-Jul-91              | Domestic         | SW               | 2       | 24       | 3     | 5        | 36.6             |                   |
| 358491                   | 04-Jun-91              | Domestic         | 9                | 21      | 24       | 3     | 5        | 19.8             |                   |
| 358492                   | 05-Jun-91              | Domestic         | 9                | 21      | 24       | 3     | 5        | 19.5             |                   |
| 358782                   | 24-Jul-91              | Domestic         | SW               | 25      | 24       | 3     | 5        | 36.6             |                   |
| 358783                   | 25-Jul-91              | Domestic         | SW               | 25      | 24       | 3     | 5        | 36.6             |                   |
| 358810                   | 05-Jul-91              | Domestic         | SW               | 20      | 24       | 2     | 5        | 45.7             |                   |
| 359263                   | 21-Jul-91              | Domestic         | SW               | 2       | 24       | 3     | 5        | 45.7             |                   |
| 359264                   | 26-Jul-91              | Domestic         | NW               | 23      | 24       | 3     | 5        | 27.4             |                   |
| 359265                   | 30-Jul-91              | Domestic         | NW               | 23      | 24       | 3     | 5        | 24.4             |                   |
| 359633                   | 05-Jul-91              | Domestic         | NE               | 23      | 23       | 3     | 5        | 51.8             |                   |
| 359637                   | 06-Jun-91              | Domestic         | NE               | 13      | 23       | 5     | 5        | 33.5             |                   |
| 359638                   | 14-Aug-91              | Domestic         | SW               | 17      | 24       | 2     | 5        | 36.6             |                   |
| 359639                   | 04-Jun-91              | Domestic         | 16               | 16      | 24       | 3     | 5        | 25.6             |                   |
| 359640                   | 30-Jul-91              | Domestic         | NW               | 23      | 24       | 3     | 5        | 30.5             |                   |
| 359815                   | 30-Mar-91              | Domestic         | NW               | 19      | 24       | 2     | 5        | 59.4             |                   |
| 359886                   | 16-Jul-91              | Domestic         | 1                | 13      | 23       | 5     | 5        | 13.1             |                   |
| 359887                   | 11-Sep-91              | Domestic         | SW               | 5       | 24       | 2     | 5        | 11.3             |                   |
| 359888                   | 12-Sep-91              | Domestic         | SW               | 5       | 24       | 2     | 5        | 11.3             |                   |
| 359891                   | 11-Sep-91              | Domestic         | SE               | 9       | 24       | 3     | 5        | 35.7             | Yes               |
| 359993                   | 03-May-87              | Domestic         | SW               | 1       | 24       | 3     | 5        | 33.5             |                   |
| 360069                   | 25-Sep-91              | Domestic         | SW               | 26      | 23       | 5     | 5        | 91.4             |                   |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use             | LSD <sup>2</sup> | Section | Township | Range  | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|----------------------|------------------|---------|----------|--------|----------|------------------|--------------------------------|
| 360321                   | 11-Oct-91              | Domestic             | 7                | 26      | 23       | 5      | 5        | 39.6             |                                |
| 360322                   | 04-Sep-91              | Domestic & Stock     | 1                | 15      | 24       | 2      | 5        | 67.1             |                                |
| 360648                   | 24-Aug-91              | Domestic             | NE               | 27      | 23       | 3      | 5        | 54.9             |                                |
| 360649                   | 17-Oct-91              | Domestic             | SW               | 28      | 23       | 4      | 5        | 41.5             |                                |
| 360650                   | 10-Oct-91              | Municipal            | NW               | 5       | 24       | 2      | 5        | 6.1              |                                |
| 360651                   | 09-Oct-91              | Domestic             | NW               | 19      | 24       | 2      | 5        | 121.9            |                                |
| 361016                   | 01-Oct-91              | Domestic             | NE               | 8       | 23       | 3      | 5        | 54.9             |                                |
| 361021                   | 21-Nov-91              | Stock                | NE               | 28      | 24       | 3      | 5        | 24.4             |                                |
| 361022                   | 21-Oct-91              | Domestic             | SE               | 13      | 24       | 4      | 5        | 47.2             |                                |
| 361443                   |                        | Domestic             | NE               | 12      | 23       | 5      | 5        |                  |                                |
| 361444                   |                        | Domestic             | NE               | 12      | 23       | 5      | 5        |                  |                                |
| 361445                   |                        | Domestic             | NE               | 13      | 23       | 5      | 5        | 3.7              |                                |
| 361446                   |                        | Domestic             | SE               | 5       | 24       | 2      | 5        |                  |                                |
| 361447                   |                        | Domestic             | SE               | 15      | 24       | 2      | 5        | 73.2             |                                |
| 361448                   |                        | Domestic             | SW               | 16      | 24       | 2      | 5        | 9.1              |                                |
| 361449                   |                        | Domestic             | SE               | 15      | 24       | 3      | 5        | 54.9             |                                |
| 361450                   |                        | Domestic             | NW               | 23      | 24       | 3      | 5        | 24.4             |                                |
| 361451                   |                        | Domestic             | NE               | 23      | 24       | 3      | 5        |                  |                                |
| 361452                   |                        | Domestic             | SW               | 24      | 24       | 3      | 5        |                  |                                |
| 361453                   |                        | Domestic             | SW               | 28      | 24       | 3      | 5        |                  |                                |
| 362749                   | 07-Dec-91              | Domestic             | NE               | 20      | 24       | 3      | 5        | 44.5             |                                |
| 363237                   |                        | Domestic             | SE               | 13      | 23       | 5      | 5        |                  |                                |
| 363238                   | 27-Aug-85              | Domestic & Stock     | NE               | 11      | 24       | 3      | 5        | 71.6             |                                |
| 363278                   | 22-Jan-92              | Domestic             | 5                | 24      | 24       | 3      | 5        | 48.8             |                                |
| 363666                   |                        | Domestic             | NE               | 12      | 23       | 5      | 5        |                  |                                |
| 363668                   |                        | Domestic             | SW               | 1       | 24       | 3      | 5        |                  |                                |
| 363669                   |                        | Domestic             | NW               | 5       | 24       | 3      | 5        |                  |                                |
| 363670                   |                        | Domestic             | SE               | 26      | 24       | 3      | 5        |                  |                                |
| 363671                   |                        | Domestic             | SW               | 26      | 24       | 3      | 5        |                  |                                |
| 363794                   |                        | Domestic             | NE               | 8       | 24       | 2      | 5        |                  |                                |
| 363921                   | 17-Mar-92              | Industrial           | SW               | 15      | 24       | 3      | 5        | 5.5              |                                |
| 363922                   | 13-Mar-92              | Industrial           | SW               | 15      | 24       | 3      | 5        | 5.2              |                                |
| 363924                   | 11-Mar-92              | Industrial           | SW               | 15      | 24       | 3      | 5        | 4.9              |                                |
| 363925                   | 10-Mar-92              | Industrial           | SW               | 15      | 24       | 3      | 5        | 5.8              |                                |
| 364115                   | 06-Mar-92              | Domestic             | SE               | 10      | 24       | 2      | 5        | 42.1             |                                |
| 364131                   |                        | Domestic             | NW               | 34      | 24       | 4      | 5        | 50.3             |                                |
| 364158                   | 17-Feb-92              | Domestic             | 15               | 15      | 23       | 5      | 5        | 29.0             |                                |
| 364585                   | 15-Apr-92              | Domestic             | NW               | 9       | 24       | 3      | 5        | 36.6             |                                |
| 364586                   | 19-Apr-92              | Domestic             | SW               | 18      | 24       | 3      | 5        | 33.5             |                                |
| 364649                   | 30-Apr-92              | Domestic             | SE               | 5       | 24       | 3      | 5        | 48.8             |                                |
| 364650                   | 09-May-92              | Domestic & Stock     | NE               | 27      | 24       | 4      | 5        | 36.6             | Yes                            |
| 364874                   | 23-Mar-92              | Domestic             | NW               | 18      | 24       | 2      | 5        | 30.5             | 103                            |
| 364931                   | 05-Jun-92              | Domestic             | NE               | 10      | 23       | 5      | 5        | 18.9             |                                |
| 364932                   | 14-May-92              | Domestic             | NE               | 12      | 23       | 5      | 5        | 15.2             |                                |
| 364976                   | 1 1 May 72             | Domestic             | SW               | 10      | 24       | 2      | 5        | 10.2             |                                |
| 365211                   | 10-Jun-92              | Domestic             | NE               | 23      | 24       | 2      | 5        | 51.8             |                                |
| 365215                   | 28-May-92              | Domestic             | NE               | 23      | 23       | 3      | 5        | 36.6             |                                |
| 365215                   | 23-May-92              | Domestic             | SE               | 32      | 23       | 3      | 5        | 39.6             |                                |
| 365343                   | 30-Jun-92              | Domestic             | NW               | 23      | 23       | 3      | 5        | 24.4             |                                |
| 365343                   | 02-Jul-92              | Domestic             | NW               | 23      | 24       | 3      | 5<br>5   |                  |                                |
| 365344                   | 02-Jui-92<br>01-Jun-92 | Domestic             | SE               | 23      | 24       | 3<br>5 | 5        | 30.5<br>23.8     |                                |
| 365566                   |                        |                      | SE               | 6       | 23       | 2      | 5<br>5   | 23.8             |                                |
|                          | 30-Jul-92              | Domestic<br>Domostic | SE<br>SE         | 2       |          | 3      |          |                  |                                |
| 365568                   | 17-Jul-92              | Domestic<br>Domostic |                  | 2       | 24       | 3      | 5<br>5   | 67.1             |                                |
| 365659                   | 07-Aug-92              | Domestic<br>Domestic | NW<br>SW         | 30      | 24<br>24 | 3      | 5        | 70.1             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 365865                   | 21-Aug-92        | Domestic         | NE               | 4       | 24       | 2     | 5        | 51.8             |                                |
| 365882                   | 29-Aug-91        | Irrigation       | NE               | 6       | 24       | 2     | 5        | 17.1             |                                |
| 366071                   | 20-Oct-80        | Domestic         | SE               | 15      | 24       | 2     | 5        | 41.1             |                                |
| 366092                   | 16-Oct-92        | Domestic         | SW               | 30      | 24       | 2     | 5        | 79.2             |                                |
| 366137                   | 14-Aug-92        | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                                |
| 366298                   | 19-Aug-92        | Domestic         | NE               | 28      | 23       | 4     | 5        | 64.3             |                                |
| 366381                   | 18-Aug-92        | Domestic         | 13               | 13      | 23       | 5     | 5        | 32.6             |                                |
| 366382                   | 21-Aug-92        | Domestic         | 1                | 26      | 24       | 3     | 5        | 50.3             |                                |
| 366402                   | 19-Aug-92        | Domestic         | NE               | 3       | 24       | 2     | 5        | 91.4             |                                |
| 366403                   | 01-Sep-92        | Domestic         | SE               | 30      | 24       | 2     | 5        | 90.2             |                                |
| 366404                   | 02-Oct-92        | Domestic         | NW               | 22      | 24       | 3     | 5        | 25.0             |                                |
| 366405                   | 01-Oct-92        | Domestic         | NW               | 22      | 24       | 3     | 5        | 25.0             |                                |
| 366406                   | 02-Oct-92        | Domestic         | NW               | 22      | 24       | 3     | 5        | 24.4             |                                |
| 366426                   |                  | Domestic         | 16               | 15      | 23       | 5     | 5        | 32.0             |                                |
| 366427                   |                  | Domestic         | SE               | 27      | 23       | 5     | 5        | 24.4             |                                |
| 366597                   | 01-Nov-92        | Domestic & Stock | SW               | 14      | 24       | 3     | 5        | 50.3             |                                |
| 366863                   | 15-Nov-92        | Domestic         | SW               | 2       | 24       | 3     | 5        | 36.6             |                                |
| 366864                   | 04-Sep-92        | Domestic         | NW               | 4       | 24       | 3     | 5        | 59.4             |                                |
| 367028                   | 30-Oct-92        | Domestic         | NW               | 18      | 23       | 4     | 5        | 41.1             |                                |
| 367030                   | 18-Nov-92        | Domestic         | NW               | 16      | 24       | 3     | 5        | 30.5             |                                |
| 367108                   |                  | Domestic         | SW               | 26      | 24       | 3     | 5        | 30.5             |                                |
| 367130                   | 23-Oct-92        | Domestic         | NW               | 2       | 24       | 4     | 5        | 48.8             |                                |
| 367322                   |                  | Domestic         | NW               | 18      | 24       | 2     | 5        | 61.0             |                                |
| 367394                   | 12-Jan-93        | Domestic         | SE               | 5       | 24       | 3     | 5        | 30.5             |                                |
| 367430                   | 05-Nov-92        | Domestic         | 1                | 26      | 24       | 3     | 5        | 25.9             |                                |
| 367657                   | 04-Oct-92        | Domestic & Stock | NE               | 13      | 24       | 4     | 5        | 43.3             | Yes                            |
| 368836                   | 03-Nov-92        | Domestic & Stock | NE               | 5       | 24       | 3     | 5        | 54.9             |                                |
| 369194                   | 28-Apr-93        | Domestic         | SW               | 2       | 24       | 3     | 5        | 30.5             |                                |
| 369195                   | 19-Mar-93        | Domestic         | NE               | 5       | 24       | 3     | 5        | 48.8             |                                |
| 369196                   | 24-Apr-93        | Domestic         | NW               | 7       | 24       | 3     | 5        | 55.5             |                                |
| 369197                   | 13-Dec-92        | Domestic         | SW               | 9       | 24       | 3     | 5        | 45.7             |                                |
| 369198                   | 03-Mar-93        | Domestic         | SE               | 26      | 24       | 3     | 5        | 50.3             |                                |
| 369418                   | 08-Aug-75        | Domestic         | SW               | 20      | 24       | 2     | 5        | 45.7             |                                |
| 369592                   | 04-Jun-93        | Domestic         | SE               | 9       | 24       | 2     | 5        | 54.9             |                                |
| 369942                   | 01-Jan-75        | Domestic & Stock | NW               | 15      | 24       | 2     | 5        | 51.8             |                                |
| 369969                   | 08-Jul-93        | Domestic         | SE               | 23      | 23       | 2     | 5        | 67.1             |                                |
| 369970                   | 10-Jul-93        | Domestic         | SW               | 19      | 23       | 4     | 5        | 24.4             |                                |
| 369971                   | 24-Aug-93        | Domestic         | NE               | 16      | 24       | 3     | 5        | 36.6             |                                |
| 370087                   | 14-Jul-93        | Domestic         | 1                | 9       | 24       | 2     | 5        | 63.4             |                                |
| 370088                   | 12-Jul-93        | Domestic         | 6                | 9       | 24       | 2     | 5        | 74.4             |                                |
| 370089                   | 14-Jul-93        | Domestic         | 6                | 9       | 24       | 2     | 5        | 67.1             |                                |
| 370155                   | 20-Jul-93        | Domestic         | NW               | 23      | 24       | 3     | 5        | 42.7             |                                |
| 370254                   | 12-Aug-93        | Domestic         | SE               | 21      | 24       | 2     | 5        | 66.1             |                                |
| 370255                   | 10-Sep-93        | Domestic & Stock | 5                | 1       | 25       | 4     | 5        | 45.7             |                                |
| 372401                   | 12-Nov-93        | Domestic         | SW               | 14      | 24       | 3     | 5        | 61.0             |                                |
| 372435                   | 07-Aug-93        | Domestic         | NW               | 4       | 24       | 3     | 5        | 55.5             |                                |
| 373477                   | 20-Oct-95        | Domestic         | 12               | 7       | 24       | 2     | 5        | 98.5             |                                |
| 373502                   | 05-Oct-93        | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                                |
| 376489                   | 18-Dec-93        | Domestic & Stock | SE               | 3       | 24       | 4     | 5        | 11.0             | Yes                            |
| 376490                   | 30-Nov-93        | Stock            | SE               | 3       | 24       | 4     | 5        | 30.5             |                                |
| 376491                   | 04-Dec-93        | Stock            | 1                | 6       | 25       | 3     | 5        | 42.7             |                                |
| 376834                   | 09-Oct-93        | Domestic         | NE               | 13      | 23       | 5     | 5        | 61.0             |                                |
| 376835                   | 12-Oct-93        | Domestic         | NE               | 13      | 23       | 5     | 5        | 24.4             |                                |
| 376836                   | 13-Oct-93        | Domestic         | NE               | 13      | 23       | 5     | 5        | 24.4             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 376838                   | 05-Oct-93        | Domestic         | NE               | 27      | 23       | 5     | 5        | 30.5             |                                |
| 379295                   | 01-Jun-95        | Domestic         | SE               | 17      | 24       | 3     | 5        | 61.0             |                                |
| 379655                   | 04-Jun-95        | Domestic         | SE               | 8       | 24       | 3     | 5        | 48.8             |                                |
| 379659                   | 02-Jun-95        | Domestic         | NE               | 8       | 24       | 3     | 5        | 50.3             |                                |
| 379663                   | 06-Jun-95        | Domestic         | SW               | 9       | 24       | 3     | 5        | 47.2             |                                |
| 379701                   | 18-Oct-95        | Domestic         | 9                | 12      | 23       | 5     | 5        | 13.4             |                                |
| 381220                   | 20-Apr-94        | Domestic         | NW               | 10      | 24       | 2     | 5        | 64.0             |                                |
| 381292                   | 25-Jul-95        | Domestic         | NW               | 26      | 23       | 5     | 5        | 31.1             |                                |
| 381942                   | 16-Aug-95        | Domestic         | NE               | 21      | 24       | 3     | 5        | 19.8             |                                |
| 386021                   | 21-Jul-94        | Domestic         | SW               | 2       | 24       | 3     | 5        | 42.7             |                                |
| 386023                   | 12-Aug-94        | Domestic         | 4                | 24      | 24       | 3     | 5        | 24.4             |                                |
| 386027                   | 16-Jul-94        | Domestic         | NE               | 21      | 24       | 3     | 5        | 30.5             |                                |
| 386031                   | 26-Jul-94        | Domestic         | NE               | 21      | 24       | 3     | 5        | 33.5             |                                |
| 386033                   | 20-Jul-94        | Domestic         | SW               | 22      | 24       | 3     | 5        | 18.3             |                                |
| 386037                   | 23-Aug-94        | Domestic         | NW               | 22      | 24       | 3     | 5        | 18.3             |                                |
| 386042                   | 22-Aug-94        | Domestic         | NW               | 22      | 24       | 3     | 5        | 23.8             |                                |
| 386046                   | 22-Aug-94        | Domestic         | NW               | 22      | 24       | 3     | 5        | 19.8             |                                |
| 386048                   | 23-Jun-94        | Domestic         | 6                | 25      | 24       | 3     | 5        | 30.5             |                                |
| 386052                   | 28-Jun-94        | Domestic         | 6                | 25      | 24       | 3     | 5        | 30.5             |                                |
| 386086                   | 27-Jun-94        | Domestic         | 6                | 25      | 24       | 3     | 5        | 36.6             |                                |
| 386087                   | 06-May-94        | Domestic         | NE               | 26      | 24       | 3     | 5        | 79.2             |                                |
| 387020                   | 13-Jul-94        | Domestic & Stock | NW               | 23      | 23       | 5     | 5        | 24.4             |                                |
| 387497                   | 21-May-68        | Domestic         | NE               | 12      | 23       | 5     | 5        | 30.5             |                                |
| 387498                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 4.0              |                                |
| 387499                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 3.7              |                                |
| 387500                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 3.7              |                                |
| 387501                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 10.7             |                                |
| 387502                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 1.5              |                                |
| 387503                   | 04-Jun-68        | Domestic         | NE               | 12      | 23       | 5     | 5        | 18.3             |                                |
| 387504                   | 11-Jun-75        | Unknown          | NE               | 12      | 23       | 5     | 5        | 12.2             |                                |
| 387505                   |                  | Unknown          | NE               | 12      | 23       | 5     | 5        | 16.8             |                                |
| 387506                   |                  | Unknown          | NE               | 12      | 23       | 5     | 5        | 9.8              |                                |
| 387507                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 5.2              |                                |
| 387509                   | 01-Sep-69        | Domestic         | NE               | 12      | 23       | 5     | 5        | 21.3             |                                |
| 387510                   | 01-Jun-72        | Domestic         | NE               | 12      | 23       | 5     | 5        | 11.9             |                                |
| 387511                   | 01-Nov-72        | Domestic         | NE               | 12      | 23       | 5     | 5        | 9.1              |                                |
| 387513                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 10.7             |                                |
| 387514                   | 07-Mar-77        | Domestic         | NE               | 12      | 23       | 5     | 5        | 34.7             |                                |
| 387515                   | 06-Jul-76        | Domestic         | NE               | 12      | 23       | 5     | 5        | 25.9             |                                |
| 387516                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 6.1              |                                |
| 387517                   | 08-Jul-79        | Domestic         | NE               | 12      | 23       | 5     | 5        | 21.3             |                                |
| 387518                   |                  | Domestic         | NE               | 12      | 23       | 5     | 5        | 18.3             |                                |
| 387519                   | 04-Nov-74        | Domestic         | NE               | 12      | 23       | 5     | 5        | 9.1              |                                |
| 387520                   | 21-Jun-75        | Domestic         | NE               | 12      | 23       | 5     | 5        | 12.8             |                                |
| 387521                   | 28-May-85        | Domestic         | NE               | 12      | 23       | 5     | 5        | 30.2             |                                |
| 387522                   | 11-Jun-88        | Domestic         | SE               | 1       | 24       | 4     | 5        | 22.9             |                                |
| 387525                   | 01-Jan-74        | Domestic         | SE               | 2       | 24       | 4     | 5        | 11.9             |                                |
| 387526                   |                  | Domestic         | SE               | 2       | 24       | 4     | 5        | 43.6             |                                |
| 387527                   | 01-Jun-73        | Domestic         | SE               | 2       | 24       | 4     | 5        | 53.3             |                                |
| 387530                   | 01-Jul-73        | Domestic         | SE               | 2       | 24       | 4     | 5        | 36.6             |                                |
| 387531                   |                  | Domestic         | SE               | 2       | 24       | 4     | 5        | 45.7             |                                |
| 387532                   |                  | Domestic         | SE               | 2       | 24       | 4     | 5        | 64.6             |                                |
| 387533                   |                  | Domestic         | SE               | 2       | 24       | 4     | 5        | 42.7             |                                |
| 387534                   | 06-Apr-76        | Domestic         | SE               | 2       | 24       | 4     | 5        | 61.0             |                                |
| 387535                   |                  | Domestic         | SH               | 2       | 24       | 4     | 5        | 50.3             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 387536                   |                        | Domestic         | SH               | 2       | 24       | 4     | 5        | 86.9             |                                |
| 387537                   |                        | Domestic         | SH               | 2       | 24       | 4     | 5        | 82.3             |                                |
| 387538                   |                        | Domestic         | SW               | 2       | 24       | 4     | 5        | 36.6             |                                |
| 387540                   | 15-Feb-64              | Domestic & Stock | SW               | 2       | 24       | 4     | 5        | 47.2             |                                |
| 387543                   | 18-May-65              | Domestic         | SW               | 2       | 24       | 4     | 5        | 33.5             |                                |
| 387544                   | 07-May-65              | Stock            | SW               | 2       | 24       | 4     | 5        | 58.5             |                                |
| 387545                   |                        | Domestic         | SW               | 2       | 24       | 4     | 5        | 38.1             |                                |
| 387546                   | 01-Feb-64              | Stock            | SW               | 2       | 24       | 4     | 5        | 60.4             |                                |
| 387547                   |                        | Domestic         | SW               | 2       | 24       | 4     | 5        | 86.9             |                                |
| 387548                   | 04-May-75              | Domestic         | SW               | 2       | 24       | 4     | 5        | 45.7             |                                |
| 387549                   | 02-Dec-88              | Domestic & Stock | SW               | 2       | 24       | 4     | 5        | 91.4             |                                |
| 387550                   | 02-Dec-88              | Domestic         | SW               | 2       | 24       | 4     | 5        | 24.4             |                                |
| 387551                   |                        | Domestic         | SW               | 2       | 24       | 4     | 5        |                  |                                |
| 387552                   | 15-May-72              | Domestic         | NW               | 2       | 24       | 4     | 5        | 86.9             |                                |
| 387553                   | 24-May-74              | Domestic         | NE               | 2       | 24       | 4     | 5        | 25.6             |                                |
| 387554                   | 01-Oct-73              | Domestic         | SE               | 3       | 24       | 4     | 5        | 36.6             |                                |
| 387557                   | 01-001-73              | Domestic         | SE               | 3       | 24       | 4     | 5        | 9.1              |                                |
| 387560                   | 20-Sep-79              | Domestic & Stock | SW               | 3       | 24       | 4     | 5        | 6.1              |                                |
| 387561                   | 20-3ep-79              | Domestic         | SW               | 3       | 24       | 4     | 5        | 15.2             |                                |
| 387562                   | 21-Nov-74              | Stock            | NE               | 3       | 24       | 4     | 5        | 10.7             |                                |
|                          | 01-Jul-60              |                  | INE              | 3       | 24       | 4     | 5        |                  |                                |
| 387563                   |                        | Domestic         | NIE              |         |          |       |          | 12.5             |                                |
| 387564                   | 22-May-80              | Other            | NE               | 6       | 24       | 4     | 5        | 31.1             |                                |
| 387566                   | 27-Sep-78              | Domestic         | NE               | 8       | 24       | 4     | 5        | 56.4             |                                |
| 387567                   |                        | Domestic         | NE               | 9       | 24       | 4     | 5        | 15.2             |                                |
| 387568                   |                        | Domestic         | SE               | 10      | 24       | 4     | 5        | 7.6              |                                |
| 387569                   |                        | Domestic         | SW               | 10      | 24       | 4     | 5        | 3.4              |                                |
| 387570                   |                        | Domestic         | NE               | 10      | 24       | 4     | 5        |                  |                                |
| 387571                   | 23-Aug-55              | Domestic         |                  | 10      | 24       | 4     | 5        | 125.6            |                                |
| 387572                   |                        | Domestic         | SW               | 11      | 24       | 4     | 5        | 33.5             |                                |
| 387573                   | 23-May-79              | Domestic         | SW               | 11      | 24       | 4     | 5        | 49.4             |                                |
| 387574                   |                        | Domestic         | SW               | 11      | 24       | 4     | 5        | 42.7             |                                |
| 387575                   |                        | Domestic         | NW               | 11      | 24       | 4     | 5        | 6.1              |                                |
| 387576                   | 01-Sep-71              | Domestic         | SE               | 13      | 24       | 4     | 5        | 26.8             |                                |
| 387577                   | 09-Jun-66              | Domestic         | SE               | 13      | 24       | 4     | 5        | 26.5             |                                |
| 387578                   | 03-May-74              | Domestic         | SE               | 13      | 24       | 4     | 5        | 30.5             |                                |
| 387586                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        |                  |                                |
| 387587                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        | 19.8             |                                |
| 387589                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        |                  |                                |
| 387590                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        |                  |                                |
| 387593                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        | 12.2             |                                |
| 387594                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        | 9.1              |                                |
| 387595                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        | 22.9             |                                |
| 387596                   |                        | Domestic         | NE               | 12      | 23       | 5     | 5        | 3.7              |                                |
| 387597                   |                        | Unknown          | NE               | 12      | 23       | 5     | 5        | 70.1             |                                |
| 387598                   | 08-Jun-89              | Domestic         | NE               | 12      | 23       | 5     | 5        | 54.9             |                                |
| 387603                   | 29-Oct-81              | Domestic         | 16               | 13      | 23       | 5     | 5        | 18.9             |                                |
| 387620                   |                        | Domestic         | SE               | 13      | 23       | 5     | 5        | 2.7              |                                |
| 387621                   |                        | Domestic         | SE               | 13      | 23       | 5     | 5        | 30.5             |                                |
| 387623                   | 11-Sep-67              | Unknown          | SE               | 13      | 23       | 5     | 5        | 9.1              | 1                              |
| 387625                   | 01-Jan-74              | Domestic         | SE               | 13      | 23       | 5     | 5        | 10.1             |                                |
| 387626                   | 01-Nov-70              | Domestic         | SE               | 13      | 23       | 5     | 5        | 11.3             |                                |
| 387627                   | 24-Feb-75              | Domestic         | SE               | 13      | 23       | 5     | 5        | 9.4              |                                |
| 387628                   | 20-Sep-67              | Domestic         | SE               | 13      | 23       | 5     | 5        | 21.3             |                                |
| 387631                   | 01-Jun-71              | Domestic         | SE               | 13      | 23       | 5     | 5        | 34.1             |                                |
| 307031                   | 01-Jun-71<br>01-Apr-71 | DOMESTIC         | SE               | 13      | 23       | 5     | 5        | 8.8              | ļ                              |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range  | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|--------|----------|------------------|--------------------------------|
| 387635                   | 01-Nov-70        | Domestic         | SE               | 13      | 23       | 5      | 5        | 6.4              |                                |
| 387637                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 3.7              |                                |
| 387639                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 21.9             |                                |
| 387641                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 12.2             |                                |
| 387642                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 15.2             |                                |
| 387644                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 22.9             |                                |
| 387645                   | 01-Feb-81        | Domestic         | 1                | 13      | 23       | 5      | 5        | 28.0             |                                |
| 387646                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 6.1              |                                |
| 387647                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 4.3              |                                |
| 387649                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 3.7              |                                |
| 387650                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        |                  |                                |
| 387652                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        |                  |                                |
| 387653                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 4.0              |                                |
| 387660                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 3.0              |                                |
| 387661                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 4.0              |                                |
| 387662                   | 16-Apr-76        | Domestic         | 2                | 2       | 24       | 2      | 5        | 67.1             |                                |
| 387663                   |                  | Domestic         | SE               | 13      | 23       | 5      | 5        | 61.0             |                                |
| 387664                   | 01-Jan-69        | Domestic         | 16               | 13      | 23       | 5      | 5        | 3.7              |                                |
| 387665                   | 28-Feb-64        | Domestic         | SW               | 2       | 23       | 2      | 5        | 45.1             |                                |
| 387670                   | 2010001          | Domestic         | NW               | 13      | 23       | 5      | 5        | 3.0              |                                |
| 387671                   | 25-Nov-97        | Domestic         | NW               | 13      | 23       | 5      | 5        | 91.4             |                                |
| 387672                   | 23-1100-77       | Unknown          | NW               | 13      | 23       | 5      | 5        | 3.0              |                                |
| 387673                   |                  | Domestic         | NW               | 2       | 23       | 2      | 5        | 45.7             |                                |
| 387674                   |                  | Domestic         | NW               | 2       | 24       | 2      | 5        | 40.2             |                                |
| 387675                   | 30-May-89        | Stock            | NW               | 13      | 24       | 5      | 5        | 14.0             |                                |
| 387676                   | 50-1v1ay-07      | Domestic         | NW               | 2       | 23       | 2      | 5        | 36.6             |                                |
| 387677                   |                  | Domestic         | NW               | 2       | 24       | 2      | 5        | 38.1             |                                |
| 387678                   |                  | Domestic         | NE               | 13      | 24       | 5      | 5        | 4.6              |                                |
| 387679                   |                  | Domestic         | NW               | 2       | 23       | 2      | 5        | 29.9             |                                |
| 387680                   |                  | Domestic         | NW               | 2       | 24       | 2      | 5        | 29.9             |                                |
|                          | 01 100 60        |                  | NE               | 2       |          |        | 5        | 10.0             |                                |
| 387681<br>387682         | 01-Jun-60        | Domestic         | NE               | 13      | 24<br>23 | 2<br>5 | 5<br>5   | 18.0<br>2.4      |                                |
|                          |                  | Domestic         | EH               | 2       | 23       | 2      | 5<br>5   | <u> </u>         |                                |
| 387683                   |                  | Domestic         |                  |         |          |        |          |                  |                                |
| 387684                   |                  | Domestic         | NE               | 13      | 23       | 5      | 5        | 9.4              |                                |
| 387685                   |                  | Municipal        | EH               | 2       | 24       | 2      | 5        | A (              |                                |
| 387686                   |                  | Domestic         | NE               | 13      | 23       | 5      | 5        | 4.6              |                                |
| 387687                   | 01.0 70          | Domestic         | NE               | 13      | 23       | 5      | 5        | 2.7              |                                |
| 387688                   | 01-Sep-70        | Domestic         | NE               | 13      | 23       | 5      | 5        | 15.2             |                                |
| 387696                   | 25-Jul-80        | Stock            | SW               | 15      | 24       | 4      | 5        | 12.8             |                                |
| 387697                   | 01-Oct-69        | Stock            | NW               | 15      | 24       | 4      | 5        | 21.3             |                                |
| 387698                   |                  | Domestic         | NW               | 15      | 24       | 4      | 5        |                  |                                |
| 387699                   | 23-Mar-84        | Stock            | NE               | 15      | 24       | 4      | 5        | 45.7             |                                |
| 387700                   |                  | Domestic         | NE               | 15      | 24       | 4      | 5        | 36.6             |                                |
| 387701                   | 01-Nov-85        | Stock            | NE               | 16      | 24       | 4      | 5        | 45.7             |                                |
| 387703                   | 19-Apr-85        | Unknown          | NE               | 17      | 24       | 4      | 5        | 76.2             |                                |
| 387704                   | 21-Feb-65        | Unknown          | NE               | 19      | 24       | 4      | 5        | 20.7             |                                |
| 387705                   | 01-Aug-71        | Unknown          | NE               | 19      | 24       | 4      | 5        | 10.1             |                                |
| 387706                   | 15-Jun-64        | Domestic & Stock | NE               | 19      | 24       | 4      | 5        | 31.1             |                                |
| 387707                   | 28-Jan-65        | Unknown          | NE               | 19      | 24       | 4      | 5        | 9.1              |                                |
| 387708                   | 29-Jan-65        | Unknown          | NE               | 19      | 24       | 4      | 5        | 7.9              |                                |
| 387709                   |                  | Domestic         | NE               | 19      | 24       | 4      | 5        | 22.9             |                                |
| 387714                   | 01-Nov-69        | Domestic         | NE               | 13      | 23       | 5      | 5        | 46.3             |                                |
| 387715                   | 20-Jun-66        | Domestic         | NE               | 13      | 23       | 5      | 5        | 30.5             |                                |
| 387716                   | 14-Aug-69        | Unknown          | SE               | 3       | 24       | 2      | 5        | 43.0             |                                |
| 387717                   | 01-Apr-72        | Domestic         | NE               | 13      | 23       | 5      | 5        | 13.7             |                                |

| 387719         01-Sep-69           387720         01-Jun-72           387726         01-Jun-72           387728         01-Jan-65           387730         01-Jan-65           387731         01-Jan-65           387732         01-Jan-65           387733         01-Jan-65           387732         01-Jan-65           387733         01-Sep-66           387738         01-Sep-66           387739         01           387740         01-Sep-69           387743         01-Oct-54           387745         01           387745         01           387746         02-Jul-87           387747         02-Jul-87           387750         01           387751         30-May-89           387752         14-Apr-80           387755         04-Feb-72           387765         04-Feb-72           387776         01-Oct-74           387778         01-Oct-66           387778         01-Oct-66           387778         01-Nov-66           387780         0-May-57           387780         0-May-57           387780 <td< th=""><th>Well Use</th><th>LSD<sup>2</sup></th><th>Section</th><th>Township</th><th>Range</th><th>Meridian</th><th>Depth<br/>(m BGL)</th><th>Field<br/>Verified<sup>3</sup></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                        | Well Use             | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 387723         01-Jun-72           387726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic             | NE               | 13      | 23       | 5     | 5        | 21.3             |                                |
| 387726         387728           387728         01-Jan-65           387730         387730           387731         387732           387732         387733           387733         21-Sep-66           387736         21-Sep-66           387737         387736           387738         387739           387739         01-Sep-69           387740         01-Sep-69           387743         387745           387745         387745           387745         02-Jul-87           387746         387747           387750         387750           387751         30-May-89           387752         14-Apr-80           387755         01-Oct-74           387762         01-May-58           387755         04-Feb-72           387776         01-Nov-66           387777         01-Oct-66           387778         01-Nov-66           387780         387780           387780         387780           387780         387780           387780         387780           387780         387780           387780         24-Oct-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Domestic             | NE               | 13      | 23       | 5     | 5        | 22.9             |                                |
| 387728         01-Jan-65           387730         01-Jan-65           387730         1           387731         1           387732         1           387733         1           387734         1           387735         21-Sep-66           387736         21-Sep-69           387737         1           387740         01-Sep-69           387743         1           387744         01-Oct-54           387745         1           387746         1           387747         02-Jul-87           387748         01-Nov-74           387750         3           387751         30-May-89           387752         14-Apr-80           387753         01-Oct-74           387762         01-May-58           387763         04-Feb-72           387764         01-Nov-66           387775         01-Oct-66           387776         01-Nov-66           387778         01-Nov-66           387780         1           387780         1           387780         1           387780         1 </td <td>Domestic</td> <td>NE</td> <td>13</td> <td>23</td> <td>5</td> <td>5</td> <td>45.7</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Domestic             | NE               | 13      | 23       | 5     | 5        | 45.7             |                                |
| 387729         01-Jan-65           387730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic             | NE               | 13      | 23       | 5     | 5        | 13.7             |                                |
| 387730       387731         387732       387732         387733       21-Sep-66         387736       21-Sep-66         387738       387739         387739       387740         387740       01-Sep-69         387743       387743         387744       01-Oct-54         387745       387746         387746       01-Nov-74         387750       387750         387751       30-May-89         387752       14-Apr-80         387756       01-Oct-74         387756       01-May-58         387765       04-Feb-72         387770       15-Feb-67         387776       01-Nov-66         387778       01-Nov-66         387778       01-Nov-66         387778       01-Nov-66         387778       01-Nov-66         387780       387780         387780       387780         387781       01-May-57         387782       387780         387783       387780         387784       24-Oct-86         387785       387780         387786       24-Oct-86         38778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Domestic             | NE               | 13      | 23       | 5     | 5        | 2.4              |                                |
| 387731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Domestic             | NE               | 13      | 23       | 5     | 5        | 36.6             |                                |
| 387732       387733         387736       21-Sep-66         387738       21-Sep-66         387739       387740         387740       01-Sep-69         387743       387745         387745       01-Oct-54         387746       387746         387747       02-Jul-87         387748       01-Nov-74         387750       387750         387751       30-May-89         387752       14-Apr-80         387753       01-Oct-74         387754       01-May-58         387755       04-Feb-72         387770       15-Feb-67         387773       01-Oct-66         387774       22-Apr-66         387775       01-Nov-66         387776       01-Nov-66         387778       01-May-57         387780       387780         387781       01-May-57         387782       387780         387783       387780         387784       01-May-57         387785       387780         387786       24-Oct-86         387787       05-Apr-76         387789       05-Apr-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domestic             | NE               | 13      | 23       | 5     | 5        | 3.7              |                                |
| 387733         21-Sep-66           387736         21-Sep-66           387738         387740           387740         01-Sep-69           387743         01-Oct-54           387745         01-Oct-54           387746         02-Jul-87           387747         02-Jul-87           387748         01-Nov-74           387750         387750           387751         30-May-89           387752         14-Apr-80           387753         01-Oct-74           387754         01-May-58           387755         04-Feb-72           387770         15-Feb-67           387778         01-Oct-66           387778         01-Nov-66           387778         01-Nov-66           387780         2-Apr-66           387780         01-May-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Domestic             | NE               | 13      | 23       | 5     | 5        | 3.7              |                                |
| 387736         21-Sep-66           387738         387739           387739         01-Sep-69           387740         01-Sep-69           387743         01-Oct-54           387745         01-Oct-54           387746         02-Jul-87           387747         02-Jul-87           387748         01-Nov-74           387750         01           387751         30-May-89           387752         14-Apr-80           387753         01-Oct-74           387764         01-May-58           387755         04-Feb-72           387770         15-Feb-67           387776         01-Nov-66           387778         01-Nov-66           387778         01-Nov-66           387780         2-Apr-66           387780         01-May-57           387780         01-May-57           387780         01-Nov-66           387778         01-Nov-66           387780         01-May-57           387780         01-May-57           387780         01-May-57           387780         01-May-57           387780         01-May-57           3877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic             | NE               | 13      | 23       | 5     | 5        |                  |                                |
| 387738         01-Sep-69           387740         01-Sep-69           387743         01-Oct-54           387745         01-Oct-54           387745         01-Oct-54           387746         01-Oct-54           387745         02-Jul-87           387747         02-Jul-87           387748         01-Nov-74           387750         30-May-89           387751         30-May-89           387752         14-Apr-80           387756         01-Oct-74           387762         01-May-58           387765         04-Feb-72           387770         15-Feb-67           387776         01-Nov-66           387778         01-Nov-66           387778         01-Nov-66           387780         01-May-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unknown              | NE               | 13      | 23       | 5     | 5        | 3.0              |                                |
| 387739         01-Sep-69           387740         01-Oct-54           387745         01-Oct-54           387746         01-Oct-54           387745         01-Oct-54           387746         01-Oct-54           387745         01-Nov-74           387740         01-Nov-74           387750         01-Nov-74           387750         30-May-89           387751         30-May-89           387756         01-Oct-74           387757         01-Oct-74           387762         01-May-58           387765         04-Feb-72           387770         15-Feb-67           387776         01-Oct-66           387778         01-Nov-66           387778         01-Nov-66           387780         01-May-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Domestic             | NE               | 13      | 23       | 5     | 5        | 30.5             |                                |
| 387740         01-Sep-69           387743         01-Oct-54           387745         01-Oct-54           387745         02-Jul-87           387747         02-Jul-87           387749         01-Nov-74           387750         0           387751         30-May-89           387752         14-Apr-80           387756         0           387757         01-Oct-74           387758         01-Oct-74           387750         04-Feb-72           387761         01-Oct-66           387770         15-Feb-67           387771         01-Oct-66           387778         01-Nov-66           387778         01-Nov-66           387780         0           387781         01-Nov-66           387782         0           387783         0           387784         0           387785         0           387786         24-Oct-86           387787         05-Apr-76           387790         26-Feb-71           387791         0           387792         0           387793         14-Apr-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Domestic             | SE               | 3       | 24       | 2     | 5        | 29.3             |                                |
| 387743         01-Oct-54           387745         01-Oct-54           387745         02-Jul-87           387747         02-Jul-87           387749         01-Nov-74           387750         387750           387751         30-May-89           387752         14-Apr-80           387756         01-Oct-74           387756         01-Oct-74           387757         01-Oct-74           387758         01-Oct-74           387750         04-Feb-72           387770         15-Feb-67           387772         01-Oct-66           387776         01-Nov-66           387778         01-Nov-66           387780         01-May-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic             | NW               | 3       | 24       | 2     | 5        | 21.3             |                                |
| 387744         01-Oct-54           387745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic             | NE               | 13      | 23       | 5     | 5        | 6.7              |                                |
| 387745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Domestic             | NE               | 13      | 23       | 5     | 5        | 30.5             |                                |
| 387746       02-Jul-87         387749       01-Nov-74         387750       387750         387751       30-May-89         387752       14-Apr-80         387756       387756         387757       01-Oct-74         387762       01-May-58         387765       04-Feb-72         387770       15-Feb-67         387776       01-Oct-66         387777       01-Oct-66         387778       01-Nov-66         387778       01-May-57         387780       22-Apr-66         387781       22-Apr-66         387782       01-May-57         387780       24-Oct-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Domestic & Stock     | NW               | 3       | 24       | 2     | 5        | 23.5             |                                |
| 387747         02-Jul-87           387749         01-Nov-74           387750         387750           387751         30-May-89           387752         14-Apr-80           387756         14-Apr-80           387757         01-Oct-74           387762         01-May-58           387765         04-Feb-72           387770         15-Feb-67           387776         01-Oct-66           387776         01-Nov-66           387776         01-Nov-66           387778         01-Nov-66           387780         01-May-57           387780         01-May-57           387780         01-Nov-66           387783         01-May-57           387780         01-May-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic             | NE               | 13      | 23       | 5     | 5        | 1.5              |                                |
| 387749       01-Nov-74         387750       30-May-89         387751       30-May-89         387752       14-Apr-80         387756       9         387757       01-Oct-74         387762       01-May-58         387765       04-Feb-72         387770       15-Feb-67         387771       01-Oct-66         387772       01-Oct-66         387776       01-Nov-66         387778       01-May-57         387780       9         387780       9         387780       9         387780       9         387780       9         387780       9         387780       9         387780       9         387780       9         387780       9         387780       24-Oct-86         387780       26-Feb-71         387791       14-Apr-72         387792       14-Apr-72         387794       20-Jun-70         387795       20-Jun-70         387796       20-Jun-70         387797       387799         387800       387800         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Domestic             | NE               | 13      | 23       | 5     | 5        |                  |                                |
| 387750       30-May-89         387751       30-May-89         387752       14-Apr-80         387756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Domestic             | NE               | 13      | 23       | 5     | 5        | 121.9            |                                |
| 387751       30-May-89         387752       14-Apr-80         387756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domestic             | NW               | 3       | 24       | 2     | 5        | 42.7             |                                |
| 387752       14-Apr-80         387756       01-Oct-74         387758       01-Oct-74         387762       01-May-58         387765       04-Feb-72         387770       15-Feb-67         387772       01-Oct-66         387774       22-Apr-66         387778       01-Nov-66         387780       01-May-57         387780       02-Apr-66         387783       01-May-57         387784       03         387785       05-Apr-76         387790       26-Feb-71         387791       05         387792       01         387793       14-Apr-72         387794       03         387795       02-Jun-70         387797       03         387799       03         387799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domestic             | NE               | 13      | 23       | 5     | 5        | 3.7              |                                |
| 387752         14-Apr-80           387756         01-Oct-74           387758         01-Oct-74           387762         01-May-58           387765         04-Feb-72           387770         15-Feb-67           387772         01-Oct-66           387774         22-Apr-66           387776         01-Nov-66           387778         01-May-57           387780         01-Nov-66           387778         01-May-57           387780         01-May-57           387780         01-May-57           387780         01-May-57           387780         01-May-57           387780         01-May-57           387780         02-Apr-66           387783         04-May-57           387784         01-May-57           387785         04-May-57           387786         24-Oct-86           387789         05-Apr-76           387790         26-Feb-71           387791         14-Apr-72           387793         14-Apr-72           387794         20-Jun-70           387795         20-Jun-70           387796         20-Jun-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Domestic             | NE               | 13      | 23       | 5     | 5        | 25.0             |                                |
| 387758         01-Oct-74           387762         01-May-58           387765         04-Feb-72           387770         15-Feb-67           387772         01-Oct-66           387774         22-Apr-66           387778         01-Nov-66           387780         01-May-57           387780         02-Apr-66           387783         01-May-57           387784         01-May-57           387785         01-May-57           387786         24-Oct-86           387788         05-Apr-76           387790         26-Feb-71           387791         14-Apr-72           387794         01           387795         01           387796         20-Jun-70           387800         01           387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Domestic             | NW               | 3       | 24       | 2     | 5        | 56.4             |                                |
| 387762       01-May-58         387765       04-Feb-72         387770       15-Feb-67         387772       01-Oct-66         387774       22-Apr-66         387776       01-Nov-66         387778       01-May-57         387780       01-May-57         387785       01-May-57         387786       24-Oct-86         387790       26-Feb-71         387791       14-Apr-72         387794       387795         387795       20-Jun-70         387797       387799         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic             | NW               | 3       | 24       | 2     | 5        | 45.7             |                                |
| 387765         04-Feb-72           387770         15-Feb-67           387772         01-Oct-66           387774         22-Apr-66           387776         01-Nov-66           387778         01-May-57           387780         387780           387783         387783           387785         387786           387786         24-Oct-86           387788         387788           387789         05-Apr-76           387791         26-Feb-71           387792         387791           387793         14-Apr-72           387794         387795           387795         20-Jun-70           387797         387799           387799         387800           387801         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Domestic             | NE               | 3       | 24       | 2     | 5        | 36.6             |                                |
| 387765       04-Feb-72         387770       15-Feb-67         387772       01-Oct-66         387774       22-Apr-66         387776       01-Nov-66         387778       01-May-57         387780       387780         387783       387783         387785       387786         387786       24-Oct-86         387787       05-Apr-76         387790       26-Feb-71         387791       387792         387793       14-Apr-72         387794       387795         387795       20-Jun-70         387797       387797         387798       20-Jun-70         387799       387800         387801       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown              |                  | 3       | 24       | 2     | 5        | 31.4             |                                |
| 387770       15-Feb-67         387772       01-Oct-66         387774       22-Apr-66         387776       01-Nov-66         387778       01-May-57         387780       387780         387782       387783         387785       387785         387786       24-Oct-86         387787       05-Apr-76         387790       26-Feb-71         387791       387792         387793       14-Apr-72         387794       387795         387795       20-Jun-70         387799       387799         387780       20-Jun-70         387780       387797         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Domestic             | SE               | 4       | 24       | 2     | 5        | 48.8             |                                |
| 387774       22-Apr-66         387776       01-Nov-66         387778       01-May-57         387780       387780         387782       387782         387783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Domestic             | NE               | 4       | 24       | 2     | 5        | 64.0             |                                |
| 387774       22-Apr-66         387776       01-Nov-66         387778       01-May-57         387780       387780         387782       387782         387783       387783         387785       24-Oct-86         387789       05-Apr-76         387790       26-Feb-71         387791       387792         387793       14-Apr-72         387794       387794         387795       20-Jun-70         387799       20-Jun-70         387799       387800         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Domestic             | NE               | 4       | 24       | 2     | 5        | 64.0             |                                |
| 387776       01-Nov-66         387778       01-May-57         387780       387780         387782       387783         387783       387785         387786       24-Oct-86         387788       2387789         387789       05-Apr-76         387790       26-Feb-71         387791       387792         387793       14-Apr-72         387794       387794         387795       387797         387797       20-Jun-70         387799       387800         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domestic             | NE               | 4       | 24       | 2     | 5        | 80.8             |                                |
| 387778       01-May-57         387780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Domestic             | NE               | 4       | 24       | 2     | 5        | 64.0             |                                |
| 387780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown              | 9                | 4       | 24       | 2     | 5        | 31.4             |                                |
| 387782         387783         387785         387786         387786         387786         387788         387789         05-Apr-76         387790         26-Feb-71         387791         387792         387793         387794         387795         387797         387797         387799         387799         387800         387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Domestic             | SH               | 4       | 24       | 2     | 5        | 36.6             |                                |
| 387783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Domestic             | NE               | 5       | 24       | 2     | 5        | 2.7              |                                |
| 387785       24-Oct-86         387786       24-Oct-86         387788       387789         387789       05-Apr-76         387790       26-Feb-71         387791       26         387792       387792         387793       14-Apr-72         387794       387795         387795       20-Jun-70         387797       387799         387799       387800         387801       Itherapy of the second sec | Domestic             | NE               | 5       | 24       | 2     | 5        | 33.5             |                                |
| 387786       24-Oct-86         387788       05-Apr-76         387789       05-Apr-76         387790       26-Feb-71         387791       26-Feb-71         387792       14-Apr-72         387793       14-Apr-72         387794       387795         387795       20-Jun-70         387797       387799         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Domestic             | NE               | 5       | 24       | 2     | 5        | 9.1              |                                |
| 387788       05-Apr-76         387789       05-Apr-76         387790       26-Feb-71         387791          387792          387793       14-Apr-72         387794          387795          387796       20-Jun-70         387797          387799          387800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Domestic             | NE               | 5       | 24       | 2     | 5        | 47.2             |                                |
| 387789       05-Apr-76         387790       26-Feb-71         387791          387792          387793       14-Apr-72         387794          387795          387796       20-Jun-70         387797          387799          387800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Domestic             | SE               | 6       | 24       | 2     | 5        | 61.0             |                                |
| 387790       26-Feb-71         387791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Domestic             | NE               | 6       | 24       | 2     | 5        | 45.7             |                                |
| 387791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Domestic             | SE               | 7       | 24       | 2     | 5        | 57.9             |                                |
| 387792       14-Apr-72         387793       14-Apr-72         387794       387795         387795       20-Jun-70         387797       387799         387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Domestic             | SH               | 7       | 24       | 2     | 5        | 57.7             |                                |
| 387793       14-Apr-72         387794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unknown              | NW               | 7       | 24       | 2     | 5        |                  |                                |
| 387794       387795       387796       20-Jun-70       387797       387799       387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domestic             | SE               | 8       | 24       | 2     | 5        | 54.9             |                                |
| 387795       20-Jun-70         387797       387797         387799       387800         387801       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Domestic             | SE               | 8       | 24       | 2     | 5        | 51.7             |                                |
| 387796     20-Jun-70       387797     387799       387800     387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domestic             | SE               | 8       | 24       | 2     | 5        |                  |                                |
| 387797       387799       387800       387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domestic             | SW               | 8       | 24       | 2     | 5        | 61.0             | L                              |
| 387799<br>387800<br>387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Domestic             | NE               | 8       | 24       | 2     | 5        | 36.6             |                                |
| 387800<br>387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic             | INL              | 8       | 24       | 2     | 5        | 30.0             |                                |
| 387801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Domestic             | SE               | 0<br>9  | 24       | 2     | 5        | 45.7             |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Domestic             | 3E<br>1          | 22      | 24       | 4     | 5<br>5   | 45.7             |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stock                | NW               | 22      | 24       | 4     | 5<br>5   | 45.7             |                                |
| 387802 25-Nov-84<br>387803 01-Jun-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domestic             | SE               | 9       | 24       | 4     | 5<br>5   | 45.7<br>50.3     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                  |         |          | <br>  |          |                  | Vee                            |
| 387805 15-Jan-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic & Stock     | NW<br>SE         | 22<br>9 | 24       | -     | 5<br>5   | 35.1             | Yes                            |
| 387806 11-Oct-87<br>387808 18-Jul-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domestic<br>Domestic | NE               | 22      | 24<br>24 | 2     | 5        | 54.9<br>30.5     | Yes                            |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 387810                   |                  | Domestic         | SW               | 9       | 24       | 2     | 5        | 36.6             |                                |
| 387812                   | 10-Jul-70        | Domestic         | NW               | 9       | 24       | 2     | 5        | 33.5             |                                |
| 387813                   | 25-Oct-82        | Stock            | SE               | 23      | 24       | 4     | 5        | 64.0             | Yes                            |
| 387815                   |                  | Domestic         | SW               | 23      | 24       | 4     | 5        |                  |                                |
| 387816                   | 09-Nov-74        | Domestic         | NW               | 9       | 24       | 2     | 5        | 94.5             |                                |
| 387817                   |                  | Domestic         | NE               | 24      | 24       | 4     | 5        | 30.5             |                                |
| 387819                   | 22-Oct-77        | Unknown          | NE               | 24      | 24       | 4     | 5        | 36.6             |                                |
| 387820                   | 24-Oct-79        | Stock            | NE               | 24      | 24       | 4     | 5        | 39.6             |                                |
| 387821                   | 21-May-86        | Domestic         | 16               | 13      | 23       | 5     | 5        | 24.4             |                                |
| 387822                   | 05-Jul-85        | Domestic & Stock | SE               | 25      | 24       | 4     | 5        | 39.6             | Yes                            |
| 387823                   | 28-Jun-87        | Domestic & Stock | SE               | 25      | 24       | 4     | 5        | 41.1             | Yes                            |
| 387825                   | 14-Aug-80        | Stock            | SW               | 25      | 24       | 4     | 5        | 30.5             | Yes                            |
| 387826                   |                  | Domestic         | NW               | 9       | 24       | 2     | 5        | 45.7             |                                |
| 387829                   |                  | Domestic         | NE               | 9       | 24       | 2     | 5        | 68.6             |                                |
| 387830                   |                  | Domestic         | NE               | 9       | 24       | 2     | 5        | 33.5             |                                |
| 387831                   |                  | Domestic         | NW               | 27      | 24       | 4     | 5        | 77.7             |                                |
| 387832                   |                  | Domestic         | NE               | 9       | 24       | 2     | 5        | 27.4             |                                |
| 387835                   | 01-Jul-74        | Domestic         | NE               | 9       | 24       | 2     | 5        | 73.2             |                                |
| 387836                   | 01-Jan-76        | Stock            | SW               | 28      | 24       | 4     | 5        | 18.3             |                                |
| 387838                   | 18-Aug-84        | Stock            | NW               | 28      | 24       | 4     | 5        | 33.5             |                                |
| 387840                   | 07-Dec-77        | Domestic         | NE               | 9       | 24       | 2     | 5        | 75.0             |                                |
| 387841                   | 27-Oct-72        | Stock            | NE               | 28      | 24       | 4     | 5        | 30.5             |                                |
| 387842                   | 12-Apr-85        | Stock            | NE               | 28      | 24       | 4     | 5        | 33.5             |                                |
| 387845                   |                  | Domestic         | SE               | 30      | 24       | 4     | 5        | 3.7              |                                |
| 387849                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        | 31.7             |                                |
| 387850                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        | 61.0             |                                |
| 387855                   | 16-Jun-70        | Domestic         | SE               | 32      | 24       | 4     | 5        | 61.0             |                                |
| 387859                   |                  | Domestic         | NE               | 33      | 24       | 4     | 5        | 97.5             |                                |
| 387860                   |                  | Domestic         | NE               | 33      | 24       | 4     | 5        | 106.7            |                                |
| 387861                   | 09-Jul-74        | Domestic         | NE               | 33      | 24       | 4     | 5        | 45.7             |                                |
| 387862                   | 10-Nov-87        | Domestic         | SE               | 34      | 24       | 4     | 5        | 24.4             |                                |
| 387863                   | 30-Aug-87        | Domestic         | SE               | 34      | 24       | 4     | 5        | 35.4             |                                |
| 387865                   | Ŭ                | Domestic         | SW               | 34      | 24       | 4     | 5        | 82.3             |                                |
| 387866                   | 18-Mar-71        | Domestic & Stock | NW               | 34      | 24       | 4     | 5        | 23.5             |                                |
| 387867                   | 08-Sep-83        | Stock            | NW               | 34      | 24       | 4     | 5        | 35.1             |                                |
| 387868                   | 06-Oct-64        | Stock            | SE               | 35      | 24       | 4     | 5        | 22.9             |                                |
| 387869                   | 13-May-81        | Domestic         | SE               | 35      | 24       | 4     | 5        | 27.4             |                                |
| 387870                   | 13-Apr-82        | Domestic         | SE               | 35      | 24       | 4     | 5        | 30.5             |                                |
| 387871                   | 24-Oct-74        | Domestic         | SW               | 35      | 24       | 4     | 5        | 54.9             | Yes                            |
| 387872                   | 08-May-72        | Domestic         | SW               | 35      | 24       | 4     | 5        | 24.4             |                                |
| 387873                   | 12-Nov-81        | Stock            | SW               | 35      | 24       | 4     | 5        | 27.4             | Yes                            |
| 387874                   | 1                | Domestic         | NW               | 35      | 24       | 4     | 5        | 45.7             |                                |
| 387875                   | 16-Oct-80        | Stock            | SW               | 36      | 24       | 4     | 5        | 13.1             |                                |
| 387876                   | 16-Apr-75        | Domestic         | SE               | 10      | 24       | 2     | 5        | 60.7             |                                |
| 387877                   | 01-Jun-69        | Domestic         | SE               | 10      | 24       | 2     | 5        | 40.2             |                                |
| 387879                   | 11-Jun-75        | Domestic         | SE               | 10      | 24       | 2     | 5        | 39.9             |                                |
| 387882                   | 26-Mar-75        | Domestic         | SE               | 10      | 24       | 2     | 5        | 48.8             |                                |
| 387883                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        | 91.4             |                                |
| 387884                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        | 54.9             |                                |
| 387891                   | 29-Jul-78        | Domestic         | SE               | 10      | 24       | 2     | 5        | 93.0             |                                |
| 387893                   | 11-Aug-81        | Domestic         | SE               | 10      | 24       | 2     | 5        | 53.3             |                                |
| 387897                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        |                  |                                |
| 387902                   |                  | Domestic         | SE               | 10      | 24       | 2     | 5        | 128.0            |                                |
| 387903                   | 07-May-87        | Domestic         | 1                | 10      | 24       | 2     | 5        | 91.4             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|----------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 387904                   | 13-Aug-60        | Unknown  | 8                | 10      | 24       | 2     | 5        | 33.8             |                                |
| 387905                   | 16-May-73        | Domestic | SW               | 10      | 24       | 2     | 5        | 61.0             |                                |
| 387907                   |                  | Unknown  | SW               | 10      | 24       | 2     | 5        | 61.0             |                                |
| 387908                   |                  | Unknown  | SW               | 10      | 24       | 2     | 5        | 51.8             |                                |
| 387910                   | 01-Jan-55        | Unknown  | SW               | 1       | 24       | 3     | 5        | 32.9             |                                |
| 387912                   | 12-Sep-72        | Domestic | SW               | 10      | 24       | 2     | 5        | 64.0             |                                |
| 387914                   | 01-Nov-80        | Domestic | SW               | 1       | 24       | 3     | 5        | 48.8             |                                |
| 387916                   | 09-Apr-76        | Domestic | SW               | 10      | 24       | 2     | 5        | 54.9             |                                |
| 387917                   | 01-Jan-71        | Domestic | SW               | 10      | 24       | 2     | 5        | 62.5             |                                |
| 387918                   | 01-Nov-80        | Domestic | SW               | 1       | 24       | 3     | 5        | 42.7             |                                |
| 387920                   | 14-Jul-77        | Domestic | SW               | 10      | 24       | 2     | 5        | 39.6             |                                |
| 387922                   |                  | Domestic | SW               | 10      | 24       | 2     | 5        | 48.8             |                                |
| 387923                   | 15-Aug-74        | Unknown  | SW               | 10      | 24       | 2     | 5        | 47.2             |                                |
| 387925                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        |                  |                                |
| 387926                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        | 24.7             |                                |
| 387927                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        | 30.5             |                                |
| 387929                   | 01-Jan-55        | Unknown  | NW               | 10      | 24       | 2     | 5        | 39.6             |                                |
| 387932                   | 01-Oct-70        | Domestic | NW               | 10      | 24       | 2     | 5        | 27.4             |                                |
| 387933                   | 09-Jan-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 48.8             |                                |
| 387934                   | 28-Feb-74        | Domestic | NW               | 10      | 24       | 2     | 5        | 140.2            |                                |
| 387936                   | 29-May-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 41.1             |                                |
| 387937                   | 06-Mar-73        | Domestic | NW               | 10      | 24       | 2     | 5        | 42.7             |                                |
| 387938                   | 19-May-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 91.4             |                                |
| 387939                   | 01-Sep-74        | Domestic | NW               | 10      | 24       | 2     | 5        | 28.7             |                                |
| 387940                   | 11-Jun-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 86.9             |                                |
| 387941                   | 09-Jun-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 91.4             |                                |
| 387942                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        | 36.6             |                                |
| 387943                   | 21-Jul-77        | Domestic | NW               | 10      | 24       | 2     | 5        | 15.2             |                                |
| 387944                   | 27-Oct-79        | Domestic | NW               | 10      | 24       | 2     | 5        | 68.3             |                                |
| 387946                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        | 53.3             |                                |
| 387947                   | 06-Sep-88        | Domestic | NW               | 10      | 24       | 2     | 5        | 85.3             |                                |
| 387951                   | 13-Mar-89        | Domestic | NW               | 10      | 24       | 2     | 5        | 54.9             |                                |
| 387953                   | 24-Jun-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 45.7             |                                |
| 387954                   |                  | Domestic | NW               | 10      | 24       | 2     | 5        |                  |                                |
| 387955                   |                  | Domestic | NE               | 10      | 24       | 2     | 5        |                  |                                |
| 387956                   | 31-Jul-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 45.7             |                                |
| 387957                   |                  | Domestic | NE               | 10      | 24       | 2     | 5        | 62.8             |                                |
| 387958                   | 28-Aug-76        | Domestic | NE               | 10      | 24       | 2     | 5        | 15.8             |                                |
| 387959                   | 18-Jun-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 91.4             |                                |
| 387960                   | 25-Jun-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 91.4             |                                |
| 387961                   | 25-Jun-75        | Domestic | NE               | 10      | 24       | 2     | 5        | 61.0             |                                |
| 387962                   | 14-Sep-84        | Domestic | SW               | 1       | 24       | 3     | 5        | 45.7             |                                |
| 387963                   | 01-Nov-71        | Domestic | NE               | 10      | 24       | 2     | 5        | 42.7             |                                |
| 387964                   | 01-May-87        | Domestic | SW               | 1       | 24       | 3     | 5        | 61.0             |                                |
| 387965                   | 04-May-87        | Domestic | SW               | 1       | 24       | 3     | 5        | 33.5             |                                |
| 387966                   | 05-May-87        | Domestic | SW               | 1       | 24       | 3     | 5        | 29.0             |                                |
| 387967                   | 13-Jun-78        | Domestic | 15               | 10      | 24       | 2     | 5        | 36.6             |                                |
| 387968                   | 07-May-87        | Domestic | SW               | 10      | 24       | 3     | 5        | 33.5             |                                |
| 387969                   | 57 May-07        | Domestic | NE               | 10      | 24       | 2     | 5        | 128.0            |                                |
| 387970                   | 22-Jun-81        | Domestic | SW               | 10      | 24       | 3     | 5        | 46.3             |                                |
| 387970                   | 14-Oct-83        | Domestic | 16               | 10      | 24       | 2     | 5        | 40.3             |                                |
| 387972                   | 09-Sep-81        | Domestic | SW               | 10      | 24       | 3     | 5        | 32.0             |                                |
| 387972                   | 11-Aug-81        | Domestic | SW               | 1       | 24       | 3     | 5        | 32.0             |                                |
| 387973                   | TT-Aug-ol        | Domestic | NE               | 10      | 24       | 2     | 5<br>5   | 7.6              |                                |
| 387975                   |                  | Domestic | INE              | 10      | 24       | 2     | 5        | 85.3             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use                     | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 387976                   |                  | Domestic                     |                  | 10      | 24       | 2     | 5        | 54.9             |                                |
| 387977                   |                  | Domestic                     | NW               | 1       | 24       | 3     | 5        |                  |                                |
| 387978                   | 26-Mar-69        | Domestic                     | NE               | 1       | 24       | 3     | 5        | 42.7             |                                |
| 387979                   |                  | Domestic                     |                  | 1       | 24       | 3     | 5        | 48.8             |                                |
| 387980                   | 13-Mar-84        | Domestic                     | SE               | 2       | 24       | 3     | 5        | 24.4             |                                |
| 387981                   | 07-Mar-89        | Domestic                     | SE               | 2       | 24       | 3     | 5        | 29.0             |                                |
| 387982                   | 04-Jun-74        | Domestic                     | SH               | 2       | 24       | 3     | 5        | 30.5             |                                |
| 387983                   |                  | Domestic                     | SH               | 2       | 24       | 3     | 5        | 25.9             |                                |
| 387984                   | 03-May-75        | Domestic                     | SH               | 2       | 24       | 3     | 5        | 36.6             |                                |
| 387985                   |                  | Domestic                     | SH               | 2       | 24       | 3     | 5        | 18.3             |                                |
| 387986                   |                  | Domestic                     | SW               | 2       | 24       | 3     | 5        | 18.3             |                                |
| 387987                   | 17-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 18.3             |                                |
| 387988                   | 18-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 36.6             |                                |
| 387989                   | 12-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 30.5             |                                |
| 387990                   | 17-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 24.4             |                                |
| 387991                   | 14-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 51.8             |                                |
| 387992                   | 13-Jun-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 67.1             |                                |
| 387993                   | 26-Jun-64        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 46.9             |                                |
| 387994                   | 15-Jul-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 40.9             |                                |
| 387995                   | 15-Aug-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 28.3             |                                |
| 387996                   | 15-Aug-74        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 44.2             |                                |
| 387990                   |                  |                              | SW               | 2       | 24       | 3     | 5        | 12.2             |                                |
| 387997                   | 00 100 07        | Domestic<br>Domestic & Stock | SW               | 2       | 24       | 3     | 5        |                  |                                |
| 387998                   | 09-Jun-87        | Domestic & Stock             | SW               | 2       | 24       | 3     | 5        | 41.1<br>47.2     |                                |
| 387999                   | 09-Jun-87        | Domestic & Stock             | SW               | 2       | 24       | 3     | 5        | 27.4             |                                |
|                          |                  | Domestic                     |                  |         |          | 2     |          |                  |                                |
| 388041                   | 01 Dec 74        | Domestic                     | 12               | 10      | 24       |       | 5        | 50.3             |                                |
| 388046                   | 06-Dec-74        | Domestic                     | SE               | 10      | 24       | 2     | 5        | 112.8            |                                |
| 388052                   | 0(0+71           | Domestic                     |                  | 11      | 24       | 2     | 5        | 53.6             |                                |
| 388054                   | 06-Oct-71        | Domestic                     | NW               | 11      | 24       | 2     | 5        | 100.6            |                                |
| 388055                   | 01-Sep-64        | Domestic                     | NW               | 11      | 24       | 2     | 5        | 108.5            |                                |
| 388056                   | 18-Oct-76        | Domestic                     | NE               | 11      | 24       | 2     | 5        | 86.9             |                                |
| 388062                   | 28-Jul-87        | Domestic                     | SW               | 12      | 24       | 2     | 5        | 121.9            |                                |
| 388089                   | 06-Aug-62        | Domestic                     | SW               | 2       | 24       | 3     | 5        | 35.7             |                                |
| 388092                   |                  | Domestic                     | SE               | 15      | 24       | 2     | 5        | 41.8             |                                |
| 388094                   |                  | Domestic                     | SE               | 15      | 24       | 2     | 5        | 35.7             |                                |
| 388095                   | 15-Apr-71        | Domestic                     | SE               | 15      | 24       | 2     | 5        | 39.6             |                                |
| 388096                   | 01-Apr-58        | Domestic                     | SE               | 15      | 24       | 2     | 5        | 68.6             |                                |
| 388097                   | 04-Nov-70        | Domestic                     | 1                | 15      | 24       | 2     | 5        | 40.8             |                                |
| 388098                   |                  | Domestic                     | SE               | 15      | 24       | 2     | 5        | 30.5             |                                |
| 388099                   |                  | Domestic                     | SE               | 15      | 24       | 2     | 5        | 45.7             |                                |
| 388100                   |                  |                              | 5                | 2       | 24       | 3     | 5        | 38.4             |                                |
| 388102                   | 01-Jul-70        | Domestic                     | NW               | 2       | 24       | 3     | 5        | 26.5             |                                |
| 388104                   |                  | Domestic                     | NW               | 2       | 24       | 3     | 5        |                  |                                |
| 388105                   |                  | Domestic                     | SW               | 15      | 24       | 2     | 5        | 76.2             |                                |
| 388106                   |                  | Domestic                     | NW               | 2       | 24       | 3     | 5        |                  |                                |
| 388107                   | 27-Oct-78        | Industrial                   | 13               | 2       | 24       | 3     | 5        | 43.3             |                                |
| 388109                   |                  | Domestic                     | NE               | 2       | 24       | 3     | 5        |                  |                                |
| 388110                   |                  | Domestic                     | SW               | 2       | 24       | 3     | 5        | 61.0             |                                |
| 388111                   |                  | Domestic                     | NW               | 3       | 24       | 3     | 5        | 21.3             |                                |
| 388112                   | 09-May-73        | Domestic & Stock             | NW               | 3       | 24       | 3     | 5        | 25.9             |                                |
| 388113                   | 04-Jun-75        | Domestic & Stock             | NE               | 3       | 24       | 3     | 5        | 62.5             |                                |
| 388114                   | 27-Sep-61        | Domestic                     | NE               | 3       | 24       | 3     | 5        | 54.9             |                                |
| 388115                   | 12-Sep-84        | Domestic                     | NE               | 3       | 24       | 3     | 5        | 50.3             |                                |
| 388116                   |                  | Domestic                     | NE               | 3       | 24       | 3     | 5        | -                |                                |
| 388117                   | 12-Nov-75        | Domestic                     | SW               | 4       | 24       | 3     | 5        | 21.3             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use             | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|----------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 388119                   | 01-Nov-70              | Stock                | SE               | 5       | 24       | 3     | 5        | 27.7             |                                |
| 388120                   |                        | Domestic             | SW               | 5       | 24       | 3     | 5        | 41.1             |                                |
| 388122                   |                        | Domestic             | SW               | 5       | 24       | 3     | 5        | 48.8             |                                |
| 388123                   | 01-Sep-70              | Unknown              | SW               | 5       | 24       | 3     | 5        | 68.0             |                                |
| 388125                   |                        | Domestic             | SW               | 5       | 24       | 3     | 5        | 28.0             |                                |
| 388126                   |                        | Domestic             | EH               | 5       | 24       | 3     | 5        | 27.4             |                                |
| 388127                   | 16-Jun-88              | Domestic             | SW               | 5       | 24       | 3     | 5        | 48.8             |                                |
| 388129                   | 08-Mar-89              | Domestic             | SW               | 5       | 24       | 3     | 5        | 61.0             |                                |
| 388130                   | 23-Mar-89              | Domestic             | SW               | 5       | 24       | 3     | 5        | 50.3             |                                |
| 388131                   | 24-Mar-89              | Domestic             | SW               | 5       | 24       | 3     | 5        | 24.4             |                                |
| 388133                   |                        | Domestic             | WH               | 5       | 24       | 3     | 5        | 45.7             |                                |
| 388134                   | 01-May-71              | Domestic             | SW               | 5       | 24       | 3     | 5        | 45.1             |                                |
| 388135                   |                        | Domestic             | NW               | 5       | 24       | 3     | 5        | 38.1             |                                |
| 388136                   |                        | Domestic             | NW               | 5       | 24       | 3     | 5        | 38.1             |                                |
| 388137                   |                        | Domestic             | NW               | 5       | 24       | 3     | 5        | 50.3             |                                |
| 388138                   |                        | Domestic             | NW               | 5       | 24       | 3     | 5        | 30.5             |                                |
| 388139                   |                        | Domestic             | NW               | 5       | 24       | 3     | 5        | 22.9             |                                |
| 388140                   | 12-Jul-83              | Domestic             | NW               | 5       | 24       | 3     | 5        | 39.6             |                                |
| 388142                   | 08-Mar-89              | Domestic             | NW               | 5       | 24       | 3     | 5        | 22.9             |                                |
| 388144                   | 14-Nov-89              | Domestic             | NW               | 5       | 24       | 3     | 5        | 36.6             |                                |
| 388145                   | 24-Mar-70              | Domestic             | NW               | 5       | 24       | 3     | 5        | 26.8             |                                |
| 388147                   | 29-Jun-67              | Domestic             | 13               | 5       | 24       | 3     | 5        | 56.4             |                                |
| 388149                   | 01-Aug-69              | Domestic             | NW               | 5       | 24       | 3     | 5        | 19.2             |                                |
| 388151                   | 10-May-72              | Domestic             | NE               | 5       | 24       | 3     | 5        | 30.5             |                                |
| 388153                   | 12-Jan-84              | Domestic             | NE               | 5       | 24       | 3     | 5        | 36.6             |                                |
| 388154                   |                        | Domestic             |                  | 5       | 24       | 3     | 5        | 36.6             |                                |
| 388155                   | 22-Jun-74              | Domestic             |                  | 5       | 24       | 3     | 5        | 48.8             |                                |
| 388157                   |                        | Domestic             | NW               | 15      | 24       | 2     | 5        | 30.5             |                                |
| 388158                   |                        | Domestic             | NW               | 15      | 24       | 2     | 5        | 57.9             |                                |
| 388159                   | 01-Sep-69              | Domestic             | NW               | 15      | 24       | 2     | 5        | 37.8             |                                |
| 388160                   |                        | Unknown              | NW               | 15      | 24       | 2     | 5        | 128.0            |                                |
| 388161                   |                        | Domestic & Stock     | NW               | 15      | 24       | 2     | 5        | 77.7             |                                |
| 388162                   | 01-Jan-73              | Domestic             | NW               | 15      | 24       | 2     | 5        | 36.6             |                                |
| 388170                   | or our ro              | Domestic             |                  | 15      | 24       | 2     | 5        | 0010             |                                |
| 388171                   |                        | Domestic             |                  | 15      | 24       | 2     | 5        |                  |                                |
| 388172                   |                        | Domestic             | NW               | 16      | 24       | 2     | 5        | 41.1             |                                |
| 388173                   | 27-Apr-62              | Domestic             | NE               | 16      | 24       | 2     | 5        | 51.8             |                                |
| 388174                   | 277101-02              | Domestic             | NE               | 16      | 24       | 2     | 5        | 24.4             |                                |
| 388175                   |                        | Domestic             | NE               | 16      | 24       | 2     | 5        | 30.5             |                                |
| 388176                   | 20-Feb-69              | Domestic             | NE               | 16      | 24       | 2     | 5        | 45.7             |                                |
| 388177                   | 03-Mar-79              | Domestic             | 16               | 16      | 24       | 2     | 5        | 47.5             |                                |
| 388179                   | 16-Jun-87              | Domestic             | NE               | 16      | 24       | 2     | 5        | 57.9             |                                |
| 388180                   | 14-Sep-82              | Domestic             | 1                | 17      | 24       | 2     | 5        | 48.8             |                                |
| 388181                   | 01-Jun-74              | Domestic             | SW               | 17      | 24       | 2     | 5        | 30.5             |                                |
| 388182                   | 30-Sep-71              | Domestic             | SW               | 17      | 24       | 2     | 5        | 42.7             |                                |
| 388183                   | 30 3CP-71              | Domestic             | SW               | 17      | 24       | 2     | 5        | 38.1             |                                |
| 388184                   |                        | Unknown              | 5                | 17      | 24       | 2     | 5        | 50.1             |                                |
| 388185                   | 17-Jun-71              | Unknown              | 4                | 17      | 24       | 2     | 5        | 36.6             |                                |
| 388186                   | 21-Mar-72              | Unknown              | 4<br>NE          | 17      | 24       | 2     | 5        | 109.7            |                                |
| 388187                   | 18-Feb-87              |                      | SE               | 17      | 24       | 2     | 5        | 59.7             |                                |
| 388187                   | 01-Jan-60              | Stock<br>Domestic    | SW               | 18      | 24       | 2     | 5        | 59.7<br>76.2     |                                |
| 388188                   | 01-Jan-60<br>02-Jun-67 |                      | Svv<br>NW        | 18      | 24       | 2     | 5        | 67.1             |                                |
|                          | 02-JUII-07             | Domestic<br>Domostic |                  |         |          |       |          |                  |                                |
| 388192                   | 01 4400 71             | Domestic<br>Domostic | NW               | 18      | 24       | 2     | 5        | 38.1             |                                |
| 388193                   | 01-Aug-71              | Domestic             | SE               | 24      | 23       | 5     | 5        | 18.3             |                                |
| 388194                   | 23-Jul-74              | Domestic             | NW               | 18      | 24       | 2     | 5        | 21.3             | I                              |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use             | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|----------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 388195                   | 25-Jun-77              | Domestic             | NW               | 18      | 24       | 2     | 5        | 39.6             |                                |
| 388196                   |                        | Domestic             | NE               | 24      | 23       | 5     | 5        | 70.1             |                                |
| 388197                   | 01-Aug-71              | Domestic             | NE               | 24      | 23       | 5     | 5        | 45.7             |                                |
| 388198                   |                        | Domestic             | NE               | 24      | 23       | 5     | 5        | 57.9             |                                |
| 388200                   |                        | Domestic             | NE               | 24      | 23       | 5     | 5        | 48.8             |                                |
| 388201                   |                        | Unknown              | NE               | 24      | 23       | 5     | 5        |                  |                                |
| 388203                   | 20-Jul-78              | Domestic             | 11               | 18      | 24       | 2     | 5        | 20.1             |                                |
| 388204                   | 20-Jul-72              | Unknown              | SW               | 25      | 23       | 5     | 5        | 18.3             |                                |
| 388205                   | 16-May-79              | Domestic             | 11               | 18      | 24       | 2     | 5        | 22.9             |                                |
| 388206                   |                        | Unknown              | NW               | 25      | 23       | 5     | 5        |                  |                                |
| 388207                   | 05-May-80              | Domestic             | NW               | 18      | 24       | 2     | 5        | 18.3             |                                |
| 388208                   | 01-Mar-71              | Domestic             | NE               | 25      | 23       | 5     | 5        | 38.1             |                                |
| 388209                   | 26-Nov-79              | Domestic             | 15               | 18      | 24       | 2     | 5        | 56.4             |                                |
| 388210                   | 20-Aug-76              | Domestic             | NH               | 27      | 23       | 5     | 5        | 22.9             |                                |
| 388213                   | 22-Jan-86              | Domestic             | 13               | 18      | 24       | 2     | 5        | 22.9             |                                |
| 388215                   | 13-Jan-86              | Domestic             | NW               | 18      | 24       | 2     | 5        | 29.0             |                                |
| 388216                   | 11-Feb-87              | Domestic             | NW               | 18      | 24       | 2     | 5        | 30.5             |                                |
| 388219                   | 17-Feb-87              | Domestic             | NW               | 18      | 24       | 2     | 5        | 41.1             |                                |
| 388220                   | 30-Apr-87              | Domestic             | NW               | 18      | 24       | 2     | 5        | 19.8             |                                |
| 388221                   | 29-Jun-89              | Domestic             | NW               | 18      | 24       | 2     | 5        | 19.8             |                                |
| 388223                   | 11-Oct-89              | Domestic             | NW               | 18      | 24       | 2     | 5        | 22.9             |                                |
| 388224                   | 13-Oct-89              | Domestic             | NW               | 18      | 24       | 2     | 5        | 22.6             |                                |
| 388227                   | 01-Apr-60              | Domestic             | NW               | 18      | 24       | 2     | 5        | 59.7             |                                |
| 388232                   | 11-Dec-87              | Domestic             | NH               | 18      | 24       | 2     | 5        | 51.8             |                                |
| 388239                   | 23-Apr-71              | Domestic             | NE               | 18      | 24       | 2     | 5        | 121.3            |                                |
| 388246                   | 01-Jan-68              | Domestic             | NE               | 18      | 24       | 2     | 5        | 47.2             |                                |
| 388247                   | 01-Nov-70              | Industrial           | NE               | 18      | 24       | 2     | 5        | 27.7             |                                |
| 388249                   | 19-Jul-74              | Domestic             | NE               | 18      | 24       | 2     | 5        | 115.8            |                                |
| 388250                   | 01-May-73              | Domestic & Stock     | NE               | 18      | 24       | 2     | 5        | 62.5             |                                |
| 388252                   | 01-Aug-71              | Domestic             | NE               | 18      | 24       | 2     | 5        | 126.5            |                                |
| 388253                   | 01-May-73              | Domestic & Stock     | NE               | 18      | 24       | 2     | 5        | 158.5            |                                |
| 388255                   | 03-Sep-69              | Domestic             | NE               | 18      | 24       | 2     | 5        | 164.6            |                                |
| 388256                   | 30-May-77              | Domestic             | NE               | 18      | 24       | 2     | 5        | 50.0             |                                |
| 388257                   |                        | Domestic             | NE               | 18      | 24       | 2     | 5        | 152.4            |                                |
| 388258                   | 23-Oct-87              | Domestic             | NE               | 18      | 24       | 2     | 5        | 59.4             |                                |
| 388260                   | 10-Oct-87              | Domestic             | NE               | 18      | 24       | 2     | 5        | 61.0             |                                |
| 388262                   | 14-Jul-86              | Domestic             | 11               | 18      | 24       | 2     | 5        | 33.5             |                                |
| 388264                   | 11-May-68              | Domestic             | SE               | 19      | 24       | 2     | 5        | 86.9             |                                |
| 388267                   | 06-May-76              | Domestic             | SE               | 19      | 24       | 2     | 5        | 121.9            |                                |
| 388270                   | 01-Nov-80              | Domestic             | SE               | 19      | 24       | 2     | 5        | 97.5             |                                |
| 388273                   | 01-Nov-80              | Domestic             | SE               | 19      | 24       | 2     | 5        | 115.8            |                                |
| 388276                   | 28-May-82              | Domestic             | SE               | 19      | 24       | 2     | 5        | 151.5            |                                |
| 388279                   | 20 10101 02            | Domestic             | SE               | 19      | 24       | 2     | 5        | 101.0            |                                |
| 388280                   |                        | Domestic             | 7                | 19      | 24       | 2     | 5        | 13.7             |                                |
| 388282                   |                        | Domestic             | SW               | 19      | 24       | 2     | 5        | 10.7             |                                |
| 388299                   |                        | Domestic             | NE               | 7       | 24       | 3     | 5        | 54.9             |                                |
| 388300                   | 07-Sep-89              | Domestic & Stock     | SE               | 9       | 24       | 3     | 5        | 59.4             | Yes                            |
| 388300                   | 07-3ep-89<br>03-Dec-88 | Domestic & Stock     | NW               | 9       | 24       | 3     | 5        | 36.6             | 162                            |
| 388302                   | 30-Sep-76              | Domestic             | SE               | 9<br>10 | 24       | 3     | 5        | 42.7             |                                |
| 388302                   | 30-36h-10              |                      | SH               | 10      |          | 3     | 5<br>5   |                  |                                |
| 388303                   | 18-Apr-74              | Domestic<br>Domestic | SH<br>SW         | 11      | 24<br>24 | 3     | 5        | 24.4<br>41.5     |                                |
| 388304<br>388305         | 22-Apr-74              |                      | SW               | 11      | 24       | 3     | 5        |                  |                                |
|                          |                        | Domestic<br>Domostic |                  |         |          | 3     | 5        | 36.6             |                                |
| 388306                   | 17-Apr-74              | Domestic<br>Domostic | SW<br>SW         | 11      | 24       |       | 5        | 48.2             |                                |
| 388307                   | 23-Apr-74              | Domestic             |                  | 11      | 24       | 3     |          | 42.7             |                                |
| 388308                   | 01-Jul-81              | Municipal            | SW               | 11      | 24       | 3     | 5        | 28.7             | I                              |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use             | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified |
|--------------------------|------------------|----------------------|------------------|---------|----------|-------|----------|------------------|-------------------|
| 388309                   |                  | Domestic             | SW               | 11      | 24       | 3     | 5        | 61.0             |                   |
| 388310                   |                  | Domestic             | 6                | 11      | 24       | 3     | 5        | 29.9             |                   |
| 388311                   | 09-Sep-76        | Domestic             | NW               | 11      | 24       | 3     | 5        | 21.3             |                   |
| 388312                   |                  | Domestic             | NW               | 11      | 24       | 3     | 5        | 4.3              |                   |
| 388313                   |                  | Domestic             | NW               | 11      | 24       | 3     | 5        |                  |                   |
| 388314                   | 02-Jun-86        | Domestic & Stock     | NE               | 11      | 24       | 3     | 5        | 41.1             |                   |
| 388316                   | 01-Aug-81        | Domestic             | SW               | 12      | 24       | 3     | 5        | 22.9             |                   |
| 388317                   | 01-May-84        | Domestic             | SW               | 12      | 24       | 3     | 5        | 61.0             |                   |
| 388325                   | 13-Jul-89        | Domestic             | NW               | 12      | 24       | 3     | 5        | 50.3             |                   |
| 388326                   | 08-Nov-65        | Domestic             | SW               | 19      | 24       | 2     | 5        | 18.6             |                   |
| 388327                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 13.7             |                   |
| 388328                   |                  | Domestic             | 1                | 19      | 24       | 2     | 5        | 64.0             |                   |
| 388329                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 51.8             |                   |
| 388330                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 51.8             |                   |
| 388331                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 33.5             |                   |
| 388332                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 19.8             |                   |
| 388333                   |                  | Domestic             | SW               | 19      | 24       | 2     | 5        | 18.3             |                   |
| 388335                   | 03-Jun-82        | Domestic             | SW               | 19      | 24       | 2     | 5        | 66.1             |                   |
| 388336                   | 19-Aug-87        | Domestic             | SW               | 19      | 24       | 2     | 5        | 108.2            |                   |
| 388337                   |                  | Domestic             | NW               | 19      | 24       | 2     | 5        | 48.8             |                   |
| 388338                   |                  | Domestic & Stock     | NW               | 19      | 24       | 2     | 5        | 48.8             |                   |
| 388339                   |                  | Domestic             | NW               | 19      | 24       | 2     | 5        | 10.0             |                   |
| 388340                   | 01-Dec-74        | Domestic             | NW               | 19      | 24       | 2     | 5        | 54.9             |                   |
| 388342                   | 03-Nov-71        | Domestic             | NW               | 19      | 24       | 2     | 5        | 61.0             |                   |
| 388344                   | 00 1107 / 1      | Domestic             | NW               | 19      | 24       | 2     | 5        | 45.7             |                   |
| 388345                   |                  | Domestic             | NW               | 19      | 24       | 2     | 5        | 36.6             |                   |
| 388346                   | 10-Oct-78        | Domestic             | NW               | 19      | 24       | 2     | 5        | 61.0             |                   |
| 388347                   | 01-Jul-70        | Domestic             | NW               | 19      | 24       | 2     | 5        | 54.9             |                   |
| 388351                   | 01 501 70        | Domestic             | NW               | 19      | 24       | 2     | 5        | 64.0             |                   |
| 388352                   |                  | Domestic             | NW               | 19      | 24       | 2     | 5        | 54.9             |                   |
| 388353                   | 08-May-80        | Domestic             | NW               | 19      | 24       | 2     | 5        | 82.3             |                   |
| 388356                   | 21-Jun-76        | Stock                | NE               | 19      | 24       | 2     | 5        | 160.6            |                   |
| 388357                   | 21-Juli-70       | Domestic             | NE               | 19      | 24       | 2     | 5        | 18.3             |                   |
| 388359                   |                  | Domestic             | NE               | 19      | 24       | 2     | 5        | 33.5             |                   |
| 388359                   | 30-Jul-58        |                      | INE              | 19      | 24       | 2     | 5<br>5   | 53.5             |                   |
| 388363                   | 30-Jui-36        | Unknown              |                  | 19      | 24       | 2     | 5        |                  |                   |
|                          |                  | Domestic             |                  |         |          |       |          | 15.2             |                   |
| 388366                   | 16 Apr 76        | Domestic             | сг               | 19      | 24       | 2     | 5        | 21.3             |                   |
| 388367                   | 16-Apr-76        | Domestic             | SE               | 2       | 24       | 2     | 5        | 67.1             |                   |
| 388368                   |                  | Domestic<br>Domostic | SE               | 20      | 24       | 2     | 5        | 56.4             |                   |
| 388369                   | 01 500 70        | Domestic<br>Domostic | SW               | 4       | 25       | 3     | 5<br>F   | 45.7             |                   |
| 388370                   | 01-Sep-70        | Domestic             | SW               | 4       | 25       | 3     | 5        | 30.5             |                   |
| 388371                   |                  | Domestic             | SE               | 20      | 24       | 2     | 5        | 32.0             |                   |
| 388372                   | 10 0 - 77        | Domestic             | SW               | 4       | 25       | 3     | 5        | 116.1            |                   |
| 388374                   | 18-Apr-77        | Domestic             | SE               | 20      | 24       | 2     | 5        | 15.2             |                   |
| 388375                   | 09-Jun-76        | Domestic             | SW               | 20      | 24       | 2     | 5        | 94.5             |                   |
| 388376                   | 02-Jun-77        | Municipal            | 3                | 5       | 25       | 3     | 5        | 139.3            |                   |
| 388377                   | 01-Sep-74        | Domestic             | SW               | 20      | 24       | 2     | 5        | 75.3             |                   |
| 388379                   |                  | Domestic             | SW               | 20      | 24       | 2     | 5        | 67.1             |                   |
| 388380                   | 30-Nov-79        | Domestic             | SW               | 20      | 24       | 2     | 5        | 61.0             |                   |
| 388385                   | 18-May-76        | Domestic & Stock     | NW               | 20      | 24       | 2     | 5        | 82.3             |                   |
| 388387                   | 11-Oct-83        | Stock                | 1                | 6       | 25       | 3     | 5        | 24.4             |                   |
| 388388                   | 10-Aug-78        | Domestic             | 4                | 6       | 25       | 3     | 5        | 36.6             |                   |
| 388389                   | 17-Mar-77        | Domestic             | NW               | 20      | 24       | 2     | 5        | 36.6             |                   |
| 388393                   | 14-Apr-89        | Domestic             | SW               | 6       | 25       | 3     | 5        | 73.2             |                   |
| 388395                   |                  | Domestic             | SE               | 10      | 24       | 2     | 5        | 40.2             |                   |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 388397                   | 06-Sep-74        | Domestic         | SE               | 21      | 24       | 2     | 5        | 42.7             |                                |
| 388401                   | 15-Mar-76        | Domestic         | SE               | 21      | 24       | 2     | 5        | 67.7             |                                |
| 388402                   | 14-Jul-89        | Domestic         | NW               | 12      | 24       | 3     | 5        | 36.9             |                                |
| 388404                   | 19-May-72        | Domestic         | SE               | 21      | 24       | 2     | 5        | 41.1             |                                |
| 388405                   |                  | Domestic         | NE               | 12      | 24       | 3     | 5        | 77.7             |                                |
| 388407                   | 07-Oct-88        | Domestic         | SE               | 21      | 24       | 2     | 5        | 54.9             |                                |
| 388409                   |                  | Domestic         | SW               | 13      | 24       | 3     | 5        | 19.8             |                                |
| 388411                   | 01-Apr-80        | Domestic         | SW               | 13      | 24       | 3     | 5        | 30.5             |                                |
| 388412                   | 14-Aug-94        | Domestic         | SW               | 21      | 24       | 2     | 5        | 82.9             |                                |
| 388413                   | 11-Feb-88        | Domestic         | SW               | 13      | 24       | 3     | 5        | 32.0             |                                |
| 388416                   | 15-Feb-88        | Domestic         | SW               | 13      | 24       | 3     | 5        | 32.0             |                                |
| 388417                   | 12-Feb-88        | Domestic         | SW               | 13      | 24       | 3     | 5        | 32.0             |                                |
| 388420                   |                  | Domestic         | SW               | 13      | 24       | 3     | 5        |                  |                                |
| 388421                   | 06-May-75        | Domestic         | SW               | 21      | 24       | 2     | 5        | 64.0             |                                |
| 388422                   | 28-Feb-75        | Domestic         | NW               | 14      | 24       | 3     | 5        | 26.2             |                                |
| 388424                   |                  | Domestic         | NW               | 14      | 24       | 3     | 5        |                  |                                |
| 388426                   |                  | Domestic         | WH               | 21      | 24       | 2     | 5        | 30.5             |                                |
| 388427                   | 11-Jun-73        | Domestic         | NW               | 21      | 24       | 2     | 5        | 61.0             |                                |
| 388428                   | 01-Jan-59        | Unknown          | 11               | 21      | 24       | 2     | 5        | 38.1             |                                |
| 388432                   |                  | Domestic         | NW               | 14      | 24       | 3     | 5        | 18.3             |                                |
| 388434                   |                  | Domestic         | NE               | 14      | 24       | 3     | 5        | 9.1              |                                |
| 388435                   | 01-Jan-71        | Domestic         | SE               | 15      | 24       | 3     | 5        | 119.8            |                                |
| 388438                   | 13-Dec-83        | Domestic         | SE               | 15      | 24       | 3     | 5        | 31.4             |                                |
| 388440                   | 03-Apr-72        | Domestic         | SW               | 15      | 24       | 3     | 5        | 41.1             |                                |
| 388441                   | 21-May-71        | Domestic         | SW               | 15      | 24       | 3     | 5        | 36.6             |                                |
| 388446                   | 02-Jun-71        | Domestic         | SW               | 15      | 24       | 3     | 5        | 39.6             |                                |
| 388450                   | 28-May-71        | Domestic         | SW               | 15      | 24       | 3     | 5        | 39.6             |                                |
| 388451                   | 15-Jul-71        | Domestic         | SW               | 15      | 24       | 3     | 5        | 38.1             |                                |
| 388454                   | 01-Aug-72        | Domestic         | SE               | 16      | 24       | 3     | 5        | 32.0             |                                |
| 388455                   | 9                | Domestic         | NW               | 16      | 24       | 3     | 5        |                  |                                |
| 388456                   | 12-Jul-71        | Domestic         | NE               | 16      | 24       | 3     | 5        | 32.0             |                                |
| 388458                   | 01-Jun-81        | Domestic         | NE               | 16      | 24       | 3     | 5        | 36.6             |                                |
| 388477                   | 01-Jan-60        | Unknown          | SE               | 21      | 24       | 2     | 5        | 50.3             |                                |
| 388719                   | 25-Apr-69        | Domestic         | SW               | 29      | 24       | 2     | 5        | 121.9            |                                |
| 388722                   |                  | Domestic         | 3                | 29      | 24       | 2     | 5        |                  |                                |
| 388731                   | 30-Jun-76        | Domestic & Stock | SE               | 30      | 24       | 2     | 5        | 67.1             |                                |
| 388734                   | 13-Sep-71        | Domestic         | SE               | 30      | 24       | 2     | 5        | 32.0             |                                |
| 388735                   | 12-Jun-66        | Domestic         | SE               | 30      | 24       | 2     | 5        | 64.0             |                                |
| 388737                   |                  | Domestic         | SE               | 30      | 24       | 2     | 5        | 91.4             |                                |
| 388738                   | 10-May-77        | Domestic         | SW               | 30      | 24       | 2     | 5        | 32.0             |                                |
| 388739                   | 01-Jun-76        | Domestic         | SW               | 30      | 24       | 2     | 5        | 53.6             |                                |
| 388741                   |                  | Domestic         | SW               | 30      | 24       | 2     | 5        | 23.0             |                                |
| 388745                   | 01-Oct-73        | Unknown          | 9                | 30      | 24       | 2     | 5        | 217.0            |                                |
| 388859                   | 01-Apr-84        | Domestic         | NE               | 16      | 24       | 3     | 5        | 33.5             |                                |
| 388860                   | 07-Sep-89        | Domestic         | NE               | 16      | 24       | 3     | 5        | 29.6             |                                |
| 388861                   | 08-Sep-89        | Domestic         | NE               | 16      | 24       | 3     | 5        | 29.6             |                                |
| 388862                   | 22-May-79        | Domestic & Stock | SE               | 17      | 24       | 3     | 5        | 39.6             |                                |
| 388863                   | 22 May //        | Domestic         | SW               | 17      | 24       | 3     | 5        | 29.3             |                                |
| 388864                   |                  | Domestic         | SW               | 17      | 24       | 3     | 5        | 22.9             |                                |
| 388865                   |                  | Domestic         | SW               | 17      | 24       | 3     | 5        | 41.5             |                                |
| 388866                   | 25-Nov-81        | Domestic         | NW               | 17      | 24       | 3     | 5        | 41.5             |                                |
| 388867                   | 01-Nov-68        | Stock            | NE               | 17      | 24       | 3     | 5        | 43.3             |                                |
| 388868                   | 01100-00         | Domestic         | NE               | 17      | 24       | 3     | 5        | 54.9             |                                |
| 388869                   |                  | Domestic         | SW               | 17      | 24       | 3     | 5        | 04.7             |                                |
| 388870                   | 02-Dec-80        | Domestic         | SW               | 18      | 24       | 3     | 5        | 15.2             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use             | LSD <sup>2</sup> | Section  | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|----------------------|------------------|----------|----------|-------|----------|------------------|--------------------------------|
| 388871                   | 02-Dec-80        | Domestic             | SW               | 18       | 24       | 3     | 5        | 15.2             |                                |
| 388872                   | 25-Apr-77        | Domestic             | SW               | 18       | 24       | 3     | 5        | 48.8             |                                |
| 388873                   |                  | Domestic             | SW               | 18       | 24       | 3     | 5        |                  |                                |
| 388874                   | 10-Jul-69        | Domestic             | SE               | 19       | 24       | 3     | 5        | 51.8             |                                |
| 388875                   | 02-Nov-82        | Stock                | NW               | 19       | 24       | 3     | 5        | 61.0             |                                |
| 388876                   | 15-Nov-68        | Domestic             | NE               | 19       | 24       | 3     | 5        | 30.5             |                                |
| 388877                   | 16-Jun-81        | Domestic             | SW               | 1        | 24       | 3     | 5        | 41.1             |                                |
| 388879                   | 21-May-81        | Domestic             | SW               | 1        | 24       | 3     | 5        | 45.7             |                                |
| 388880                   |                  | Domestic             | SW               | 13       | 24       | 3     | 5        | 28.3             |                                |
| 388881                   | 19-Feb-79        | Domestic             | SW               | 13       | 24       | 3     | 5        | 28.7             |                                |
| 388890                   | 19-Dec-66        | Stock                | SE               | 20       | 24       | 3     | 5        | 30.5             |                                |
| 388891                   |                  | Domestic             | SE               | 20       | 24       | 3     | 5        |                  |                                |
| 388892                   | 23-Sep-80        | Unknown              | NE               | 20       | 24       | 3     | 5        | 36.6             |                                |
| 388893                   | 28-Mar-81        | Domestic             | NE               | 20       | 24       | 3     | 5        | 39.6             |                                |
| 388894                   | 24-Feb-87        | Domestic             | NE               | 20       | 24       | 3     | 5        | 36.6             |                                |
| 388895                   | 12-Aug-88        | Domestic & Stock     | NE               | 20       | 24       | 3     | 5        | 22.9             |                                |
| 388896                   |                  | Unknown              |                  | 20       | 24       | 3     | 5        | 18.9             |                                |
| 388897                   | 29-Nov-74        | Domestic             | SE               | 21       | 24       | 3     | 5        | 29.0             |                                |
| 388898                   | 09-Mar-73        | Domestic             | SE               | 21       | 24       | 3     | 5        | 24.4             |                                |
| 388899                   | 01-Apr-73        | Domestic             | SE               | 21       | 24       | 3     | 5        | 25.9             |                                |
| 388900                   |                  | Domestic             | SE               | 21       | 24       | 3     | 5        | 41.8             |                                |
| 388901                   | 01-Feb-78        | Domestic             | SE               | 21       | 24       | 3     | 5        | 36.6             |                                |
| 388902                   | 06-Jan-88        | Domestic             | SE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 388903                   | 23-Jul-88        | Domestic             | SE               | 21       | 24       | 3     | 5        | 21.3             |                                |
| 388904                   |                  | Domestic             | SE               | 21       | 24       | 3     | 5        |                  |                                |
| 388905                   | 05-Mar-71        | Domestic             | SW               | 21       | 24       | 3     | 5        | 93.3             |                                |
| 388906                   | 19-Jun-85        | Domestic             | SW               | 21       | 24       | 3     | 5        | 74.7             |                                |
| 388907                   | 17-Jan-75        | Domestic             | NW               | 21       | 24       | 3     | 5        | 25.9             |                                |
| 388908                   | 04-Mar-75        | Domestic             | NW               | 21       | 24       | 3     | 5        | 24.4             |                                |
| 388909                   | 21-Feb-75        | Domestic             | NW               | 21       | 24       | 3     | 5        | 24.4             |                                |
| 388910                   | 25-Jan-75        | Domestic             | NW               | 21       | 24       | 3     | 5        | 24.4             |                                |
| 388911                   |                  | Domestic             | NW               | 21       | 24       | 3     | 5        | 54.9             |                                |
| 388912                   | 05-Mar-81        | Domestic             | NW               | 21       | 24       | 3     | 5        | 45.7             |                                |
| 388913                   | 29-May-87        | Domestic             | NW               | 21       | 24       | 3     | 5        | 40.8             |                                |
| 388914                   | 26-May-77        |                      | 9                | 21       | 24       | 3     | 5        | 24.7             |                                |
| 388915                   | 01-Aug-78        | Domestic             | NE               | 21       | 24       | 3     | 5        | 19.8             |                                |
| 388916                   |                  | Domestic             | NE               | 21       | 24       | 3     | 5        | 1710             |                                |
| 388917                   | 01-Feb-86        | Domestic             | NE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 388918                   | 01-Mar-86        | Domestic             | NE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 388919                   | 01-Mar-86        | Domestic             | NE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 388920                   | e. mai 00        | Domestic             |                  | 21       | 24       | 3     | 5        | 27.4             |                                |
| 388921                   | 28-Mar-72        | Domestic             | SW               | 22       | 24       | 3     | 5        | 23.5             |                                |
| 388922                   | 23-Mar-89        | Domestic             | SW               | 22       | 24       | 3     | 5        | 24.4             |                                |
| 388923                   | 20 mai 07        | Domestic             | NW               | 22       | 24       | 3     | 5        | 18.3             |                                |
| 388924                   | 21-Apr-75        | Domestic             | NW               | 22       | 24       | 3     | 5        | 24.4             |                                |
| 388925                   | 21-Api-73        | Domestic             | NW               | 22       | 24       | 3     | 5        | 33.5             |                                |
| 388926                   | 09-Apr-88        | Domestic             | NW               | 22       | 24       | 3     | 5        | 27.4             | L                              |
| 388927                   | 13-Apr-88        | Domestic             | NW               | 22       | 24       | 3     | 5        | 32.0             | L                              |
| 388928                   | 24-Mar-89        | Domestic             | NW               | 22       | 24       | 3     | 5        | 61.0             |                                |
| 388929                   | 06-Apr-89        | Domestic             | NW               | 22       | 24       | 3     | 5        | 22.9             |                                |
| 388929<br>388930         |                  | Domestic             | NW               | 22       | 24       | 3     | 5<br>5   | 22.9             |                                |
| 388930                   | 06-Apr-89        | Domestic             | NW               | 22       | 24       | 3     | 5        | 22.9             |                                |
|                          |                  |                      |                  |          |          | 3     | 5        |                  |                                |
| 388932                   |                  | Domestic<br>Domostic | NW               | 22<br>22 | 24       | 3     | 5        | 19.8<br>20.5     |                                |
| 388933                   | 21-Apr-75        | Domestic<br>Domestic | NW<br>11         | 22       | 24<br>24 | 3     | 5        | 30.5<br>24.4     |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use                      | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|-------------------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 388935                   | 18-Apr-75              | Domestic                      | 12               | 22      | 24       | 3     | 5        | 24.4             |                                |
| 388936                   |                        | Domestic                      | 13               | 22      | 24       | 3     | 5        | 30.5             |                                |
| 388937                   | 16-Jul-71              | Domestic                      | NW               | 22      | 24       | 3     | 5        | 30.5             |                                |
| 388938                   |                        | Domestic                      | 13               | 22      | 24       | 3     | 5        | 21.3             |                                |
| 388939                   | 10-Aug-69              | Domestic                      | NW               | 22      | 24       | 3     | 5        | 30.5             |                                |
| 388940                   | 15-Aug-79              | Stock                         | NE               | 22      | 24       | 3     | 5        | 67.1             |                                |
| 388941                   | 0                      | Domestic                      |                  | 22      | 24       | 3     | 5        | 25.9             |                                |
| 388942                   | 27-Jul-66              | Domestic & Stock              | SE               | 23      | 24       | 3     | 5        | 21.9             |                                |
| 388943                   |                        | Domestic                      | SH               | 23      | 24       | 3     | 5        | 24.4             |                                |
| 388945                   | 26-Oct-77              | Domestic                      | SW               | 23      | 24       | 3     | 5        | 27.4             |                                |
| 388946                   | 24-Jul-85              | Domestic                      | SW               | 23      | 24       | 3     | 5        | 29.9             |                                |
| 388947                   |                        | Domestic                      | WH               | 23      | 24       | 3     | 5        | 27.4             |                                |
| 388948                   | 20-Jun-68              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 27.4             |                                |
| 388949                   | 15-Sep-69              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 36.6             |                                |
| 388950                   | 30-Apr-71              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 55.2             |                                |
| 388951                   | 01-Dec-70              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 70.1             |                                |
| 388952                   | 2.200.0                | Domestic                      | NW               | 23      | 24       | 3     | 5        | 36.6             |                                |
| 388953                   |                        | Domestic                      | NW               | 23      | 24       | 3     | 5        | 29.3             |                                |
| 388954                   |                        | Domestic                      | NW               | 23      | 24       | 3     | 5        | 30.5             |                                |
| 388955                   | 03-Apr-79              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 37.8             |                                |
| 388956                   | 31-Jul-79              | Unknown                       | NW               | 23      | 24       | 3     | 5        | 54.9             |                                |
| 388957                   | 5150177                | Domestic                      | NW               | 23      | 24       | 3     | 5        | 33.5             |                                |
| 388958                   | 18-Apr-67              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 35.1             |                                |
| 388959                   | 28-Oct-86              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 22.9             |                                |
| 388960                   | 17-May-88              | Domestic                      | NW               | 23      | 24       | 3     | 5        | 30.8             |                                |
| 388961                   | 17-Way-00              | Domestic                      | 14               | 23      | 24       | 3     | 5        | 27.4             |                                |
| 388962                   | 27-Apr-72              | Domestic                      | 14               | 23      | 24       | 3     | 5        | 45.7             |                                |
| 388963                   | 14-Nov-79              | Domestic                      | 16               | 23      | 24       | 3     | 5        | 67.1             |                                |
| 388964                   | 01-Jul-79              | Domestic                      | SE               | 23      | 24       | 3     | 5        | 18.3             |                                |
| 388990                   | 25-Aug-84              | Domestic                      | SW               | 1       | 24       | 4     | 5        | 25.0             |                                |
| 388990                   |                        | Stock                         | SW               | 1       | 25       | 4     | 5        | 45.7             |                                |
| 389012                   | 26-May-89<br>01-Jan-72 | Domestic                      | NW               | 3       | 25       | 4     | 5        | 43.7<br>8.8      |                                |
|                          | 1                      |                               | SE               | 24      | 23       | 3     | 5        |                  |                                |
| 389030                   | 16-Dec-77              | Domestic                      |                  |         |          |       |          | 36.6             |                                |
| 389031                   | 02 Nov 40              | Domestic<br>Demestic & Steely | SW               | 24      | 24       | 3     | 5        | 30.5             |                                |
| 389033                   |                        | Domestic & Stock              | NW               | 24      | 24       | 3     | 5        |                  |                                |
| 389036                   | 02-Nov-50              | Domestic & Stock              | NW               | 24      | 24       | 3     | 5        | 30.5             |                                |
| 389038                   | 20-Oct-70              | Domestic                      | NW               | 24      | 24       | 3     | 5        | 45.7             |                                |
| 389039                   | 26-Jan-78              | Municipal                     | NW               | 24      | 24       | 3     | 5        | 17.1             |                                |
| 389041                   |                        | Domestic                      | NW               | 24      | 24       | 3     | 5        | 0.1              |                                |
| 389042                   |                        | Domestic                      | NW               | 24      | 24       | 3     | 5        | 9.1              |                                |
| 389043                   |                        | Domestic                      | NW               | 24      | 24       | 3     | 5        | 30.5             |                                |
| 389044                   | 15-Nov-80              | Domestic                      | NW               | 24      | 24       | 3     | 5        | 45.7             |                                |
| 389045                   | 23-May-70              | Domestic                      | 13               | 24      | 24       | 3     | 5        | 48.8             |                                |
| 389046                   |                        | Domestic                      | NH               | 24      | 24       | 3     | 5        | 25.9             |                                |
| 389047                   | 01-Aug-74              | Unknown                       | SE               | 25      | 24       | 3     | 5        | 61.0             |                                |
| 389048                   | 03-Jan-68              | Domestic                      | SE               | 25      | 24       | 3     | 5        | 36.6             |                                |
| 389049                   |                        | Domestic                      | SE               | 25      | 24       | 3     | 5        | 53.6             |                                |
| 389051                   |                        | Domestic                      | SE               | 25      | 24       | 3     | 5        | 73.2             |                                |
| 389052                   |                        | Domestic                      | SE               | 25      | 24       | 3     | 5        | 50.3             |                                |
| 389053                   | 13-Jan-88              | Domestic                      | SE               | 25      | 24       | 3     | 5        | 61.0             |                                |
| 389054                   |                        | Domestic                      | SW               | 25      | 24       | 3     | 5        | 57.9             |                                |
| 389056                   |                        | Domestic                      | SW               | 25      | 24       | 3     | 5        | 70.1             |                                |
| 389057                   | 28-Nov-69              | Domestic                      | SW               | 25      | 24       | 3     | 5        | 79.2             |                                |
| 389058                   | 10-Aug-75              | Domestic                      | SW               | 25      | 24       | 3     | 5        | 58.5             |                                |
| 389060                   |                        | Domestic                      | SW               | 25      | 24       | 3     | 5        | 45.7             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use             | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|----------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 389061                   | 02-Jan-71        | Stock                | SW               | 25      | 24       | 3     | 5        | 67.1             |                                |
| 389062                   | 30-Jun-74        | Domestic             | SW               | 25      | 24       | 3     | 5        | 24.4             |                                |
| 389067                   |                  | Domestic             | SW               | 25      | 24       | 3     | 5        | 56.4             |                                |
| 389068                   |                  | Domestic             | SW               | 25      | 24       | 3     | 5        | 33.5             |                                |
| 389069                   | 01-Aug-80        | Domestic & Stock     | SW               | 25      | 24       | 3     | 5        | 36.6             |                                |
| 389070                   | 14-May-80        | Domestic             | 5                | 25      | 24       | 3     | 5        | 33.5             |                                |
| 389071                   | 31-Aug-82        | Stock                | SW               | 25      | 24       | 3     | 5        | 48.8             |                                |
| 389072                   | 15-Aug-88        | Domestic & Stock     | SW               | 25      | 24       | 3     | 5        | 65.5             |                                |
| 389073                   |                  | Domestic             | SW               | 25      | 24       | 3     | 5        |                  |                                |
| 389074                   | 25-Apr-89        | Domestic             | SW               | 25      | 24       | 3     | 5        | 79.2             |                                |
| 389075                   | 09-Jun-71        | Domestic             | NE               | 25      | 24       | 3     | 5        | 36.6             |                                |
| 389076                   |                  | Domestic             | NE               | 25      | 24       | 3     | 5        | 64.9             |                                |
| 389077                   | 01-Apr-74        | Domestic             | SE               | 26      | 24       | 3     | 5        | 39.6             |                                |
| 389078                   | 09-Apr-74        | Domestic             | SE               | 26      | 24       | 3     | 5        | 59.4             |                                |
| 389079                   | 14-Apr-87        | Domestic             | SE               | 26      | 24       | 3     | 5        | 121.9            |                                |
| 389080                   | 12-Jul-88        | Domestic             | SE               | 26      | 24       | 3     | 5        | 48.8             |                                |
| 389081                   | 25-Aug-88        | Domestic             | SE               | 26      | 24       | 3     | 5        | 42.7             |                                |
| 389082                   | 25-Aug-88        | Domestic             | SE               | 26      | 24       | 3     | 5        | 67.1             |                                |
| 389083                   | 26-Aug-88        | Domestic             | SE               | 26      | 24       | 3     | 5        | 48.8             |                                |
| 389084                   | 03-Apr-89        | Domestic             | SE               | 26      | 24       | 3     | 5        | 43.9             |                                |
| 389085                   | 26-Jun-76        | Domestic             | 1                | 26      | 24       | 3     | 5        | 36.6             |                                |
| 389086                   | 01-Jul-73        | Domestic             | SW               | 26      | 24       | 3     | 5        | 27.4             |                                |
| 389087                   | 01-Oct-80        | Domestic             | SW               | 26      | 24       | 3     | 5        | 47.2             |                                |
| 389088                   | 09-Mar-74        | Domestic             | SW               | 26      | 24       | 3     | 5        | 39.6             |                                |
| 389089                   | 26-May-77        | Domestic             | SW               | 26      | 24       | 3     | 5        | 41.1             |                                |
| 389090                   | 07-Jul-77        | Domestic             | SW               | 26      | 24       | 3     | 5        | 15.2             |                                |
| 389091                   | 27-Feb-77        | Domestic             | SW               | 26      | 24       | 3     | 5        | 23.2             |                                |
| 389092                   | 2710077          | Domestic             | SW               | 26      | 24       | 3     | 5        | 36.6             |                                |
| 389093                   | 18-May-79        | Domestic & Stock     | SW               | 26      | 24       | 3     | 5        | 32.0             |                                |
| 389094                   | 10-101ay-77      | Domestic             | SW               | 26      | 24       | 3     | 5        | 61.0             |                                |
| 389095                   | 06-Jun-87        | Domestic             | SW               | 26      | 24       | 3     | 5        | 61.0             |                                |
| 389096                   | 00-Jun-87        | Domestic             | SW               | 26      | 24       | 3     | 5        | 45.7             |                                |
| 389097                   | 01-501-67        | Domestic             | SW               | 26      | 24       | 3     | 5        | 33.5             |                                |
| 389098                   | 29-Mar-76        | Stock                | SW               | 26      | 24       | 3     | 5        | 21.3             |                                |
| 389098                   | 29-11/101-70     | Unknown              | 300              | 20      | 24       | 3     | 5        | 21.3             |                                |
| 389099                   |                  |                      |                  | 1       | 24       | 3     | 5        |                  |                                |
| 389100                   | 11 Apr 70        | Domestic             | сг               | 26      |          |       |          | 61.0             |                                |
| 389101                   | 11-Apr-79        | Domestic<br>Domestic | SE               | 27      | 24       | 3     | 5        | 53.3             |                                |
|                          |                  |                      | SE               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389103                   |                  | Domestic<br>Domostic | SE               | 27      | 24       | 3     | 5        | 48.8             |                                |
| 389104                   |                  | Domestic<br>Domostic | SE<br>SE         | 27      | 24       | 3     | 5        | 12.2             |                                |
| 389105                   |                  | Domestic             |                  | 27      | 24       |       | 5        | 39.6             |                                |
| 389106                   |                  | Domestic             | SE               | 27      | 24       | 3     | 5        | 39.6             |                                |
| 389107                   |                  | Domestic<br>Domostic | SE               | 27      | 24       | 3     | 5        | E1 0             |                                |
| 389108                   |                  | Domestic             | SE               | 27      | 24       | 3     | 5        | 51.8             |                                |
| 389109                   |                  | Domestic             | SE               | 27      | 24       | 3     | 5        | 07.4             |                                |
| 389110                   | 05-Jul-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 27.4             |                                |
| 389111                   | 15-Mar-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389112                   | 15-Feb-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389113                   | 29-Jun-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389114                   | 22-Jun-73        | Domestic             | SE               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389115                   | 10-Jul-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389116                   | 13-Jul-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389124                   | 20-Feb-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389125                   | 24-Feb-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 28.7             |                                |
| 389127                   | 27-Jun-73        | Domestic             | SH               | 27      | 24       | 3     | 5        | 27.4             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 389128                   | 13-Jun-73        | Domestic         | SH               | 27      | 24       | 3     | 5        | 27.4             |                                |
| 389130                   | 20-Jun-73        | Domestic         | SH               | 27      | 24       | 3     | 5        | 39.6             |                                |
| 389132                   |                  | Domestic         | SH               | 27      | 24       | 3     | 5        | 64.6             |                                |
| 389134                   |                  | Domestic         | SH               | 27      | 24       | 3     | 5        |                  |                                |
| 389135                   | 01-Aug-71        | Industrial       | SW               | 27      | 24       | 3     | 5        | 85.3             |                                |
| 389136                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 85.3             |                                |
| 389137                   | 15-Feb-70        | Unknown          | SW               | 27      | 24       | 3     | 5        | 103.6            |                                |
| 389139                   | 26-Aug-78        | Domestic         | SW               | 27      | 24       | 3     | 5        | 41.1             |                                |
| 389141                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 36.6             |                                |
| 389142                   | 21-Aug-80        | Domestic         | SW               | 27      | 24       | 3     | 5        | 42.7             |                                |
| 389144                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 30.5             |                                |
| 389146                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 57.9             |                                |
| 389147                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        |                  |                                |
| 389148                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 76.2             |                                |
| 389149                   | 05-Oct-88        | Domestic         | SW               | 27      | 24       | 3     | 5        | 35.1             |                                |
| 389151                   |                  | Domestic         | SW               | 27      | 24       | 3     | 5        | 42.7             |                                |
| 389152                   | 13-Dec-66        | Domestic         | NW               | 27      | 24       | 3     | 5        | 36.6             |                                |
| 389153                   | 21-Jun-76        | Unknown          | NW               | 27      | 24       | 3     | 5        | 27.4             |                                |
| 389155                   |                  | Domestic         | NW               | 27      | 24       | 3     | 5        | 76.2             |                                |
| 389156                   |                  | Domestic         | NW               | 27      | 24       | 3     | 5        | 27.4             |                                |
| 389157                   |                  | Domestic         | NW               | 27      | 24       | 3     | 5        | 16.8             |                                |
| 389158                   | 23-Sep-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 18.9             |                                |
| 389166                   | 26-Sep-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 16.8             |                                |
| 389167                   | 27-Jun-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 18.3             |                                |
| 389169                   | 26-Jun-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 24.1             |                                |
| 389170                   | 06-Oct-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 38.1             |                                |
| 389172                   | 21-Jul-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 27.1             |                                |
| 389174                   | 01-Jul-83        | Domestic         | NE               | 27      | 24       | 3     | 5        | 51.8             |                                |
| 389176                   | 01-Jul-75        | Domestic         | NE               | 27      | 24       | 3     | 5        | 23.8             |                                |
| 389178                   | 18-Dec-74        | Domestic         | NE               | 27      | 24       | 3     | 5        | 24.1             |                                |
| 389180                   | 06-Mar-81        | Domestic         | NE               | 27      | 24       | 3     | 5        | 18.6             |                                |
| 389182                   | 12-Aug-85        | Domestic & Stock | NE               | 27      | 24       | 3     | 5        | 24.1             |                                |
| 389183                   | 0                | Domestic         |                  | 27      | 24       | 3     | 5        |                  |                                |
| 389184                   | 22-Oct-76        | Domestic         | SE               | 28      | 24       | 3     | 5        | 21.3             |                                |
| 389185                   | 24-Aug-76        | Stock            | SE               | 28      | 24       | 3     | 5        | 18.3             |                                |
| 389186                   | 14-Jul-76        | Unknown          | 7                | 28      | 24       | 3     | 5        | 18.3             |                                |
| 389187                   |                  | Domestic         | SE               | 28      | 24       | 3     | 5        | 18.3             |                                |
| 389188                   |                  | Domestic         | SE               | 28      | 24       | 3     | 5        | 16.8             |                                |
| 389189                   |                  | Domestic         | SE               | 28      | 24       | 3     | 5        | 27.4             |                                |
| 389192                   | 01-Jan-71        | Domestic         | SW               | 28      | 24       | 3     | 5        | 25.9             |                                |
| 389194                   | 01-May-71        | Domestic         | SW               | 28      | 24       | 3     | 5        | 25.6             |                                |
| 389196                   |                  | Domestic         | SW               | 28      | 24       | 3     | 5        | 12.2             |                                |
| 389198                   |                  | Domestic         | SW               | 28      | 24       | 3     | 5        | 39.6             |                                |
| 389199                   | 02-May-86        | Domestic & Stock | SW               | 28      | 24       | 3     | 5        | 24.4             |                                |
| 389201                   | 03-Oct-89        | Domestic & Stock | SW               | 28      | 24       | 3     | 5        | 22.9             |                                |
| 389202                   | 02-Oct-75        | Irrigation       | SW               | 28      | 24       | 3     | 5        | 10.7             |                                |
| 389211                   | 01-Oct-75        | Domestic         | SW               | 28      | 24       | 3     | 5        | 12.2             |                                |
| 389212                   | 18-Mar-77        | Domestic         | SW               | 28      | 24       | 3     | 5        | 30.5             |                                |
| 389213                   | 23-Nov-72        | Domestic         | NW               | 28      | 24       | 3     | 5        | 48.8             |                                |
| 389214                   |                  | Domestic         | NW               | 28      | 24       | 3     | 5        | 30.5             |                                |
| 389215                   |                  | Domestic         | NW               | 28      | 24       | 3     | 5        | 11.3             |                                |
| 389216                   |                  | Domestic         | NE               | 28      | 24       | 3     | 5        | 42.1             |                                |
| 389217                   | 27-Jun-74        | Domestic & Stock | NE               | 28      | 24       | 3     | 5        | 15.5             |                                |
| 389218                   | 16-Oct-76        | Domestic         | NE               | 28      | 24       | 3     | 5        | 24.4             |                                |
| 389219                   | 07-Mar-70        | Domestic         | NE               | 28      | 24       | 3     | 5        | 36.6             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use                     | LSD <sup>2</sup> | Section  | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------------------|------------------|----------|----------|-------|----------|------------------|--------------------------------|
| 389220                   |                  | Domestic                     | NE               | 28       | 24       | 3     | 5        | 30.5             |                                |
| 389221                   |                  | Domestic                     | NE               | 28       | 24       | 3     | 5        |                  |                                |
| 389222                   |                  | Stock                        |                  | 28       | 24       | 3     | 5        | 37.2             |                                |
| 389223                   |                  | Stock                        |                  | 28       | 24       | 3     | 5        | 13.7             |                                |
| 389233                   |                  | Domestic                     | SE               | 29       | 24       | 3     | 5        | 15.2             |                                |
| 389234                   |                  | Domestic                     | SE               | 29       | 24       | 3     | 5        | 14.0             |                                |
| 389235                   |                  | Domestic                     | SE               | 29       | 24       | 3     | 5        | 13.7             |                                |
| 390220                   | 23-Nov-78        | Domestic                     | NE               | 17       | 24       | 3     | 5        | 31.1             |                                |
| 390238                   | 11-Jul-79        | Domestic                     | SE               | 17       | 24       | 3     | 5        | 4.9              |                                |
| 390430                   | 18-Sep-94        | Domestic                     | SE               | 10       | 24       | 4     | 5        | 48.8             |                                |
| 390484                   | 12-Dec-79        | Stock                        | SW               | 1        | 24       | 5     | 5        | 9.1              |                                |
| 390485                   | 12-Dec-79        | Stock                        | NW               | 1        | 24       | 5     | 5        | 27.4             |                                |
| 390489                   |                  | Domestic                     | NH               | 33       | 24       | 4     | 5        | 24.4             |                                |
| 390490                   | 01-Oct-74        | Domestic                     | SE               | 13       | 24       | 4     | 5        | 3.7              |                                |
| 390593                   | 23-Sep-64        | Domestic                     | NE               | 23       | 23       | 2     | 5        | 27.4             |                                |
| 390594                   | 07-Jul-68        | Domestic                     | SE               | 26       | 23       | 2     | 5        | 29.0             |                                |
| 390595                   | 28-Dec-69        | Domestic                     | SW               | 24       | 23       | 4     | 5        | 27.4             |                                |
| 393383                   | 08-Jul-94        | Domestic                     | NE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 393385                   | 11-Jul-94        | Domestic                     | NE               | 21       | 24       | 3     | 5        | 30.5             |                                |
| 393387                   | 26-Sep-94        | Domestic                     | NE               | 3        | 24       | 3     | 5        | 48.8             |                                |
| 394101                   | 01-Jul-75        | Domestic                     | NE               | 24       | 23       | 4     | 5        | 61.0             |                                |
| 394246                   | 0130170          | Domestic                     | SE               | 13       | 23       | 5     | 5        | 4.6              |                                |
| 394591                   | 05-Jul-77        | Domestic                     | SE               | 29       | 24       | 3     | 5        | 36.6             |                                |
| 394595                   | 30-May-78        | Domestic                     | SE               | 29       | 24       | 3     | 5        | 18.3             |                                |
| 394598                   | 11-Aug-88        | Domestic                     | SE               | 29       | 24       | 3     | 5        | 27.1             |                                |
| 394604                   | 08-Oct-80        | Stock                        | SW               | 29       | 24       | 3     | 5        | 41.1             |                                |
| 394610                   | 11-Aug-88        | Stock                        | NE               | 29       | 24       | 3     | 5        | 10.7             |                                |
| 394613                   | TT-Aug-00        | Domestic                     | EH               | 29       | 24       | 3     | 5        | 22.9             |                                |
| 394614                   |                  | Domestic                     | SE               | 30       | 24       | 3     | 5        | 73.2             |                                |
| 394615                   | 03-Nov-79        | Stock                        | SE               | 30       | 24       | 3     | 5        | 76.2             |                                |
| 394619                   | 03-1100-79       | Domestic                     | NW               | 30       | 24       | 3     | 5        | 70.2             |                                |
| 394619                   | 11 Mov 44        | Domestic & Stock             | 8                | 30       | 24       | 3     | 5<br>5   | 78.6             |                                |
| 394626                   | 11-May-66        |                              | SW               | 30       | 24       | 3     | 5        | 19.8             |                                |
| 394627                   | 04 100 00        | Domestic                     | SW               |          | 24       | 3     | 5        |                  |                                |
| 394627                   | 04-Jun-82        | Domestic<br>Domestic & Stock | NW               | 30<br>30 | 24       | 3     | 5        | 199.6            |                                |
|                          | 20-sep-75        |                              |                  |          |          | -     | -        | 48.8             |                                |
| 394634                   | 01 D 70          | Domestic                     | NW               | 30       | 24       | 3     | 5        | 18.3             |                                |
| 394635                   | 01-Dec-73        | Unknown                      | NW               | 30       | 24       | 3     | 5        | 25.9             |                                |
| 394636                   | 20 4             | Domestic                     | NW               | 30       | 24       | 3     | 5        | F1 0             |                                |
| 394637                   | 30-Apr-73        | Stock                        | NE               | 31       | 24       | 3     | 5        | 51.8             |                                |
| 394638                   | 09-Sep-77        | Stock                        | SE               | 32       | 24       | 3     | 5        | 39.6             |                                |
| 394641                   | 24-Jan-89        | Stock                        | SE               | 32       | 24       | 3     | 5        | 45.7             |                                |
| 394646                   | 31-Aug-74        | Stock                        | NE               | 32       | 24       | 3     | 5        | 20.7             |                                |
| 394648                   |                  | Domestic                     | NH               | 33       | 24       | 3     | 5        | 36.6             |                                |
| 394650                   | 15-May-74        | Stock                        | NE               | 33       | 24       | 3     | 5        | 41.1             |                                |
| 394654                   | 00.0 70          | Domestic                     | NE               | 33       | 24       | 3     | 5        | 04.4             |                                |
| 394668                   | 29-Sep-78        | Domestic                     | NE               | 33       | 24       | 3     | 5        | 24.4             |                                |
| 394670                   |                  | Domestic                     | SE               | 34       | 24       | 3     | 5        | 57.9             |                                |
| 394673                   | 29-Jul-74        | Stock                        | SE               | 34       | 24       | 3     | 5        | 42.7             |                                |
| 394680                   |                  | Domestic                     | SE               | 34       | 24       | 3     | 5        |                  |                                |
| 396522                   | 14-Sep-93        | Domestic                     | SW               | 16       | 24       | 2     | 5        | 129.5            |                                |
| 399673                   | 30-Sep-94        | Domestic                     | 3                | 35       | 24       | 4     | 5        | 80.8             |                                |
| 399936                   | 08-Sep-58        | Municipal                    | NE               | 28       | 24       | 3     | 5        | 31.1             |                                |
| 400307                   | 15-Dec-94        | Domestic                     | NE               | 22       | 23       | 5     | 5        | 18.3             |                                |
| 400350                   | 22-Feb-95        | Domestic                     | SE               | 2        | 24       | 3     | 5        | 30.5             |                                |
| 400351                   | 08-Nov-94        | Domestic & Stock             | SW               | 3        | 24       | 4     | 5        | 24.4             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 400890                   | 29-Oct-75        | Domestic         | 2                | 23      | 23       | 2     | 5        | 73.2             |                                |
| 400894                   | 01-Sep-84        | Domestic         | SE               | 23      | 23       | 2     | 5        | 54.9             |                                |
| 400897                   | 04-Oct-85        | Domestic         | SE               | 23      | 23       | 2     | 5        | 47.2             |                                |
| 400898                   | 31-Aug-88        | Domestic         | SE               | 23      | 23       | 2     | 5        | 51.8             |                                |
| 400899                   | 01-Sep-88        | Domestic         | SE               | 23      | 23       | 2     | 5        | 71.6             |                                |
| 400900                   | 10-May-89        | Domestic         | SE               | 23      | 23       | 2     | 5        | 71.6             |                                |
| 400901                   | 03-Jun-80        | Domestic         | NE               | 23      | 23       | 2     | 5        | 32.0             |                                |
| 400903                   | 01-Dec-73        | Domestic         | SW               | 24      | 23       | 2     | 5        | 54.9             |                                |
| 400904                   | 21-Jun-71        | Domestic         | SW               | 25      | 23       | 2     | 5        | 34.1             |                                |
| 400905                   | 08-Nov-88        | Domestic         | SW               | 25      | 23       | 2     | 5        | 22.9             |                                |
| 400906                   | 01-Jun-82        | Domestic         | SE               | 26      | 23       | 2     | 5        | 34.1             |                                |
| 400907                   | 22-Feb-77        | Domestic         | NW               | 28      | 23       | 2     | 5        | 47.5             |                                |
| 400908                   | 25-Aug-67        | Domestic         | NE               | 34      | 23       | 2     | 5        | 24.4             |                                |
| 400909                   | 22-Aug-86        | Irrigation       | SE               | 36      | 23       | 2     | 5        | 106.7            |                                |
| 400928                   | 17-Sep-62        | Domestic         | NW               | 6       | 23       | 3     | 5        | 39.6             |                                |
| 400931                   | 28-Oct-63        | Domestic         | SE               | 7       | 23       | 3     | 5        | 41.8             |                                |
| 400932                   | 18-Oct-63        | Domestic         | NE               | 7       | 23       | 3     | 5        | 29.0             |                                |
| 400935                   | 26-May-81        | Domestic         | NE               | 7       | 23       | 3     | 5        |                  |                                |
| 400936                   | 05-Oct-88        | Domestic         | NE               | 7       | 23       | 3     | 5        | 13.7             |                                |
| 400939                   | 01-Jan-85        | Domestic         | 8                | 8       | 23       | 3     | 5        | 45.7             |                                |
| 400942                   | 01-Sep-82        | Domestic         | NE               | 8       | 23       | 3     | 5        | 65.5             |                                |
| 400943                   | 06-Oct-64        | Domestic         | SE               | 9       | 23       | 3     | 5        | 29.0             |                                |
| 400944                   | 03-Oct-64        | Domestic         | SE               | 9       | 23       | 3     | 5        | 35.1             |                                |
| 400946                   | 01-Sep-82        | Domestic         | SW               | 9       | 23       | 3     | 5        | 76.2             |                                |
| 400947                   | 13-Jun-81        | Domestic         | NW               | 9       | 23       | 3     | 5        | 30.5             |                                |
| 400948                   | 13-Jul-80        | Domestic         | NE               | 9       | 23       | 3     | 5        | 64.0             |                                |
| 400979                   | 05-Jan-81        | Domestic         | 8                | 16      | 23       | 3     | 5        | 77.7             |                                |
| 400980                   | 20-Sep-63        | Domestic         | NW               | 16      | 23       | 3     | 5        | 30.2             |                                |
| 400981                   | 22-May-80        | Domestic         | NW               | 16      | 23       | 3     | 5        | 36.6             |                                |
| 400982                   | 13-Sep-62        | Domestic         | SE               | 17      | 23       | 3     | 5        | 41.1             |                                |
| 400983                   | 25-Sep-62        | Domestic         | NE               | 17      | 23       | 3     | 5        | 24.4             |                                |
| 400984                   | 01-Jul-82        | Domestic         | NE               | 17      | 23       | 3     | 5        | 30.5             |                                |
| 400985                   | 29-Oct-65        | Domestic         | SE               | 18      | 23       | 3     | 5        | 24.7             |                                |
| 400986                   | 06-Jun-79        | Domestic         | 9                | 18      | 23       | 3     | 5        | 15.2             |                                |
| 400987                   | 02-Jul-80        | Domestic         | SW               | 19      | 23       | 3     | 5        | 18.3             |                                |
| 400988                   | 01-Jun-84        | Domestic         | 11               | 19      | 23       | 3     | 5        | 64.3             |                                |
| 400989                   | 09-Sep-86        | Domestic         | NW               | 19      | 23       | 3     | 5        | 78.0             |                                |
| 400991                   | 07-Sep-88        | Domestic         | NW               | 20      | 23       | 3     | 5        | 29.0             |                                |
| 400992                   | 19-Aug-86        | Domestic         | NE               | 20      | 23       | 3     | 5        | 75.3             |                                |
| 400997                   | 19-Jun-87        | Domestic         | NW               | 26      | 23       | 3     | 5        | 64.0             |                                |
| 400999                   | 13-Mar-87        | Domestic         | SW               | 27      | 23       | 3     | 5        | 20               |                                |
| 401002                   | 01-Jul-82        | Domestic         | NW               | 28      | 23       | 3     | 5        | 29.0             |                                |
| 401003                   | 31-Oct-87        | Domestic         | NW               | 28      | 23       | 3     | 5        | 35.1             |                                |
| 401004                   | 01-Jul-84        | Domestic         | 15               | 28      | 23       | 3     | 5        | 20.4             |                                |
| 401005                   | 06-Sep-88        | Domestic         | NE               | 28      | 23       | 3     | 5        | 41.1             |                                |
| 401006                   | 01-Aug-72        | Domestic         | SE               | 29      | 23       | 3     | 5        | 51.8             |                                |
| 401007                   | 15-Jun-74        | Domestic         | 4                | 29      | 23       | 3     | 5        | 67.1             |                                |
| 401008                   | 14-Jan-59        | Domestic         | NW               | 29      | 23       | 3     | 5        | 34.7             |                                |
| 401009                   | 01-Aug-72        | Domestic         | NW               | 29      | 23       | 3     | 5        | 21.3             |                                |
| 401010                   | 01-Jun-75        | Domestic         | SE               | 30      | 23       | 3     | 5        | 30.5             |                                |
| 401010                   | 28-Aug-86        | Domestic         | SW               | 30      | 23       | 3     | 5        | 47.2             |                                |
| 401012                   | 13-Jun-74        | Domestic         | 13               | 30      | 23       | 3     | 5        | 67.1             |                                |
| 401012                   | 16-Jul-87        | Domestic & Stock | NW               | 30      | 23       | 3     | 5        | 85.3             |                                |
| 401013                   | 01-May-82        | Domestic         | NW               | 30      | 23       | 3     | 5        | 27.4             |                                |
| 401014                   | 20-Aug-86        | Domestic         | SW               | 32      | 23       | 3     | 5        | 65.5             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 401016                   | 01-Feb-71              | Domestic         | NW               | 32      | 23       | 3     | 5        | 30.2             |                                |
| 401017                   | 23-Aug-67              | Domestic         | SE               | 33      | 23       | 3     | 5        | 15.2             |                                |
| 401018                   | 30-Oct-79              | Domestic         | 8                | 33      | 23       | 3     | 5        | 65.5             |                                |
| 401019                   | 01-Mar-72              | Domestic         | SE               | 34      | 23       | 3     | 5        | 61.0             |                                |
| 401020                   | 01-Feb-84              | Domestic         | 2                | 34      | 23       | 3     | 5        | 72.8             |                                |
| 401023                   | 14-Oct-86              | Domestic         | SE               | 34      | 23       | 3     | 5        | 61.0             |                                |
| 401025                   | 01-Sep-71              | Domestic         | SW               | 34      | 23       | 3     | 5        | 30.5             |                                |
| 401026                   | 05-Dec-69              | Domestic         | SW               | 34      | 23       | 3     | 5        | 61.3             |                                |
| 401027                   | 24-Nov-69              | Domestic         | SW               | 34      | 23       | 3     | 5        | 30.8             |                                |
| 401028                   | 01-Aug-67              | Domestic         | NE               | 34      | 23       | 3     | 5        | 24.4             |                                |
| 401029                   | 17-May-63              | Domestic         | SE               | 35      | 23       | 3     | 5        | 43.3             |                                |
| 401030                   | 01-Jul-82              | Domestic         | NW               | 35      | 23       | 3     | 5        | 42.7             |                                |
| 401162                   | 22-Sep-94              | Domestic         | NW               | 17      | 24       | 4     | 5        | 79.2             |                                |
| 402318                   | 11-Mar-95              | Domestic         | SE               | 19      | 24       | 3     | 5        | 43.9             |                                |
| 402460                   | 15-Mar-95              | Domestic         | SW               | 28      | 24       | 3     | 5        | 18.3             |                                |
| 402461                   | 29-Mar-95              | Domestic         | SW               | 12      | 24       | 4     | 5        | 43.9             |                                |
| 405681                   | 01-Dec-72              | Domestic         | NE               | 13      | 23       | 4     | 5        | 10.7             |                                |
| 405684                   | 24-Sep-80              | Domestic         | 4                | 16      | 23       | 4     | 5        | 5.8              |                                |
| 405686                   |                        | Domestic         | SW               | 19      | 23       | 4     | 5        | 27.4             |                                |
| 405691                   |                        | Domestic         | NW               | 19      | 23       | 4     | 5        | 49.4             |                                |
| 405692                   | 09-Dec-86              | Domestic         | NW               | 19      | 23       | 4     | 5        | 89.9             |                                |
| 405693                   | 10-Jun-74              | Domestic         | 16               | 20      | 23       | 4     | 5        | 7.6              |                                |
| 405694                   | 04-Jun-74              | Domestic         | 16               | 20      | 23       | 4     | 5        | 76.2             |                                |
| 405696                   | 03-Nov-87              | Domestic         | NE               | 20      | 23       | 4     | 5        | 16.8             |                                |
| 405697                   | 01-Aug-85              | Domestic         | 5                | 21      | 23       | 4     | 5        | 14.9             |                                |
| 405698                   | 18-Dec-69              | Domestic         | NE               | 21      | 23       | 4     | 5        | 22.9             |                                |
| 405702                   | 01-Aug-75              | Domestic         | NE               | 24      | 23       | 4     | 5        | 36.6             |                                |
| 405707                   | 23-Oct-86              | Domestic         | NW               | 25      | 23       | 4     | 5        | 59.4             |                                |
| 405710                   |                        | Domestic         | SE               | 26      | 23       | 4     | 5        | 25.9             |                                |
| 405711                   | 01-Dec-73              | Domestic         | SW               | 28      | 23       | 4     | 5        | 54.9             |                                |
| 405712                   | 01-Dec-73              | Domestic         | SW               | 28      | 23       | 4     | 5        | 76.2             |                                |
| 405715                   |                        | Domestic         | NW               | 30      | 23       | 4     | 5        | 44.2             |                                |
| 405719                   | 01-Aug-72              | Domestic         | NE               | 34      | 23       | 4     | 5        | 21.9             |                                |
| 405720                   | 13-May-77              | Domestic         | NE               | 34      | 23       | 4     | 5        | 50.3             |                                |
| 405725                   | 11-Dec-86              |                  | SW               | 36      | 23       | 4     | 5        | 35.1             |                                |
| 405726                   | 01-Jan-74              | Domestic         | NW               | 36      | 23       | 4     | 5        | 79.2             |                                |
| 405728                   | 08-Sep-79              | Domestic         | NE               | 36      | 23       | 4     | 5        | 36.6             |                                |
| 405729                   |                        | Industrial       | 16               | 36      | 23       | 4     | 5        | 36.6             |                                |
| 406610                   | 16-Mar-95              | Domestic         | NW               | 21      | 24       | 2     | 5        | 79.2             |                                |
| 410254                   |                        | Domestic         | NE               | 13      | 23       | 5     | 5        | 2.4              |                                |
| 416038                   | 14-May-76              | Domestic & Stock | NW               | 18      | 23       | 4     | 5        | 109.7            |                                |
| 416380                   | 12-Oct-73              | Domestic         | SH               | 6       | 25       | 3     | 5        | 61.0             |                                |
| 416381                   | 29-Oct-73              | Domestic         | SH               | 6       | 25       | 3     | 5        | 79.2             |                                |
| 416384                   | 29-May-80              | Stock            | SE               | 3       | 25       | 4     | 5        | 53.3             |                                |
| 418094                   | 27-May-74              | Domestic         | NE               | 12      | 23       | 5     | 5        | 12.2             |                                |
| 418095                   | 05-May-82              | Domestic         | NE               | 13      | 23       | 5     | 5        | 48.8             |                                |
| 418098                   | 02-Aug-84              | Domestic         | NE               | 24      | 23       | 5     | 5        | 30.5             |                                |
| 418038                   | 12-Jun-95              | Domestic         | NE               | 16      | 23       | 2     | 5        | 73.2             |                                |
| 418133                   | 27-Jun-95              | Domestic         | NE               | 21      | 24       | 3     | 5        | 29.0             | L                              |
| 418135                   | 26-Jun-95              | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             |                                |
| 418135                   | 28-Jun-95              | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             |                                |
| 418130                   | 29-Jun-95              | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             | L                              |
| 418137                   | 28-Jun-95              | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             | L                              |
| 418139                   | 28-Jun-95<br>27-Jun-95 | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             |                                |
| 418139                   | 27-Jun-95<br>26-Jun-95 | Domestic         | NE               | 21      | 24       | 3     | 5        | 24.4             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use          | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|-------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 418398                   | 04-Sep-76              | Domestic & Stock  | 16               | 4       | 24       | 2     | 5        | 38.1             |                                |
| 418402                   | 19-Apr-82              | Domestic & Stock  | 16               | 4       | 24       | 2     | 5        | 39.6             |                                |
| 443031                   | 08-May-98              | Domestic          | SE               | 25      | 24       | 3     | 5        | 67.1             |                                |
| 458862                   | 21-Mar-01              | Domestic          | 6                | 16      | 24       | 2     | 5        | 71.6             |                                |
| 458910                   | 10-Oct-01              | Domestic          | SW               | 28      | 24       | 3     | 5        | 35.1             |                                |
| 458911                   | 11-Oct-01              | Domestic          | SW               | 28      | 24       | 3     | 5        | 41.1             |                                |
| 458922                   | 13-Jul-01              | Domestic          | SW               | 5       | 24       | 3     | 5        | 30.5             |                                |
| 458923                   | 05-Jul-01              | Domestic          | SW               | 5       | 24       | 3     | 5        | 53.3             |                                |
| 458924                   | 07-Apr-07              | Domestic          | SW               | 5       | 24       | 3     | 5        | 57.9             |                                |
| 458927                   | 02-Nov-01              | Domestic          | SW               | 5       | 24       | 3     | 5        | 48.8             |                                |
| 458941                   | 10-Oct-01              | Domestic          | NE               | 12      | 23       | 5     | 5        | 36.6             |                                |
| 466073                   | 22-Apr-96              | Domestic          | NE               | 13      | 23       | 5     | 5        | 3.7              |                                |
| 466075                   | 28-May-96              | Domestic          | 12               | 10      | 24       | 2     | 5        | 44.2             |                                |
| 466076                   | 22-Jun-96              | Domestic          | NW               | 16      | 24       | 2     | 5        | 48.8             |                                |
| 466078                   | 25-Jun-96              | Domestic          | NE               | 26      | 24       | 3     | 5        | 71.6             |                                |
| 466081                   | 01-Apr-96              | Domestic          | 6                | 28      | 24       | 3     | 5        | 48.8             |                                |
| 466082                   | 01-May-96              | Domestic          | 6                | 28      | 24       | 3     | 5        | 68.3             |                                |
| 466083                   | 09-Jun-96              | Domestic          | SW               | 34      | 24       | 3     | 5        | 67.1             |                                |
| 466085                   | 11-Jun-96              | Domestic          | SW               | 2       | 24       | 4     | 5        | 12.2             |                                |
| 466086                   | 29-Jul-96              | Domestic          | SW               | 2       | 24       | 4     | 5        | 10.7             |                                |
| 466087                   | 29-Jul-96              | Domestic          | SW               | 2       | 24       | 4     | 5        | 11.3             |                                |
| 467131                   | 21-Sep-96              | Domestic          | SE               | 34      | 23       | 3     | 5        | 62.2             |                                |
| 467132                   | 09-Sep-96              | Domestic          | NW               | 13      | 23       | 5     | 5        | 36.6             |                                |
| 467135                   | 31-Mar-97              | Domestic          | SW               | 10      | 24       | 2     | 5        | 42.7             |                                |
| 467137                   | 05-Sep-96              | Domestic          | 10               | 21      | 24       | 2     | 5        | 73.2             |                                |
| 467140                   | 08-Jul-97              | Domestic          | SE               | 9       | 24       | 3     | 5        | 50.3             | Yes                            |
| 467141                   | 09-May-97              | Domestic          | NE               | 21      | 24       | 3     | 5        | 20.1             |                                |
| 467142                   | 11-Oct-96              | Domestic          | NE               | 21      | 24       | 3     | 5        | 36.6             |                                |
| 467143                   | 14-May-97              | Domestic          | NW               | 22      | 24       | 3     | 5        | 21.3             |                                |
| 467144                   | 13-May-97              | Domestic          | NW               | 22      | 24       | 3     | 5        | 22.9             |                                |
| 467145                   | 13-May-97              | Domestic          | NW               | 22      | 24       | 3     | 5        | 22.9             |                                |
| 467146                   | 07-Sep-96              | Domestic          | SE               | 21      | 24       | 3     | 5        | 28.0             |                                |
| 467147                   | 26-Aug-96              | Domestic          | SE               | 21      | 24       | 3     | 5        | 42.7             |                                |
| 467148                   | 09-Sep-96              | Domestic          | SE               | 21      | 24       | 3     | 5        | 28.3             |                                |
| 467149                   | 04-Jun-96              | Domestic          | 8                | 29      | 24       | 3     | 5        | 18.3             |                                |
| 467150                   | 12-Feb-97              | Domestic          | SW               | 35      | 24       | 3     | 5        | 36.0             |                                |
| 467152                   | 31-Jul-96              | Domestic          | SW               | 2       | 24       | 4     | 5        | 12.8             |                                |
| 467153                   | 31-Jan-97              | Domestic          | SW               | 2       | 24       | 4     | 5        | 12.0             |                                |
| 467154                   | 09-May-97              |                   | NE               | 16      | 24       | 4     | 5        | 15.2             |                                |
| 468492                   | 16-Sep-96              | Domestic          | SW               | 24      | 23       | 2     | 5        | 83.8             |                                |
| 468496                   | 08-Jul-96              | Domestic          | NE               | 24      | 23       | 5     | 5        | 6.1              |                                |
| 468499                   | 27-Aug-96              | Domestic          | SE               | 25      | 23       | 4     | 5        | 42.7             |                                |
| 468791                   | 03-Oct-97              | Domestic          | SW               | 2       | 24       | 3     | 5        | 42.7             |                                |
| 468792                   | 03-Oct-97<br>02-Oct-97 | Domestic          | SW               | 2       | 24       | 3     | 5        | 40.0<br>54.9     |                                |
| 469180                   | 20-Nov-97              | Domestic          | SE               | 26      | 24       | 2     | 5        | 19.2             |                                |
| 469180                   | 02-Dec-97              | Domestic          | NW               | 20      | 23       | 3     | 5<br>5   | 54.3             |                                |
| 469182                   | 02-Dec-97<br>08-Aug-94 |                   | SW               | 8<br>17 | 23       | 3     | 5<br>5   |                  |                                |
| 469186                   | 08-Aug-94<br>08-Jun-98 | Domestic<br>Stock | SW               | 17      | 23       | 4     | 5        | 18.3<br>24.4     |                                |
|                          |                        |                   |                  |         |          | 4     |          |                  |                                |
| 469188                   | 23-May-98              |                   | SE               | 20<br>F | 23       |       | 5        | 38.1             |                                |
| 469196                   | 06-May-98              |                   | SW               | 5       | 24       | 2     | 5        | 6.4              |                                |
| 469197                   | 08-Aug-97              | Domestic          | SW               | 8       | 24       | 2     | 5        | 246.9            |                                |
| 469198                   | 24-Jul-97              | Domestic          | SW               | 16      | 24       | 2     | 5        | 79.2             |                                |
| 469200                   | 07-Mar-98              | Domestic          | SW               | 2       | 24       | 3     | 5        | 42.7             |                                |
| 469201                   | 10-Dec-97              | Domestic          | SW               | 2       | 24       | 3     | 5        | 45.1             |                                |
| 469202                   | 11-Jul-98              | Domestic          | SW               | 2       | 24       | 3     | 5        | 30.5             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use   | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 469203                   | 01-Oct-97        | Domestic   | SW               | 2       | 24       | 3     | 5        | 42.7             |                                |
| 469204                   | 03-Jun-98        | Domestic   | SE               | 3       | 24       | 3     | 5        | 42.7             |                                |
| 469205                   | 05-Sep-97        | Domestic   | SW               | 5       | 24       | 3     | 5        | 67.1             |                                |
| 469206                   | 10-Mar-97        | Industrial | SW               | 11      | 24       | 3     | 5        | 30.5             |                                |
| 469207                   | 26-Sep-97        | Domestic   | NW               | 16      | 24       | 3     | 5        | 30.5             |                                |
| 469208                   | 27-Oct-97        | Domestic   | SW               | 16      | 24       | 3     | 5        | 38.1             |                                |
| 469209                   | 01-Apr-98        | Domestic   | NW               | 22      | 24       | 3     | 5        | 18.9             |                                |
| 469210                   | 01-Apr-98        | Domestic   | NW               | 22      | 24       | 3     | 5        | 18.9             |                                |
| 469211                   | 28-Oct-97        | Domestic   | 7                | 24      | 24       | 3     | 5        | 25.6             |                                |
| 469212                   | 12-May-98        | Domestic   | SE               | 25      | 24       | 3     | 5        | 65.5             |                                |
| 469213                   | 30-Nov-97        | Domestic   | SE               | 26      | 24       | 3     | 5        | 42.7             |                                |
| 469214                   | 06-Dec-97        | Domestic   | SE               | 2       | 24       | 4     | 5        | 61.0             |                                |
| 469215                   | 17-Jul-97        | Domestic   | SE               | 2       | 24       | 4     | 5        | 51.8             |                                |
| 469216                   | 15-Oct-97        | Domestic   | NW               | 10      | 24       | 4     | 5        | 45.7             | Yes                            |
| 491215                   | 19-Dec-98        | Industrial | 12               | 26      | 23       | 4     | 5        | 42.7             |                                |
| 491218                   | 06-Nov-98        | Domestic   | NE               | 23      | 23       | 5     | 5        | 39.6             |                                |
| 491221                   | 02-Jun-98        | Industrial | SE               | 6       | 24       | 2     | 5        | 9.4              |                                |
| 491432                   | 11-Mar-99        | Domestic   | NW               | 25      | 24       | 4     | 5        | 128.0            | Yes                            |
| 491785                   | 06-Sep-96        | Domestic   | SW               | 5       | 24       | 3     | 5        | 55.2             |                                |
| 491786                   | 19-Feb-99        | Domestic   | SE               | 30      | 24       | 3     | 5        | 43.3             |                                |
| 491787                   | 22-Feb-99        | Domestic   | NE               | 24      | 24       | 4     | 5        | 43.3             |                                |
| 492941                   | 18-May-99        | Domestic   | SW               | 2       | 24       | 4     | 5        | 91.4             |                                |
| 492942                   | 07-Apr-99        | Domestic   | SE               | 24      | 24       | 4     | 5        | 43.3             |                                |
| 492943                   | 22-Jun-99        | Domestic   | NW               | 27      | 24       | 4     | 5        | 36.6             | Yes                            |
| 493333                   | 02-Aug-95        | Domestic   | SW               | 3       | 24       | 4     | 5        | 18.3             |                                |
| 493361                   | 26-May-95        | Domestic   | 3                | 21      | 24       | 2     | 5        | 91.4             |                                |
| 494533                   | 02-Oct-98        | Domestic   | SW               | 2       | 24       | 3     | 5        | 42.7             |                                |
| 494534                   | 02-Sep-99        | Domestic   | SE               | 2       | 24       | 3     | 5        | 49.7             |                                |
| 494535                   | 28-Nov-98        | Stock      | 5                | 5       | 24       | 4     | 5        | 15.2             |                                |
| 494536                   | 28-Nov-98        | Stock      | 15               | 8       | 24       | 4     | 5        | 15.2             |                                |
| 494767                   | 02-Nov-99        | Domestic   | NW               | 13      | 23       | 5     | 5        | 51.5             |                                |
| 494768                   | 16-Oct-99        | Domestic   | 10               | 16      | 24       | 3     | 5        | 42.7             |                                |
| 494769                   | 20-Jan-99        | Municipal  | SW               | 4       | 25       | 3     | 5        | 127.4            |                                |
| 495256                   | 21-Dec-99        | Domestic   | SE               | 4       | 25       | 4     | 5        | 42.7             |                                |
| 495533                   | 29-Oct-99        | Domestic   | NE               | 26      | 23       | 5     | 5        | 103.6            |                                |
| 495537                   | 20-May-98        | Irrigation | NE               | 6       | 24       | 2     | 5        | 17.4             |                                |
| 496088                   | 06-Jun-00        | Domestic   | SW               | 1       | 24       | 3     | 5        | 91.4             |                                |
| 496089                   | 17-Nov-99        | Domestic   | NW               | 4       | 24       | 3     | 5        | 100.6            |                                |
| 496466                   | 28-Feb-00        | Domestic   | NE               | 28      | 23       | 3     | 5        | 41.1             |                                |
| 496573                   | 15-Aug-99        | Domestic   | SE               | 16      | 24       | 2     | 5        | 80.8             |                                |
| 496647                   | 18-Jul-00        | Domestic   | SE               | 36      | 24       | 4     | 5        | 9.1              |                                |
| 496648                   | 15-Jul-00        | Domestic   | SE               | 36      | 24       | 4     | 5        | 24.4             |                                |
| 496808                   | 20-Jan-00        | Domestic   | SW               | 1       | 24       | 3     | 5        | 30.5             |                                |
| 496809                   | 01-May-00        | Domestic   | NW               | 18      | 24       | 2     | 5        | 24.4             |                                |
| 497172                   | 26-Sep-00        | Stock      | SW               | 5       | 24       | 3     | 5        | 97.5             |                                |
| 497689                   | 08-Sep-00        | Domestic   | SW               | 15      | 24       | 4     | 5        | 36.6             |                                |
| 497692                   | 18-Apr-01        | Other      | SW               | 4       | 25       | 3     | 5        | 36.6             |                                |
| 497695                   | 18-Apr-01        | Other      | SW               | 4       | 25       | 3     | 5        | 36.6             |                                |
| 497696                   | 17-Apr-01        | Other      | SW               | 4       | 25       | 3     | 5        | 36.6             |                                |
| 497697                   | 17-Apr-01        | Other      | SW               | 4       | 25       | 3     | 5        | 36.6             |                                |
| 497700                   | 11-Apr-01        | Other      | SW               | 4       | 25       | 3     | 5        | 36.6             |                                |
| 498380                   | 12-Apr-01        | Domestic   | SE               | 10      | 24       | 2     | 5        | 42.7             |                                |
| 498381                   | 22-Jun-01        | Domestic   | NW               | 21      | 24       | 2     | 5        | 85.3             |                                |
| 498383                   | 14-Jun-01        | Domestic   | SE               | 21      | 24       | 3     | 5        | 28.3             |                                |
| 498384                   | 14-Jun-01        | Domestic   | SE               | 21      | 24       | 3     | 5        | 30.5             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use             | LSD <sup>2</sup> | Section  | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|----------------------|------------------|----------|----------|-------|----------|------------------|--------------------------------|
| 499238                   | 24-Aug-88              | Stock                | SW               | 15       | 24       | 4     | 5        | 24.4             |                                |
| 499366                   | 17-Nov-01              | Domestic             | SW               | 7        | 24       | 3     | 5        | 61.0             |                                |
| 499367                   | 09-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 36.6             |                                |
| 499368                   | 08-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 36.6             |                                |
| 499369                   | 07-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 36.6             |                                |
| 499370                   | 05-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 36.6             |                                |
| 499371                   | 06-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 36.6             |                                |
| 499372                   | 10-Sep-01              | Domestic             | NW               | 14       | 24       | 3     | 5        | 48.8             |                                |
| 499373                   | 02-Sep-01              | Domestic             | NW               | 22       | 24       | 3     | 5        | 36.6             |                                |
| 1020001                  | 06-Feb-04              | Domestic             | NW               | 6        | 24       | 3     | 5        | 39.6             |                                |
| 1020214                  | 30-Sep-98              | Domestic             | 1                | 13       | 23       | 5     | 5        | 30.5             |                                |
| 1020218                  | 13-Apr-04              | Domestic             | SE               | 26       | 23       | 5     | 5        | 12.2             |                                |
| 1020255                  | 14-Sep-04              | Domestic             | NE               | 25       | 23       | 5     | 5        | 65.5             |                                |
| 1020257                  | 07-Oct-04              | Domestic             | NW               | 13       | 23       | 5     | 5        | 36.6             |                                |
| 1020258                  | 23-Sep-04              | Domestic             | NW               | 13       | 23       | 5     | 5        | 150.9            |                                |
| 1020644                  | 15-Sep-04              | Domestic             | NW               | 34       | 24       | 4     | 5        | 35.1             |                                |
| 1020653                  | 05-Feb-04              | Domestic             | NW               | 6        | 24       | 3     | 5        | 36.6             |                                |
| 1020656                  | 06-May-05              | Domestic             | SE               | 25       | 24       | 3     | 5        | 53.3             |                                |
| 1020658                  | 15-Jul-04              | Domestic             | SE               | 25       | 24       | 3     | 5        | 47.2             |                                |
| 1020661                  | 19-Mar-03              | Domestic             | SW               | 26       | 24       | 3     | 5        | 29.0             |                                |
| 1020664                  | 04-Nov-05              | Domestic             | NW               | 27       | 24       | 3     | 5        | 27.4             |                                |
| 1020666                  | 02-Sep-03              | Domestic             | NE               | 27       | 24       | 3     | 5        | 115.8            |                                |
| 1020668                  | 19-Aug-03              | Domestic             | NE               | 27       | 24       | 3     | 5        | 71.6             |                                |
| 1020672                  | 25-Jun-03              | Domestic             | SW               | 28       | 24       | 3     | 5        | 39.6             |                                |
| 1020672                  | 05-Feb-04              | Domestic             | SW               | 28       | 24       | 3     | 5        | 65.5             |                                |
| 1020689                  | 29-Jun-04              | Domestic             | NW               | 15       | 24       | 4     | 5        | 36.6             |                                |
| 1020693                  | 29-Jun-04<br>28-Jun-04 | Domestic             | NW               | 15       | 24       | 4     | 5        | 29.0             |                                |
| 1020073                  | 06-Feb-04              | Domestic             | NW               | 6        | 24       | 3     | 5        | 39.6             |                                |
| 1021013                  | 27-May-05              | Other                | NW               | 13       | 24       | 3     | 5        | 18.3             |                                |
| 1021013                  | 31-Mar-03              | Domestic             | SW               | 21       | 24       | 3     | 5        | 22.9             |                                |
| 1021014                  | 31-May-05              | Domestic             | NE               | 21       | 24       | 3     | 5        | 57.9             |                                |
| 1021015                  |                        |                      | SE               | 23       | 24       | 3     | 5        | 65.5             |                                |
| 1021185                  | 10-May-06<br>07-Mar-06 | Domestic<br>Domestic | NE               | 27       | 24       | 3     | 5        | 22.9             |                                |
|                          |                        |                      | SE               | 21       | 24       | 3     | 5        | 61.0             |                                |
| 1021206<br>1021207       | 11-May-06              | Domestic             | SE               | 27       | 24       | 3     | 5<br>5   | 22.9             |                                |
| 1021207                  | 11-May-06<br>28-Jun-06 | Domestic<br>Domestic | NW               | 1        |          | -     | 5        | 22.9             |                                |
|                          |                        |                      |                  | 17       | 24       | 4     |          |                  |                                |
| 1021376<br>1021377       | 30-Oct-06              | Domestic<br>Domestic | SE<br>SE         | 19<br>19 | 24<br>24 | 2     | 5        | 150.9            |                                |
|                          | 23-Oct-06              |                      |                  |          |          | 2     | 5        | 132.6            |                                |
| 1021428                  | 21-Feb-07              | Domestic             | SE               | 25       | 24       | 3     | 5        | 48.8<br>45.5     |                                |
| 1021615                  | 16-Oct-07              | Domestic             | NW               | 16       | 24       | 2     | 5        | 65.5             |                                |
| 1021654                  | 21-Feb-08              | Domestic             | NE               | 15       | 24       | 4     | 5        | 59.4             |                                |
| 1021790                  | 24-Nov-08              | Stock                | SE               | 20       | 24       | 4     | 5        | 27.4             |                                |
| 1021808                  | 13-Aug-08              | Other                | SE               | 34       | 24       | 4     | 5        | 35.1             |                                |
| 1021869                  | 28-Jan-09              | Domestic             | NE               | 23       | 23       | 5     | 5        | 112.8            |                                |
| 1021894                  | 15-Jun-09              | Domestic             | 5                | 25       | 24       | 3     | 5        | 35.1             |                                |
| 1021915                  | 20-Aug-09              | Domestic             | NE               | 25       | 23       | 5     | 5        | 24.4             |                                |
| 1021928                  | 07-Jul-09              | Domestic             | NW               | 18       | 24       | 2     | 5        | 22.9             |                                |
| 1021929                  | 06-Jul-09              | Domestic             | SW               | 21       | 24       | 2     | 5        | 45.7             |                                |
| 1022000                  |                        | Domestic             | 7                | 10       | 24       | 2     | 5        | 64.6             |                                |
| 1022089                  | 11-Aug-11              | Domestic             | 6                | 19       | 24       | 2     | 5        | 67.1             |                                |
| 1022247                  | 15-May-12              | Domestic             | 3                | 22       | 24       | 4     | 5        | 47.2             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use   | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 1022267                  | 08-Aug-12        | Domestic   | 4                | 26      | 24       | 3     | 5        | 22.9             |                                |
| 1022293                  | 22-Nov-12        | Domestic   | 2                | 21      | 24       | 3     | 5        | 24.4             |                                |
| 1022347                  | 21-May-13        | Domestic   | 1                | 17      | 24       | 3     | 5        | 35.1             |                                |
| 1022404                  | 15-Oct-13        | Domestic   | 7                | 10      | 24       | 3     | 5        | 9.1              |                                |
| 1022423                  | 11-Feb-14        | Domestic   | 15               | 23      | 24       | 3     | 5        | 29.0             |                                |
| 1022469                  | 06-Jun-06        | Domestic   | 4                | 21      | 24       | 3     | 5        | 41.1             |                                |
| 1022483                  | 21-Nov-14        | Domestic   | 1                | 27      | 24       | 3     | 5        | 47.2             |                                |
| 1022518                  | 03-Feb-15        | Domestic   | 9                | 27      | 23       | 5     | 5        | 47.2             |                                |
| 1022614                  | 11-Nov-15        | Domestic   | 6                | 26      | 24       | 3     | 5        | 59.4             |                                |
| 1022748                  | 07-Jun-16        | Commercial | 8                | 18      | 24       | 2     | 5        | 29.0             |                                |
| 1022750                  | 24-May-16        | Domestic   | 9                | 13      | 23       | 5     | 5        | 65.5             |                                |
| 1022810                  | 27-Jul-16        | Commercial | 4                | 18      | 24       | 3     | 5        | 29.0             |                                |
| 1022811                  | 29-Jul-16        | Commercial | 4                | 18      | 24       | 3     | 5        | 29.0             |                                |
| 1022880                  | 28-Jul-17        | Domestic   | 9                | 18      | 24       | 2     | 5        | 49.7             |                                |
| 1022881                  | 28-Jul-17        | Domestic   | 10               | 18      | 24       | 2     | 5        | 29.0             |                                |
| 1022882                  | 28-Jul-17        | Domestic   | 7                | 18      | 24       | 2     | 5        | 24.4             |                                |
| 1022883                  | 27-Jul-17        | Domestic   | 9                | 18      | 24       | 2     | 5        | 29.0             |                                |
| 1022884                  | 11-Aug-17        | Domestic   | 8                | 18      | 24       | 2     | 5        | 29.3             |                                |
| 1022885                  | 11-Aug-17        | Domestic   | 8                | 18      | 24       | 2     | 5        | 29.0             |                                |
| 1022886                  | 28-Jul-17        | Domestic   | 8                | 18      | 24       | 2     | 5        | 29.0             |                                |
| 1022887                  | 16-Aug-17        | Industrial | 8                | 18      | 24       | 2     | 5        | 35.1             |                                |
| 1022892                  | 21-Jul-17        | Domestic   | 6                | 27      | 24       | 3     | 5        | 22.9             |                                |
| 1022935                  | 08-Nov-17        | Domestic   | 6                | 26      | 24       | 3     | 5        | 30.5             |                                |
| 1022936                  | 06-Nov-17        | Commercial | 16               | 20      | 24       | 2     | 5        | 96.0             |                                |
| 1022937                  | 20-Nov-17        | Commercial | 16               | 20      | 24       | 2     | 5        | 66.4             |                                |
| 1022964                  | 09-Apr-18        | Domestic   | 5                | 30      | 24       | 2     | 5        | 114.3            |                                |
| 1023002                  | 31-May-18        | Commercial | 9                | 25      | 24       | 4     | 5        | 41.1             |                                |
| 1023002                  | 04-Jul-18        | Commercial | 4                | 20      | 24       | 3     | 5        | 40.5             |                                |
| 1023003                  | 31-Jul-18        | Domestic   | SE               | 20      | 24       | 3     | 5        | 40.3             |                                |
| 1023017                  | 10-Aug-18        | Commercial |                  | 15      | 24       | 4     | 5        | 41.6             |                                |
| 1023022                  | 15-Oct-02        | Domestic   | NE               | 10      | 24       | 4     | 5        | 41.0             |                                |
| 1065155                  | 08-Aug-07        | Domestic   | 2                | 5       | 24       | 2     | 5        | 4.7              |                                |
| 1065384                  | 17-Oct-07        | Domestic   | 4                | 22      | 24       | 4     | 5        | 24.4             |                                |
| 1065691                  | 20-Nov-08        | Domestic   | SE               | 7       | 24       | 4     | 5        | 85.3             |                                |
| 1065739                  | 28-Apr-09        | Domestic   | 15               | 20      | 23       | 3     | 5        | 42.7             |                                |
| 1065768                  | 23-Jan-09        | Domestic   | 6                | 20      | 23       | 4     | 5        | 61.0             |                                |
| 1065771                  | 19-Jan-09        | Domestic   | 12               | 21      | 23       | 4     | 5        | 42.7             |                                |
| 1065777                  | 28-Apr-09        | Domestic   | SW               | 34      | 23       | 3     | 5        | 54.9             |                                |
| 1065779                  | 30-Apr-09        | Domestic   | 3                | 23      | 23       | 2     | 5        | 67.1             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 1065797                  | 11-Jun-09        | Domestic         | 1                | 29      | 23       | 3     | 5        | 67.1             |                                |
| 1065802                  | 21-May-09        | Domestic         | 2                | 34      | 23       | 3     | 5        | 91.4             |                                |
| 1065868                  | 18-Aug-09        | Domestic         | 12               | 36      | 23       | 4     | 5        | 79.2             |                                |
| 1065869                  | 18-Aug-09        | Domestic         | 8                | 30      | 23       | 3     | 5        | 54.9             |                                |
| 1065880                  | 20-Jul-09        | Domestic         | 8                | 23      | 23       | 2     | 5        | 79.2             |                                |
| 1065887                  | 30-Jun-09        | Domestic         | 8                | 7       | 24       | 4     | 5        | 61.0             |                                |
| 1065894                  | 17-Jun-09        | Domestic         | SE               | 7       | 24       | 4     | 5        | 134.1            |                                |
| 1066081                  | 12-Aug-10        | Domestic & Stock | 15               | 8       | 23       | 3     | 5        | 61.0             |                                |
| 1066083                  | 26-Jul-10        | Domestic         | 13               | 24      | 23       | 2     | 5        | 42.7             |                                |
| 1066084                  | 27-Jul-10        | Domestic         | 16               | 14      | 23       | 2     | 5        | 61.0             |                                |
| 1066085                  | 29-Jul-10        | Domestic         | 10               | 17      | 23       | 3     | 5        | 54.9             |                                |
| 1066122                  | 31-May-10        | Domestic         | SW               | 23      | 23       | 2     | 5        | 73.2             |                                |
| 1066183                  | 12-Jul-10        | Domestic         | 16               | 36      | 23       | 4     | 5        | 42.7             |                                |
| 1066204                  | 29-Jul-10        | Domestic         | 12               | 29      | 23       | 3     | 5        | 54.9             |                                |
| 1066286                  | 19-Oct-10        | Domestic         | 10               | 20      | 23       | 4     | 5        | 109.7            |                                |
| 1066299                  | 18-Oct-10        | Domestic         | 12               | 29      | 23       | 3     | 5        | 61.0             |                                |
| 1066308                  | 19-Nov-10        | Domestic         | 12               | 32      | 23       | 3     | 5        | 67.1             |                                |
| 1066392                  | 20-Jul-11        | Domestic         | 2                | 26      | 23       | 2     | 5        | 42.7             |                                |
| 1066393                  | 17-Nov-10        | Domestic         | NE               | 23      | 23       | 2     | 5        | 48.8             |                                |
| 1066425                  | 30-Aug-11        | Domestic         | 6                | 35      | 23       | 4     | 5        | 42.7             |                                |
| 1066438                  | 29-Sep-11        | Domestic         | 15               | 9       | 23       | 3     | 5        | 85.3             |                                |
| 1066441                  | 30-Sep-11        | Domestic         | 12               | 20      | 23       | 3     | 5        | 48.8             |                                |
| 1066444                  | 05-Oct-11        | Domestic         | SE               | 27      | 23       | 3     | 5        | 42.7             |                                |
| 1066478                  | 19-Jul-11        | Domestic         | 2                | 26      | 23       | 2     | 5        | 61.0             |                                |
| 1066481                  | 13-Jul-11        | Domestic         | 1                | 17      | 23       | 3     | 5        | 79.2             |                                |
| 1066482                  | 12-Jul-11        | Domestic         | 13               | 17      | 23       | 3     | 5        | 79.2             |                                |
| 1066483                  | 11-Jul-11        | Domestic         | 6                | 28      | 23       | 3     | 5        | 48.8             |                                |
| 1066484                  | 21-Jul-11        | Domestic         | 9                | 23      | 23       | 2     | 5        | 42.7             |                                |
| 1066511                  | 17-Oct-11        | Domestic         | 2                | 22      | 23       | 3     | 5        | 48.8             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 1066512                  | 18-Oct-11        | Domestic         | 13               | 26      | 23       | 3     | 5        | 48.8             |                                |
| 1066541                  | 10-Nov-11        | Domestic         | 5                | 21      | 23       | 4     | 5        | 15.8             |                                |
| 1066616                  | 20-Jun-12        | Domestic         | 1                | 26      | 23       | 2     | 5        | 42.7             |                                |
| 1115001                  | 16-Sep-03        | Domestic         | NW               | 16      | 24       | 3     | 5        | 32.0             |                                |
| 1115004                  | 06-Nov-03        | Domestic         | SW               | 19      | 24       | 2     | 5        | 103.6            |                                |
| 1115019                  | 23-Jul-04        | Domestic         | NE               | 8       | 24       | 2     | 5        | 32.0             |                                |
| 1115103                  | 13-May-06        | Domestic         | NE               | 13      | 23       | 5     | 5        | 24.4             |                                |
| 1140067                  | 19-Apr-02        | Domestic         | 14               | 22      | 24       | 3     | 5        | 18.3             |                                |
| 1140078                  | 17-Aug-01        | Domestic         | SE               | 5       | 24       | 2     | 5        | 35.1             |                                |
| 1140400                  | 16-Apr-09        | Domestic         | 13               | 23      | 24       | 3     | 5        | 18.3             |                                |
| 1155015                  | 22-Oct-02        | Domestic         | SW               | 2       | 24       | 3     | 5        | 73.2             |                                |
| 1155016                  | 01-Nov-02        | Domestic         | SW               | 2       | 24       | 3     | 5        | 24.4             |                                |
| 1240029                  | 27-Jul-05        | Domestic         | SE               | 27      | 24       | 3     | 5        | 61.0             |                                |
| 1240030                  | 15-Mar-05        | Domestic         | 6                | 17      | 24       | 2     | 5        | 41.1             |                                |
| 1240217                  | 18-Jul-06        | Domestic         | 4                | 2       | 24       | 4     | 5        | 18.3             |                                |
| 1245005                  | 19-Jul-04        | Domestic         | SE               | 22      | 24       | 4     | 5        | 42.7             |                                |
| 1245221                  | 14-Nov-06        | Other            | 16               | 10      | 24       | 4     | 5        | 48.8             |                                |
| 1245311                  | 23-Feb-08        | Domestic         | 16               | 23      | 23       | 2     | 5        | 30.5             |                                |
| 1245319                  | 18-Sep-08        | Domestic         | 13               | 17      | 23       | 3     | 5        | 55.5             |                                |
| 1245320                  | 22-Sep-08        | Domestic         | 5                | 31      | 23       | 3     | 5        | 30.5             |                                |
| 1245323                  | 27-Oct-08        | Domestic         | 8                | 32      | 23       | 3     | 5        | 36.6             |                                |
| 1245324                  | 28-Oct-08        | Domestic         | 14               | 21      | 3        | 23    | 5        | 36.6             |                                |
| 1305324                  | 06-Oct-08        | Domestic         | NE               | 31      | 24       | 3     | 5        | 39.6             |                                |
| 1305325                  | 05-Oct-08        | Domestic         | NE               | 31      | 24       | 3     | 5        | 36.6             |                                |
| 1305338                  | 13-Dec-06        | Commercial       | NE               | 36      | 23       | 2     | 5        | 46.0             |                                |
| 1305339                  | 06-Nov-06        | Commercial       | NE               | 36      | 23       | 2     | 5        | 46.3             |                                |
| 1305437                  | 23-May-12        | Domestic         | 16               | 24      | 23       | 5     | 5        | 67.1             |                                |
| 1305478                  | 11-Feb-13        | Domestic         | 10               | 24      | 23       | 5     | 5        | 36.6             |                                |
| 1465013                  | 06-Sep-03        | Domestic         | NW               | 12      | 24       | 4     | 5        | 36.6             |                                |
| 1465042                  | 28-Sep-10        | Domestic         | 4                | 2       | 25       | 4     | 5        | 32.0             |                                |
| 1465050                  | 18-Jun-13        | Domestic         | 8                | 20      | 24       | 3     | 5        | 54.9             |                                |
| 1465051                  | 23-Jun-13        | Domestic         | 8                | 20      | 24       | 3     | 5        | 48.8             |                                |
| 1465062                  | 03-May-16        | Domestic         | SW               | 25      | 23       | 4     | 5        | 65.5             |                                |
| 1465064                  | 30-May-17        | Domestic         | NE               | 25      | 24       | 4     | 5        | 140.2            |                                |
| 1475288                  | 02-Apr-04        | Domestic         | 12               | 18      | 24       | 2     | 5        | 18.3             | <u> </u>                       |
| 1475329                  | 30-Mar-04        | Domestic         | 10               | 21      | 24       | 2     | 5        | 67.1             | <u> </u>                       |
| 1475346                  | 17-Oct-03        | Industrial       | 7                | 34      | 24       | 4     | 5        | 27.4             |                                |
| 1475642                  | 15-Dec-04        | Domestic         | 8                | 18      | 23       | 3     | 5        | 18.3             |                                |
| 1475877                  | 13-Apr-07        | Stock            | 11               | 3       | 25       | 4     | 5        | 36.6             |                                |
| 1476960                  | 08-Apr-16        | Domestic & Stock | 9                | 4       | 25       | 4     | 5        | 30.5             |                                |
| 1476961                  | 19-Apr-16        | Domestic & Stock | 5                | 2       | 24       | 4     | 5        | 67.1             |                                |
| 1476963                  | 22-Apr-16        | Stock            | 5                | 2       | 24       | 4     | 5        | 13.7             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 1476966                  | 22-Apr-16        | Domestic & Stock | 10               | 4       | 25       | 4     | 5        | 48.8             |                                |
| 1555410                  | 31-Aug-06        | Domestic         | NE               | 21      | 24       | 3     | 5        | 36.6             |                                |
| 1555412                  | 28-Mar-06        | Domestic         | NE               | 27      | 24       | 3     | 5        | 27.4             |                                |
| 1555505                  | 20-Jul-04        | Domestic         | SE               | 10      | 24       | 2     | 5        | 79.9             |                                |
| 1555506                  | 01-Aug-04        | Domestic         | SW               | 16      | 24       | 3     | 5        | 100.0            |                                |
| 1555573                  | 25-Jul-06        | Domestic         | NW               | 22      | 24       | 3     | 5        | 23.8             |                                |
| 1555784                  | 08-Nov-07        | Domestic         | NE               | 29      | 24       | 3     | 5        | 23.8             |                                |
| 1555796                  | 18-Apr-08        | Domestic         | SW               | 22      | 24       | 3     | 5        | 27.4             |                                |
| 1600057                  | 14-Dec-05        | Industrial       | 2                | 4       | 25       | 3     | 5        | 48.8             |                                |
| 1600208                  | 20-Nov-09        | Domestic         | 1                | 29      | 24       | 3     | 5        | 17.7             |                                |
| 1600220                  | 24-Sep-10        | Domestic         | 5                | 2       | 24       | 3     | 5        | 59.4             |                                |
| 1600235                  | 09-Dec-11        | Domestic         | 16               | 2       | 24       | 3     | 5        | 29.0             |                                |
| 1600250                  | 23-Feb-12        | Irrigation       | 2                | 4       | 25       | 3     | 5        | 29.3             |                                |
| 1610568                  | 28-Sep-09        | Domestic         | 13               | 22      | 24       | 3     | 5        | 37.2             |                                |
| 1610574                  | 22-Sep-09        | Other            | 5                | 17      | 24       | 2     | 5        | 37.2             |                                |
| 1610643                  | 10-Aug-10        | Domestic         | 5                | 4       | 24       | 3     | 5        | 61.0             |                                |
| 1610657                  | 28-Mar-11        | Domestic         | 5                | 5       | 24       | 3     | 5        | 61.0             |                                |
| 1610684                  | 19-Aug-11        | Municipal        | 8                | 18      | 24       | 3     | 5        | 7.0              |                                |
| 1610688                  | 24-Aug-11        | Municipal        | 8                | 18      | 24       | 3     | 5        | 6.1              |                                |
| 1610804                  | 01-Sep-13        | Domestic         | 5                | 17      | 24       | 2     | 5        | 42.7             |                                |
| 1610826                  | 04-Apr-14        | Commercial       | SW               | 29      | 24       | 2     | 5        | 65.5             |                                |
| 1610926                  | 02-Feb-16        | Domestic         | 9                | 24      | 23       | 5     | 5        | 67.1             |                                |
| 1610927                  | 04-Feb-16        | Domestic         | 15               | 24      | 23       | 5     | 5        | 48.8             |                                |
| 1610928                  | 07-Feb-16        | Domestic         | NE               | 24      | 23       | 5     | 5        | 48.8             |                                |
| 1635010                  | 30-Jun-04        | Domestic         | SW               | 24      | 23       | 2     | 5        | 79.2             |                                |
| 1635032                  | 12-Jul-04        | Unknown          | SE               | 30      | 23       | 2     | 5        | 65.5             |                                |
| 1635033                  | 05-Jul-03        | Domestic         | SE               | 3       | 24       | 4     | 5        | 64.0             |                                |
| 1725010                  | 01-Oct-10        | Domestic         | 6                | 26      | 24       | 3     | 5        | 32.0             |                                |
| 2022507                  | 02-May-04        | Domestic         | 6                | 10      | 24       | 3     | 5        | 30.5             |                                |
| 2023631                  | 26-Sep-06        | Domestic         | NW               | 5       | 24       | 3     | 5        | 48.8             |                                |
| 2023632                  | 25-Sep-06        | Domestic         | NE               | 4       | 24       | 2     | 5        | 53.3             |                                |
| 2023634                  | 05-Sep-06        | Domestic         | SW               | 5       | 24       | 3     | 5        | 53.3             |                                |
| 2027002                  | 28-Apr-79        | Domestic         | SE               | 9       | 24       | 2     | 5        | 82.6             |                                |
| 2056007                  | 10-Jul-06        | Domestic & Stock | SW               | 5       | 24       | 3     | 5        | 35.4             |                                |
| 2056009                  | 23-Aug-06        | Domestic & Stock | SW               | 3       | 24       | 4     | 5        | 20.4             |                                |
| 2056013                  | 13-Jun-06        | Domestic         | 5                | 5       | 24       | 3     | 5        | 57.9             |                                |
| 2056018                  | 21-Jun-06        | Domestic         | SE               | 15      | 24       | 2     | 5        | 38.1             |                                |
| 2066005                  | 30-Jun-10        | Domestic         | SE               | 19      | 24       | 4     | 5        | 30.5             |                                |
| 2066082                  | 09-Dec-14        | Domestic         | SE               | 6       | 25       | 3     | 5        | 29.0             |                                |
| 2066204                  | 26-Oct-17        | Domestic         | 5                | 2       | 24       | 3     | 5        | 41.1             |                                |
| 2085369                  | 02-May-12        | Domestic         | 11               | 23      | 24       | 3     | 5        | 36.6             |                                |
| 2085452                  | 07-Mar-13        | Domestic         | 10               | 23      | 24       | 3     | 5        | 42.7             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date       | Well Use             | LSD <sup>2</sup> | Section  | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------------|----------------------|------------------|----------|----------|-------|----------|------------------|--------------------------------|
| 2085635                  | 01-Aug-14              | Domestic             | 12               | 16       | 24       | 2     | 5        | 91.4             |                                |
| 2085834                  | 24-Nov-15              | Domestic             | 15               | 24       | 23       | 5     | 5        | 54.9             |                                |
| 2085835                  | 26-Nov-15              | Domestic             | NE               | 24       | 23       | 5     | 5        | 73.2             |                                |
| 2085836                  | 30-Nov-15              | Domestic             | NE               | 24       | 23       | 5     | 5        | 61.0             |                                |
| 2085837                  | 28-Nov-15              | Domestic             | NE               | 24       | 23       | 5     | 5        | 79.2             |                                |
| 2085976                  | 20-Dec-16              | Domestic             | 12               | 23       | 23       | 5     | 5        | 42.7             |                                |
| 2090502                  | 17-Oct-08              | Domestic             | SE               | 22       | 24       | 4     | 5        | 61.6             |                                |
| 2090503                  | 21-Oct-08              | Domestic             | SE               | 22       | 24       | 4     | 5        | 27.4             |                                |
| 2090508                  | 22-Jan-09              | Domestic             | 13               | 13       | 23       | 2     | 5        | 33.5             |                                |
| 2092616                  | 19-Dec-79              | Industrial           | 12               | 1        | 24       | 2     | 5        | 21.3             |                                |
| 2093209                  | 17-Mar-78              | Domestic             | 11               | 11       | 24       | 4     | 5        | 91.4             |                                |
| 2093210                  | 17-Mar-78              | Domestic             | 11               | 11       | 24       | 4     | 5        | 30.5             |                                |
| 2093764                  | 31-Oct-35              | Domestic & Stock     | NW               | 20       | 24       | 2     | 5        | 45.7             |                                |
| 2095621                  |                        | Domestic & Stock     | NE               | 23       | 24       | 3     | 5        | 38.1             |                                |
| 2095693                  |                        | Domestic             | NE               | 33       | 24       | 4     | 5        |                  |                                |
| 2095694                  |                        | Domestic & Stock     | NE               | 33       | 24       | 4     | 5        | 36.6             |                                |
| 2095787                  |                        | Domestic             | NE               | 9        | 24       | 2     | 5        | 70.1             |                                |
| 2096008                  |                        | Domestic             | NE               | 12       | 23       | 5     | 5        | 3.7              |                                |
| 2096076                  |                        | Domestic & Stock     | NE               | 13       | 23       | 5     | 5        | 4.6              |                                |
| 2096163                  | 01-Aug-73              | Domestic             | SW               | 10       | 24       | 2     | 5        | 39.6             |                                |
| 2096226                  | 12-Aug-78              | Domestic & Stock     | NE               | 25       | 24       | 3     | 5        |                  |                                |
| 2096453                  | 01-Jan-91              | Domestic             | 9                | 9        | 24       | 3     | 5        | 6.1              |                                |
| 2097500                  | 31-Jul-08              | Domestic             | 6                | 26       | 24       | 3     | 5        | 22.9             |                                |
| 9546019                  | 29-Jun-12              | Domestic             | NE               | 28       | 23       | 4     | 5        | 57.9             |                                |
| 9546022                  | 08-Jul-12              | Domestic             | SW               | 17       | 23       | 3     | 5        | 64.0             |                                |
| 9546024                  | 13-Jul-12              | Domestic             | NE               | 20       | 23       | 3     | 5        | 64.0             |                                |
| 9546026                  | 01-Aug-12              | Domestic             | SE               | 33       | 23       | 3     | 5        | 76.2             |                                |
| 9546038                  | 07-Sep-12              | Domestic             | NE               | 9        | 23       | 3     | 5        | 35.1             |                                |
| 9546041                  | 23-Oct-12              | Domestic             | SW               | 30       | 23       | 3     | 5        | 67.1             |                                |
| 9546047                  | 08-May-13              | Domestic             | NE               | 17       | 23       | 3     | 5        | 30.5             |                                |
| 9546057                  | 09-Jul-13              | Domestic             | NE               | 8        | 23       | 3     | 5        | 59.4             |                                |
| 9546060                  | 11-Jul-13              | Domestic             | SW               | 28       | 23       | 3     | 5        | 83.8             |                                |
| 9546061                  | 30-Jul-13              | Domestic             | SW               | 19       | 23       | 3     | 5        | 12.2             |                                |
| 9546066                  | 29-Sep-13              | Domestic             | NW               | 17       | 23       | 3     | 5        | 54.9             |                                |
| 9546069                  | 10-Sep-13              | Domestic             | NE               | 23       | 23       | 2     | 5        | 22.9             |                                |
| 9546076<br>9546087       | 28-Sep-13<br>06-Mar-14 | Domestic<br>Domestic | NE<br>3          | 23<br>22 | 23<br>23 | 2     | 5<br>5   | 39.6             |                                |
| 9546087<br>9546090       | 10-Apr-14              | Domestic             | 3<br>SW          | 22       | 23       | 3     | 5        | 41.1<br>42.7     |                                |
| 9546090                  | 23-May-14              | Domestic             | NE               | 27       | 23       | 3     | 5<br>5   | 27.4             |                                |
| 9546091                  | 06-Jun-14              | Domestic             | SW               | 17       | 23       | 3     | 5<br>5   | 71.6             |                                |
| 9546093                  | 16-Jul-14              | Domestic             | NW               | 17       | 23       | 4     | 5        | 35.1             |                                |
| 9546119                  | 19-Aug-14              | Domestic             | NE               | 12       | 23       | 3     | 5        | 36.6             |                                |
| 9546128                  | 17-Sep-14              | Domestic             | NE               | 24       | 24       | 4     | 5        | 12.2             |                                |
| 9546133                  | 16-Sep-14              | Domestic             | SE               | 17       | 24       | 3     | 5        | 30.5             |                                |
| 9546134                  | 18-Sep-14              | Domestic             | NE               | 23       | 23       | 2     | 5        | 30.5             |                                |
| 9546135                  | 09-Oct-14              | Domestic             | 6                | 35       | 23       | 4     | 5        | 36.6             |                                |
| 9546136                  | 07 Oct 14              | Domestic             | 13               | 24       | 23       | 2     | 5        | 27.4             |                                |
| 9546137                  | 07-Oct-14              | Domestic             | 13               | 24       | 23       | 2     | 5        | 33.5             |                                |
| 9546138                  | 06-Oct-14              | Domestic             | 7                | 23       | 23       | 2     | 5        | 51.8             |                                |

| GIC Well ID <sup>1</sup> | Drilling<br>Date | Well Use         | LSD <sup>2</sup> | Section | Township | Range | Meridian | Depth<br>(m BGL) | Field<br>Verified <sup>3</sup> |
|--------------------------|------------------|------------------|------------------|---------|----------|-------|----------|------------------|--------------------------------|
| 9546142                  | 13-Oct-14        | Domestic         | 2                | 19      | 23       | 3     | 5        | 51.8             |                                |
| 9546143                  | 28-Oct-14        | Domestic         | 13               | 24      | 23       | 2     | 5        | 27.4             |                                |
| 9546144                  | 27-Oct-14        | Domestic         | 13               | 24      | 23       | 2     | 5        | 27.4             |                                |
| 9546145                  | 29-Oct-14        | Domestic         | 8                | 23      | 23       | 2     | 5        | 61.0             |                                |
| 9546148                  | 29-Nov-14        | Domestic         | 7                | 23      | 23       | 2     | 5        | 67.1             |                                |
| 9546154                  | 10-Nov-14        | Domestic         | SE               | 32      | 23       | 3     | 5        | 47.2             |                                |
| 9546161                  | 09-Jan-15        | Domestic         | 2                | 26      | 23       | 2     | 5        | 47.2             |                                |
| 9546176                  | 26-May-15        | Domestic         | 5                | 24      | 23       | 2     | 5        | 41.1             |                                |
| 9546182                  | 02-Jul-15        | Domestic         | 16               | 13      | 23       | 5     | 5        | 22.9             |                                |
| 9546277                  | 13-Jun-15        | Domestic & Stock | SW               | 24      | 23       | 2     | 5        | 76.2             |                                |
| 9546303                  | 28-Jul-17        | Domestic         | NW               | 35      | 23       | 2     | 5        | 41.1             |                                |
| 9546313                  | 30-Jul-17        | Domestic         | SE               | 23      | 23       | 2     | 5        | 27.4             |                                |
| 9546326                  | 16-Sep-17        | Domestic         | SE               | 35      | 23       | 4     | 5        | 61.0             |                                |
| 9546327                  | 03-Sep-17        | Domestic         | SE               | 20      | 23       | 3     | 5        | 42.7             |                                |
| 9546339                  | 01-Jul-18        | Domestic         | 7                | 29      | 23       | 3     | 5        | 35.1             |                                |
| 9546340                  | 02-Jul-18        | Domestic         | 7                | 29      | 23       | 3     | 5        | 41.1             |                                |
| 9546342                  | 22-Jun-18        | Domestic         | SE               | 17      | 23       | 3     | 5        | 41.1             |                                |
| 9546349                  | 24-Jun-18        | Domestic         | NW               | 8       | 23       | 3     | 5        | 59.4             |                                |
| 9546353                  | 02-Jul-18        | Domestic         | NE               | 22      | 23       | 3     | 5        | 35.1             |                                |
| 9546355                  | 08-Sep-18        | Domestic         | SW               | 20      | 23       | 4     | 5        | 26.2             |                                |
| 9546356                  | 03-Sep-18        | Domestic         | NW               | 21      | 23       | 3     | 5        | 22.9             |                                |
| 9681070                  | 15-May-15        | Domestic         | 4                | 20      | 23       | 4     | 5        | 48.8             |                                |
| 9681071                  | 19-May-15        | Domestic         | 5                | 20      | 23       | 4     | 5        | 60.0             |                                |
| 9681266                  | 26-Sep-17        | Domestic         | 7                | 28      | 24       | 3     | 5        | 21.3             |                                |
| 9681273                  | 03-Oct-17        | Domestic         | 9                | 21      | 24       | 3     | 5        | 30.5             |                                |
| 9906001                  | 16-Aug-17        | Domestic         | 14               | 24      | 24       | 3     | 5        | 24.4             |                                |
| 9906054                  | 14-May-18        | Commercial       | 2                | 2       | 24       | 2     | 5        | 26.2             |                                |
| 9906055                  | 15-May-18        | Commercial       | 1                | 2       | 24       | 2     | 5        | 26.2             |                                |
| 9906056                  | 16-May-18        | Commercial       | 1                | 2       | 24       | 2     | 5        | 26.2             |                                |
| 9906057                  | 18-May-18        | Commercial       | 1                | 2       | 24       | 2     | 5        | 26.2             |                                |

1 - Groundwater Information Centre well identification number

2 - Legal Site Description

3 - Location verfied during the domestic water well testing program

## SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment C Groundwater Monitoring Laboratory Analytical Results May 2019

Attachment C GROUNDWATER MONITORING LABORATORY ANALYTICAL RESULTS



# SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment C Groundwater Monitoring Laboratory Analytical Results May 2019



Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031849

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/03 Report #: R2273769 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B684017

#### Received: 2016/09/26, 19:33

Sample Matrix: Water # Samples Received: 1

|                                          |          | Date       | Date       |                              |                      |
|------------------------------------------|----------|------------|------------|------------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method            | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2016/09/27 | AB SOP-00005                 | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 1        | N/A        | 2016/10/01 | AB SOP-00039                 | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 1        | N/A        | 2016/10/01 | AB SOP-00020                 | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 1        | 2016/09/27 | 2016/09/28 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 1        | 2016/09/27 | 2016/09/28 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Carbon (DOC) (1)                         | 1        | N/A        | 2016/09/30 | CAL SOP-00077                | MMCW 119 1996 m      |
| Conductivity @25C                        | 1        | N/A        | 2016/09/27 | AB SOP-00005                 | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 1        | 2016/09/27 | 2016/09/28 | AB SOP-00040<br>AB SOP-00037 | CCME PHC-CWS m       |
| Hardness                                 | 1        | N/A        | 2016/09/29 | AB WI-00065                  | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 1        | 2016/09/29 | 2016/09/29 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 1        | 2016/09/29 | 2016/09/29 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 1        | N/A        | 2016/09/28 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 1        | N/A        | 2016/09/28 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Ion Balance                              | 1        | N/A        | 2016/09/28 | AB WI-00065                  | Auto Calc            |
| Sum of cations, anions                   | 1        | N/A        | 2016/09/29 | AB WI-00065                  | Auto Calc            |
| Ammonia-N (Dissolved)                    | 1        | N/A        | 2016/09/30 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 1        | N/A        | 2016/09/28 | AB WI-00065                  | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 1        | N/A        | 2016/09/28 | AB WI-00065                  | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 1        | N/A        | 2016/09/27 | AB SOP-00023                 | SM 22 4110 B m       |
| pH @25°C                                 | 1        | N/A        | 2016/09/27 | AB SOP-00005                 | SM 22 4500-H+B m     |
| Orthophosphate by Konelab                | 1        | N/A        | 2016/09/28 | AB SOP-00025                 | SM 22 4500-P A,F m   |
| Sulphate by Automated Colourimetry       | 1        | N/A        | 2016/10/01 | AB SOP-00018                 | SM 22 4500-SO4 E m   |
| Heterotrophic Plate Count                | 1        | 2016/09/27 | 2016/09/29 | CAL SOP-00012                | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)      | 1        | N/A        | 2016/10/01 | AB WI-00065                  | Auto Calc            |
| Total Kjeldahl Nitrogen                  | 1        | 2016/09/30 | 2016/09/30 | AB SOP-00008                 | EPA 351.1 R1978 m    |
| Phosphorus -P (Total, Dissolved)         | 1        | 2016/09/29 | 2016/09/30 | AB SOP-00024                 | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031849

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/03 Report #: R2273769 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B684017 Received: 2016/09/26, 19:33

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## AT1 BTEX AND F1-F2 IN WATER (WATER)

| Maxxam ID                      |       | PP4727     |         |          |
|--------------------------------|-------|------------|---------|----------|
| Sampling Date                  |       | 2016/09/26 |         |          |
| southing sate                  |       | 14:38      |         |          |
| COC Number                     |       | M031849    |         |          |
|                                | UNITS | MW16-15-34 | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon          |       |            |         |          |
| F2 (C10-C16 Hydrocarbons)      | mg/L  | <0.10      | 0.10    | 8411843  |
| Volatiles                      |       |            |         |          |
| Benzene                        | mg/L  | <0.00040   | 0.00040 | 8416232  |
| Toluene                        | mg/L  | <0.00040   | 0.00040 | 8416232  |
| Ethylbenzene                   | mg/L  | <0.00040   | 0.00040 | 8416232  |
| m & p-Xylene                   | mg/L  | <0.00080   | 0.00080 | 8416232  |
| o-Xylene                       | mg/L  | <0.00040   | 0.00040 | 8416232  |
| Xylenes (Total)                | mg/L  | <0.00080   | 0.00080 | 8416232  |
| F1 (C6-C10) - BTEX             | mg/L  | <0.10      | 0.10    | 8416232  |
| F1 (C6-C10)                    | mg/L  | <0.10      | 0.10    | 8416232  |
| Surrogate Recovery (%)         |       |            |         |          |
| 1,4-Difluorobenzene (sur.)     | %     | 108        | N/A     | 8416232  |
| 4-Bromofluorobenzene (sur.)    | %     | 106        | N/A     | 8416232  |
| D4-1,2-Dichloroethane (sur.)   | %     | 121        | N/A     | 8416232  |
| O-TERPHENYL (sur.)             | %     | 94         | N/A     | 8411843  |
| RDL = Reportable Detection Lir | nit   |            |         |          |
| N/A = Not Applicable           |       |            |         |          |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                |       | PP4727              |          |          |
|----------------------------------------------------------|-------|---------------------|----------|----------|
| Sampling Date                                            |       | 2016/09/26<br>14:38 |          |          |
| COC Number                                               |       | M031849             |          |          |
|                                                          | UNITS | MW16-15-34          | RDL      | QC Batch |
| Calculated Parameters                                    |       |                     | •        |          |
| Anion Sum                                                | meq/L | 11                  | N/A      | 8411319  |
| Cation Sum                                               | meq/L | 10                  | N/A      | 8411319  |
| Hardness (CaCO3)                                         | mg/L  | 52                  | 0.50     | 8411317  |
| Ion Balance                                              | N/A   | 0.95                | 0.010    | 8411318  |
| Dissolved Nitrate (NO3)                                  | mg/L  | <0.044              | 0.044    | 8411320  |
| Nitrate plus Nitrite (N)                                 | mg/L  | <0.020              | 0.020    | 8411321  |
| Dissolved Nitrite (NO2)                                  | mg/L  | <0.033              | 0.033    | 8411320  |
| Calculated Total Dissolved Solids                        | mg/L  | 610                 | 10       | 8411322  |
| Misc. Inorganics                                         |       |                     |          |          |
| Conductivity                                             | uS/cm | 1000                | 1.0      | 8412214  |
| рН                                                       | рН    | 8.31                | N/A      | 8412213  |
| Anions                                                   |       |                     | •        |          |
| Alkalinity (PP as CaCO3)                                 | mg/L  | <0.50               | 0.50     | 8412208  |
| Alkalinity (Total as CaCO3)                              | mg/L  | 350                 | 0.50     | 8412208  |
| Bicarbonate (HCO3)                                       | mg/L  | 430                 | 0.50     | 8412208  |
| Carbonate (CO3)                                          | mg/L  | <0.50               | 0.50     | 8412208  |
| Hydroxide (OH)                                           | mg/L  | <0.50               | 0.50     | 8412208  |
| Dissolved Sulphate (SO4)                                 | mg/L  | 170                 | 1.0      | 8418346  |
| Dissolved Chloride (Cl)                                  | mg/L  | 3.4                 | 1.0      | 8418338  |
| Nutrients                                                |       |                     |          |          |
| Dissolved Nitrite (N)                                    | mg/L  | <0.010              | 0.010    | 8412585  |
| Dissolved Nitrate (N)                                    | mg/L  | <0.010              | 0.010    | 8412585  |
| Elements                                                 |       |                     |          |          |
| Dissolved Aluminum (Al)                                  | mg/L  | 0.0040              | 0.0030   | 8413830  |
| Dissolved Antimony (Sb)                                  | mg/L  | 0.0013              | 0.00060  | 8413830  |
| Dissolved Arsenic (As)                                   | mg/L  | 0.0010              | 0.00020  | 8413830  |
| Dissolved Barium (Ba)                                    | mg/L  | 0.013               | 0.010    | 8414668  |
| Dissolved Beryllium (Be)                                 | mg/L  | <0.0010             | 0.0010   | 8413830  |
| Dissolved Boron (B)                                      | mg/L  | 0.040               | 0.020    | 8414668  |
| Dissolved Cadmium (Cd)                                   | mg/L  | <0.000020           | 0.000020 | 8413830  |
| RDL = Reportable Detection Limit<br>N/A = Not Applicable |       |                     |          |          |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PP4727              |         |          |
|----------------------------------|-------|---------------------|---------|----------|
| Sampling Date                    |       | 2016/09/26<br>14:38 |         |          |
| COC Number                       |       | M031849             |         |          |
|                                  | UNITS | MW16-15-34          | RDL     | QC Batch |
| Dissolved Calcium (Ca)           | mg/L  | 14                  | 0.30    | 8414668  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010             | 0.0010  | 8413830  |
| Dissolved Cobalt (Co)            | mg/L  | <0.00030            | 0.00030 | 8413830  |
| Dissolved Copper (Cu)            | mg/L  | <0.00020            | 0.00020 | 8413830  |
| Dissolved Iron (Fe)              | mg/L  | <0.060              | 0.060   | 8414668  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020            | 0.00020 | 8413830  |
| Dissolved Lithium (Li)           | mg/L  | 0.074               | 0.020   | 8414668  |
| Dissolved Magnesium (Mg)         | mg/L  | 4.2                 | 0.20    | 8414668  |
| Dissolved Manganese (Mn)         | mg/L  | 0.028               | 0.0040  | 8414668  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.018               | 0.00020 | 8413830  |
| Dissolved Nickel (Ni)            | mg/L  | <0.00050            | 0.00050 | 8413830  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10               | 0.10    | 8414668  |
| Dissolved Potassium (K)          | mg/L  | 2.4                 | 0.30    | 8414668  |
| Dissolved Selenium (Se)          | mg/L  | 0.00065             | 0.00020 | 8413830  |
| Dissolved Silicon (Si)           | mg/L  | 2.6                 | 0.10    | 8414668  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010            | 0.00010 | 8413830  |
| Dissolved Sodium (Na)            | mg/L  | 210                 | 0.50    | 8414668  |
| Dissolved Strontium (Sr)         | mg/L  | 0.25                | 0.020   | 8414668  |
| Dissolved Sulphur (S)            | mg/L  | 51                  | 0.20    | 8414668  |
| Dissolved Thallium (Tl)          | mg/L  | <0.00020            | 0.00020 | 8413830  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010             | 0.0010  | 8413830  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010             | 0.0010  | 8413830  |
| Dissolved Uranium (U)            | mg/L  | 0.00024             | 0.00010 | 8413830  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010             | 0.0010  | 8413830  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030             | 0.0030  | 8413830  |
| RDL = Reportable Detection Limit | 1     |                     |         | ·        |



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                      |                 | PP4727              | PP4727                |        |          |
|--------------------------------|-----------------|---------------------|-----------------------|--------|----------|
| Sampling Date                  |                 | 2016/09/26<br>14:38 | 2016/09/26<br>14:38   |        |          |
| COC Number                     |                 | M031849             | M031849               |        |          |
|                                | UNITS           | MW16-15-34          | MW16-15-34<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics               |                 |                     |                       |        |          |
| Dissolved Organic Carbon (C)   | mg/L            | 1.7                 | 1.7                   | 0.50   | 8417244  |
| Microbiological Param.         | •               | •                   |                       | •      |          |
| E.Coli DST                     | mpn/100mL       | <1.0                | N/A                   | 1.0    | 8412377  |
| Fecal Coliforms                | MPN/100mL       | <1.0                | N/A                   | 1.0    | 8412376  |
| Heterotrophic Plate Count      | CFU/mL          | 39                  | 45                    | 1.0    | 8412470  |
| Total Coliforms DST            | mpn/100mL       | <1.0                | N/A                   | 1.0    | 8412377  |
| Nutrients                      |                 |                     |                       |        |          |
| Dissolved Ammonia (N)          | mg/L            | 0.99 (1)            | 0.95 (1)              | 0.050  | 8417670  |
| Total Kjeldahl Nitrogen        | mg/L            | 0.90 (1)            | N/A                   | 0.050  | 8416562  |
| Orthophosphate (P)             | mg/L            | 0.0038              | N/A                   | 0.0030 | 8414603  |
| Dissolved Phosphorus (P)       | mg/L            | 0.0057              | 0.0057                | 0.0030 | 8415469  |
| RDL = Reportable Detection Li  | nit             |                     |                       |        |          |
| Lab-Dup = Laboratory Initiated | Duplicate       |                     |                       |        |          |
| N/A = Not Applicable           |                 |                     |                       |        |          |
| (1) Ammonia greater than TKN   | . Results are w | ithin acceptabl     | e limits of prec      | ision. |          |



#### **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                  |       | PP4727              |        |          |
|----------------------------|-------|---------------------|--------|----------|
| Sampling Date              |       | 2016/09/26<br>14:38 |        |          |
| COC Number                 |       | M031849             |        |          |
|                            | UNITS | MW16-15-34          | RDL    | QC Batch |
| Low Level Elements         |       |                     |        |          |
| Dissolved Mercury (Hg)     | ug/L  | <0.0020             | 0.0020 | 8415298  |
| Total Mercury (Hg)         | ug/L  | <0.10 (1)           | 0.10   | 8415274  |
| RDL = Reportable Detection | imit  |                     |        |          |

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 9.7°C

Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                 |                             | Date       |          |          |        |           |
|---------|------|-----------------|-----------------------------|------------|----------|----------|--------|-----------|
| Batch   | Init | QC Type         | Parameter                   | Analyzed   | Value    | Recovery | UNITS  | QC Limits |
| 8411843 | LSH  | Matrix Spike    | O-TERPHENYL (sur.)          | 2016/09/27 |          | 91       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/09/27 |          | 88       | %      | 50 - 130  |
| 8411843 | LSH  | Spiked Blank    | O-TERPHENYL (sur.)          | 2016/09/27 |          | 95       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/09/27 |          | 88       | %      | 70 - 130  |
| 8411843 | LSH  | Method Blank    | O-TERPHENYL (sur.)          | 2016/09/27 |          | 93       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/09/27 | <0.10    |          | mg/L   |           |
| 8411843 | LSH  | RPD             | F2 (C10-C16 Hydrocarbons)   | 2016/09/28 | NC       |          | %      | 40        |
| 8412208 | SSO  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/09/27 |          | 99       | %      | 80 - 120  |
| 8412208 | SSO  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/09/27 | <0.50    |          | mg/L   |           |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/27 | <0.50    |          | mg/L   |           |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/27 | <0.50    |          | mg/L   |           |
|         |      |                 | Carbonate (CO3)             | 2016/09/27 | <0.50    |          | mg/L   |           |
|         |      |                 | Hydroxide (OH)              | 2016/09/27 | <0.50    |          | mg/L   |           |
| 8412208 | SSO  | RPD             | Alkalinity (PP as CaCO3)    | 2016/09/27 | NC       |          | %      | 20        |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/27 | 6.1      |          | %      | 20        |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/27 | 6.1      |          | %      | 20        |
|         |      |                 | Carbonate (CO3)             | 2016/09/27 | NC       |          | %      | 20        |
|         |      |                 | Hydroxide (OH)              | 2016/09/27 | NC       |          | %      | 20        |
| 8412213 | SSO  | Spiked Blank    | рН                          | 2016/09/27 |          | 100      | %      | 97 - 103  |
| 8412213 | SSO  | RPD             | рН                          | 2016/09/27 | 0.17     |          | %      | N/A       |
| 8412214 | SSO  | Spiked Blank    | Conductivity                | 2016/09/27 |          | 100      | %      | 90 - 110  |
| 8412214 | SSO  | Method Blank    | Conductivity                | 2016/09/27 | <1.0     |          | uS/cm  |           |
| 8412214 | SSO  | RPD             | Conductivity                | 2016/09/27 | 0.12     |          | %      | 20        |
| 8412376 | AP1  | Method Blank    | Fecal Coliforms             | 2016/09/28 | <1.0     |          | MPN/10 | )         |
| 8412376 | AP1  | RPD             | Fecal Coliforms             | 2016/09/28 | NC       |          | %      | N/A       |
| 8412377 | AP1  | Method Blank    | E.Coli DST                  | 2016/09/28 | <1.0     |          | mpn/10 | )         |
|         |      |                 | Total Coliforms DST         | 2016/09/28 | <1.0 (1) |          | mpn/10 | )         |
| 8412377 | AP1  | RPD             | Total Coliforms DST         | 2016/09/28 | NC       |          | %      | N/A       |
| 8412470 | AP1  | Method Blank    | Heterotrophic Plate Count   | 2016/09/29 | <1.0     |          | CFU/mL |           |
| 8412470 | AP1  | RPD [PP4727-08] | Heterotrophic Plate Count   | 2016/09/29 | 14       |          | %      | N/A       |
| 8412585 | JLD  | Matrix Spike    | Dissolved Nitrite (N)       | 2016/09/27 |          | 102      | %      | 80 - 120  |
|         |      |                 | Dissolved Nitrate (N)       | 2016/09/27 |          | 103      | %      | 80 - 120  |
| 8412585 | JLD  | Spiked Blank    | Dissolved Nitrite (N)       | 2016/09/27 |          | 100      | %      | 80 - 120  |
|         |      |                 | Dissolved Nitrate (N)       | 2016/09/27 |          | 101      | %      | 80 - 120  |
| 8412585 | JLD  | Method Blank    | Dissolved Nitrite (N)       | 2016/09/27 | < 0.010  |          | mg/L   |           |
|         |      |                 | Dissolved Nitrate (N)       | 2016/09/27 | < 0.010  |          | mg/L   |           |
| 8412585 | JLD  | RPD             | Dissolved Nitrite (N)       | 2016/09/27 | NC       |          | %      | 20        |
|         |      |                 | Dissolved Nitrate (N)       | 2016/09/27 | NC       |          | %      | 20        |
| 8413830 | PC5  | Matrix Spike    | Dissolved Aluminum (Al)     | 2016/09/28 |          | NC       | %      | 80 - 120  |
|         |      |                 | Dissolved Antimony (Sb)     | 2016/09/28 |          | 94       | %      | 80 - 120  |
|         |      |                 | Dissolved Arsenic (As)      | 2016/09/28 |          | 102      | %      | 80 - 120  |
|         |      |                 | Dissolved Beryllium (Be)    | 2016/09/28 |          | 90       | %      | 80 - 120  |
|         |      |                 | Dissolved Cadmium (Cd)      | 2016/09/28 |          | 102      | %      | 80 - 120  |
|         |      |                 | Dissolved Chromium (Cr)     | 2016/09/28 |          | 103      | %      | 80 - 120  |
|         |      |                 | Dissolved Cobalt (Co)       | 2016/09/28 |          | 101      | %      | 80 - 120  |
|         |      |                 | Dissolved Copper (Cu)       | 2016/09/28 |          | 99       | %      | 80 - 120  |
|         |      |                 | Dissolved Lead (Pb)         | 2016/09/28 |          | 103      | %      | 80 - 120  |
|         |      |                 | Dissolved Molybdenum (Mo)   | 2016/09/28 |          | 102      | %      | 80 - 120  |
|         |      |                 | Dissolved Nickel (Ni)       | 2016/09/28 |          | 95       | %      | 80 - 120  |
|         |      |                 | Dissolved Selenium (Se)     | 2016/09/28 |          | 100      | %      | 80 - 120  |
|         |      |                 | Dissolved Silver (Ag)       | 2016/09/28 |          | 98       | %      | 80 - 120  |
|         |      |                 | Dissolved Thallium (Tl)     | 2016/09/28 |          | 105      | %      | 80 - 120  |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |              |                           | Date       |           |          |       |           |
|---------|------|--------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Tin (Sn)        | 2016/09/28 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/09/28 |           | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/09/28 |           | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/09/28 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/09/28 |           | 105      | %     | 80 - 120  |
| 8413830 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/09/28 |           | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/28 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/28 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/28 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/09/28 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/28 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/28 |           | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/28 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/28 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/28 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/09/28 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/09/28 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/09/28 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/09/28 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/09/28 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/09/28 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/09/28 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/09/28 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/09/28 |           | 100      | %     | 80 - 120  |
| 8413830 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/09/28 | < 0.0030  |          | mg/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/28 | <0.00060  |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/28 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/09/28 | <0.000020 |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/28 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/28 | <0.00030  |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/09/28 | <0.00050  |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/09/28 | < 0.00010 |          | mg/L  |           |
|         |      |              | Dissolved Thallium (TI)   | 2016/09/28 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Tin (Sn)        | 2016/09/28 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Titanium (Ti)   | 2016/09/28 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Uranium (U)     | 2016/09/28 | <0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Vanadium (V)    | 2016/09/28 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Zinc (Zn)       | 2016/09/28 | < 0.0030  |          | mg/L  |           |
| 8413830 | PC5  | RPD          | Dissolved Aluminum (Al)   | 2016/09/28 | 1.1       |          | %     | 20        |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/28 | NC        |          | %     | 20        |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/28 | NC        |          | %     | 20        |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |               |                                                      | Date       |         | _        |       |          |
|---------|------|---------------|------------------------------------------------------|------------|---------|----------|-------|----------|
| Batch   | Init | QC Type       | Parameter                                            | Analyzed   | Value   | Recovery | UNITS |          |
|         |      |               | Dissolved Nickel (Ni)                                | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Selenium (Se)                              | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Silver (Ag)                                | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Thallium (TI)                              | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Tin (Sn)                                   | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Titanium (Ti)                              | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Uranium (U)                                | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Vanadium (V)                               | 2016/09/28 | NC      |          | %     | 20       |
|         |      |               | Dissolved Zinc (Zn)                                  | 2016/09/28 | NC      |          | %     | 20       |
| 8414603 | MB5  | Matrix Spike  | Orthophosphate (P)                                   | 2016/09/28 |         | 95       | %     | 80 - 120 |
| 8414603 | MB5  | Spiked Blank  | Orthophosphate (P)                                   | 2016/09/28 |         | 100      | %     | 80 - 120 |
| 8414603 | MB5  | Method Blank  | Orthophosphate (P)                                   | 2016/09/28 | <0.0030 |          | mg/L  |          |
| 8414603 | MB5  | RPD           | Orthophosphate (P)                                   | 2016/09/28 | NC      |          | %     | 20       |
| 8414668 | JHC  | Matrix Spike  | Dissolved Barium (Ba)                                | 2016/09/28 |         | 90       | %     | 80 - 120 |
|         |      |               | Dissolved Boron (B)                                  | 2016/09/28 |         | 87       | %     | 80 - 120 |
|         |      |               | Dissolved Calcium (Ca)                               | 2016/09/28 |         | 90       | %     | 80 - 120 |
|         |      |               | Dissolved Iron (Fe)                                  | 2016/09/28 |         | 88       | %     | 80 - 120 |
|         |      |               | Dissolved Lithium (Li)                               | 2016/09/28 |         | 91       | %     | 80 - 120 |
|         |      |               | Dissolved Magnesium (Mg)                             | 2016/09/28 |         | 96       | %     | 80 - 120 |
|         |      |               | Dissolved Manganese (Mn)                             | 2016/09/28 |         | 89       | %     | 80 - 120 |
|         |      |               | Dissolved Phosphorus (P)                             | 2016/09/28 |         | 100      | %     | 80 - 120 |
|         |      |               | Dissolved Potassium (K)                              | 2016/09/28 |         | 99       | %     | 80 - 120 |
|         |      |               | Dissolved Silicon (Si)                               | 2016/09/28 |         | 91       | %     | 80 - 120 |
|         |      |               | Dissolved Sodium (Na)                                | 2016/09/28 |         | NC       | %     | 80 - 120 |
|         |      |               | Dissolved Strontium (Sr)                             | 2016/09/28 |         | 87       | %     | 80 - 120 |
| 8414668 | JHC  | Spiked Blank  | Dissolved Barium (Ba)                                | 2016/09/28 |         | 92       | %     | 80 - 120 |
| 0111000 | 5110 | opineu biunit | Dissolved Boron (B)                                  | 2016/09/28 |         | 88       | %     | 80 - 120 |
|         |      |               | Dissolved Calcium (Ca)                               | 2016/09/28 |         | 97       | %     | 80 - 120 |
|         |      |               | Dissolved Iron (Fe)                                  | 2016/09/28 |         | 91       | %     | 80 - 120 |
|         |      |               | Dissolved Lithium (Li)                               | 2016/09/28 |         | 93       | %     | 80 - 120 |
|         |      |               | Dissolved Magnesium (Mg)                             | 2016/09/28 |         | 100      | %     | 80 - 120 |
|         |      |               | Dissolved Magnesium (Mg)<br>Dissolved Manganese (Mn) | 2016/09/28 |         | 93       | %     | 80 - 120 |
|         |      |               | Dissolved Phosphorus (P)                             | 2016/09/28 |         | 98       | %     | 80 - 120 |
|         |      |               |                                                      |            |         |          | %     | 80 - 120 |
|         |      |               | Dissolved Potassium (K)                              | 2016/09/28 |         | 101      | %     |          |
|         |      |               | Dissolved Silicon (Si)                               | 2016/09/28 |         | 94       |       | 80 - 120 |
|         |      |               | Dissolved Sodium (Na)                                | 2016/09/28 |         | 95       | %     | 80 - 120 |
|         |      |               | Dissolved Strontium (Sr)                             | 2016/09/28 | 0.040   | 89       | %     | 80 - 120 |
| 8414668 | JHC  | Method Blank  | Dissolved Barium (Ba)                                | 2016/09/28 | < 0.010 |          | mg/L  |          |
|         |      |               | Dissolved Boron (B)                                  | 2016/09/28 | < 0.020 |          | mg/L  |          |
|         |      |               | Dissolved Calcium (Ca)                               | 2016/09/28 | <0.30   |          | mg/L  |          |
|         |      |               | Dissolved Iron (Fe)                                  | 2016/09/28 | <0.060  |          | mg/L  |          |
|         |      |               | Dissolved Lithium (Li)                               | 2016/09/28 | <0.020  |          | mg/L  |          |
|         |      |               | Dissolved Magnesium (Mg)                             | 2016/09/28 | <0.20   |          | mg/L  |          |
|         |      |               | Dissolved Manganese (Mn)                             | 2016/09/28 | <0.0040 |          | mg/L  |          |
|         |      |               | Dissolved Phosphorus (P)                             | 2016/09/28 | <0.10   |          | mg/L  |          |
|         |      |               | Dissolved Potassium (K)                              | 2016/09/28 | <0.30   |          | mg/L  |          |
|         |      |               | Dissolved Silicon (Si)                               | 2016/09/28 | <0.10   |          | mg/L  |          |
|         |      |               | Dissolved Sodium (Na)                                | 2016/09/28 | <0.50   |          | mg/L  |          |
|         |      |               | Dissolved Strontium (Sr)                             | 2016/09/28 | <0.020  |          | mg/L  |          |
|         |      |               | Dissolved Sulphur (S)                                | 2016/09/28 | <0.20   |          | mg/L  |          |
| 8414668 | JHC  | RPD           | Dissolved Barium (Ba)                                | 2016/09/28 | 0.0078  |          | %     | 20       |
|         |      |               | Dissolved Boron (B)                                  | 2016/09/28 | NC      |          | %     | 20       |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |                          |                              | Date       |          |          |           |                      |
|---------|------|--------------------------|------------------------------|------------|----------|----------|-----------|----------------------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value    | Recovery | UNITS     | QC Limits            |
|         |      |                          | Dissolved Calcium (Ca)       | 2016/09/28 | 0.0054   |          | %         | 20                   |
|         |      |                          | Dissolved Iron (Fe)          | 2016/09/28 | NC       |          | %         | 20                   |
|         |      |                          | Dissolved Lithium (Li)       | 2016/09/28 | NC       |          | %         | 20                   |
|         |      |                          | Dissolved Magnesium (Mg)     | 2016/09/28 | 0.051    |          | %         | 20                   |
|         |      |                          | Dissolved Manganese (Mn)     | 2016/09/28 | 0.054    |          | %         | 20                   |
|         |      |                          | Dissolved Phosphorus (P)     | 2016/09/28 | NC       |          | %         | 20                   |
|         |      |                          | Dissolved Potassium (K)      | 2016/09/28 | 1.6      |          | %         | 20                   |
|         |      |                          | Dissolved Silicon (Si)       | 2016/09/28 | 0.29     |          | %         | 20                   |
|         |      |                          | Dissolved Sodium (Na)        | 2016/09/28 | 0.082    |          | %         | 20                   |
|         |      |                          | Dissolved Strontium (Sr)     | 2016/09/28 | 0.0033   |          | %         | 20                   |
|         |      |                          | Dissolved Sulphur (S)        | 2016/09/28 | 0.015    |          | %         | 20                   |
| 8415274 | RK3  | Matrix Spike             | Total Mercury (Hg)           | 2016/09/29 |          | 111      | %         | 80 - 120             |
| 8415274 | RK3  | Spiked Blank             | Total Mercury (Hg)           | 2016/09/29 |          | 95       | %         | 80 - 120             |
| 8415274 | RK3  | Method Blank             | Total Mercury (Hg)           | 2016/09/29 | <0.0020  |          | ug/L      |                      |
| 8415274 | RK3  | RPD                      | Total Mercury (Hg)           | 2016/09/29 | NC       |          | %         | 20                   |
| 8415298 | RK3  | Matrix Spike             | Dissolved Mercury (Hg)       | 2016/09/29 |          | 116      | %         | 80 - 120             |
| 8415298 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)       | 2016/09/29 |          | 96       | %         | 80 - 120             |
| 8415298 | RK3  | Method Blank             | Dissolved Mercury (Hg)       | 2016/09/29 | <0.0020  |          | ug/L      |                      |
| 8415298 | RK3  | RPD                      | Dissolved Mercury (Hg)       | 2016/09/29 | NC       |          | %         | 20                   |
| 8415469 | MB5  | Matrix Spike [PP4727-05] | Dissolved Phosphorus (P)     | 2016/09/30 |          | 91       | %         | 80 - 120             |
| 8415469 | MB5  | QC Standard              | Dissolved Phosphorus (P)     | 2016/09/30 |          | 96       | %         | 80 - 120             |
| 8415469 | MB5  | Spiked Blank             | Dissolved Phosphorus (P)     | 2016/09/30 |          | 97       | %         | 80 - 120             |
| 8415469 | MB5  | Method Blank             | Dissolved Phosphorus (P)     | 2016/09/30 | <0.0030  |          | mg/L      | 00 110               |
| 8415469 | MB5  | RPD [PP4727-05]          | Dissolved Phosphorus (P)     | 2016/09/30 | NC       |          | %         | 20                   |
| 8416232 | GP4  | Matrix Spike             | 1,4-Difluorobenzene (sur.)   | 2016/10/01 |          | 100      | %         | 70 - 130             |
| 0.10101 | 0    |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/01 |          | 106      | %         | 70 - 130             |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/01 |          | 119      | %         | 70 - 130             |
|         |      |                          | Benzene                      | 2016/10/01 |          | 110      | %         | 70 - 130             |
|         |      |                          | Toluene                      | 2016/10/01 |          | 106      | %         | 70 - 130             |
|         |      |                          | Ethylbenzene                 | 2016/10/01 |          | 113      | %         | 70 - 130             |
|         |      |                          | m & p-Xylene                 | 2016/10/01 |          | 112      | %         | 70 - 130             |
|         |      |                          | o-Xylene                     | 2016/10/01 |          | 116      | %         | 70 - 130             |
|         |      |                          | F1 (C6-C10)                  | 2016/10/01 |          | 87       | %         | 70 - 130             |
| 8416232 | GP4  | Spiked Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/01 |          | 101      | %         | 70 - 130             |
| 0410252 | 014  | Spined Blank             | 4-Bromofluorobenzene (sur.)  | 2016/10/01 |          | 101      | %         | 70 - 130             |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/01 |          | 116      | %         | 70 - 130             |
|         |      |                          | Benzene                      | 2016/10/01 |          | 110      | %         | 70 - 130             |
|         |      |                          | Toluene                      | 2016/10/01 |          | 108      | %         | 70 - 130             |
|         |      |                          | Ethylbenzene                 | 2016/10/01 |          | 116      | %         | 70 - 130             |
|         |      |                          | m & p-Xylene                 | 2016/10/01 |          | 115      | %         | 70 - 130             |
|         |      |                          | o-Xylene                     | 2016/10/01 |          | 119      | %         | 70 - 130             |
|         |      |                          | F1 (C6-C10)                  | 2016/10/01 |          | 102      | %         | 70 - 130             |
| 8416232 | GP4  | Method Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/01 |          | 102      | %         | 70 - 130             |
| 0410252 | 014  | Wethou Blank             | 4-Bromofluorobenzene (sur.)  | 2016/10/01 |          | 105      | %         | 70 - 130             |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/01 |          | 100      | %         | 70 - 130<br>70 - 130 |
|         |      |                          | Benzene                      | 2016/10/01 | <0.00040 | 110      | ∽<br>mg/L | ,0 100               |
|         |      |                          | Toluene                      | 2016/10/01 | <0.00040 |          | mg/L      |                      |
|         |      |                          | Ethylbenzene                 | 2016/10/01 | <0.00040 |          | mg/L      |                      |
|         |      |                          | m & p-Xylene                 | 2016/10/01 | <0.00040 |          | mg/L      |                      |
|         |      |                          | o-Xylene                     | 2016/10/01 | <0.00080 |          | mg/L      |                      |
|         |      |                          | Xylenes (Total)              | 2016/10/01 | <0.00040 |          | mg/L      |                      |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/01 | <0.00080 |          | mg/L      |                      |
|         |      |                          | 1 1 (CO-CIO) - DILA          | 2010/10/01 | ×0.10    |          | IIIB/L    |                      |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

#### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |                          |                              | Date       |         |          |       |           |
|---------|------|--------------------------|------------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value   | Recovery | UNITS | QC Limits |
|         |      |                          | F1 (C6-C10)                  | 2016/10/01 | <0.10   |          | mg/L  |           |
| 8416232 | GP4  | RPD                      | Benzene                      | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | Toluene                      | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | Ethylbenzene                 | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | m & p-Xylene                 | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | o-Xylene                     | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | Xylenes (Total)              | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/01 | NC      |          | %     | 40        |
|         |      |                          | F1 (C6-C10)                  | 2016/10/01 | NC      |          | %     | 40        |
| 8416562 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/09/30 |         | 88       | %     | 80 - 120  |
| 8416562 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/09/30 |         | 90       | %     | 80 - 120  |
| 8416562 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/09/30 |         | 87       | %     | 80 - 120  |
| 8416562 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/09/30 | <0.050  |          | mg/L  |           |
| 8416562 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/09/30 | NC      |          | %     | 20        |
| 8417244 | MUK  | Matrix Spike [PP4727-05] | Dissolved Organic Carbon (C) | 2016/09/30 |         | 103      | %     | 80 - 120  |
| 8417244 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/09/30 |         | 98       | %     | 80 - 120  |
| 8417244 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/09/30 | <0.50   |          | mg/L  |           |
| 8417244 | MUK  | RPD [PP4727-05]          | Dissolved Organic Carbon (C) | 2016/09/30 | NC      |          | %     | 20        |
| 8417670 | MB5  | Matrix Spike [PP4727-05] | Dissolved Ammonia (N)        | 2016/09/30 |         | NC       | %     | 80 - 120  |
| 8417670 | MB5  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/09/30 |         | 98       | %     | 80 - 120  |
| 8417670 | MB5  | Method Blank             | Dissolved Ammonia (N)        | 2016/09/30 | <0.050  |          | mg/L  |           |
| 8417670 | MB5  | RPD [PP4727-05]          | Dissolved Ammonia (N)        | 2016/09/30 | 3.2 (2) |          | %     | 20        |
| 8418338 | ZI   | Matrix Spike             | Dissolved Chloride (Cl)      | 2016/10/01 |         | 108      | %     | 80 - 120  |
| 8418338 | ZI   | Spiked Blank             | Dissolved Chloride (Cl)      | 2016/10/01 |         | 107      | %     | 80 - 120  |
| 8418338 | ZI   | Method Blank             | Dissolved Chloride (Cl)      | 2016/10/01 | 1.2,    |          | mg/L  |           |
|         |      |                          |                              |            | RDL=1.0 |          |       |           |
| 8418338 | ZI   | RPD                      | Dissolved Chloride (Cl)      | 2016/10/01 | 1.6     |          | %     | 20        |
| 8418346 | ZI   | Matrix Spike             | Dissolved Sulphate (SO4)     | 2016/10/01 |         | 119      | %     | 80 - 120  |
| 8418346 | ZI   | Spiked Blank             | Dissolved Sulphate (SO4)     | 2016/10/01 |         | 101      | %     | 80 - 120  |
| 8418346 | ZI   | Method Blank             | Dissolved Sulphate (SO4)     | 2016/10/01 | <1.0    |          | mg/L  |           |
| 8418346 | ZI   | RPD                      | Dissolved Sulphate (SO4)     | 2016/10/01 | NC      |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Ammonia greater than TKN. Results are within acceptable limits of precision.



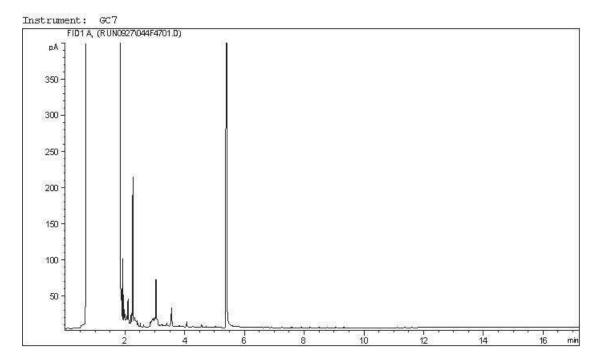
#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

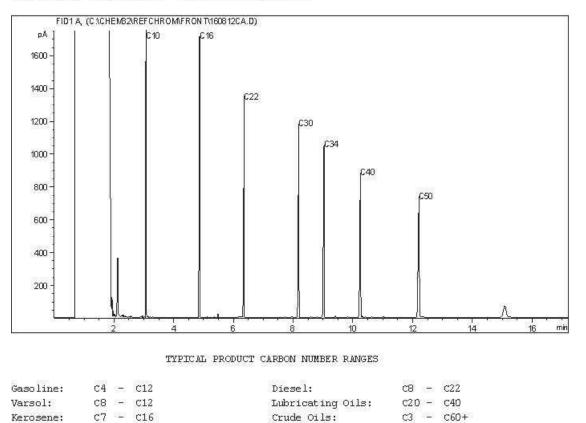
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Lisa Thum, C.E.T., QP, Manager, Inorganics


Michael Sheppard, B.Sc., P. Biol., QP, Senior Scientific Specialist, Organics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


| company: <u>Stantec Consulting 4td</u> .<br>contact Name: <u>Dylan King</u><br>Address: <u>10160 1125t</u> , Edmanton                                                                                                                                                                                                                                                                                                                                                                                   | Company:                      |                  |                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Contact Name: Dylan King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                  | Quotation #:                            |                                                                                                                                                                  | 2 5 - 7 Days Regular (Most an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alyses)                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contact Name:                 | 12, 31-17        | P.O. #/ AFE#:                           | 1                                                                                                                                                                | PLEASE PROVIDE ADVANCE NOTICE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR RUSH PRO                                |
| Houress. 10100 1221, Tayronton                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Address:                      |                  |                                         | A REAL PROPERTY AND                                                                                                                                              | Rush TAT (Surcharges will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | be applied)                                |
| AB, TSK 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                  | Project #: 10                           | 1773396                                                                                                                                                          | Same Day 2 Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Phone: (740) 969-2223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone:                        | 5 6              | Site Location:                          | springbank SR1                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Days                                       |
| Email: Dylan-Kingestantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Email:                        | 1.1.1.1.1.1.1    | Site #:                                 | Nu:(hal                                                                                                                                                          | Date Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
| copies: Dale Nisbetastanteccom                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copies:                       |                  | Sampled By:                             | D.Nisbet                                                                                                                                                         | Rush Confirmation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
| VES NO Cooler ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Use Only Depot Reception      |                  |                                         | Analysis Requested                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tory Criteri                               |
| Seal Present         1         Temp         0         9         10           Cooling Media         YES         HO Cooler ID         Seal Present         Cooler ID           Cooling Media         YES         HO Cooler ID         Seal Present         Seal Present           Seal Present         Temp         Cooling Media         Temp         Seal Present         Seal Present           Seal Present         Temp         Cooling Media         Temp         Seal Present         Seal Present |                               | Lainers          | F4<br>Water<br>d Metals Tot Diss        | Initity 4<br>ever (75 micron)<br>exture (% Sand, Sili, Clay)<br>asic Class II Landfill<br>Disc Class II Landfill<br>Disc Phace Phace<br>Arringonic (DISS)<br>TKN | ali<br>Coliforns<br>ali<br>coliforns<br>regulations<br>anaryte<br>not<br>anaryte<br>out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nking Water<br>katchewan<br>) (Drilling Wa |
| Cooling Media Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Aatrix El Con    | TEX F1-<br>outine<br>egulate<br>fercury | alinity 4<br>leve (75 m<br>exture (%<br>asic class<br>asic class<br>Dissol                                                                                       | Dot of the former of the provided in the provi | Instruction                                |
| 1 MU16-15-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (HH:MM)                       |                  | VVV                                     | 5 5 F 8 V L V L V                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 14               |                                         |                                                                                                                                                                  | Subm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inted                                      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                  |                                         |                                                                                                                                                                  | Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | day                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                  |                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ampleo                                     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                  |                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | red and                                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSIGNATION PROPERTY OF      |                  |                                         |                                                                                                                                                                  | Presen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red as                                     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                  |                                         |                                                                                                                                                                  | India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ated pr                                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                  |                                         |                                                                                                                                                                  | bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es                                         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                  |                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal                                       |
| Please indicate Filtered, Preserved or                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Both (F, P, F/P)              | $\rightarrow$    |                                         |                                                                                                                                                                  | mete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 215                                        |
| Relinquished by: (Signature/ Print) DATE (                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YYYY/MM/DD) Time (HH:MM) Rece | ived by: (Signat | uro/Print)                              | DATE (YYYY/MM/DD) Time (HH:MM)                                                                                                                                   | 26-Sep-16 19:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                        |

1

#### CCME Hydrocarbons in Water (F2; C10-C16) Chromatogram



Carbon Range Distribution - Reference Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxiam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031856

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/06 Report #: R2276976 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

## MAXXAM JOB #: B684487

## Received: 2016/09/27, 18:56

Sample Matrix: Water # Samples Received: 7

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 6        | N/A        | 2016/09/28 | AB SOP-00005      | SM 22 2320 B m       |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2016/10/06 | AB SOP-00005      | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 2        | N/A        | 2016/10/02 | AB SOP-00039      | CCME CWS/EPA 8260c m |
| BTEX/F1 in Water by HS GC/MS/FID         | 5        | N/A        | 2016/10/03 | AB SOP-00039      | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 1        | N/A        | 2016/10/01 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Chloride by Automated Colourimetry       | 6        | N/A        | 2016/10/02 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 7        | 2016/09/28 | 2016/09/29 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 7        | 2016/09/28 | 2016/09/29 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Carbon (DOC) -Lab Filtered (1)           | 1        | N/A        | 2016/09/30 | CAL SOP-00077     | MMCW 119 1996 m      |
| Carbon (DOC) (1)                         | 6        | N/A        | 2016/09/30 | CAL SOP-00077     | MMCW 119 1996 m      |
| Conductivity @25C                        | 7        | N/A        | 2016/09/28 | AB SOP-00005      | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 7        | 2016/09/29 | 2016/09/30 | AB SOP-00040      | CCME PHC-CWS m       |
|                                          |          |            |            | AB SOP-00037      |                      |
| Hardness                                 | 6        | N/A        | 2016/09/29 | AB WI-00065       | Auto Calc            |
| Hardness                                 | 1        | N/A        | 2016/09/30 | AB WI-00065       | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 6        | 2016/09/30 | 2016/09/30 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury-Low Level-Dissolved-Lab Filtered | 1        | 2016/09/30 | 2016/09/30 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 7        | 2016/09/30 | 2016/09/30 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 6        | N/A        | 2016/09/28 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICP-Dissolved-Lab Filtered   | 1        | N/A        | 2016/10/06 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 6        | N/A        | 2016/09/29 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Elements by ICPMS-Dissolved-Lab Filtered | 1        | N/A        | 2016/09/29 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Ion Balance                              | 7        | N/A        | 2016/09/29 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 6        | N/A        | 2016/09/29 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 1        | N/A        | 2016/09/30 | AB WI-00065       | Auto Calc            |
| Ammonia-N (Dissolved) - Lab Filtered     | 1        | N/A        | 2016/09/30 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Ammonia-N (Dissolved)                    | 6        | N/A        | 2016/09/30 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 7        | N/A        | 2016/09/30 | AB WI-00065       | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 7        | N/A        | 2016/09/30 | AB WI-00065       | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 7        | N/A        | 2016/09/28 | AB SOP-00023      | SM 22 4110 B m       |
|                                          |          |            |            |                   |                      |

Maxiam ABureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031856

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/06 Report #: R2276976 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B684487

### Received: 2016/09/27, 18:56

Sample Matrix: Water # Samples Received: 7

|                                         |          | Date       | Date       |                   |                      |
|-----------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| pH @25°C                                | 7        | N/A        | 2016/09/28 | AB SOP-00005      | SM 22 4500-H+B m     |
| Orthophosphate by Konelab               | 7        | N/A        | 2016/09/30 | AB SOP-00025      | SM 22 4500-P A,F m   |
| Sulphate by Automated Colourimetry      | 1        | N/A        | 2016/10/01 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Sulphate by Automated Colourimetry      | 6        | N/A        | 2016/10/02 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Heterotrophic Plate Count               | 7        | 2016/09/28 | 2016/09/30 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)     | 1        | N/A        | 2016/10/01 | AB WI-00065       | Auto Calc            |
| Total Dissolved Solids (Calculated)     | 6        | N/A        | 2016/10/02 | AB WI-00065       | Auto Calc            |
| Total Kjeldahl Nitrogen                 | 6        | 2016/09/30 | 2016/10/01 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Kjeldahl Nitrogen                 | 1        | 2016/10/02 | 2016/10/03 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Phosphorus-Dissolved-Lab Filtered | 1        | 2016/09/29 | 2016/09/29 | AB SOP-00024      | SM 22 4500-P A,B,F m |
| Phosphorus -P (Total, Dissolved)        | 6        | 2016/09/30 | 2016/10/01 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.





STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## AT1 BTEX AND F1-F2 IN WATER (WATER)

| Maxxam ID                      |         | PP7330              | PP7330                | PP7331              | PP7332              | PP7333              | PP7334              |         |          |
|--------------------------------|---------|---------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------|----------|
| Sampling Date                  |         | 2016/09/27<br>17:17 | 2016/09/27<br>17:17   | 2016/09/27<br>10:07 | 2016/09/27<br>09:37 | 2016/09/27<br>17:50 | 2016/09/27<br>13:10 |         |          |
| COC Number                     |         | M031856             | M031856               | M031856             | M031856             | M031856             | M031856             |         |          |
|                                | UNITS   | MW16-14-33          | MW16-14-33<br>Lab-Dup | MW16-6-11           | MW16-6-20           | MW16-7-5            | MW16-19-8           | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon          |         |                     |                       |                     |                     |                     |                     |         |          |
| F2 (C10-C16 Hydrocarbons)      | mg/L    | <0.10               | N/A                   | <0.10               | <0.10               | <0.10               | <0.10               | 0.10    | 8414729  |
| Volatiles                      |         |                     |                       |                     |                     |                     |                     | •       |          |
| Benzene                        | mg/L    | <0.00040            | <0.00040              | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8417842  |
| Toluene                        | mg/L    | <0.00040            | 0.00048               | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8417842  |
| Ethylbenzene                   | mg/L    | <0.00040            | <0.00040              | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8417842  |
| m & p-Xylene                   | mg/L    | <0.00080            | <0.00080              | <0.00080            | <0.00080            | <0.00080            | <0.00080            | 0.00080 | 8417842  |
| o-Xylene                       | mg/L    | <0.00040            | <0.00040              | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8417842  |
| Xylenes (Total)                | mg/L    | <0.00080            | <0.00080              | <0.00080            | <0.00080            | <0.00080            | <0.00080            | 0.00080 | 8417842  |
| F1 (C6-C10) - BTEX             | mg/L    | <0.10               | <0.10                 | <0.10               | <0.10               | <0.10               | <0.10               | 0.10    | 8417842  |
| F1 (C6-C10)                    | mg/L    | <0.10               | <0.10                 | <0.10               | <0.10               | <0.10               | <0.10               | 0.10    | 8417842  |
| Surrogate Recovery (%)         |         |                     |                       |                     |                     |                     |                     |         |          |
| 1,4-Difluorobenzene (sur.)     | %       | 109                 | 109                   | 107                 | 109                 | 110                 | 109                 | N/A     | 8417842  |
| 4-Bromofluorobenzene (sur.)    | %       | 105                 | 106                   | 106                 | 105                 | 105                 | 106                 | N/A     | 8417842  |
| D4-1,2-Dichloroethane (sur.)   | %       | 120                 | 123                   | 123                 | 120                 | 121                 | 120                 | N/A     | 8417842  |
| O-TERPHENYL (sur.)             | %       | 86                  | N/A                   | 84                  | 86                  | 84                  | 86                  | N/A     | 8414729  |
| RDL = Reportable Detection Lir | nit     |                     |                       |                     |                     |                     |                     |         |          |
| Lab-Dup = Laboratory Initiated | Duplica | te                  |                       |                     |                     |                     |                     |         |          |
| N/A = Not Applicable           |         |                     |                       |                     |                     |                     |                     |         |          |



|                               |       |            |            | -,      |          |
|-------------------------------|-------|------------|------------|---------|----------|
| Maxxam ID                     |       | PP7335     | PP7336     |         |          |
| Sampling Date                 |       | 2016/09/27 | 2016/09/27 |         |          |
|                               |       | 13:42      | 15:36      |         |          |
| COC Number                    |       | M031856    | M031856    |         |          |
|                               | UNITS | MW16-19-19 | MW16-20-21 | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon         |       |            |            |         |          |
| F2 (C10-C16 Hydrocarbons)     | mg/L  | <0.10      | <0.10      | 0.10    | 8414729  |
| Volatiles                     | •     |            | •          | •       |          |
| Benzene                       | mg/L  | <0.00040   | 0.0010     | 0.00040 | 8417842  |
| Toluene                       | mg/L  | <0.00040   | 0.00050    | 0.00040 | 8417842  |
| Ethylbenzene                  | mg/L  | <0.00040   | <0.00040   | 0.00040 | 8417842  |
| m & p-Xylene                  | mg/L  | <0.00080   | <0.00080   | 0.00080 | 8417842  |
| o-Xylene                      | mg/L  | <0.00040   | <0.00040   | 0.00040 | 8417842  |
| Xylenes (Total)               | mg/L  | <0.00080   | <0.00080   | 0.00080 | 8417842  |
| F1 (C6-C10) - BTEX            | mg/L  | <0.10      | <0.10      | 0.10    | 8417842  |
| F1 (C6-C10)                   | mg/L  | <0.10      | <0.10      | 0.10    | 8417842  |
| Surrogate Recovery (%)        |       |            | •          |         |          |
| 1,4-Difluorobenzene (sur.)    | %     | 110        | 108        | N/A     | 8417842  |
| 4-Bromofluorobenzene (sur.)   | %     | 106        | 106        | N/A     | 8417842  |
| D4-1,2-Dichloroethane (sur.)  | %     | 119        | 121        | N/A     | 8417842  |
| O-TERPHENYL (sur.)            | %     | 84         | 82         | N/A     | 8414729  |
| RDL = Reportable Detection Li | nit   |            | •          |         |          |
| N/A = Not Applicable          |       |            |            |         |          |

#### AT1 BTEX AND F1-F2 IN WATER (WATER)



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PP7331     |         | PP7332     | PP7332           |         |          |
|-----------------------------------|-------|------------|---------|------------|------------------|---------|----------|
| Sampling Date                     |       | 2016/09/27 |         | 2016/09/27 | 2016/09/27       |         |          |
| COC Number                        |       | 10:07      |         | 09:37      | 09:37<br>M031856 |         |          |
| COC Number                        |       | M031856    |         | M031856    | MW16-6-20        |         |          |
|                                   | UNITS | MW16-6-11  | RDL     | MW16-6-20  | Lab-Dup          | RDL     | QC Batch |
| Calculated Parameters             |       |            |         |            |                  | -       |          |
| Anion Sum                         | meq/L | 43         | N/A     | 21         | N/A              | N/A     | 8413041  |
| Cation Sum                        | meq/L | 41         | N/A     | 21         | N/A              | N/A     | 8413041  |
| Hardness (CaCO3)                  | mg/L  | 1300       | 0.50    | 340        | N/A              | 0.50    | 8413039  |
| Ion Balance                       | N/A   | 0.95       | 0.010   | 0.98       | N/A              | 0.010   | 8413040  |
| Dissolved Nitrate (NO3)           | mg/L  | <0.044     | 0.044   | 0.086      | N/A              | 0.044   | 8413042  |
| Nitrate plus Nitrite (N)          | mg/L  | <0.020     | 0.020   | <0.020     | N/A              | 0.020   | 8413043  |
| Dissolved Nitrite (NO2)           | mg/L  | <0.033     | 0.033   | <0.033     | N/A              | 0.033   | 8413042  |
| Calculated Total Dissolved Solids | mg/L  | 2700       | 10      | 1400       | N/A              | 10      | 8413044  |
| Misc. Inorganics                  |       |            | •       |            |                  |         | •        |
| Conductivity                      | uS/cm | 3300       | 1.0     | 2000       | 2000             | 1.0     | 8414429  |
| рН                                | рН    | 7.53       | N/A     | 7.99       | N/A              | N/A     | 8414428  |
| Anions                            |       |            | •       |            |                  |         | •        |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50      | 0.50    | <0.50      | <0.50            | 0.50    | 8414424  |
| Alkalinity (Total as CaCO3)       | mg/L  | 330        | 0.50    | 260        | 270              | 0.50    | 8414424  |
| Bicarbonate (HCO3)                | mg/L  | 410        | 0.50    | 320        | 330              | 0.50    | 8414424  |
| Carbonate (CO3)                   | mg/L  | <0.50      | 0.50    | <0.50      | <0.50            | 0.50    | 8414424  |
| Hydroxide (OH)                    | mg/L  | <0.50      | 0.50    | <0.50      | <0.50            | 0.50    | 8414424  |
| Dissolved Sulphate (SO4)          | mg/L  | 1800 (1)   | 20      | 770 (1)    | N/A              | 5.0     | 8419026  |
| Dissolved Chloride (Cl)           | mg/L  | 4.3        | 1.0     | 4.0        | N/A              | 1.0     | 8419025  |
| Nutrients                         |       |            | •       |            |                  |         | •        |
| Dissolved Nitrite (N)             | mg/L  | < 0.010    | 0.010   | <0.010     | N/A              | 0.010   | 8414214  |
| Dissolved Nitrate (N)             | mg/L  | <0.010     | 0.010   | 0.020      | N/A              | 0.010   | 8414214  |
| Elements                          |       |            | •       |            |                  |         | •        |
| Dissolved Aluminum (Al)           | mg/L  | 0.0041     | 0.0030  | 0.0067     | N/A              | 0.0030  | 8415439  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060   | 0.00060 | <0.00060   | N/A              | 0.00060 | 8415439  |
| Dissolved Arsenic (As)            | mg/L  | 0.00050    | 0.00020 | 0.00043    | N/A              | 0.00020 | 8415439  |
| Dissolved Barium (Ba)             | mg/L  | 0.021      | 0.010   | 0.031      | N/A              | 0.010   | 8414668  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010    | 0.0010  | <0.0010    | N/A              | 0.0010  | 8415439  |
| Dissolved Boron (B)               | mg/L  | 0.13       | 0.020   | 0.093      | N/A              | 0.020   | 8414668  |
| RDL = Reportable Detection Limit  | _     |            |         |            |                  |         |          |
|                                   |       |            |         |            |                  |         |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

|       | PP7331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PP7332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PP7332                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2016/09/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2016/09/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2016/09/27                                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
|       | 10:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09:37                                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
|       | M031856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M031856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M031856                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
| UNITS | MW16-6-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW16-6-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW16-6-20<br>Lab-Dup                                                                                                                                                                     | RDL                                                                                                                                                                                                                                      | QC Batch                                                                                                                                                                                                                                      |
| mg/L  | 0.000058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                      | 0.000020                                                                                                                                                                                                                                 | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.0010                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.00030                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.00020                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                      | 0.060                                                                                                                                                                                                                                    | 8414668                                                                                                                                                                                                                                       |
| mg/L  | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                      | 0.00020                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                      | 0.020                                                                                                                                                                                                                                    | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                      | 0.20                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                      | 0.0040                                                                                                                                                                                                                                   | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                      | 0.00020                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 0.0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                      | 0.00050                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 0.00044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                      | 0.00020                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                      | 0.00010                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                      | 0.50                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                      | 0.020                                                                                                                                                                                                                                    | 8414668                                                                                                                                                                                                                                       |
| mg/L  | 580 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                      | 0.20                                                                                                                                                                                                                                     | 8414668                                                                                                                                                                                                                                       |
| mg/L  | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                      | 0.00020                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.0010                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.0010                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                       |
| mg/L  | 0.0085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                      | 0.00010                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.0010                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                       |
| mg/L  | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                      | 0.0030                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                       |
|       | mg/L           mg/L | 10:07           M031856           UNITS         MW16-6-11           mg/L         0.000058           mg/L         310           mg/L         0.0010           mg/L         0.00020           mg/L         0.11           mg/L         0.041           mg/L         0.0020           mg/L         0.010           mg/L         0.0020           mg/L         0.0014           mg/L         0.0014           mg/L         0.0014           mg/L         0.0014           mg/L         0.0014           mg/L         0.00044           mg/L         0.00044           mg/L         5.0           mg/L         5.0           mg/L         5.0           mg/L         5.0           mg/L         5.0           mg/L         5.0           mg/L         330           mg/L         2.4           mg/L         580 (1)           mg/L         0.0010           mg/L         0.0010           mg/L         0.0010           mg/L         0.0010           mg/L <td>10:07           M031856           UNITS         MW16-6-11         RDL           mg/L         0.000058         0.000020           mg/L         310         0.30           mg/L         &lt;0.0010         0.0010           mg/L         &lt;0.0010         0.00020           mg/L         &lt;0.00020         0.00020           mg/L         0.011         0.00020           mg/L         0.014         0.200           mg/L         0.0014         0.200           mg/L         0.0014         0.00020           mg/L         0.0014         0.00020           mg/L         0.0014         0.00020           mg/L         0.00044         0.00020           mg/L         5.0         0.10           mg/L         5.0         0.10           mg/L         330         0.50           mg/L         330         0.50           mg/L         5.0         0.0010</td> <td>10:07         09:37           M031856         M031856           UNITS         MW16-6-11         RDL         MW16-6-20           mg/L         0.000058         0.000020         &lt;0.000020</td> mg/L         310         0.30         76           mg/L         <0.0010 | 10:07           M031856           UNITS         MW16-6-11         RDL           mg/L         0.000058         0.000020           mg/L         310         0.30           mg/L         <0.0010         0.0010           mg/L         <0.0010         0.00020           mg/L         <0.00020         0.00020           mg/L         0.011         0.00020           mg/L         0.014         0.200           mg/L         0.0014         0.200           mg/L         0.0014         0.00020           mg/L         0.0014         0.00020           mg/L         0.0014         0.00020           mg/L         0.00044         0.00020           mg/L         5.0         0.10           mg/L         5.0         0.10           mg/L         330         0.50           mg/L         330         0.50           mg/L         5.0         0.0010 | 10:07         09:37           M031856         M031856           UNITS         MW16-6-11         RDL         MW16-6-20           mg/L         0.000058         0.000020         <0.000020 | 10:07         09:37         09:37           M031856         M031856         M031856           UNITS         MW16-6-11         RDL         MW16-6-20         MW16-6-20           mg/L         0.000058         0.000020         <0.000020 | 10:07         09:37         09:37           M031856         M031856         M031856           UNITS         MW16-6-11         RDL         MW16-6-20<br>Lab-Dup         RDL           mg/L         0.000058         0.000020         <0.000020 |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

|          | PP7333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PP7333                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        | PP7334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 2016/09/27<br>17:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2016/09/27<br>17:50                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        | 2016/09/27<br>13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | M031856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M031856                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        | M031856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNITS    | MW16-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW16-7-5<br>Lab-Dup                                                                                                                                                                                                                  | RDL                                                                                                                                                                                                                                                                                                                                                      | QC Batch                                                                                                                                                                                                                                                                                                                                                                               | MW16-19-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| meq/L    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                      | 8413041                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8413041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| meq/L    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                      | 8413041                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8413041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8413039                                                                                                                                                                                                                                                                                                                                                                                | 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8413039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N/A      | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | 0.010                                                                                                                                                                                                                                                                                                                                                    | 8413040                                                                                                                                                                                                                                                                                                                                                                                | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8413040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                  | 0.044                                                                                                                                                                                                                                                                                                                                                    | 8413042                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8413362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                    | 8413043                                                                                                                                                                                                                                                                                                                                                                                | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8413363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                  | 0.033                                                                                                                                                                                                                                                                                                                                                    | 8413042                                                                                                                                                                                                                                                                                                                                                                                | <0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8413362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                       | 8413044                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8413044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| uS/cm    | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                      | 8414429                                                                                                                                                                                                                                                                                                                                                                                | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8414429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| рН       | 7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                      | 8414428                                                                                                                                                                                                                                                                                                                                                                                | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8414428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/L     | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8414424                                                                                                                                                                                                                                                                                                                                                                                | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8414424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8414424                                                                                                                                                                                                                                                                                                                                                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8414424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8414424                                                                                                                                                                                                                                                                                                                                                                                | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8414424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8414424                                                                                                                                                                                                                                                                                                                                                                                | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8414424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                     | 8414424                                                                                                                                                                                                                                                                                                                                                                                | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8414424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 2200 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                       | 8419026                                                                                                                                                                                                                                                                                                                                                                                | 1100 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8419026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                      | 8419025                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8419025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/L     | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.010                                                                                                                                                                                                                               | 0.010                                                                                                                                                                                                                                                                                                                                                    | 8414403                                                                                                                                                                                                                                                                                                                                                                                | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8414403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.010                                                                                                                                                                                                                               | 0.010                                                                                                                                                                                                                                                                                                                                                    | 8414403                                                                                                                                                                                                                                                                                                                                                                                | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8414403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/L     | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                  | 0.0030                                                                                                                                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                                                                                                                                                                | 0.0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8415439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.00060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                  | 0.00060                                                                                                                                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                                                                                                                                                                | <0.00060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8415439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                  | 0.00020                                                                                                                                                                                                                                                                                                                                                  | 8415439                                                                                                                                                                                                                                                                                                                                                                                | 0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8415439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                  | 0.010                                                                                                                                                                                                                                                                                                                                                    | 8414668                                                                                                                                                                                                                                                                                                                                                                                | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8414668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                  | 0.0010                                                                                                                                                                                                                                                                                                                                                   | 8415439                                                                                                                                                                                                                                                                                                                                                                                | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8415439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/L     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                    | 8414668                                                                                                                                                                                                                                                                                                                                                                                | 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8414668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | meq/L           meq/L           mg/L           mg/L | 2016/09/27           17:50           M031856           UNITS           MW16-7-5           meq/L           55           meq/L           49           mg/L           1600           N/A           0.90           mg/L           <0.044 | 2016/09/27<br>17:50         2016/09/27<br>17:50           M031856         M031856           UNITS         MW16-7-5           meq/L         55         N/A           meq/L         55         N/A           mg/L         1600         N/A           mg/L         1600         N/A           mg/L         20.044         N/A           mg/L         <0.020 | 2016/09/27<br>17:50         2016/09/27<br>17:50           M031856         M031856           WNIS         MW16-7-5<br>Lab-Dup         RDL           meq/L         55         N/A         N/A           meq/L         49         N/A         0.50           N/A         0.90         N/A         0.50           M/A         0.90         N/A         0.010           mg/L         <0.020 | 2016/09/27<br>17:50         2016/09/27<br>17:50         2016/09/27<br>17:50         2016/09/27<br>17:50           M031856         M031856         M031856         QC Batch           UNITS         MW16-7-5         MW16-7-5<br>Lab-Dup         RDL         QC Batch           meq/L         55         N/A         N/A         8413041           meq/L         49         N/A         0.010         8413041           mg/L         1600         N/A         0.010         8413042           mg/L         <0.020         N/A         0.010         8413042           mg/L         <0.020         N/A         0.020         8413042           mg/L         <0.020         N/A         0.020         8413042           mg/L         <0.020         N/A         0.020         8413042           mg/L         <0.020         N/A         0.033         8413042           mg/L         <0.020         N/A         0.033         8413042           mg/L         <0.020         N/A         0.033         841402           mg/L         <0.50         N/A         0.50         8414424           mg/L         <0.50         N/A         0.50         841424           mg/L <td>2016/09/27<br/>17:50         2016/09/27<br/>17:50         2016/09/27<br/>13:10           M031856         M031856         M031856         M031856           UNITS         MW16-7-5<br/>MW16-7-5<br/>Lab-Dup         RDL         QC Batch         MW16-19-8           meq/L         55         N/A         N/A         8413041         32           meq/L         49         N/A         N/A         8413041         31           mg/L         1600         N/A         0.50         8413039         980           N/A         0.90         N/A         0.010         8413042         1.8           mg/L         &lt;0.020</td> N/A         0.020         8413042         1.8           mg/L         <0.020 | 2016/09/27<br>17:50         2016/09/27<br>17:50         2016/09/27<br>13:10           M031856         M031856         M031856         M031856           UNITS         MW16-7-5<br>MW16-7-5<br>Lab-Dup         RDL         QC Batch         MW16-19-8           meq/L         55         N/A         N/A         8413041         32           meq/L         49         N/A         N/A         8413041         31           mg/L         1600         N/A         0.50         8413039         980           N/A         0.90         N/A         0.010         8413042         1.8           mg/L         <0.020 | 2016/09/27<br>17:50         2016/09/27<br>17:50         2016/09/27<br>13:10         2016/09/27<br>13:10           M031856         M031856         M031856         M031856         M031856           UNITS         MW16-7-5         MW16-7-5<br>Lab-Dup         RDL         QC Batch         MW16-19-8         RDL           meq/L         55         N/A         N/A         8413041         32         N/A           meq/L         49         N/A         N/A         8413041         31         N/A           meq/L         1600         N/A         0.50         8413039         980         0.50           N/A         0.90         N/A         0.010         8413042         1.8         0.044           mg/L         <0.020 |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                 |       | PP7333     | PP7333              |          |          | PP7334     |          |          |
|---------------------------|-------|------------|---------------------|----------|----------|------------|----------|----------|
| Sampling Date             |       | 2016/09/27 | 2016/09/27          |          |          | 2016/09/27 |          |          |
|                           |       | 17:50      | 17:50               |          |          | 13:10      |          |          |
| COC Number                |       | M031856    | M031856             |          |          | M031856    |          |          |
|                           | UNITS | MW16-7-5   | MW16-7-5<br>Lab-Dup | RDL      | QC Batch | MW16-19-8  | RDL      | QC Batch |
| Dissolved Cadmium (Cd)    | mg/L  | 0.00013    | N/A                 | 0.000020 | 8415439  | 0.000057   | 0.000020 | 8415439  |
| Dissolved Calcium (Ca)    | mg/L  | 250        | N/A                 | 0.30     | 8414668  | 230        | 0.30     | 8414668  |
| Dissolved Chromium (Cr)   | mg/L  | <0.0010    | N/A                 | 0.0010   | 8415439  | <0.0010    | 0.0010   | 8415439  |
| Dissolved Cobalt (Co)     | mg/L  | 0.0051     | N/A                 | 0.00030  | 8415439  | <0.00030   | 0.00030  | 8415439  |
| Dissolved Copper (Cu)     | mg/L  | 0.00097    | N/A                 | 0.00020  | 8415439  | 0.00059    | 0.00020  | 8415439  |
| Dissolved Iron (Fe)       | mg/L  | <0.060     | N/A                 | 0.060    | 8414668  | <0.060     | 0.060    | 8414668  |
| Dissolved Lead (Pb)       | mg/L  | <0.00020   | N/A                 | 0.00020  | 8415439  | <0.00020   | 0.00020  | 8415439  |
| Dissolved Lithium (Li)    | mg/L  | 0.077      | N/A                 | 0.020    | 8414668  | 0.029      | 0.020    | 8414668  |
| Dissolved Magnesium (Mg)  | mg/L  | 230        | N/A                 | 0.20     | 8414668  | 99         | 0.20     | 8414668  |
| Dissolved Manganese (Mn)  | mg/L  | 0.81       | N/A                 | 0.0040   | 8414668  | 0.071      | 0.0040   | 8414668  |
| Dissolved Molybdenum (Mo) | mg/L  | 0.0026     | N/A                 | 0.00020  | 8415439  | 0.00060    | 0.00020  | 8415439  |
| Dissolved Nickel (Ni)     | mg/L  | 0.011      | N/A                 | 0.00050  | 8415439  | <0.00050   | 0.00050  | 8415439  |
| Dissolved Phosphorus (P)  | mg/L  | <0.10      | N/A                 | 0.10     | 8414668  | <0.10      | 0.10     | 8414668  |
| Dissolved Potassium (K)   | mg/L  | 5.9        | N/A                 | 0.30     | 8414668  | 5.9        | 0.30     | 8414668  |
| Dissolved Selenium (Se)   | mg/L  | 0.00046    | N/A                 | 0.00020  | 8415439  | 0.056      | 0.00020  | 8415439  |
| Dissolved Silicon (Si)    | mg/L  | 5.6        | N/A                 | 0.10     | 8414668  | 3.6        | 0.10     | 8414668  |
| Dissolved Silver (Ag)     | mg/L  | <0.00010   | N/A                 | 0.00010  | 8415439  | <0.00010   | 0.00010  | 8415439  |
| Dissolved Sodium (Na)     | mg/L  | 400        | N/A                 | 0.50     | 8414668  | 260        | 0.50     | 8414668  |
| Dissolved Strontium (Sr)  | mg/L  | 2.4        | N/A                 | 0.020    | 8414668  | 1.4        | 0.020    | 8414668  |
| Dissolved Sulphur (S)     | mg/L  | 700 (1)    | N/A                 | 2.0      | 8414668  | 370        | 0.20     | 8414668  |
| Dissolved Thallium (Tl)   | mg/L  | <0.00020   | N/A                 | 0.00020  | 8415439  | <0.00020   | 0.00020  | 8415439  |
| Dissolved Tin (Sn)        | mg/L  | <0.0010    | N/A                 | 0.0010   | 8415439  | <0.0010    | 0.0010   | 8415439  |
| Dissolved Titanium (Ti)   | mg/L  | <0.0010    | N/A                 | 0.0010   | 8415439  | <0.0010    | 0.0010   | 8415439  |
| Dissolved Uranium (U)     | mg/L  | 0.020      | N/A                 | 0.00010  | 8415439  | 0.013      | 0.00010  | 8415439  |
| Dissolved Vanadium (V)    | mg/L  | <0.0010    | N/A                 | 0.0010   | 8415439  | <0.0010    | 0.0010   | 8415439  |
| Dissolved Zinc (Zn)       | mg/L  | <0.0030    | N/A                 | 0.0030   | 8415439  | <0.0030    | 0.0030   | 8415439  |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |           | PP7335              |          |          | PP7336              |          |          |
|-----------------------------------|-----------|---------------------|----------|----------|---------------------|----------|----------|
| Sampling Date                     |           | 2016/09/27<br>13:42 |          |          | 2016/09/27<br>15:36 |          |          |
| COC Number                        |           | M031856             |          |          | M031856             |          |          |
|                                   | UNITS     | MW16-19-19          | RDL      | QC Batch | MW16-20-21          | RDL      | QC Batch |
| Calculated Parameters             |           |                     | ·        | <u> </u> |                     | ·        |          |
| Anion Sum                         | meq/L     | 36                  | N/A      | 8413041  | 25                  | N/A      | 8413041  |
| Cation Sum                        | meq/L     | 34                  | N/A      | 8413041  | 24                  | N/A      | 8413041  |
| Hardness (CaCO3)                  | mg/L      | 600                 | 0.50     | 8413039  | 740                 | 0.50     | 8413039  |
| Ion Balance                       | N/A       | 0.95                | 0.010    | 8413040  | 0.97                | 0.010    | 8413040  |
| Dissolved Nitrate (NO3)           | mg/L      | <0.044              | 0.044    | 8413362  | 0.085               | 0.044    | 8413362  |
| Nitrate plus Nitrite (N)          | mg/L      | <0.020              | 0.020    | 8413363  | < 0.020             | 0.020    | 8413363  |
| Dissolved Nitrite (NO2)           | mg/L      | <0.033              | 0.033    | 8413362  | <0.033              | 0.033    | 8413362  |
| Calculated Total Dissolved Solids | mg/L      | 2200                | 10       | 8413044  | 1500                | 10       | 8413044  |
| Misc. Inorganics                  |           |                     | •        |          |                     |          |          |
| Conductivity                      | uS/cm     | 3000                | 1.0      | 8414429  | 2100                | 1.0      | 8414429  |
| рН                                | рН        | 7.54                | N/A      | 8414428  | 7.59                | N/A      | 8414428  |
| Anions                            | · · · · · |                     |          |          |                     |          |          |
| Alkalinity (PP as CaCO3)          | mg/L      | <0.50               | 0.50     | 8414424  | <0.50               | 0.50     | 8414424  |
| Alkalinity (Total as CaCO3)       | mg/L      | 520                 | 0.50     | 8414424  | 450                 | 0.50     | 8414424  |
| Bicarbonate (HCO3)                | mg/L      | 640                 | 0.50     | 8414424  | 540                 | 0.50     | 8414424  |
| Carbonate (CO3)                   | mg/L      | <0.50               | 0.50     | 8414424  | <0.50               | 0.50     | 8414424  |
| Hydroxide (OH)                    | mg/L      | <0.50               | 0.50     | 8414424  | <0.50               | 0.50     | 8414424  |
| Dissolved Sulphate (SO4)          | mg/L      | 1200 (1)            | 10       | 8418346  | 760 (1)             | 5.0      | 8419026  |
| Dissolved Chloride (Cl)           | mg/L      | 1.7                 | 1.0      | 8418338  | 3.3                 | 1.0      | 8419025  |
| Nutrients                         |           |                     |          |          |                     |          |          |
| Dissolved Nitrite (N)             | mg/L      | <0.010              | 0.010    | 8414214  | <0.010              | 0.010    | 8414403  |
| Dissolved Nitrate (N)             | mg/L      | <0.010              | 0.010    | 8414214  | 0.019               | 0.010    | 8414403  |
| Elements                          |           |                     |          |          |                     |          |          |
| Dissolved Aluminum (Al)           | mg/L      | 0.0033              | 0.0030   | 8415439  | 0.0040              | 0.0030   | 8415439  |
| Dissolved Antimony (Sb)           | mg/L      | <0.00060            | 0.00060  | 8415439  | <0.00060            | 0.00060  | 8415439  |
| Dissolved Arsenic (As)            | mg/L      | 0.00033             | 0.00020  | 8415439  | 0.00043             | 0.00020  | 8415439  |
| Dissolved Barium (Ba)             | mg/L      | <0.010              | 0.010    | 8414668  | 0.018               | 0.010    | 8414668  |
| Dissolved Beryllium (Be)          | mg/L      | <0.0010             | 0.0010   | 8415439  | <0.0010             | 0.0010   | 8415439  |
| Dissolved Boron (B)               | mg/L      | 0.13                | 0.020    | 8414668  | 0.076               | 0.020    | 8414668  |
| Dissolved Cadmium (Cd)            | mg/L      | <0.000020           | 0.000020 | 8415439  | <0.000020           | 0.000020 | 8415439  |
| RDL = Reportable Detection Limit  |           |                     |          |          |                     |          |          |

N/A = Not Applicable



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PP7335     |         |          | PP7336     |         |          |
|----------------------------------|-------|------------|---------|----------|------------|---------|----------|
| Sampling Date                    |       | 2016/09/27 |         |          | 2016/09/27 |         |          |
|                                  |       | 13:42      |         |          | 15:36      |         |          |
| COC Number                       |       | M031856    |         |          | M031856    |         |          |
|                                  | UNITS | MW16-19-19 | RDL     | QC Batch | MW16-20-21 | RDL     | QC Batch |
| Dissolved Calcium (Ca)           | mg/L  | 140        | 0.30    | 8414668  | 160        | 0.30    | 8414668  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010    | 0.0010  | 8415439  | <0.0010    | 0.0010  | 8415439  |
| Dissolved Cobalt (Co)            | mg/L  | <0.00030   | 0.00030 | 8415439  | 0.00085    | 0.00030 | 8415439  |
| Dissolved Copper (Cu)            | mg/L  | <0.00020   | 0.00020 | 8415439  | <0.00020   | 0.00020 | 8415439  |
| Dissolved Iron (Fe)              | mg/L  | 2.6        | 0.060   | 8414668  | 0.69       | 0.060   | 8414668  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020   | 0.00020 | 8415439  | <0.00020   | 0.00020 | 8415439  |
| Dissolved Lithium (Li)           | mg/L  | 0.056      | 0.020   | 8414668  | 0.053      | 0.020   | 8414668  |
| Dissolved Magnesium (Mg)         | mg/L  | 62         | 0.20    | 8414668  | 82         | 0.20    | 8414668  |
| Dissolved Manganese (Mn)         | mg/L  | 0.37       | 0.0040  | 8414668  | 0.34       | 0.0040  | 8414668  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.0012     | 0.00020 | 8415439  | 0.0052     | 0.00020 | 8415439  |
| Dissolved Nickel (Ni)            | mg/L  | <0.00050   | 0.00050 | 8415439  | <0.00050   | 0.00050 | 8415439  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10      | 0.10    | 8414668  | <0.10      | 0.10    | 8414668  |
| Dissolved Potassium (K)          | mg/L  | 5.9        | 0.30    | 8414668  | 8.9        | 0.30    | 8414668  |
| Dissolved Selenium (Se)          | mg/L  | <0.00020   | 0.00020 | 8415439  | 0.00090    | 0.00020 | 8415439  |
| Dissolved Silicon (Si)           | mg/L  | 3.4        | 0.10    | 8414668  | 4.0        | 0.10    | 8414668  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010   | 0.00010 | 8415439  | <0.00010   | 0.00010 | 8415439  |
| Dissolved Sodium (Na)            | mg/L  | 490        | 0.50    | 8414668  | 210        | 0.50    | 8414668  |
| Dissolved Strontium (Sr)         | mg/L  | 2.1        | 0.020   | 8414668  | 2.0        | 0.020   | 8414668  |
| Dissolved Sulphur (S)            | mg/L  | 370        | 0.20    | 8414668  | 240        | 0.20    | 8414668  |
| Dissolved Thallium (TI)          | mg/L  | <0.00020   | 0.00020 | 8415439  | <0.00020   | 0.00020 | 8415439  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010    | 0.0010  | 8415439  | <0.0010    | 0.0010  | 8415439  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010    | 0.0010  | 8415439  | <0.0010    | 0.0010  | 8415439  |
| Dissolved Uranium (U)            | mg/L  | 0.00092    | 0.00010 | 8415439  | 0.0032     | 0.00010 | 8415439  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010    | 0.0010  | 8415439  | <0.0010    | 0.0010  | 8415439  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030    | 0.0030  | 8415439  | <0.0030    | 0.0030  | 8415439  |
| RDL = Reportable Detection Limit |       |            |         |          |            |         |          |



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                 |            | PP7330              | PP7330                |            |          |
|-----------------------------------------------------------|------------|---------------------|-----------------------|------------|----------|
| Sampling Date                                             |            | 2016/09/27<br>17:17 | 2016/09/27<br>17:17   |            |          |
| COC Number                                                |            | M031856             | M031856               |            |          |
|                                                           | UNITS      | MW16-14-33          | MW16-14-33<br>Lab-Dup | RDL        | QC Batch |
| Calculated Parameters                                     |            |                     |                       |            |          |
| Anion Sum                                                 | meq/L      | 45                  | N/A                   | N/A        | 8413041  |
| Cation Sum                                                | meq/L      | 160                 | N/A                   | N/A        | 8413041  |
| Hardness (CaCO3)                                          | mg/L       | 6700                | N/A                   | 0.50       | 8413039  |
| Ion Balance                                               | N/A        | 3.4                 | N/A                   | 0.010      | 8413040  |
| Dissolved Nitrate (NO3)                                   | mg/L       | 0.072               | N/A                   | 0.044      | 8413042  |
| Nitrate plus Nitrite (N)                                  | mg/L       | <0.020              | N/A                   | 0.020      | 8413043  |
| Dissolved Nitrite (NO2)                                   | mg/L       | <0.033              | N/A                   | 0.033      | 8413042  |
| Calculated Total Dissolved Solids                         | mg/L       | 4700                | N/A                   | 10         | 8413044  |
| Misc. Inorganics                                          |            |                     |                       |            | •        |
| Conductivity                                              | uS/cm      | 2000                | N/A                   | 1.0        | 8414429  |
| рН                                                        | рН         | 7.80                | N/A                   | N/A        | 8414428  |
| Anions                                                    |            |                     |                       |            | •        |
| Alkalinity (PP as CaCO3)                                  | mg/L       | 81                  | N/A                   | 5.0        | 8424014  |
| Alkalinity (Total as CaCO3)                               | mg/L       | 1500                | N/A                   | 5.0        | 8424014  |
| Bicarbonate (HCO3)                                        | mg/L       | 1600                | N/A                   | 5.0        | 8424014  |
| Carbonate (CO3)                                           | mg/L       | 97                  | N/A                   | 5.0        | 8424014  |
| Hydroxide (OH)                                            | mg/L       | <5.0                | N/A                   | 5.0        | 8424014  |
| Dissolved Sulphate (SO4)                                  | mg/L       | 730 (1)             | N/A                   | 5.0        | 8419026  |
| Dissolved Chloride (Cl)                                   | mg/L       | 25                  | N/A                   | 1.0        | 8419025  |
| Nutrients                                                 |            |                     |                       |            |          |
| Dissolved Nitrite (N)                                     | mg/L       | <0.010              | N/A                   | 0.010      | 8414214  |
| Dissolved Nitrate (N)                                     | mg/L       | 0.016               | N/A                   | 0.010      | 8414214  |
| Lab Filtered Elements                                     |            |                     |                       |            |          |
| Dissolved Aluminum (Al)                                   | mg/L       | 0.016 (2)           | 0.012                 | 0.0030     | 8415465  |
| Dissolved Antimony (Sb)                                   | mg/L       | 0.0021              | 0.0021                | 0.00060    | 8415465  |
| RDL = Reportable Detection Limit                          |            |                     |                       |            |          |
| Lab-Dup = Laboratory Initiated Du<br>N/A = Not Applicable | plicate    |                     |                       |            |          |
| (1) Detection limits raised due to (                      | tilution t | o bring applyto     | within the calibr     | atod range |          |

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

(2) Duplicate exceeds acceptance criteria due to sample non homogeneity.

Matrix Spike exceeds acceptance limits due to matrix interference. Reanalysis yields similar results.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |         | PP7330     | PP7330                |          |          |
|-----------------------------------|---------|------------|-----------------------|----------|----------|
| Sampling Date                     |         | 2016/09/27 | 2016/09/27            |          |          |
|                                   |         | 17:17      | 17:17                 |          |          |
| COC Number                        |         | M031856    | M031856               |          |          |
|                                   | UNITS   | MW16-14-33 | MW16-14-33<br>Lab-Dup | RDL      | QC Batch |
| Dissolved Arsenic (As)            | mg/L    | 0.0017     | 0.0019                | 0.00020  | 8415465  |
| Dissolved Barium (Ba)             | mg/L    | 3.8        | N/A                   | 1.0      | 8421809  |
| Dissolved Beryllium (Be)          | mg/L    | <0.0010    | <0.0010               | 0.0010   | 8415465  |
| Dissolved Boron (B)               | mg/L    | <2.0       | N/A                   | 2.0      | 8421809  |
| Dissolved Cadmium (Cd)            | mg/L    | 0.000024   | 0.000023              | 0.000020 | 8415465  |
| Dissolved Calcium (Ca)            | mg/L    | 2300       | N/A                   | 30       | 8421809  |
| Dissolved Chromium (Cr)           | mg/L    | <0.0010    | <0.0010               | 0.0010   | 8415465  |
| Dissolved Cobalt (Co)             | mg/L    | 0.00065    | 0.00057               | 0.00030  | 8415465  |
| Dissolved Copper (Cu)             | mg/L    | <0.00020   | <0.00020              | 0.00020  | 8415465  |
| Dissolved Iron (Fe)               | mg/L    | 68         | N/A                   | 6.0      | 8421809  |
| Dissolved Lead (Pb)               | mg/L    | <0.00020   | <0.00020              | 0.00020  | 8415465  |
| Dissolved Lithium (Li)            | mg/L    | <2.0       | N/A                   | 2.0      | 8421809  |
| Dissolved Magnesium (Mg)          | mg/L    | 190        | N/A                   | 20       | 8421809  |
| Dissolved Manganese (Mn)          | mg/L    | 14         | N/A                   | 0.40     | 8421809  |
| Dissolved Molybdenum (Mo)         | mg/L    | 0.028      | 0.028                 | 0.00020  | 8415465  |
| Dissolved Nickel (Ni)             | mg/L    | 0.0036     | 0.0033                | 0.00050  | 8415465  |
| Dissolved Phosphorus (P)          | mg/L    | 49         | N/A                   | 10       | 8421809  |
| Dissolved Potassium (K)           | mg/L    | 53         | N/A                   | 30       | 8421809  |
| Dissolved Selenium (Se)           | mg/L    | 0.0011     | 0.0010                | 0.00020  | 8415465  |
| Dissolved Silicon (Si)            | mg/L    | 25         | N/A                   | 10       | 8421809  |
| Dissolved Silver (Ag)             | mg/L    | <0.00010   | <0.00010              | 0.00010  | 8415465  |
| Dissolved Sodium (Na)             | mg/L    | 410        | N/A                   | 50       | 8421809  |
| Dissolved Strontium (Sr)          | mg/L    | 9.7        | N/A                   | 2.0      | 8421809  |
| Dissolved Sulphur (S)             | mg/L    | 220        | N/A                   | 20       | 8421809  |
| Dissolved Thallium (Tl)           | mg/L    | <0.00020   | <0.00020              | 0.00020  | 8415465  |
| Dissolved Tin (Sn)                | mg/L    | <0.0010    | <0.0010               | 0.0010   | 8415465  |
| Dissolved Titanium (Ti)           | mg/L    | 0.0020     | 0.0012                | 0.0010   | 8415465  |
| Dissolved Uranium (U)             | mg/L    | 0.012      | 0.012                 | 0.00010  | 8415465  |
| Dissolved Vanadium (V)            | mg/L    | <0.0010    | <0.0010               | 0.0010   | 8415465  |
| Dissolved Zinc (Zn)               | mg/L    | 0.0036     | <0.0030               | 0.0030   | 8415465  |
| RDL = Reportable Detection Limit  |         |            |                       |          |          |
| Lab-Dup = Laboratory Initiated Du | plicate |            |                       |          |          |
| N/A = Not Applicable              |         |            |                       |          |          |



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                      |                         | PP7330              | PP7330                |        |          | PP7331              | PP7331               |        |          |  |  |
|--------------------------------|-------------------------|---------------------|-----------------------|--------|----------|---------------------|----------------------|--------|----------|--|--|
| Sampling Date                  |                         | 2016/09/27<br>17:17 | 2016/09/27<br>17:17   |        |          | 2016/09/27<br>10:07 | 2016/09/27<br>10:07  |        |          |  |  |
| COC Number                     |                         | M031856             | M031856               |        |          | M031856             | M031856              |        |          |  |  |
|                                | UNITS                   | MW16-14-33          | MW16-14-33<br>Lab-Dup | RDL    | QC Batch | MW16-6-11           | MW16-6-11<br>Lab-Dup | RDL    | QC Batch |  |  |
| Misc. Inorganics               |                         |                     | ·                     |        |          |                     | ·                    | ·      |          |  |  |
| Dissolved Organic Carbon (C)   | mg/L                    | N/A                 | N/A                   | 0.50   | 8417244  | 4.3                 | N/A                  | 0.50   | 8417244  |  |  |
| Lab Filtered Inorganics        | Lab Filtered Inorganics |                     |                       |        |          |                     |                      |        |          |  |  |
| Dissolved Organic Carbon (C)   | mg/L                    | 3.9                 | N/A                   | 0.50   | 8417248  | N/A                 | N/A                  | 0.50   | 8417248  |  |  |
| Microbiological Param.         |                         |                     | <u>.</u>              | •      |          |                     | ·                    |        |          |  |  |
| E.Coli DST                     | mpn/100mL               | <20                 | N/A                   | 20     | 8413792  | <100                | N/A                  | 100    | 8413792  |  |  |
| Fecal Coliforms                | MPN/100mL               | <20 (1)             | N/A                   | 20     | 8413790  | <100 (1)            | N/A                  | 100    | 8413790  |  |  |
| Heterotrophic Plate Count      | CFU/mL                  | >6000               | >6000                 | 1.0    | 8413793  | 56000 (2)           | 56000                | 100    | 8413793  |  |  |
| Total Coliforms DST            | mpn/100mL               | 2300                | N/A                   | 20     | 8413792  | 9300                | N/A                  | 100    | 8413792  |  |  |
| Nutrients                      |                         |                     | •                     |        |          |                     |                      |        |          |  |  |
| Dissolved Ammonia (N)          | mg/L                    | N/A                 | N/A                   | N/A    | 8417670  | 0.37                | N/A                  | 0.050  | 8417670  |  |  |
| Total Kjeldahl Nitrogen        | mg/L                    | 38 (3)              | N/A                   | 2.5    | 8417434  | 6.5 (2)             | N/A                  | 0.50   | 8417434  |  |  |
| Orthophosphate (P)             | mg/L                    | 0.0039              | N/A                   | 0.0030 | 8417135  | <0.0030             | N/A                  | 0.0030 | 8417394  |  |  |
| Dissolved Phosphorus (P)       | mg/L                    | N/A                 | N/A                   | N/A    | N/A      | <0.0030             | N/A                  | 0.0030 | 8416951  |  |  |
| Lab Filtered Nutrients         |                         |                     | •                     |        |          |                     |                      |        |          |  |  |
| Dissolved Ammonia (N)          | mg/L                    | 1.5                 | N/A                   | 0.050  | 8417688  | N/A                 | N/A                  | N/A    | N/A      |  |  |
| Dissolved Phosphorus (P)       | mg/L                    | 0.0073              | 0.0064                | 0.0030 | 8415475  | N/A                 | N/A                  | N/A    | N/A      |  |  |
| RDL = Reportable Detection Lir | nit                     |                     |                       |        |          |                     |                      |        |          |  |  |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PP7332              | PP7332               |        |          | PP7333              | PP7333              |        |          |  |  |
|-------------------------------|-----------|---------------------|----------------------|--------|----------|---------------------|---------------------|--------|----------|--|--|
| Sampling Date                 |           | 2016/09/27<br>09:37 | 2016/09/27<br>09:37  |        |          | 2016/09/27<br>17:50 | 2016/09/27<br>17:50 |        |          |  |  |
| COC Number                    |           | M031856             | M031856              |        |          | M031856             | M031856             |        |          |  |  |
|                               | UNITS     | MW16-6-20           | MW16-6-20<br>Lab-Dup | RDL    | QC Batch | MW16-7-5            | MW16-7-5<br>Lab-Dup | RDL    | QC Batch |  |  |
| Misc. Inorganics              |           |                     |                      |        |          |                     |                     |        |          |  |  |
| Dissolved Organic Carbon (C)  | mg/L      | 4.1                 | N/A                  | 0.50   | 8417244  | 9.2                 | N/A                 | 0.50   | 8417244  |  |  |
| Microbiological Param.        |           |                     |                      |        |          |                     |                     |        |          |  |  |
| E.Coli DST                    | mpn/100mL | <1.0                | <1.0                 | 1.0    | 8413792  | <10                 | N/A                 | 10     | 8413792  |  |  |
| Fecal Coliforms               | MPN/100mL | <1.0                | <1.0                 | 1.0    | 8413790  | <10 (1)             | N/A                 | 10     | 8413790  |  |  |
| Heterotrophic Plate Count     | CFU/mL    | >6000               | >6000                | 1.0    | 8413793  | 920                 | 1100                | 1.0    | 8413793  |  |  |
| Total Coliforms DST           | mpn/100mL | >2400               | >2400                | 1.0    | 8413792  | 1700                | N/A                 | 10     | 8413792  |  |  |
| Nutrients                     |           |                     |                      |        |          |                     |                     |        |          |  |  |
| Dissolved Ammonia (N)         | mg/L      | 0.49                | N/A                  | 0.050  | 8417670  | 0.16                | N/A                 | 0.050  | 8417670  |  |  |
| Total Kjeldahl Nitrogen       | mg/L      | 1.3                 | N/A                  | 0.050  | 8417434  | 0.62                | N/A                 | 0.050  | 8419040  |  |  |
| Orthophosphate (P)            | mg/L      | <0.0030             | N/A                  | 0.0030 | 8417394  | 0.012 (2)           | N/A                 | 0.0030 | 8417135  |  |  |
| Dissolved Phosphorus (P)      | mg/L      | <0.0030             | N/A                  | 0.0030 | 8416951  | 0.0065              | N/A                 | 0.0030 | 8416951  |  |  |
| RDL = Reportable Detection Li | nit       |                     |                      | -      |          |                     |                     | •      |          |  |  |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Orthophopshate greater than dissolved phosphate. Results within acceptable limits of precision.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                    |                        | PP7334              | PP7334               | PP7335              | PP7335                |        | PP7336              |        |          |  |  |
|------------------------------|------------------------|---------------------|----------------------|---------------------|-----------------------|--------|---------------------|--------|----------|--|--|
| Sampling Date                |                        | 2016/09/27<br>13:10 | 2016/09/27<br>13:10  | 2016/09/27<br>13:42 | 2016/09/27<br>13:42   |        | 2016/09/27<br>15:36 |        |          |  |  |
| COC Number                   |                        | M031856             | M031856              | M031856             | M031856               |        | M031856             |        |          |  |  |
|                              | UNITS                  | MW16-19-8           | MW16-19-8<br>Lab-Dup | MW16-19-19          | MW16-19-19<br>Lab-Dup | RDL    | MW16-20-21          | RDL    | QC Batch |  |  |
| Misc. Inorganics             |                        |                     |                      |                     |                       |        |                     |        |          |  |  |
| Dissolved Organic Carbon (C) | mg/L                   | 6.3                 | N/A                  | 3.9                 | N/A                   | 0.50   | 3.8                 | 0.50   | 8417244  |  |  |
| Microbiological Param.       | Aicrobiological Param. |                     |                      |                     |                       |        |                     |        |          |  |  |
| E.Coli DST                   | mpn/100mL              | 63                  | N/A                  | <10                 | N/A                   | 10     | <100                | 100    | 8413792  |  |  |
| Fecal Coliforms              | MPN/100mL              | <10 (1)             | N/A                  | <10 (1)             | N/A                   | 10     | <100 (1)            | 100    | 8413790  |  |  |
| Heterotrophic Plate Count    | CFU/mL                 | >6000               | >6000                | 1700                | 1700                  | 1.0    | 17000 (2)           | 100    | 8413793  |  |  |
| Total Coliforms DST          | mpn/100mL              | 280                 | N/A                  | 10                  | N/A                   | 10     | 750                 | 100    | 8413792  |  |  |
| Nutrients                    | Nutrients              |                     |                      |                     |                       |        |                     |        |          |  |  |
| Dissolved Ammonia (N)        | mg/L                   | 0.070               | N/A                  | 1.1                 | N/A                   | 0.050  | 0.57                | 0.050  | 8417670  |  |  |
| Total Kjeldahl Nitrogen      | mg/L                   | 0.70 (2)            | N/A                  | 1.5 (2)             | N/A                   | 0.50   | 11 (2)              | 0.50   | 8417434  |  |  |
| Orthophosphate (P)           | mg/L                   | <0.0030             | N/A                  | <0.0030             | N/A                   | 0.0030 | <0.0030             | 0.0030 | 8417394  |  |  |
| Dissolved Phosphorus (P)     | mg/L                   | 0.0037              | N/A                  | <0.0030             | N/A                   | 0.0030 | <0.0030             | 0.0030 | 8416951  |  |  |
| DDI Deventelele Detection Li |                        |                     |                      |                     |                       |        |                     |        |          |  |  |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

| Maxxam ID                                                                    |        | PP7336                |     |          |  |  |  |  |
|------------------------------------------------------------------------------|--------|-----------------------|-----|----------|--|--|--|--|
| Sampling Date                                                                |        | 2016/09/27<br>15:36   |     |          |  |  |  |  |
| COC Number                                                                   |        | M031856               |     |          |  |  |  |  |
|                                                                              | UNITS  | MW16-20-21<br>Lab-Dup | RDL | QC Batch |  |  |  |  |
| Microbiological Param.                                                       |        |                       |     |          |  |  |  |  |
| Heterotrophic Plate Count                                                    | CFU/mL | 15000                 | 100 | 8413793  |  |  |  |  |
| RDL = Reportable Detection Limit<br>Lab-Dup = Laboratory Initiated Duplicate |        |                       |     |          |  |  |  |  |



#### **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                                                                    |       | PP7330              | PP7330                | PP7331              |        | PP7332              |        | PP7333              |        |          |
|------------------------------------------------------------------------------|-------|---------------------|-----------------------|---------------------|--------|---------------------|--------|---------------------|--------|----------|
| Sampling Date                                                                |       | 2016/09/27<br>17:17 | 2016/09/27<br>17:17   | 2016/09/27<br>10:07 |        | 2016/09/27<br>09:37 |        | 2016/09/27<br>17:50 |        |          |
| COC Number                                                                   |       | M031856             | M031856               | M031856             |        | M031856             |        | M031856             |        |          |
|                                                                              | UNITS | MW16-14-33          | MW16-14-33<br>Lab-Dup | MW16-6-11           | RDL    | MW16-6-20           | RDL    | MW16-7-5            | RDL    | QC Batch |
| Low Level Elements                                                           | •     |                     |                       | •                   |        |                     |        |                     |        |          |
| Dissolved Mercury (Hg)                                                       | ug/L  | N/A                 | N/A                   | <0.0020             | 0.0020 | <0.0020             | 0.0020 | 0.0020              | 0.0020 | 8417239  |
| Total Mercury (Hg)                                                           | ug/L  | <20 (1)             | N/A                   | <20 (1)             | 20     | <0.20 (1)           | 0.20   | <2.0 (1)            | 2.0    | 8417247  |
| Lab Filtered Elements-Low                                                    |       |                     |                       |                     |        |                     |        |                     |        |          |
| Dissolved Mercury (Hg)                                                       | ug/L  | <0.0020             | <0.0020               | N/A                 | 0.0020 | N/A                 | N/A    | N/A                 | N/A    | 8417235  |
| RDL = Reportable Detection Limit<br>Lab-Dup = Laboratory Initiated Duplicate |       |                     |                       |                     |        |                     |        |                     |        |          |

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

| Maxxam ID                                    |              | PP7334              |        | PP7335               |        | PP7336              |               |                    |  |
|----------------------------------------------|--------------|---------------------|--------|----------------------|--------|---------------------|---------------|--------------------|--|
| Sampling Date                                |              | 2016/09/27<br>13:10 |        | 2016/09/27<br>13:42  |        | 2016/09/27<br>15:36 |               |                    |  |
| COC Number                                   |              | M031856             |        | M031856              |        | M031856             |               |                    |  |
|                                              | UNITS        | MW16-19-8           | RDL    | MW16-19-19           | RDL    | MW16-20-21          | RDL           | QC Batch           |  |
| Low Level Elements                           |              |                     |        |                      |        |                     |               |                    |  |
|                                              |              |                     | 1      |                      |        |                     | 1             |                    |  |
| Dissolved Mercury (Hg)                       | ug/L         | <0.0020             | 0.0020 | <0.0020              | 0.0020 | <0.0020             | 0.0020        | 8417239            |  |
| Dissolved Mercury (Hg)<br>Total Mercury (Hg) | ug/L<br>ug/L | <0.0020<br><2.0 (1) | 0.0020 | <0.0020<br><0.20 (1) | 0.0020 | <0.0020<br><6.0 (1) | 0.0020<br>6.0 | 8417239<br>8417247 |  |



#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

|   | Package 1 | 10.0°C |
|---|-----------|--------|
| 1 | Package 2 | 10.3°C |

Sample PP7330-01 : Cation - Anion balance exceeds normal acceptance limits. Major ions were reanalyzed due to possible matrix interference. **ROUTINE WATER & DISS. REGULATED METALS (WATER) Comments** 

Sample PP7330-01 Alkalinity @25C (pp, total), CO3,HCO3,OH: Detection limits raised due to sample matrix. Sample PP7330-01 Elements by ICP-Dissolved-Lab Filtered: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                          |                             | Date       |         |          |         |           |
|---------|------|--------------------------|-----------------------------|------------|---------|----------|---------|-----------|
| Batch   | Init | QC Type                  | Parameter                   | Analyzed   | Value   | Recovery | UNITS   | QC Limits |
| 8413790 | RP0  | Method Blank             | Fecal Coliforms             | 2016/09/29 | <1.0    |          | MPN/10  |           |
| 8413790 | RP0  | RPD [PP7332-09]          | Fecal Coliforms             | 2016/09/29 | NC      |          | %       | N/A       |
| 8413792 | AP1  | Method Blank             | E.Coli DST                  | 2016/09/29 | <1.0    |          | mpn/100 |           |
|         |      |                          | Total Coliforms DST         | 2016/09/29 | <1.0    |          | mpn/100 |           |
| 8413792 | AP1  | RPD [PP7332-09]          | E.Coli DST                  | 2016/09/29 | NC      |          | %       | N/A       |
|         |      |                          | Total Coliforms DST         | 2016/09/29 | NC      |          | %       | N/A       |
| 8413792 | AP1  | RPD                      | E.Coli DST                  | 2016/09/29 | NC      |          | %       | N/A       |
|         |      |                          | Total Coliforms DST         | 2016/09/29 | NC      |          | %       | N/A       |
| 8413793 | AP1  | Method Blank             | Heterotrophic Plate Count   | 2016/09/30 | <1.0    |          | CFU/mL  |           |
| 8413793 | AP1  | RPD [PP7330-09]          | Heterotrophic Plate Count   | 2016/09/30 | NC      |          | %       | N/A       |
| 8413793 | AP1  | RPD [PP7331-09]          | Heterotrophic Plate Count   | 2016/09/30 | 0.72    |          | %       | N/A       |
| 8413793 | AP1  | RPD [PP7332-09]          | Heterotrophic Plate Count   | 2016/09/30 | NC      |          | %       | N/A       |
| 8413793 | AP1  | RPD [PP7333-09]          | Heterotrophic Plate Count   | 2016/09/30 | 18      |          | %       | N/A       |
| 8413793 | AP1  | RPD [PP7334-09]          | Heterotrophic Plate Count   | 2016/09/30 | NC      |          | %       | ,<br>N/A  |
| 8413793 | AP1  | RPD [PP7335-09]          | Heterotrophic Plate Count   | 2016/09/30 | 2.4     |          | %       | N/A       |
| 8413793 | AP1  | RPD [PP7336-09]          | Heterotrophic Plate Count   | 2016/09/30 | 6.9     |          | %       | N/A       |
| 8414214 | JLD  | Matrix Spike             | Dissolved Nitrite (N)       | 2016/09/28 |         | 102      | %       | 80 - 120  |
| -       |      |                          | Dissolved Nitrate (N)       | 2016/09/28 |         | NC       | %       | 80 - 120  |
| 8414214 | JLD  | Spiked Blank             | Dissolved Nitrite (N)       | 2016/09/28 |         | 100      | %       | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 |         | 101      | %       | 80 - 120  |
| 8414214 | JLD  | Method Blank             | Dissolved Nitrite (N)       | 2016/09/28 | <0.010  |          | mg/L    |           |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 | <0.010  |          | mg/L    |           |
| 8414214 | JLD  | RPD                      | Dissolved Nitrite (N)       | 2016/09/28 | 0.31    |          | %       | 20        |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 | 2.5     |          | %       | 20        |
| 8414403 | JLD  | Matrix Spike [PP7333-01] | Dissolved Nitrite (N)       | 2016/09/28 |         | 102      | %       | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 |         | 103      | %       | 80 - 120  |
| 8414403 | JLD  | Spiked Blank             | Dissolved Nitrite (N)       | 2016/09/28 |         | 100      | %       | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 |         | 101      | %       | 80 - 120  |
| 8414403 | JLD  | Method Blank             | Dissolved Nitrite (N)       | 2016/09/28 | < 0.010 |          | mg/L    |           |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 | < 0.010 |          | mg/L    |           |
| 8414403 | JLD  | RPD [PP7333-01]          | Dissolved Nitrite (N)       | 2016/09/28 | NC      |          | %       | 20        |
|         |      |                          | Dissolved Nitrate (N)       | 2016/09/28 | NC      |          | %       | 20        |
| 8414424 | SSO  | Spiked Blank             | Alkalinity (Total as CaCO3) | 2016/09/28 |         | 94       | %       | 80 - 120  |
| 8414424 | SSO  | Method Blank             | Alkalinity (PP as CaCO3)    | 2016/09/28 | <0.50   |          | mg/L    |           |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/09/28 | <0.50   |          | mg/L    |           |
|         |      |                          | Bicarbonate (HCO3)          | 2016/09/28 | <0.50   |          | mg/L    |           |
|         |      |                          | Carbonate (CO3)             | 2016/09/28 | <0.50   |          | mg/L    |           |
|         |      |                          | Hydroxide (OH)              | 2016/09/28 | <0.50   |          | mg/L    |           |
| 8414424 | SSO  | RPD [PP7332-01]          | Alkalinity (PP as CaCO3)    | 2016/09/28 | NC      |          | %       | 20        |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/09/28 | 5.2     |          | %       | 20        |
|         |      |                          | Bicarbonate (HCO3)          | 2016/09/28 | 5.2     |          | %       | 20        |
|         |      |                          | Carbonate (CO3)             | 2016/09/28 | NC      |          | %       | 20        |
|         |      |                          | Hydroxide (OH)              | 2016/09/28 | NC      |          | %       | 20        |
| 8414428 | SSO  | Spiked Blank             | рН                          | 2016/09/28 |         | 100      | %       | 97 - 103  |
| 8414428 | SSO  | RPD                      | рН                          | 2016/09/28 | 1.0     |          | %       | N/A       |
| 8414429 | SSO  | Spiked Blank             | Conductivity                | 2016/09/28 |         | 101      | %       | 90 - 110  |
| 8414429 | SSO  | Method Blank             | Conductivity                | 2016/09/28 | <1.0    |          | uS/cm   |           |
| 8414429 | SSO  | RPD [PP7332-01]          | Conductivity                | 2016/09/28 | 0.25    |          | %       | 20        |
| 8414668 | JHC  | Matrix Spike             | Dissolved Barium (Ba)       | 2016/09/28 |         | 90       | %       | 80 - 120  |
|         |      |                          | Dissolved Boron (B)         | 2016/09/28 |         | 87       | %       | 80 - 120  |
|         |      |                          | Dissolved Calcium (Ca)      | 2016/09/28 |         | 90       | %       | 80 - 120  |
|         |      |                          | Dissolved Iron (Fe)         | 2016/09/28 |         | 88       | %       | 80 - 120  |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |       |                          |                           | Date       |         |          |       |           |
|---------|-------|--------------------------|---------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init  | QC Type                  | Parameter                 | Analyzed   | Value   | Recovery | UNITS | QC Limits |
|         |       |                          | Dissolved Lithium (Li)    | 2016/09/28 |         | 91       | %     | 80 - 120  |
|         |       |                          | Dissolved Magnesium (Mg)  | 2016/09/28 |         | 96       | %     | 80 - 120  |
|         |       |                          | Dissolved Manganese (Mn)  | 2016/09/28 |         | 89       | %     | 80 - 120  |
|         |       |                          | Dissolved Phosphorus (P)  | 2016/09/28 |         | 100      | %     | 80 - 120  |
|         |       |                          | Dissolved Potassium (K)   | 2016/09/28 |         | 99       | %     | 80 - 120  |
|         |       |                          | Dissolved Silicon (Si)    | 2016/09/28 |         | 91       | %     | 80 - 120  |
|         |       |                          | Dissolved Sodium (Na)     | 2016/09/28 |         | NC       | %     | 80 - 120  |
|         |       |                          | Dissolved Strontium (Sr)  | 2016/09/28 |         | 87       | %     | 80 - 120  |
| 8414668 | JHC   | Spiked Blank             | Dissolved Barium (Ba)     | 2016/09/28 |         | 92       | %     | 80 - 120  |
|         |       |                          | Dissolved Boron (B)       | 2016/09/28 |         | 88       | %     | 80 - 120  |
|         |       |                          | Dissolved Calcium (Ca)    | 2016/09/28 |         | 97       | %     | 80 - 120  |
|         |       |                          | Dissolved Iron (Fe)       | 2016/09/28 |         | 91       | %     | 80 - 120  |
|         |       |                          | Dissolved Lithium (Li)    | 2016/09/28 |         | 93       | %     | 80 - 120  |
|         |       |                          | Dissolved Magnesium (Mg)  | 2016/09/28 |         | 100      | %     | 80 - 120  |
|         |       |                          | Dissolved Manganese (Mn)  | 2016/09/28 |         | 93       | %     | 80 - 120  |
|         |       |                          | Dissolved Phosphorus (P)  | 2016/09/28 |         | 98       | %     | 80 - 120  |
|         |       |                          | Dissolved Potassium (K)   | 2016/09/28 |         | 101      | %     | 80 - 120  |
|         |       |                          | Dissolved Silicon (Si)    | 2016/09/28 |         | 94       | %     | 80 - 120  |
|         |       |                          | Dissolved Sodium (Na)     | 2016/09/28 |         | 95       | %     | 80 - 120  |
|         |       |                          | Dissolved Strontium (Sr)  | 2016/09/28 |         | 89       | %     | 80 - 120  |
| 8414668 | JHC   | Method Blank             | Dissolved Barium (Ba)     | 2016/09/28 | <0.010  |          | mg/L  |           |
|         |       |                          | Dissolved Boron (B)       | 2016/09/28 | <0.020  |          | mg/L  |           |
|         |       |                          | Dissolved Calcium (Ca)    | 2016/09/28 | < 0.30  |          | mg/L  |           |
|         |       |                          | Dissolved Iron (Fe)       | 2016/09/28 | <0.060  |          | mg/L  |           |
|         |       |                          | Dissolved Lithium (Li)    | 2016/09/28 | <0.020  |          | mg/L  |           |
|         |       |                          | Dissolved Magnesium (Mg)  | 2016/09/28 | <0.20   |          | mg/L  |           |
|         |       |                          | Dissolved Manganese (Mn)  | 2016/09/28 | <0.0040 |          | mg/L  |           |
|         |       |                          | Dissolved Phosphorus (P)  | 2016/09/28 | <0.10   |          | mg/L  |           |
|         |       |                          | Dissolved Potassium (K)   | 2016/09/28 | <0.30   |          | mg/L  |           |
|         |       |                          | Dissolved Silicon (Si)    | 2016/09/28 | <0.10   |          | mg/L  |           |
|         |       |                          | Dissolved Sodium (Na)     | 2016/09/28 | <0.50   |          | mg/L  |           |
|         |       |                          | Dissolved Strontium (Sr)  | 2016/09/28 | <0.020  |          | mg/L  |           |
|         |       |                          | Dissolved Sulphur (S)     | 2016/09/28 | <0.20   |          | mg/L  |           |
| 8414668 | JHC   | RPD                      | Dissolved Barium (Ba)     | 2016/09/28 | 0.0078  |          | %     | 20        |
|         |       |                          | Dissolved Boron (B)       | 2016/09/28 | NC      |          | %     | 20        |
|         |       |                          | Dissolved Calcium (Ca)    | 2016/09/28 | 0.0054  |          | %     | 20        |
|         |       |                          | Dissolved Iron (Fe)       | 2016/09/28 | NC      |          | %     | 20        |
|         |       |                          | Dissolved Lithium (Li)    | 2016/09/28 | NC      |          | %     | 20        |
|         |       |                          | Dissolved Magnesium (Mg)  | 2016/09/28 | 0.051   |          | %     | 20        |
|         |       |                          | Dissolved Manganese (Mn)  | 2016/09/28 | 0.054   |          | %     | 20        |
|         |       |                          | Dissolved Phosphorus (P)  | 2016/09/28 | NC      |          | %     | 20        |
|         |       |                          | Dissolved Potassium (K)   | 2016/09/28 | 1.6     |          | %     | 20        |
|         |       |                          | Dissolved Silicon (Si)    | 2016/09/28 | 0.29    |          | %     | 20        |
|         |       |                          | Dissolved Sodium (Na)     | 2016/09/28 | 0.082   |          | %     | 20        |
|         |       |                          | Dissolved Strontium (Sr)  | 2016/09/28 | 0.0033  |          | %     | 20        |
|         |       |                          | Dissolved Sulphur (S)     | 2016/09/28 | 0.015   |          | %     | 20        |
| 8414729 | VP4   | Matrix Spike [PP7330-07] | O-TERPHENYL (sur.)        | 2016/09/30 | 0.010   | 90       | %     | 50 - 130  |
|         | • • • |                          | F2 (C10-C16 Hydrocarbons) | 2016/09/30 |         | 88       | %     | 50 - 130  |
| 8414729 | VP4   | Spiked Blank             | O-TERPHENYL (sur.)        | 2016/09/30 |         | 87       | %     | 50 - 130  |
|         |       | -pinea eraint            | F2 (C10-C16 Hydrocarbons) | 2016/09/30 |         | 89       | %     | 70 - 130  |
| 8414729 | VP4   | Method Blank             | O-TERPHENYL (sur.)        | 2016/09/30 |         | 84       | %     | 50 - 130  |
| 8414779 |       |                          |                           | 2010/03/30 |         | 0-       | /0    | 20 T20    |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                           | Date       |           |          |       |           |
|---------|------|--------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
| 8414729 | VP4  | RPD          | F2 (C10-C16 Hydrocarbons) | 2016/09/30 | 43 (1)    |          | %     | 40        |
| 8415439 | PC5  | Matrix Spike | Dissolved Aluminum (Al)   | 2016/09/29 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/29 |           | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/29 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/29 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/09/29 |           | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/29 |           | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/29 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/29 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/29 |           | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/29 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/09/29 |           | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/09/29 |           | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/09/29 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/09/29 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/09/29 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/09/29 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/09/29 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/09/29 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/09/29 |           | NC       | %     | 80 - 120  |
| 8415439 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/09/29 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/29 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/29 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/29 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/09/29 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/29 |           | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/29 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/29 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/29 |           | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/29 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/09/29 |           | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/09/29 |           | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/09/29 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/09/29 |           | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/09/29 |           | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/09/29 |           | 86       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/09/29 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/09/29 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/09/29 |           | 94       | %     | 80 - 120  |
| 8415439 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/09/29 | <0.0030   |          | mg/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/09/29 | <0.00060  |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/09/29 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/09/29 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/09/29 | <0.000020 |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/09/29 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/09/29 | <0.00030  |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/09/29 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/09/29 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/09/29 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/09/29 | <0.00050  |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/09/29 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/09/29 | <0.00010  |          | mg/L  |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                           | Date       |          |          |       |           |
|---------|------|--------------------------|---------------------------|------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value    | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Thallium (TI)   | 2016/09/29 | <0.00020 |          | mg/L  |           |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/29 | < 0.0010 |          | mg/L  |           |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/29 | < 0.0010 |          | mg/L  |           |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/29 | <0.00010 |          | mg/L  |           |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/29 | < 0.0010 |          | mg/L  |           |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/29 | <0.0030  |          | mg/L  |           |
| 8415439 | PC5  | RPD                      | Dissolved Aluminum (Al)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/29 | 10       |          | %     | 20        |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Thallium (TI)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/29 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/29 | 1.5      |          | %     | 20        |
| 8415465 | PC5  | Matrix Spike [PP7330-01] | Dissolved Aluminum (Al)   | 2016/09/30 |          | 144 (1)  | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/30 |          | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/30 |          | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/30 |          | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/30 |          | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/30 |          | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/30 |          | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/30 |          | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/30 |          | 88       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/30 |          | NC       | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/30 |          | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/30 |          | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/30 |          | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (Tl)   | 2016/09/30 |          | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/30 |          | 103      | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/30 |          | 106      | %     | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/30 |          | 85       | %     | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/30 |          | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/30 |          | 85       | %     | 80 - 120  |
| 8415465 | PC5  | Spiked Blank             | Dissolved Aluminum (Al)   | 2016/09/29 |          | 99       | %     | 80 - 120  |
|         |      | •                        | Dissolved Antimony (Sb)   | 2016/09/29 |          | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/29 |          | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/29 |          | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/29 |          | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/29 |          | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/29 |          | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/29 |          | 91       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/29 |          | 92       | %     | 80 - 120  |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                           | Date       |            |          |       |           |
|---------|------|--------------------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/29 |            | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/29 |            | 85       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/29 |            | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/29 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2016/09/29 |            | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/29 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/29 |            | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/29 |            | 87       | %     | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/29 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/29 |            | 92       | %     | 80 - 120  |
| 8415465 | PC5  | Method Blank             | Dissolved Aluminum (Al)   | 2016/09/29 | <0.0030    |          | mg/L  |           |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/29 | <0.00060   |          | mg/L  |           |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/29 | <0.00020   |          | mg/L  |           |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/29 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/29 | < 0.000020 |          | mg/L  |           |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/29 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/29 | <0.00030   |          | mg/L  |           |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/29 | <0.00020   |          | mg/L  |           |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/29 | < 0.00020  |          | mg/L  |           |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/29 | <0.00020   |          | mg/L  |           |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/29 | < 0.00050  |          | mg/L  |           |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/29 | <0.00020   |          | mg/L  |           |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/29 | <0.00010   |          | mg/L  |           |
|         |      |                          | Dissolved Thallium (Tl)   | 2016/09/29 | < 0.00020  |          | mg/L  |           |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/29 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/29 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/29 | < 0.00010  |          | mg/L  |           |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/29 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/29 | <0.0030    |          | mg/L  |           |
| 8415465 | PC5  | RPD [PP7330-01]          | Dissolved Aluminum (Al)   | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/29 | 14         |          | %     | 20        |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/29 | 1.5        |          | %     | 20        |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/29 | 8.0        |          | %     | 20        |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/29 | 9.1        |          | %     | 20        |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Thallium (Tl)   | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/29 | 0.20       |          | %     | 20        |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/29 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/29 | NC         |          | %     | 20        |
| 8415475 | MB5  | Matrix Spike [PP7330-01] | Dissolved Phosphorus (P)  | 2016/09/29 |            | 99       | %     | 80 - 120  |
| 8415475 | MB5  | QC Standard              | Dissolved Phosphorus (P)  | 2016/09/29 |            | 97       | %     | 80 - 120  |
| 8415475 | MB5  | Spiked Blank             | Dissolved Phosphorus (P)  | 2016/09/29 |            | 97       | %     | 80 - 120  |
|         |      | Method Blank             | Dissolved Phosphorus (P)  | 2016/09/29 | <0.0030    | 2.       | mg/L  |           |



| QA/QC   |      |                          |                              | Date       |            | -        |       |           |
|---------|------|--------------------------|------------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Туре                  | Parameter                    | Analyzed   | Value      | Recovery | UNITS | QC Limits |
| 8415475 | MB5  | RPD [PP7330-01]          | Dissolved Phosphorus (P)     | 2016/09/29 | NC         |          | %     | 20        |
| 8416951 | RM9  | Matrix Spike             | Dissolved Phosphorus (P)     | 2016/10/01 |            | 103      | %     | 80 - 120  |
| 8416951 | RM9  | QC Standard              | Dissolved Phosphorus (P)     | 2016/10/01 |            | 104      | %     | 80 - 120  |
| 8416951 | RM9  | Spiked Blank             | Dissolved Phosphorus (P)     | 2016/10/01 |            | 100      | %     | 80 - 120  |
| 8416951 | RM9  | Method Blank             | Dissolved Phosphorus (P)     | 2016/10/01 | 0.0037,    |          | mg/L  |           |
|         |      |                          |                              |            | RDL=0.0030 |          |       |           |
| 8416951 | RM9  | RPD                      | Dissolved Phosphorus (P)     | 2016/10/01 | NC         |          | %     | 20        |
| 8417135 | MB5  | Matrix Spike             | Orthophosphate (P)           | 2016/09/30 |            | 90       | %     | 80 - 120  |
| 8417135 | MB5  | Spiked Blank             | Orthophosphate (P)           | 2016/09/30 |            | 91       | %     | 80 - 120  |
| 8417135 | MB5  | Method Blank             | Orthophosphate (P)           | 2016/09/30 | <0.0030    |          | mg/L  |           |
| 8417135 | MB5  | RPD                      | Orthophosphate (P)           | 2016/09/30 | NC         |          | %     | 20        |
| 8417235 | RK3  | Matrix Spike [PP7330-06] | Dissolved Mercury (Hg)       | 2016/09/30 |            | 112      | %     | 80 - 120  |
| 8417235 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)       | 2016/09/30 |            | 114      | %     | 80 - 120  |
| 8417235 | RK3  | Method Blank             | Dissolved Mercury (Hg)       | 2016/09/30 | <0.0020    |          | ug/L  |           |
| 8417235 | RK3  | RPD [PP7330-06]          | Dissolved Mercury (Hg)       | 2016/09/30 | NC         |          | %     | 20        |
| 8417239 | RK3  | Matrix Spike             | Dissolved Mercury (Hg)       | 2016/09/30 |            | 107      | %     | 80 - 120  |
| 8417239 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)       | 2016/09/30 |            | 112      | %     | 80 - 120  |
| 8417239 | RK3  | Method Blank             | Dissolved Mercury (Hg)       | 2016/09/30 | <0.0020    |          | ug/L  |           |
| 8417239 | RK3  | RPD                      | Dissolved Mercury (Hg)       | 2016/09/30 | NC         |          | %     | 20        |
| 8417244 | MUK  | Matrix Spike             | Dissolved Organic Carbon (C) | 2016/09/30 |            | 103      | %     | 80 - 120  |
| 8417244 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/09/30 |            | 98       | %     | 80 - 120  |
| 8417244 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/09/30 | <0.50      |          | mg/L  |           |
| 8417244 | MUK  | RPD                      | Dissolved Organic Carbon (C) | 2016/09/30 | NC         |          | %     | 20        |
| 8417247 | RK3  | Matrix Spike             | Total Mercury (Hg)           | 2016/09/30 |            | 109      | %     | 80 - 120  |
| 8417247 | RK3  | Spiked Blank             | Total Mercury (Hg)           | 2016/09/30 |            | 104      | %     | 80 - 120  |
| 8417247 | RK3  | Method Blank             | Total Mercury (Hg)           | 2016/09/30 | <0.0020    |          | ug/L  |           |
| 8417247 | RK3  | RPD                      | Total Mercury (Hg)           | 2016/09/30 | NC         |          | %     | 20        |
| 8417248 | MUK  | Matrix Spike             | Dissolved Organic Carbon (C) | 2016/09/30 |            | 107      | %     | 80 - 120  |
| 8417248 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/09/30 |            | 101      | %     | 80 - 120  |
| 8417248 |      | Method Blank             | Dissolved Organic Carbon (C) | 2016/09/30 | <0.50      |          | mg/L  |           |
| 8417248 | MUK  | RPD                      | Dissolved Organic Carbon (C) | 2016/09/30 | NC         |          | %     | 20        |
| 8417394 | MB5  | Matrix Spike             | Orthophosphate (P)           | 2016/09/30 |            | 96       | %     | 80 - 120  |
| 8417394 | MB5  | Spiked Blank             | Orthophosphate (P)           | 2016/09/30 |            | 96       | %     | 80 - 120  |
| 8417394 | MB5  | Method Blank             | Orthophosphate (P)           | 2016/09/30 | < 0.0030   |          | mg/L  |           |
| 8417394 | MB5  | RPD                      | Orthophosphate (P)           | 2016/09/30 | 1.7        |          | %     | 20        |
| 8417434 | RM9  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/01 |            | NC       | %     | 80 - 120  |
| 8417434 | RM9  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/01 |            | 111      | %     | 80 - 120  |
| 8417434 | RM9  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/01 |            | 108      | %     | 80 - 120  |
| 8417434 | RM9  |                          | Total Kjeldahl Nitrogen      | 2016/10/01 | <0.050     |          | mg/L  |           |
| 8417434 | RM9  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/01 | 1.1        |          | %     | 20        |
| 8417670 | MB5  | Matrix Spike             | Dissolved Ammonia (N)        | 2016/09/30 |            | NC       | %     | 80 - 120  |
| 8417670 | MB5  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/09/30 |            | 98       | %     | 80 - 120  |
| 8417670 | MB5  | Method Blank             | Dissolved Ammonia (N)        | 2016/09/30 | <0.050     |          | mg/L  |           |
| 8417670 | MB5  | RPD                      | Dissolved Ammonia (N)        | 2016/09/30 | 3.2        |          | %     | 20        |
| 8417688 | MB5  | Matrix Spike             | Dissolved Ammonia (N)        | 2016/09/30 |            | NC       | %     | 80 - 120  |
| 8417688 | MB5  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/09/30 |            | 97       | %     | 80 - 120  |
| 8417688 | MB5  | Method Blank             | Dissolved Ammonia (N)        | 2016/09/30 | <0.050     |          | mg/L  |           |
| 8417688 | MB5  | RPD                      | Dissolved Ammonia (N)        | 2016/09/30 | 1.3        |          | %     | 20        |
| 8417842 | MZ   | Matrix Spike [PP7331-08] | 1,4-Difluorobenzene (sur.)   | 2016/10/02 | -          | 105      | %     | 70 - 130  |
|         |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/02 |            | 108      | %     | 70 - 130  |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/02 |            | 128      | %     | 70 - 130  |
|         |      |                          | Benzene                      | 2016/10/02 |            | 111      | %     | 70 - 130  |
|         |      |                          |                              | ,,         |            |          |       |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC              |       |                 |                              | Date       |                 |          |             |                |
|--------------------|-------|-----------------|------------------------------|------------|-----------------|----------|-------------|----------------|
| Batch              | Init  | QC Type         | Parameter                    | Analyzed   | Value           | Recovery | UNITS       | QC Limits      |
|                    |       |                 | Toluene                      | 2016/10/02 |                 | 108      | %           | 70 - 130       |
|                    |       |                 | Ethylbenzene                 | 2016/10/02 |                 | 114      | %           | 70 - 130       |
|                    |       |                 | m & p-Xylene                 | 2016/10/02 |                 | 117      | %           | 70 - 130       |
|                    |       |                 | o-Xylene                     | 2016/10/02 |                 | 119      | %           | 70 - 130       |
|                    |       |                 | F1 (C6-C10)                  | 2016/10/02 |                 | 70       | %           | 70 - 130       |
| 8417842            | MZ    | Spiked Blank    | 1,4-Difluorobenzene (sur.)   | 2016/10/02 |                 | 107      | %           | 70 - 130       |
|                    |       |                 | 4-Bromofluorobenzene (sur.)  | 2016/10/02 |                 | 106      | %           | 70 - 130       |
|                    |       |                 | D4-1,2-Dichloroethane (sur.) | 2016/10/02 |                 | 118      | %           | 70 - 130       |
|                    |       |                 | Benzene                      | 2016/10/02 |                 | 98       | %           | 70 - 130       |
|                    |       |                 | Toluene                      | 2016/10/02 |                 | 98       | %           | 70 - 130       |
|                    |       |                 | Ethylbenzene                 | 2016/10/02 |                 | 104      | %           | 70 - 130       |
|                    |       |                 | m & p-Xylene                 | 2016/10/02 |                 | 105      | %           | 70 - 130       |
|                    |       |                 | o-Xylene                     | 2016/10/02 |                 | 107      | %           | 70 - 130       |
|                    |       |                 | F1 (C6-C10)                  | 2016/10/02 |                 | 98       | %           | 70 - 130       |
| 8417842            | MZ    | Method Blank    | 1,4-Difluorobenzene (sur.)   | 2016/10/02 |                 | 109      | %           | 70 - 130       |
|                    |       |                 | 4-Bromofluorobenzene (sur.)  | 2016/10/02 |                 | 106      | %           | 70 - 130       |
|                    |       |                 | D4-1,2-Dichloroethane (sur.) | 2016/10/02 |                 | 120      | %           | 70 - 130       |
|                    |       |                 | Benzene                      | 2016/10/02 | <0.00040        |          | mg/L        |                |
|                    |       |                 | Toluene                      | 2016/10/02 | <0.00040        |          | mg/L        |                |
|                    |       |                 | Ethylbenzene                 | 2016/10/02 | <0.00040        |          | mg/L        |                |
|                    |       |                 | m & p-Xylene                 | 2016/10/02 | <0.00080        |          | mg/L        |                |
|                    |       |                 | o-Xylene                     | 2016/10/02 | <0.00040        |          | mg/L        |                |
|                    |       |                 | Xylenes (Total)              | 2016/10/02 | <0.00080        |          | mg/L        |                |
|                    |       |                 | F1 (C6-C10) - BTEX           | 2016/10/02 | <0.10           |          | mg/L        |                |
|                    |       |                 | F1 (C6-C10)                  | 2016/10/02 | <0.10           |          | mg/L        |                |
| 8417842            | MZ    | RPD [PP7330-08] | Benzene                      | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | Toluene                      | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | Ethylbenzene                 | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | m & p-Xylene                 | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | o-Xylene                     | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | Xylenes (Total)              | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | F1 (C6-C10) - BTEX           | 2016/10/02 | NC              |          | %           | 40             |
|                    |       |                 | F1 (C6-C10)                  | 2016/10/02 | NC              |          | %           | 40             |
| 8418338            | ZI    | Matrix Spike    | Dissolved Chloride (Cl)      | 2016/10/01 |                 | 108      | %           | 80 - 120       |
| 8418338            | ZI    | Spiked Blank    | Dissolved Chloride (Cl)      | 2016/10/01 |                 | 107      | %           | 80 - 120       |
| 8418338            | ZI    | Method Blank    | Dissolved Chloride (Cl)      | 2016/10/01 | 1.2,<br>RDL=1.0 |          | mg/L        |                |
| 8418338            | ZI    | RPD             | Dissolved Chloride (Cl)      | 2016/10/01 | 1.6             |          | %           | 20             |
| 8418336            | ZI    | Matrix Spike    | Dissolved Sulphate (SO4)     | 2016/10/01 | 1.0             | 119      | %           | 80 - 120       |
| 8418346            | ZI    | Spiked Blank    | Dissolved Sulphate (SO4)     | 2016/10/01 |                 | 101      | %           | 80 - 120       |
| 8418346            | ZI    | Method Blank    | Dissolved Sulphate (SO4)     | 2016/10/01 | <1.0            | 101      | mg/L        | 80 - 120       |
| 8418346            | ZI    | RPD             | Dissolved Sulphate (SO4)     | 2016/10/01 | NC              |          | mg/∟<br>%   | 20             |
| 8419025            | KP9   | Matrix Spike    | Dissolved Chloride (Cl)      | 2016/10/02 | NC              | NC       | %           | 80 - 120       |
| 8419025            | KP9   | Spiked Blank    | Dissolved Chloride (Cl)      | 2016/10/02 |                 | 107      | %           | 80 - 120       |
| 8419025<br>8419025 | KP9   | Method Blank    | Dissolved Chloride (Cl)      | 2016/10/02 | <1.0            | 107      | mg/L        | 00 120         |
| 8419025<br>8419025 | KP9   | RPD             | Dissolved Chloride (Cl)      | 2016/10/02 | 0.44            |          | 111g/L<br>% | 20             |
| 8419025<br>8419026 | KP9   | Matrix Spike    | Dissolved Sulphate (SO4)     | 2016/10/02 | 0.44            | 111      | %           | 20<br>80 - 120 |
| 8419020<br>8419026 | KP9   | Spiked Blank    | Dissolved Sulphate (SO4)     | 2016/10/02 |                 | 103      | %           | 80 - 120       |
| 8419020<br>8419026 | KP9   | Method Blank    | Dissolved Sulphate (SO4)     | 2016/10/02 | <1.0            | 103      | mg/L        | 00 120         |
| 8419020<br>8419026 | KP9   | RPD             | Dissolved Sulphate (SO4)     | 2016/10/02 | NC              |          | 111g/L<br>% | 20             |
| 8419020<br>8419040 | MB5   | Matrix Spike    | Total Kjeldahl Nitrogen      | 2016/10/02 | INC             | 105      | %           | 20<br>80 - 120 |
| 0-110040           | LAIDD | matrix spike    | iotar Njeluani Mili Ugeli    | 2016/10/03 |                 | 100      | /0          | 80 - 120       |





STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                                                      | Date                     |          |          |        |           |
|---------|------|--------------|------------------------------------------------------|--------------------------|----------|----------|--------|-----------|
| Batch   | Init | QC Type      | Parameter                                            | Analyzed                 | Value    | Recovery | UNITS  | QC Limits |
| 8419040 | MB5  | Spiked Blank | Total Kjeldahl Nitrogen                              | 2016/10/03               |          | 109      | %      | 80 - 120  |
| 8419040 | MB5  | Method Blank | Total Kjeldahl Nitrogen                              | 2016/10/03               | <0.050   |          | mg/L   |           |
| 8419040 | MB5  | RPD          | Total Kjeldahl Nitrogen                              | 2016/10/03               | NC       |          | %      | 20        |
| 8421809 | JHC  | Matrix Spike | Dissolved Barium (Ba)                                | 2016/10/05               |          | 95       | %      | 80 - 120  |
|         |      |              | Dissolved Boron (B)                                  | 2016/10/05               |          | 93       | %      | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)                               | 2016/10/05               |          | 103      | %      | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)                                  | 2016/10/05               |          | 96       | %      | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)                               | 2016/10/05               |          | 97       | %      | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg)                             | 2016/10/05               |          | 103      | %      | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)                             | 2016/10/05               |          | 99       | %      | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)                             | 2016/10/05               |          | 102      | %      | 80 - 120  |
|         |      |              | Dissolved Potassium (K)                              | 2016/10/05               |          | 104      | %      | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)                               | 2016/10/05               |          | 95       | %      | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)                                | 2016/10/05               |          | 100      | %      | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)                             | 2016/10/05               |          | 95       | %      | 80 - 120  |
| 8421809 | JHC  | Spiked Blank | Dissolved Barium (Ba)                                | 2016/10/05               |          | 95       | %      | 80 - 120  |
|         |      |              | Dissolved Boron (B)                                  | 2016/10/05               |          | 93       | %      | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)                               | 2016/10/05               |          | 103      | %      | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)                                  | 2016/10/05               |          | 98       | %      | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)                               | 2016/10/05               |          | 97       | %      | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg)                             | 2016/10/05               |          | 102      | %      | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)                             | 2016/10/05               |          | 100      | %      | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)                             | 2016/10/05               |          | 100      | %      | 80 - 120  |
|         |      |              | Dissolved Potassium (K)                              | 2016/10/05               |          | 103      | %      | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)                               | 2016/10/05               |          | 95       | %      | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)                                | 2016/10/05               |          | 99       | %      | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)                             | 2016/10/05               |          | 96       | %      | 80 - 120  |
| 8421809 | JHC  | Method Blank | Dissolved Barium (Ba)                                | 2016/10/05               | <0.010   |          | mg/L   |           |
|         |      |              | Dissolved Boron (B)                                  | 2016/10/05               | <0.020   |          | mg/L   |           |
|         |      |              | Dissolved Calcium (Ca)                               | 2016/10/05               | <0.30    |          | mg/L   |           |
|         |      |              | Dissolved Iron (Fe)                                  | 2016/10/05               | <0.060   |          | mg/L   |           |
|         |      |              | Dissolved Lithium (Li)                               | 2016/10/05               | <0.020   |          | mg/L   |           |
|         |      |              | Dissolved Magnesium (Mg)                             | 2016/10/05               | <0.20    |          | mg/L   |           |
|         |      |              | Dissolved Manganese (Mn)                             | 2016/10/05               | < 0.0040 |          | mg/L   |           |
|         |      |              | Dissolved Phosphorus (P)                             | 2016/10/05               | <0.10    |          | mg/L   |           |
|         |      |              | Dissolved Potassium (K)                              | 2016/10/05               | < 0.30   |          | mg/L   |           |
|         |      |              | Dissolved Silicon (Si)                               | 2016/10/05               | < 0.10   |          | mg/L   |           |
|         |      |              | Dissolved Sodium (Na)                                | 2016/10/05               | < 0.50   |          | mg/L   |           |
|         |      |              | Dissolved Strontium (Sr)                             | 2016/10/05               | <0.020   |          | mg/L   |           |
| 0421000 |      |              | Dissolved Sulphur (S)                                | 2016/10/05               | <0.20    |          | mg/L   | 20        |
| 8421809 | JHC  | RPD          | Dissolved Barium (Ba)                                | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Boron (B)                                  | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Calcium (Ca)                               | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Iron (Fe)                                  | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Lithium (Li)                               | 2016/10/05               | NC<br>NC |          | %<br>% | 20        |
|         |      |              | Dissolved Magnesium (Mg)<br>Dissolved Manganese (Mn) | 2016/10/05<br>2016/10/05 |          |          | %      | 20<br>20  |
|         |      |              | Dissolved Phosphorus (P)                             | 2016/10/05               | NC<br>NC |          | %      | 20        |
|         |      |              | Dissolved Potassium (K)                              | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Silicon (Si)                               | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Sodium (Na)                                | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              | Dissolved Strontium (Na)                             | 2016/10/05               | NC       |          | %      | 20        |
|         |      |              |                                                      | 2010/10/03               |          |          | /0     | 20        |



### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |              |                             | Date       |       |          |       |           |
|---------|------|--------------|-----------------------------|------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                   | Analyzed   | Value | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Sulphur (S)       | 2016/10/05 | NC    |          | %     | 20        |
| 8424014 | IK0  | Spiked Blank | Alkalinity (Total as CaCO3) | 2016/10/06 |       | 92       | %     | 80 - 120  |
| 8424014 | IK0  | Method Blank | Alkalinity (PP as CaCO3)    | 2016/10/06 | <0.50 |          | mg/L  |           |
|         |      |              | Alkalinity (Total as CaCO3) | 2016/10/06 | <0.50 |          | mg/L  |           |
|         |      |              | Bicarbonate (HCO3)          | 2016/10/06 | <0.50 |          | mg/L  |           |
|         |      |              | Carbonate (CO3)             | 2016/10/06 | <0.50 |          | mg/L  |           |
|         |      |              | Hydroxide (OH)              | 2016/10/06 | <0.50 |          | mg/L  |           |
| 8424014 | IK0  | RPD          | Alkalinity (PP as CaCO3)    | 2016/10/06 | 3.1   |          | %     | 20        |
|         |      |              | Alkalinity (Total as CaCO3) | 2016/10/06 | 0.30  |          | %     | 20        |
|         |      |              | Bicarbonate (HCO3)          | 2016/10/06 | 0.22  |          | %     | 20        |
|         |      |              | Carbonate (CO3)             | 2016/10/06 | 3.1   |          | %     | 20        |
|         |      |              | Hydroxide (OH)              | 2016/10/06 | NC    |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



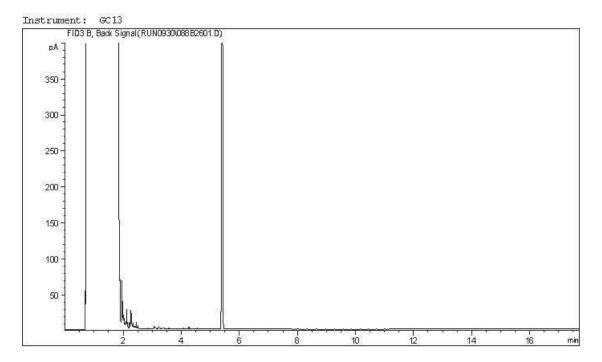
STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

### VALIDATION SIGNATURE PAGE

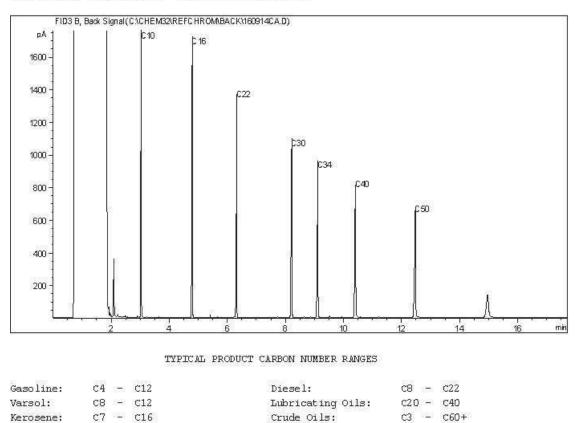
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

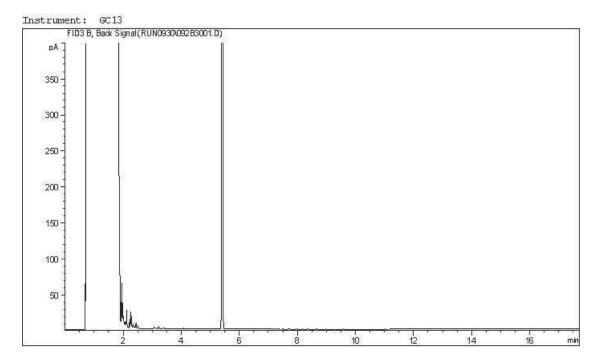
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

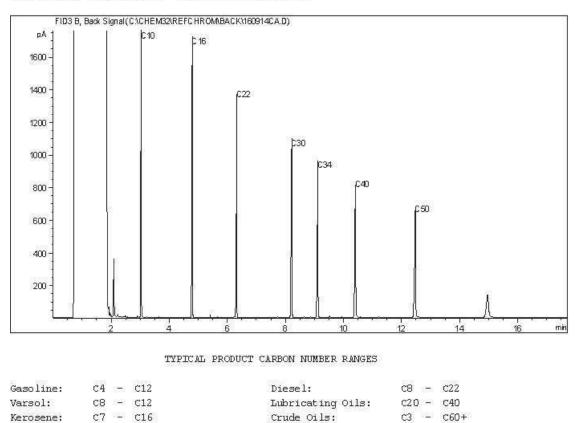

unchi Gras

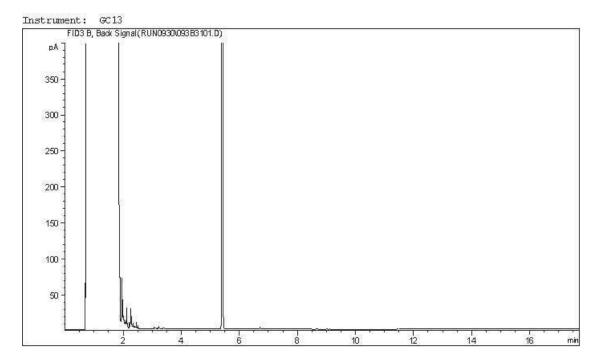
Janet Gao, B.Sc., QP, Supervisor, Organics


Harry (Peng) Liang, Senior Analyst

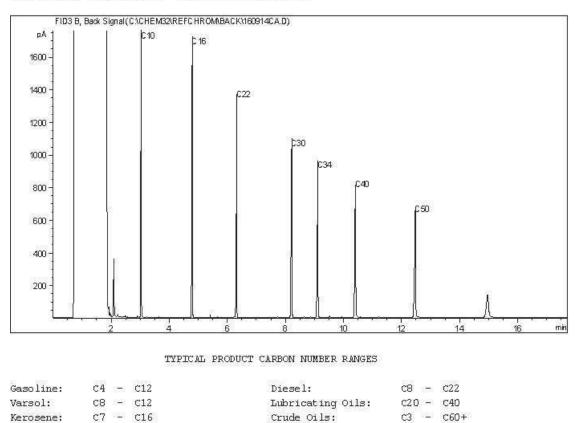

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

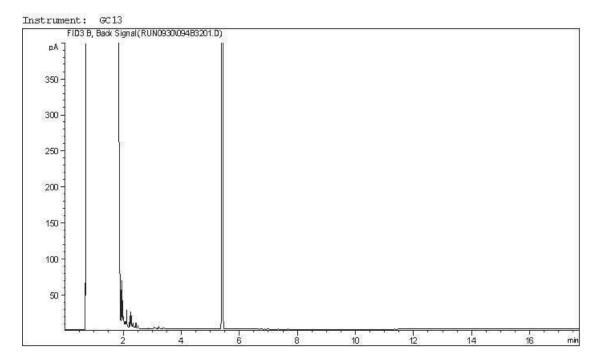
| Invoice Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Report Informatio                         | n (if differs from invoice)    | Project Information                                                                                                                                                                                                                                                                                                                                 | Turnaround Time (TAT) Required                                                                               |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------|
| company: Starter Consulting Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Company:                                  |                                | Quotation #:                                                                                                                                                                                                                                                                                                                                        | 5 - 7 Days Regular (Most analyses)                                                                           |            |
| Contact Name: Dylan King                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact Name:                             |                                | P.O. #/ AFE#:                                                                                                                                                                                                                                                                                                                                       | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS                                                              |            |
| uddress: 1060 1125t, Edmonton                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Address:                                  | 316.3                          |                                                                                                                                                                                                                                                                                                                                                     | Rush TAT (Surcharges will be applied)                                                                        |            |
| AB, TSK 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                | Project #: 10773396                                                                                                                                                                                                                                                                                                                                 | Same Day 2 Days                                                                                              |            |
| hone: (790) 969 - 22-23                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phone:                                    | Statistics.                    | Site Location: Springbonk SRI                                                                                                                                                                                                                                                                                                                       | 1 Day 3-4 Days                                                                                               | the second |
| mail: Dylan King estantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Email:                                    | C. Markey and                  |                                                                                                                                                                                                                                                                                                                                                     | Date Required:                                                                                               |            |
| copies: Dale. Nisbetestantec. com                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copies:                                   |                                | sampled By: ). Nisbet                                                                                                                                                                                                                                                                                                                               | Rush Confirmation #:                                                                                         |            |
| Laboratory Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | A DESTROY                      | Analysis Requested                                                                                                                                                                                                                                                                                                                                  | Regulatory Criteria                                                                                          |            |
| Seal Present         Tomp         8         1.0         1.2           Cooling Media         YES         NO         Cooler ID           Seal Instact         Temp         8         1.0         1.2           Seal Instact         Temp         8         1.1         1.2           Cooling Media         Temp         8         1.1         1.2           Seal Instact         YES         NO         Cooler ID           Seal Present         Temp         Seal Instact         Temp | Depot Recep                               | ners                           | 2<br>4<br>Vater<br>Vater<br>Total® Tot Diss<br>Total®<br>Total®<br>% Sand; Silt, Ciay)<br>% Sand; Silt, Ciay) | Superior 100 - 200<br>Superior 100 - 200<br>Superior 100 - 200<br>Superior 100 - 200<br>Special Instructions |            |
| Cooling Media Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth (Unit) Date Sampled<br>(YYYY/MM/DD) | Time<br>Sampled Matrix batting | BTEK F1-F2<br>BTEK F1-F4<br>Routine Wate<br>Regulated Me<br>Mercury Tc<br>Salinity 4<br>Salinity 4<br>Salewe (75 micr<br>Salewe (75 micr<br>Salewe (75 micr<br>DisSoluted<br>DisSoluted<br>DisSoluted<br>DisSoluted<br>DisSoluted                                                                                                                   |                                                                                                              |            |
| 1 MW16-14-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2016/01/27                                | 17:17 W 13 1                   | V V V V 8 10 10 V V V V                                                                                                                                                                                                                                                                                                                             | UTU MW1,6-14-33 docented                                                                                     | -          |
| 2 MWG-G-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                         | 10:07                          | 1 1 1 8 9 9 1 1 1 1                                                                                                                                                                                                                                                                                                                                 | provmeters not feld                                                                                          |            |
| 3 MW16-6-20<br>4 MW16-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cherry and Children                       | 9:37                           | 10 10 10 10                                                                                                                                                                                                                                                                                                                                         | fitteled of personal                                                                                         |            |
| * MU16-19-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Internet Street Internet                  | 17:50                          | 8 10 11                                                                                                                                                                                                                                                                                                                                             | Filteled or preserved<br>due to taskibility and<br>but unter unume                                           |            |
| 6 MWIG-19-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | 13:42                          | 899                                                                                                                                                                                                                                                                                                                                                 | S. britted some day                                                                                          |            |
| " MWG-20-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                         |                                | Q Q Q Q 9 11 11 Q Q Q D D                                                                                                                                                                                                                                                                                                                           | Submitted some day<br>as sampled                                                                             |            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                |                                                                                                                                                                                                                                                                                                                                                     | bottles present in<br>some sample bogs                                                                       |            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S HER TENEN L                             |                                |                                                                                                                                                                                                                                                                                                                                                     | bullies present in                                                                                           |            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                |                                                                                                                                                                                                                                                                                                                                                     | came same bogs                                                                                               | 1.00       |
| Please indicate Filtered, Preserved or Bo                                                                                                                                                                                                                                                                                                                                                                                                                                             | th (F, P, F/P)                            | Received by: (Signa            | ature/ Print) DATE (YYYY/MM/DD) Time (HH:MM)                                                                                                                                                                                                                                                                                                        | Jure Jure Jure                                                                                               |            |



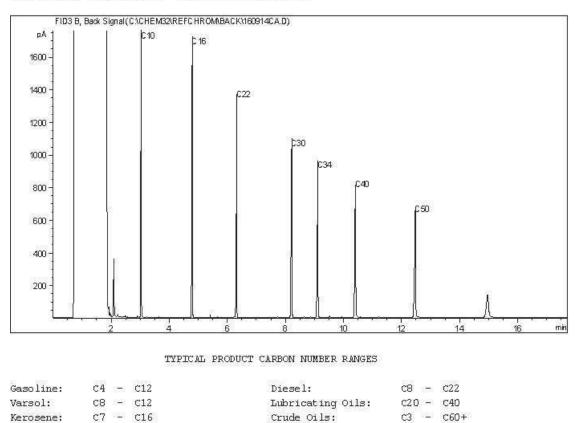


Carbon Range Distribution - Reference Chromatogram





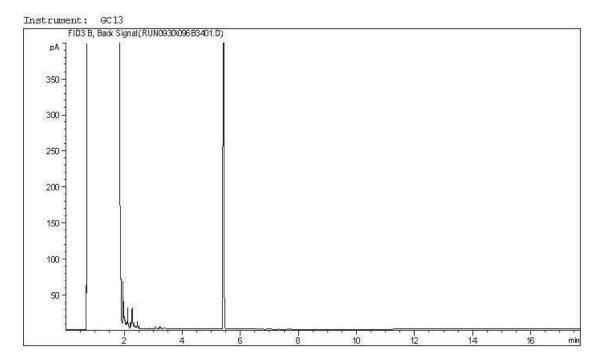


Carbon Range Distribution - Reference Chromatogram



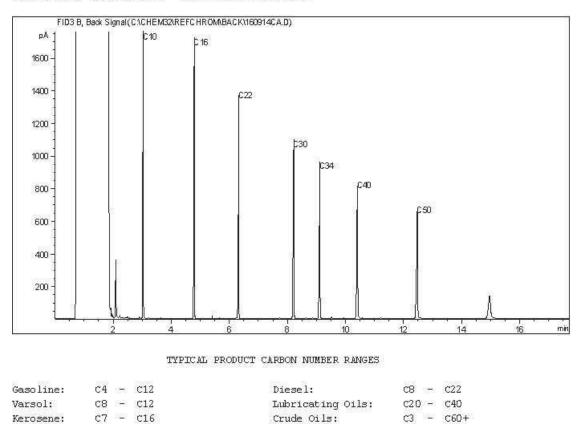



Carbon Range Distribution - Reference Chromatogram





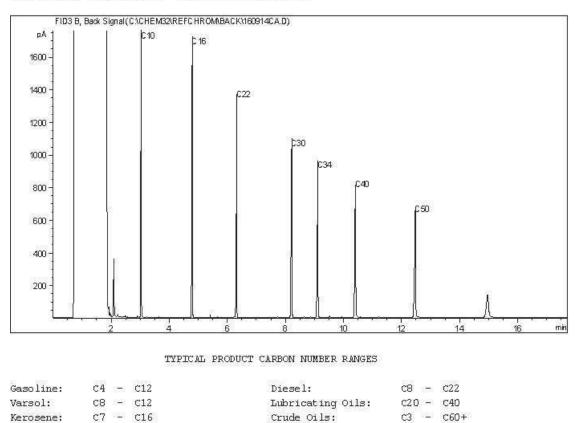

Carbon Range Distribution - Reference Chromatogram

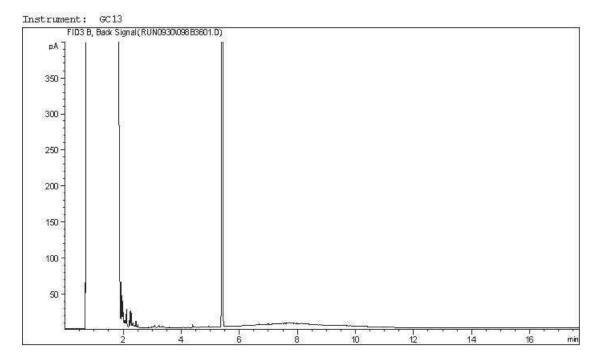




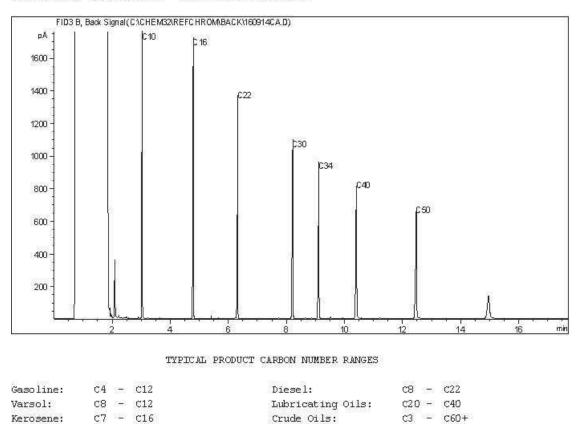
Note: This information is provided for reference purposes only. Should detailed chemist interpretation

or fingerprinting be required, please contact the laboratory.





Carbon Range Distribution - Reference Chromatogram






Carbon Range Distribution - Reference Chromatogram





Carbon Range Distribution - Reference Chromatogram



Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031857

### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/07 Report #: R2278053 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

## MAXXAM JOB #: B685593

## Received: 2016/09/29, 19:30

Sample Matrix: Water # Samples Received: 3

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 3        | N/A        | 2016/09/30 | AB SOP-00005      | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 3        | N/A        | 2016/10/06 | AB SOP-00039      | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 3        | N/A        | 2016/10/03 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 3        | 2016/09/30 | 2016/10/01 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 3        | 2016/09/30 | 2016/10/01 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Carbon (DOC) -Lab Filtered (1)           | 2        | N/A        | 2016/10/01 | CAL SOP-00077     | MMCW 119 1996 m      |
| Carbon (DOC) (1)                         | 1        | N/A        | 2016/10/01 | CAL SOP-00077     | MMCW 119 1996 m      |
| Conductivity @25C                        | 3        | N/A        | 2016/09/30 | AB SOP-00005      | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 3        | 2016/09/30 | 2016/10/02 | AB SOP-00040      | CCME PHC-CWS m       |
|                                          |          |            |            | AB SOP-00037      |                      |
| Hardness                                 | 3        | N/A        | 2016/10/04 | AB WI-00065       | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 2        | 2016/10/03 | 2016/10/03 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury-Low Level-Dissolved-Lab Filtered | 1        | 2016/09/30 | 2016/09/30 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 3        | 2016/10/03 | 2016/10/03 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 2        | N/A        | 2016/10/01 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICP-Dissolved-Lab Filtered   | 1        | N/A        | 2016/10/01 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 2        | N/A        | 2016/09/30 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Elements by ICPMS-Dissolved-Lab Filtered | 1        | N/A        | 2016/10/04 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Ion Balance                              | 3        | N/A        | 2016/09/30 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 3        | N/A        | 2016/10/04 | AB WI-00065       | Auto Calc            |
| Ammonia-N (Dissolved) - Lab Filtered     | 2        | N/A        | 2016/09/30 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Ammonia-N (Dissolved)                    | 1        | N/A        | 2016/09/30 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 3        | N/A        | 2016/10/03 | AB WI-00065       | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 3        | N/A        | 2016/10/03 | AB WI-00065       | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 3        | N/A        | 2016/10/01 | AB SOP-00023      | SM 22 4110 B m       |
| pH @25°C                                 | 3        | N/A        | 2016/09/30 | AB SOP-00005      | SM 22 4500-H+B m     |
| Orthophosphate by Konelab                | 3        | N/A        | 2016/09/30 | AB SOP-00025      | SM 22 4500-P A,F m   |
| Sulphate by Automated Colourimetry       | 3        | N/A        | 2016/10/03 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Heterotrophic Plate Count                | 3        | 2016/09/30 | 2016/10/02 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)      | 3        | N/A        | 2016/10/04 | AB WI-00065       | Auto Calc            |
|                                          |          |            |            |                   |                      |



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031857

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/07 Report #: R2278053 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B685593 Received: 2016/09/29, 19:30

Sample Matrix: Water # Samples Received: 3

|                                         | [          | Date       | Date       |                   |                      |
|-----------------------------------------|------------|------------|------------|-------------------|----------------------|
| Analyses                                | Quantity E | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Total Kjeldahl Nitrogen                 | 1 2        | 2016/09/30 | 2016/10/01 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Kjeldahl Nitrogen                 | 2 2        | 2016/10/02 | 2016/10/03 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Phosphorus-Dissolved-Lab Filtered | 2 2        | 2016/10/02 | 2016/10/04 | AB SOP-00024      | SM 22 4500-P A,B,F m |
| Phosphorus -P (Total, Dissolved)        | 1 2        | 2016/09/30 | 2016/10/01 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.





## AT1 BTEX AND F1-F2 IN WATER (WATER)

| Maxxam ID                                                        |        | PQ3527              | PQ3527                | PQ3528              | PQ3529              | PQ3529                |         |          |
|------------------------------------------------------------------|--------|---------------------|-----------------------|---------------------|---------------------|-----------------------|---------|----------|
| Sampling Date                                                    |        | 2016/09/29<br>09:52 | 2016/09/29<br>09:52   | 2016/09/29<br>16:56 | 2016/09/29<br>17:32 | 2016/09/29<br>17:32   |         |          |
| COC Number                                                       |        | M031857             | M031857               | M031857             | M031857             | M031857               |         |          |
|                                                                  | UNITS  | MW16-21-11          | MW16-21-11<br>Lab-Dup | MW16-23-36          | MW16-23-14          | MW16-23-14<br>Lab-Dup | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon                                            |        |                     |                       |                     |                     |                       |         |          |
| F2 (C10-C16 Hydrocarbons)                                        | mg/L   | <0.10               | N/A                   | <0.10               | <0.10               | <0.10                 | 0.10    | 8416876  |
| Volatiles                                                        |        |                     |                       |                     |                     |                       |         |          |
| Benzene                                                          | mg/L   | <0.00040            | <0.00040              | <0.00040            | <0.00040            | N/A                   | 0.00040 | 8421839  |
| Toluene                                                          | mg/L   | <0.00040            | <0.00040              | <0.00040            | <0.00040            | N/A                   | 0.00040 | 8421839  |
| Ethylbenzene                                                     | mg/L   | 0.00059             | 0.00058               | <0.00040            | <0.00040            | N/A                   | 0.00040 | 8421839  |
| m & p-Xylene                                                     | mg/L   | 0.00090             | 0.00093               | <0.00080            | <0.00080            | N/A                   | 0.00080 | 8421839  |
| o-Xylene                                                         | mg/L   | 0.0010              | 0.0010                | <0.00040            | <0.00040            | N/A                   | 0.00040 | 8421839  |
| Xylenes (Total)                                                  | mg/L   | 0.0019              | 0.0019                | <0.00080            | <0.00080            | N/A                   | 0.00080 | 8421839  |
| F1 (C6-C10) - BTEX                                               | mg/L   | <0.10               | <0.10                 | <0.10               | <0.10               | N/A                   | 0.10    | 8421839  |
| F1 (C6-C10)                                                      | mg/L   | <0.10               | <0.10                 | <0.10               | <0.10               | N/A                   | 0.10    | 8421839  |
| Surrogate Recovery (%)                                           |        |                     |                       |                     |                     |                       |         |          |
| 1,4-Difluorobenzene (sur.)                                       | %      | 110                 | 112                   | 106                 | 112                 | N/A                   | N/A     | 8421839  |
| 4-Bromofluorobenzene (sur.)                                      | %      | 105                 | 105                   | 107                 | 104                 | N/A                   | N/A     | 8421839  |
| D4-1,2-Dichloroethane (sur.)                                     | %      | 104                 | 109                   | 121                 | 105                 | N/A                   | N/A     | 8421839  |
| O-TERPHENYL (sur.)                                               | %      | 93                  | N/A                   | 94                  | 92                  | 90                    | N/A     | 8416876  |
| RDL = Reportable Detection Lir<br>Lab-Dup = Laboratory Initiated |        | to                  |                       |                     |                     |                       |         |          |
| N/A = Not Applicable                                             | Бариса | ιε                  |                       |                     |                     |                       |         |          |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PQ3527              |           | PQ3529              |          |          |
|-----------------------------------|-------|---------------------|-----------|---------------------|----------|----------|
| Sampling Date                     |       | 2016/09/29<br>09:52 |           | 2016/09/29<br>17:32 |          |          |
| COC Number                        |       | M031857             |           | M031857             |          |          |
|                                   | UNITS | MW16-21-11          | QC Batch  | MW16-23-14          | RDL      | QC Batch |
| Calculated Parameters             |       |                     | ļ -       |                     | Į        |          |
| Anion Sum                         | meq/L | 9.2                 | 8416540   | 13                  | N/A      | 8416540  |
| Cation Sum                        | meq/L | 9.9                 | 8416540   | 13                  | N/A      | 8416540  |
| Hardness (CaCO3)                  | mg/L  | 440                 | 8416386   | 540                 | 0.50     | 8416386  |
| Ion Balance                       | N/A   | 1.1                 | 8416402   | 1.0                 | 0.010    | 8416402  |
| Dissolved Nitrate (NO3)           | mg/L  | 21                  | 8416387   | <0.044              | 0.044    | 8416387  |
| Nitrate plus Nitrite (N)          | mg/L  | 4.8                 | 8416388   | <0.020              | 0.020    | 8416388  |
| Dissolved Nitrite (NO2)           | mg/L  | <0.033              | 8416387   | <0.033              | 0.033    | 8416387  |
| Calculated Total Dissolved Solids | mg/L  | 480                 | 8416403   | 680                 | 10       | 8416403  |
| Misc. Inorganics                  |       |                     | 0.120.000 |                     | 10       | 0120100  |
| Conductivity                      | uS/cm | 800                 | 8417189   | 1100                | 1.0      | 8417175  |
| рН                                | pH    | 7.96                | 8417188   | 7.94                | N/A      | 8417173  |
| Anions                            | T.    |                     |           |                     | ,        |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | 8417181   | <0.50               | 0.50     | 8417160  |
| Alkalinity (Total as CaCO3)       | mg/L  | 390                 | 8417181   | 600                 | 0.50     | 8417160  |
| Bicarbonate (HCO3)                | mg/L  | 470                 | 8417181   | 730                 | 0.50     | 8417160  |
| Carbonate (CO3)                   | mg/L  | <0.50               | 8417181   | <0.50               | 0.50     | 8417160  |
| Hydroxide (OH)                    | mg/L  | <0.50               | 8417181   | <0.50               | 0.50     | 8417160  |
| Dissolved Sulphate (SO4)          | mg/L  | 50                  | 8419569   | 70                  | 1.0      | 8419569  |
| Dissolved Chloride (Cl)           | mg/L  | 4.6                 | 8419564   | 3.5                 | 1.0      | 8419564  |
| Nutrients                         | _     |                     | 1         |                     | 1        | 1        |
| Dissolved Nitrite (N)             | mg/L  | <0.010              | 8417625   | <0.010              | 0.010    | 8417633  |
| Dissolved Nitrate (N)             | mg/L  | 4.8                 | 8417625   | <0.010              | 0.010    | 8417633  |
| Elements                          |       |                     |           |                     | •        |          |
| Dissolved Aluminum (Al)           | mg/L  | 0.0033              | 8417228   | < 0.0030            | 0.0030   | 8417228  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | 8417228   | <0.00060            | 0.00060  | 8417228  |
| Dissolved Arsenic (As)            | mg/L  | 0.00045             | 8417228   | 0.0056              | 0.00020  | 8417228  |
| Dissolved Barium (Ba)             | mg/L  | 0.087               | 8417829   | 0.12                | 0.010    | 8417829  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | 8417228   | <0.0010             | 0.0010   | 8417228  |
| Dissolved Boron (B)               | mg/L  | 0.061               | 8417829   | 0.13                | 0.020    | 8417829  |
| Dissolved Cadmium (Cd)            | mg/L  | 0.000073            | 8417228   | 0.000033            | 0.000020 | 8417228  |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                      |       | PQ3527     |          | PQ3529     |         |          |
|--------------------------------|-------|------------|----------|------------|---------|----------|
| Sampling Date                  |       | 2016/09/29 |          | 2016/09/29 |         |          |
|                                |       | 09:52      |          | 17:32      |         |          |
| COC Number                     |       | M031857    |          | M031857    |         |          |
|                                | UNITS | MW16-21-11 | QC Batch | MW16-23-14 | RDL     | QC Batch |
| Dissolved Calcium (Ca)         | mg/L  | 86         | 8417829  | 130        | 0.30    | 8417829  |
| Dissolved Chromium (Cr)        | mg/L  | <0.0010    | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Cobalt (Co)          | mg/L  | 0.00062    | 8417228  | 0.0020     | 0.00030 | 8417228  |
| Dissolved Copper (Cu)          | mg/L  | 0.0013     | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Iron (Fe)            | mg/L  | 0.078      | 8417829  | 0.50       | 0.060   | 8417829  |
| Dissolved Lead (Pb)            | mg/L  | <0.00020   | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Lithium (Li)         | mg/L  | 0.028      | 8417829  | 0.032      | 0.020   | 8417829  |
| Dissolved Magnesium (Mg)       | mg/L  | 54         | 8417829  | 53         | 0.20    | 8417829  |
| Dissolved Manganese (Mn)       | mg/L  | 0.17       | 8417829  | 0.75       | 0.0040  | 8417829  |
| Dissolved Molybdenum (Mo)      | mg/L  | 0.0010     | 8417228  | 0.0053     | 0.00020 | 8417228  |
| Dissolved Nickel (Ni)          | mg/L  | 0.0016     | 8417228  | 0.0053     | 0.00050 | 8417228  |
| Dissolved Phosphorus (P)       | mg/L  | <0.10      | 8417829  | <0.10      | 0.10    | 8417829  |
| Dissolved Potassium (K)        | mg/L  | 7.6        | 8417829  | 6.5        | 0.30    | 8417829  |
| Dissolved Selenium (Se)        | mg/L  | 0.0019     | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Silicon (Si)         | mg/L  | 4.7        | 8417829  | 6.5        | 0.10    | 8417829  |
| Dissolved Silver (Ag)          | mg/L  | <0.00010   | 8417228  | <0.00010   | 0.00010 | 8417228  |
| Dissolved Sodium (Na)          | mg/L  | 21         | 8417829  | 59         | 0.50    | 8417829  |
| Dissolved Strontium (Sr)       | mg/L  | 1.1        | 8417829  | 1.1        | 0.020   | 8417829  |
| Dissolved Sulphur (S)          | mg/L  | 19         | 8417829  | 25         | 0.20    | 8417829  |
| Dissolved Thallium (Tl)        | mg/L  | <0.00020   | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Tin (Sn)             | mg/L  | <0.0010    | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Titanium (Ti)        | mg/L  | <0.0010    | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Uranium (U)          | mg/L  | 0.0067     | 8417228  | 0.0052     | 0.00010 | 8417228  |
| Dissolved Vanadium (V)         | mg/L  | <0.0010    | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Zinc (Zn)            | mg/L  | <0.0030    | 8417228  | <0.0030    | 0.0030  | 8417228  |
| RDL = Reportable Detection Lim | it    |            |          |            |         |          |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                            |             | PQ3528              |              |           |
|--------------------------------------|-------------|---------------------|--------------|-----------|
| Sampling Date                        |             | 2016/09/29<br>16:56 |              |           |
| COC Number                           |             | M031857             |              |           |
|                                      | UNITS       | MW16-23-36          | RDL          | QC Batch  |
| Calculated Parameters                |             |                     | ļ            |           |
| Anion Sum                            | mog/l       | 14                  | N/A          | 8416540   |
| Cation Sum                           | meq/L       | 14                  | N/A          | 8416540   |
| Hardness (CaCO3)                     | meq/L       | 14                  | 0.50         | 8416386   |
| Ion Balance                          | mg/L<br>N/A |                     | 0.010        |           |
| Dissolved Nitrate (NO3)              |             | 0.99                |              | 8416402   |
| Nitrate plus Nitrite (N)             | mg/L        | <0.044              | 0.044        | 8416387   |
| Dissolved Nitrite (NO2)              | mg/L        | < 0.020             | 0.020        | 8416388   |
| Calculated Total Dissolved Solids    | mg/L        | < 0.033             | 0.033        | 8416387   |
| Misc. Inorganics                     | mg/L        | 850                 | 10           | 8416403   |
| Conductivity                         | C /ana      | 1200                | 1.0          | 0417175   |
| pH                                   | uS/cm       | 1300                | 1.0          | 8417175   |
| p⊓<br>Anions                         | рН          | 8.22                | N/A          | 8417173   |
|                                      |             | 0.50                | 0.50         | 0447460   |
| Alkalinity (PP as CaCO3)             | mg/L        | <0.50               | 0.50         | 8417160   |
| Alkalinity (Total as CaCO3)          | mg/L        | 290                 | 0.50         | 8417160   |
| Bicarbonate (HCO3)                   | mg/L        | 350                 | 0.50         | 8417160   |
| Carbonate (CO3)                      | mg/L        | <0.50               | 0.50         | 8417160   |
| Hydroxide (OH)                       | mg/L        | <0.50               | 0.50         | 8417160   |
| Dissolved Sulphate (SO4)             | mg/L        | 380 (1)             | 2.0          | 8419569   |
| Dissolved Chloride (Cl)              | mg/L        | 3.2                 | 1.0          | 8419564   |
| Nutrients                            |             |                     |              |           |
| Dissolved Nitrite (N)                | mg/L        | <0.010              | 0.010        | 8417633   |
| Dissolved Nitrate (N)                | mg/L        | <0.010              | 0.010        | 8417633   |
| Lab Filtered Elements                | 1           | r                   | 1            | 1         |
| Dissolved Aluminum (Al)              | mg/L        | 0.0074              | 0.0030       | 8419977   |
| Dissolved Antimony (Sb)              | mg/L        | <0.00060            | 0.00060      | 8419977   |
| Dissolved Arsenic (As)               | mg/L        | 0.00035             | 0.00020      | 8419977   |
| Dissolved Barium (Ba)                | mg/L        | 0.030               | 0.010        | 8417669   |
| Dissolved Beryllium (Be)             | mg/L        | <0.0010             | 0.0010       | 8419977   |
| Dissolved Boron (B)                  | mg/L        | 0.086               | 0.020        | 8417669   |
| RDL = Reportable Detection Limit     |             |                     |              |           |
| N/A = Not Applicable                 |             |                     |              |           |
| (1) Detection limits raised due to o | dilution t  | o bring analyte w   | vithin the c | alibrated |
|                                      |             |                     |              |           |

range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                       |       | PQ3528     |          |          |
|---------------------------------|-------|------------|----------|----------|
| Sampling Data                   |       | 2016/09/29 |          |          |
| Sampling Date                   |       | 16:56      |          |          |
| COC Number                      |       | M031857    |          |          |
|                                 | UNITS | MW16-23-36 | RDL      | QC Batch |
| Dissolved Cadmium (Cd)          | mg/L  | <0.000020  | 0.000020 | 8419977  |
| Dissolved Calcium (Ca)          | mg/L  | 50         | 0.30     | 8417669  |
| Dissolved Chromium (Cr)         | mg/L  | <0.0010    | 0.0010   | 8419977  |
| Dissolved Cobalt (Co)           | mg/L  | <0.00030   | 0.00030  | 8419977  |
| Dissolved Copper (Cu)           | mg/L  | <0.00020   | 0.00020  | 8419977  |
| Dissolved Iron (Fe)             | mg/L  | <0.060     | 0.060    | 8417669  |
| Dissolved Lead (Pb)             | mg/L  | <0.00020   | 0.00020  | 8419977  |
| Dissolved Lithium (Li)          | mg/L  | 0.066      | 0.020    | 8417669  |
| Dissolved Magnesium (Mg)        | mg/L  | 14         | 0.20     | 8417669  |
| Dissolved Manganese (Mn)        | mg/L  | 0.083      | 0.0040   | 8417669  |
| Dissolved Molybdenum (Mo)       | mg/L  | 0.0023     | 0.00020  | 8419977  |
| Dissolved Nickel (Ni)           | mg/L  | <0.00050   | 0.00050  | 8419977  |
| Dissolved Phosphorus (P)        | mg/L  | <0.10      | 0.10     | 8417669  |
| Dissolved Potassium (K)         | mg/L  | 4.2        | 0.30     | 8417669  |
| Dissolved Selenium (Se)         | mg/L  | <0.00020   | 0.00020  | 8419977  |
| Dissolved Silicon (Si)          | mg/L  | 3.8        | 0.10     | 8417669  |
| Dissolved Silver (Ag)           | mg/L  | <0.00010   | 0.00010  | 8419977  |
| Dissolved Sodium (Na)           | mg/L  | 230        | 0.50     | 8417669  |
| Dissolved Strontium (Sr)        | mg/L  | 0.77       | 0.020    | 8417669  |
| Dissolved Sulphur (S)           | mg/L  | 120        | 0.20     | 8417669  |
| Dissolved Thallium (Tl)         | mg/L  | <0.00020   | 0.00020  | 8419977  |
| Dissolved Tin (Sn)              | mg/L  | <0.0010    | 0.0010   | 8419977  |
| Dissolved Titanium (Ti)         | mg/L  | <0.0010    | 0.0010   | 8419977  |
| Dissolved Uranium (U)           | mg/L  | 0.00010    | 0.00010  | 8419977  |
| Dissolved Vanadium (V)          | mg/L  | <0.0010    | 0.0010   | 8419977  |
| Dissolved Zinc (Zn)             | mg/L  | <0.0030    | 0.0030   | 8419977  |
| RDL = Reportable Detection Limi | t     |            | •        |          |



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PQ3527              | PQ3527                |        |          | PQ3528              | PQ3528                |        |          |
|-------------------------------|-----------|---------------------|-----------------------|--------|----------|---------------------|-----------------------|--------|----------|
| Sampling Date                 |           | 2016/09/29<br>09:52 | 2016/09/29<br>09:52   |        |          | 2016/09/29<br>16:56 | 2016/09/29<br>16:56   |        |          |
| COC Number                    |           | M031857             | M031857               |        |          | M031857             | M031857               |        |          |
|                               | UNITS     | MW16-21-11          | MW16-21-11<br>Lab-Dup | RDL    | QC Batch | MW16-23-36          | MW16-23-36<br>Lab-Dup | RDL    | QC Batch |
| Lab Filtered Inorganics       |           |                     |                       |        |          |                     |                       |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 4.8                 | N/A                   | 0.50   | 8418324  | 2.9                 | 3.1                   | 0.50   | 8418324  |
| Microbiological Param.        | •         |                     |                       |        |          |                     |                       |        |          |
| E.Coli DST                    | mpn/100mL | <10 (1)             | N/A                   | 10     | 8416950  | 11                  | N/A                   | 1.0    | 8416950  |
| Fecal Coliforms               | MPN/100mL | <10 (1)             | N/A                   | 10     | 8416953  | 5.1                 | N/A                   | 1.0    | 8416953  |
| Heterotrophic Plate Count     | CFU/mL    | 3200 (2)            | 3100                  | 10     | 8416947  | 400                 | 430                   | 1.0    | 8416947  |
| Total Coliforms DST           | mpn/100mL | 20 (1)              | N/A                   | 10     | 8416950  | 520                 | N/A                   | 1.0    | 8416950  |
| Nutrients                     |           |                     |                       |        |          |                     |                       |        |          |
| Total Kjeldahl Nitrogen       | mg/L      | 3.3 (1)             | N/A                   | 0.50   | 8417434  | 1.3                 | N/A                   | 0.050  | 8419036  |
| Orthophosphate (P)            | mg/L      | 0.0041 (3)          | N/A                   | 0.0030 | 8417394  | 0.0040 (3)          | N/A                   | 0.0030 | 8417394  |
| Lab Filtered Nutrients        |           |                     |                       |        |          |                     |                       |        |          |
| Dissolved Ammonia (N)         | mg/L      | <0.050              | N/A                   | 0.050  | 8417688  | 0.83                | 0.82                  | 0.050  | 8417688  |
| Dissolved Phosphorus (P)      | mg/L      | 0.013               | N/A                   | 0.0030 | 8418959  | 0.013               | N/A                   | 0.0030 | 8418959  |
| RDL = Reportable Detection Li | mit       |                     |                       |        |          |                     |                       |        |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(3) Orthophosphate greater than total phosphate. Results within acceptable limits of precision.



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                                                                                        |                  | PQ3529           | PQ3529                |           |          |  |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------|-----------|----------|--|--|--|--|
| Sampling Date                                                                                    |                  | 2016/09/29       | 2016/09/29            |           |          |  |  |  |  |
| Samping Date                                                                                     |                  | 17:32            | 17:32                 |           |          |  |  |  |  |
| COC Number                                                                                       |                  | M031857          | M031857               |           |          |  |  |  |  |
|                                                                                                  | UNITS            | MW16-23-14       | MW16-23-14<br>Lab-Dup | RDL       | QC Batch |  |  |  |  |
| Misc. Inorganics                                                                                 |                  |                  |                       |           |          |  |  |  |  |
| Dissolved Organic Carbon (C)                                                                     | mg/L             | 4.1              | N/A                   | 0.50      | 8418321  |  |  |  |  |
| Microbiological Param.                                                                           |                  |                  |                       | •         |          |  |  |  |  |
| E.Coli DST                                                                                       | mpn/100mL        | <10 (1)          | N/A                   | 10        | 8416950  |  |  |  |  |
| Fecal Coliforms                                                                                  | MPN/100mL        | <10 (1)          | N/A                   | 10        | 8416953  |  |  |  |  |
| Heterotrophic Plate Count                                                                        | CFU/mL           | 20000 (2)        | 20000                 | 10        | 8416947  |  |  |  |  |
| Total Coliforms DST                                                                              | mpn/100mL        | >2400 (1)        | N/A                   | 10        | 8416950  |  |  |  |  |
| Nutrients                                                                                        |                  |                  |                       |           |          |  |  |  |  |
| Dissolved Ammonia (N)                                                                            | mg/L             | 0.14             | N/A                   | 0.050     | 8417670  |  |  |  |  |
| Total Kjeldahl Nitrogen                                                                          | mg/L             | 2.8 (3)          | N/A                   | 0.25      | 8419031  |  |  |  |  |
| Orthophosphate (P)                                                                               | mg/L             | <0.0030          | N/A                   | 0.0030    | 8417394  |  |  |  |  |
| Dissolved Phosphorus (P)                                                                         | mg/L             | <0.0030          | N/A                   | 0.0030    | 8416975  |  |  |  |  |
| RDL = Reportable Detection Lir                                                                   | nit              |                  | •                     |           |          |  |  |  |  |
| Lab-Dup = Laboratory Initiated                                                                   | Duplicate        |                  |                       |           |          |  |  |  |  |
| N/A = Not Applicable                                                                             |                  |                  |                       |           |          |  |  |  |  |
| (1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly |                  |                  |                       |           |          |  |  |  |  |
| (2) Due to the sample matrix, s<br>accordingly.                                                  | ample require    | d dilution. Dete | ection limit was      | adjuste   | d        |  |  |  |  |
| (3) Detection limits raised due                                                                  | to dilution to k | oring analyte wi | ithin the calibra     | ated rang | ge.      |  |  |  |  |



# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                        |        | PQ3527              |          | PQ3528              |          | PQ3529              |        |          |  |  |
|----------------------------------|--------|---------------------|----------|---------------------|----------|---------------------|--------|----------|--|--|
| Sampling Date                    |        | 2016/09/29<br>09:52 |          | 2016/09/29<br>16:56 |          | 2016/09/29<br>17:32 |        |          |  |  |
| COC Number                       |        | M031857             |          | M031857             |          | M031857             |        |          |  |  |
|                                  | UNITS  | MW16-21-11          | RDL      | MW16-23-36          | RDL      | MW16-23-14          | RDL    | QC Batch |  |  |
| Low Level Elements               |        |                     |          |                     |          |                     |        |          |  |  |
| Dissolved Mercury (Hg)           | ug/L   | <0.0020             | 0.0020   | N/A                 | 0.0020   | <0.0020             | 0.0020 | 8419725  |  |  |
| Total Mercury (Hg)               | ug/L   | <20 (1)             | 20       | <0.20 (1)           | 0.20     | <20 (1)             | 20     | 8419734  |  |  |
| Lab Filtered Elements-Low        |        |                     |          |                     |          |                     |        |          |  |  |
| Dissolved Mercury (Hg)           | ug/L   | N/A                 | N/A      | <0.0020             | 0.0020   | N/A                 | N/A    | 8417235  |  |  |
| RDL = Reportable Detection Limit |        |                     |          |                     |          |                     |        |          |  |  |
| N/A = Not Applicable             |        |                     |          |                     |          |                     |        |          |  |  |
| (1) Due to the sample matrix,    | sample | required dilution   | on. Dete | ction limit was     | adjusted | accordingly         |        |          |  |  |



## **GENERAL COMMENTS**

| Each temperature is the | average of up to three | ee cooler temperature | es taken at receipt |
|-------------------------|------------------------|-----------------------|---------------------|
|                         |                        |                       |                     |

Package 1 12.0°C

Results relate only to the items tested.



### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                 |                             | Date       |          |          |        |           |
|---------|------|-----------------|-----------------------------|------------|----------|----------|--------|-----------|
| Batch   | Init | QC Type         | Parameter                   | Analyzed   | Value    | Recovery | UNITS  | QC Limits |
| 8416876 | MHF  | Matrix Spike    | O-TERPHENYL (sur.)          | 2016/10/02 |          | 95       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/10/02 |          | 94       | %      | 50 - 130  |
| 8416876 | MHF  | Spiked Blank    | O-TERPHENYL (sur.)          | 2016/10/02 |          | 95       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/10/02 |          | 94       | %      | 70 - 130  |
| 8416876 | MHF  | Method Blank    | O-TERPHENYL (sur.)          | 2016/10/02 |          | 93       | %      | 50 - 130  |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/10/02 | <0.10    |          | mg/L   |           |
| 8416876 | MHF  | RPD [PQ3529-06] | F2 (C10-C16 Hydrocarbons)   | 2016/10/02 | NC       |          | %      | 40        |
| 8416947 | GK1  | Method Blank    | Heterotrophic Plate Count   | 2016/10/02 | <1.0     |          | CFU/ml | -         |
| 8416947 | GK1  | RPD [PQ3527-08] | Heterotrophic Plate Count   | 2016/10/02 | 3.5      |          | %      | N/A       |
| 8416947 | GK1  | RPD [PQ3528-08] | Heterotrophic Plate Count   | 2016/10/02 | 6.8      |          | %      | N/A       |
| 8416947 | GK1  | RPD [PQ3529-08] | Heterotrophic Plate Count   | 2016/10/02 | 0.60     |          | %      | N/A       |
| 8416947 | GK1  | RPD             | Heterotrophic Plate Count   | 2016/10/02 | 2.2      |          | %      | N/A       |
|         |      |                 | Heterotrophic Plate Count   | 2016/10/02 | 5.4      |          | %      | N/A       |
|         |      |                 | Heterotrophic Plate Count   | 2016/10/02 | 4.3      |          | %      | N/A       |
|         |      |                 | Heterotrophic Plate Count   | 2016/10/02 | 1.5      |          | %      | N/A       |
|         |      |                 | Heterotrophic Plate Count   | 2016/10/02 | NC       |          | %      | N/A       |
| 8416950 | GK1  | Method Blank    | E.Coli DST                  | 2016/10/01 | <1.0     |          | mpn/10 | 0         |
|         |      |                 | Total Coliforms DST         | 2016/10/01 | <1.0     |          | mpn/10 | 0         |
| 8416950 | GK1  | RPD             | Total Coliforms DST         | 2016/10/01 | NC       |          | %      | N/A       |
| 8416953 | GK1  | Method Blank    | Fecal Coliforms             | 2016/10/01 | <1.0     |          | MPN/10 | )         |
| 8416953 | GK1  | RPD             | Fecal Coliforms             | 2016/10/01 | NC       |          | %      | N/A       |
| 8416975 | RM9  | Matrix Spike    | Dissolved Phosphorus (P)    | 2016/10/01 |          | 98       | %      | 80 - 120  |
| 8416975 | RM9  | QC Standard     | Dissolved Phosphorus (P)    | 2016/10/01 |          | 0.0      | %      | N/A       |
| 8416975 | RM9  | Spiked Blank    | Dissolved Phosphorus (P)    | 2016/10/01 |          | 102      | %      | 80 - 120  |
| 8416975 | RM9  | Method Blank    | Dissolved Phosphorus (P)    | 2016/10/01 | < 0.0030 |          | mg/L   |           |
| 8416975 | RM9  | RPD             | Dissolved Phosphorus (P)    | 2016/10/01 | 3.0      |          | %      | 20        |
| 8417160 | SSO  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/09/30 |          | 97       | %      | 80 - 120  |
| 8417160 | SSO  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Carbonate (CO3)             | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Hydroxide (OH)              | 2016/09/30 | <0.50    |          | mg/L   |           |
| 8417160 | SSO  | RPD             | Alkalinity (PP as CaCO3)    | 2016/09/30 | NC       |          | %      | 20        |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/30 | 0.14     |          | %      | 20        |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/30 | 0.14     |          | %      | 20        |
|         |      |                 | Carbonate (CO3)             | 2016/09/30 | NC       |          | %      | 20        |
|         |      |                 | Hydroxide (OH)              | 2016/09/30 | NC       |          | %      | 20        |
| 8417173 | SSO  | Spiked Blank    | рН                          | 2016/09/30 |          | 101      | %      | 97 - 103  |
| 8417173 | SSO  | RPD             | рН                          | 2016/09/30 | 0.19     |          | %      | N/A       |
| 8417175 | SSO  | Spiked Blank    | Conductivity                | 2016/09/30 |          | 100      | %      | 90 - 110  |
| 8417175 | SSO  | Method Blank    | Conductivity                | 2016/09/30 | <1.0     |          | uS/cm  |           |
| 8417175 | SSO  | RPD             | Conductivity                | 2016/09/30 | 0.12     |          | %      | 20        |
| 8417181 | SSO  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/09/30 |          | 97       | %      | 80 - 120  |
| 8417181 | SSO  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Carbonate (CO3)             | 2016/09/30 | <0.50    |          | mg/L   |           |
|         |      |                 | Hydroxide (OH)              | 2016/09/30 | <0.50    |          | mg/L   |           |
| 8417181 | SSO  | RPD             | Alkalinity (PP as CaCO3)    | 2016/09/30 | NC       |          | %      | 20        |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/09/30 | 0.47     |          | %      | 20        |
|         |      |                 | Bicarbonate (HCO3)          | 2016/09/30 | 0.47     |          | %      | 20        |
|         |      |                 | Carbonate (CO3)             | 2016/09/30 | NC       |          | %      | 20        |



| QA/QC   |       |              |                           | Date       |            |          |       |           |
|---------|-------|--------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init  | QC Type      | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
| Butterr | iiiit | de type      | Hydroxide (OH)            | 2016/09/30 | NC         | necovery | %     | 20        |
| 8417188 | SSO   | Spiked Blank | pH                        | 2016/09/30 | NC         | 101      | %     | 97 - 103  |
| 8417188 | SSO   | RPD          | рН                        | 2016/09/30 | 0.23       | 101      | %     | N/A       |
| 8417189 | SSO   | Spiked Blank | Conductivity              | 2016/09/30 | 0.25       | 99       | %     | 90 - 110  |
| 8417189 | SSO   | Method Blank | Conductivity              | 2016/09/30 | <1.0       | 55       | uS/cm | 50 110    |
| 8417189 | SSO   | RPD          | Conductivity              | 2016/09/30 | 0.13       |          | %     | 20        |
| 8417228 | PC5   | Matrix Spike | Dissolved Aluminum (Al)   | 2016/09/30 | 0.15       | 104      | %     | 80 - 120  |
| 0417220 | 105   | Matrix Spike | Dissolved Antimony (Sb)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |       |              | Dissolved Arsenic (As)    | 2016/09/30 |            | 99       | %     | 80 - 120  |
|         |       |              | Dissolved Beryllium (Be)  | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |       |              | Dissolved Cadmium (Cd)    | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |       |              | Dissolved Chromium (Cr)   | 2016/09/30 |            | 92       | %     | 80 - 120  |
|         |       |              | Dissolved Cobalt (Co)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |       |              | Dissolved Copper (Cu)     | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |       |              | Dissolved Lead (Pb)       | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |       |              | Dissolved Molybdenum (Mo) | 2016/09/30 |            | 99       | %     | 80 - 120  |
|         |       |              | Dissolved Nickel (Ni)     | 2016/09/30 |            | 89       | %     | 80 - 120  |
|         |       |              | Dissolved Selenium (Se)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |       |              | Dissolved Silver (Ag)     | 2016/09/30 |            | 92       | %     | 80 - 120  |
|         |       |              | Dissolved Thallium (TI)   | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |       |              | Dissolved Tin (Sn)        | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |       |              | Dissolved Titanium (Ti)   | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |       |              | Dissolved Uranium (U)     | 2016/09/30 |            | 83       | %     | 80 - 120  |
|         |       |              | Dissolved Vanadium (V)    | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |       |              | Dissolved Zinc (Zn)       | 2016/09/30 |            | 91       | %     | 80 - 120  |
| 8417228 | PC5   | Spiked Blank | Dissolved Aluminum (Al)   | 2016/09/30 |            | 105      | %     | 80 - 120  |
|         |       |              | Dissolved Antimony (Sb)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |       |              | Dissolved Arsenic (As)    | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |       |              | Dissolved Beryllium (Be)  | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |       |              | Dissolved Cadmium (Cd)    | 2016/09/30 |            | 93       | %     | 80 - 120  |
|         |       |              | Dissolved Chromium (Cr)   | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |       |              | Dissolved Cobalt (Co)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |       |              | Dissolved Copper (Cu)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |       |              | Dissolved Lead (Pb)       | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |       |              | Dissolved Molybdenum (Mo) | 2016/09/30 |            | 93       | %     | 80 - 120  |
|         |       |              | Dissolved Nickel (Ni)     | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |       |              | Dissolved Selenium (Se)   | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |       |              | Dissolved Silver (Ag)     | 2016/09/30 |            | 91       | %     | 80 - 120  |
|         |       |              | Dissolved Thallium (TI)   | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |       |              | Dissolved Tin (Sn)        | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |       |              | Dissolved Titanium (Ti)   | 2016/09/30 |            | 100      | %     | 80 - 120  |
|         |       |              | Dissolved Uranium (U)     | 2016/09/30 |            | 83       | %     | 80 - 120  |
|         |       |              | Dissolved Vanadium (V)    | 2016/09/30 |            | 93       | %     | 80 - 120  |
|         |       |              | Dissolved Zinc (Zn)       | 2016/09/30 |            | 89       | %     | 80 - 120  |
| 8417228 | PC5   | Method Blank | Dissolved Aluminum (Al)   | 2016/09/30 | <0.0030    |          | mg/L  |           |
|         |       |              | Dissolved Antimony (Sb)   | 2016/09/30 | <0.00060   |          | mg/L  |           |
|         |       |              | Dissolved Arsenic (As)    | 2016/09/30 | < 0.00020  |          | mg/L  |           |
|         |       |              | Dissolved Beryllium (Be)  | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |       |              | Dissolved Cadmium (Cd)    | 2016/09/30 | < 0.000020 |          | mg/L  |           |
|         |       |              | Dissolved Chromium (Cr)   | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |       |              | Dissolved Cobalt (Co)     | 2016/09/30 | <0.00030   |          | mg/L  |           |
|         |       |              | Dissolved Copper (Cu)     | 2016/09/30 | <0.00020   |          | mg/L  |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| nit | QC Туре                                                                    | Parameter<br>Dissolved Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date<br>Analyzed<br>2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recovery                                                                        |                                                                                  | QC Limits                                                                        |
|-----|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|     |                                                                            | Dissolved Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2016/00/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Molybdenum (Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Nickel (Ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Selenium (Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Silver (Ag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Thallium (TI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            | Dissolved Tin (Sn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | -                                                                                |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | -                                                                                |                                                                                  |
| PC5 | RPD                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
| 00  |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                  | 20                                                                               |
| RK3 |                                                                            | Dissolved Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | %                                                                                | 80 - 120                                                                         |
| RK3 | Spiked Blank                                                               | Dissolved Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114                                                                             | %                                                                                | 80 - 120                                                                         |
| RK3 | Method Blank                                                               | Dissolved Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 | ug/L                                                                             |                                                                                  |
| RK3 | RPD                                                                        | Dissolved Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | %                                                                                | 20                                                                               |
| VB5 | Matrix Spike                                                               | Orthophosphate (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96                                                                              | %                                                                                | 80 - 120                                                                         |
| MB5 | Spiked Blank                                                               | Orthophosphate (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96                                                                              | %                                                                                | 80 - 120                                                                         |
| MB5 | Method Blank                                                               | Orthophosphate (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | mg/L                                                                             |                                                                                  |
| MB5 | RPD                                                                        | Orthophosphate (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016/09/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | %                                                                                | 20                                                                               |
| RM9 | Matrix Spike                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016/10/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC                                                                              | %                                                                                | 80 - 120                                                                         |
| RM9 |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016/10/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                                             | %                                                                                | 80 - 120                                                                         |
| RM9 |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108                                                                             | %                                                                                | 80 - 120                                                                         |
| RM9 |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | mg/L                                                                             |                                                                                  |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
| JLD |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                                                             |                                                                                  | 80 - 120                                                                         |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 80 - 120                                                                         |
| JLD | Spiked Blank                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 80 - 120                                                                         |
|     | -pines biolin                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 80 - 120                                                                         |
| חוו | Method Blank                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102                                                                             |                                                                                  | 00 120                                                                           |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  |                                                                                  |
| מוו | RPD                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
| JLU | Nr D                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                  | 20                                                                               |
|     | Matrix Spika                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                             |                                                                                  | 20<br>80 - 120                                                                   |
|     | 8K3<br>8K3<br>8K3<br>8B5<br>185<br>185<br>M9<br>M9<br>M9<br>M9<br>M9<br>LD | <ul> <li>K3 Matrix Spike</li> <li>K3 Spiked Blank</li> <li>K3 Method Blank</li> <li>K3 Method Blank</li> <li>K3 RPD</li> <li>Matrix Spike</li> <li>MB5 Matrix Spike</li> <li>MB5 Method Blank</li> <li>MB5 Method Blank</li> <li>MB5 RPD</li> <li>M9 Matrix Spike</li> <li>M9 QC Standard</li> <li>M9 Spiked Blank</li> <li>M9 Method Blank</li> <li>M9 Method Blank</li> <li>M9 RPD</li> <li>LD Matrix Spike</li> <li>LD Spiked Blank</li> <li>LD Spiked Blank</li> <li>LD Method Blank</li> <li>LD Method Blank</li> <li>LD Method Blank</li> </ul> | Dissolved Titanium (Ti)Dissolved Uranium (U)Dissolved Vanadium (V)Dissolved Zinc (Zn)PC5RPDDissolved Aluminum (Al)Dissolved Attimony (Sb)Dissolved Arsenic (As)Dissolved Commum (Cd)Dissolved Cobalt (Co)Dissolved Vanadium (Mo)Dissolved Selenium (Se)Dissolved Titanium (Ti)Dissolved Vanadium (V)Dissolved Vanadium (V)Dissolved Vanadium (V)Dissolved Vanadium (V)Dissolved Mercury (Hg)KK3Matrix SpikeOrthophosphate (P)KK3Matrix SpikeOrthophosphate (P)Matrix SpikeTotal Kjeldahl NitrogenM9QC StandardTotal Kjeldahl NitrogenM9Method BlankOrtal Kjeldahl NitrogenM9Method BlankTotal Kjeldahl NitrogenM9Method BlankTotal Kjeldahl NitrogenM9Method Blank | Dissolved Titanium (Ti)2016/09/30Dissolved Vanadium (U)2016/09/30Dissolved Vanadium (V)2016/09/30Dissolved Zinc (Zn)2016/09/30Dissolved Artsmich (A)2016/09/30Dissolved Artsmich (Sb)2016/09/30Dissolved Artsmich (Sb)2016/09/30Dissolved Artsmich (Sb)2016/09/30Dissolved Artsmich (Sb)2016/09/30Dissolved Charmium (Cd)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Cobalt (Co)2016/09/30Dissolved Molybdenum (Mo)2016/09/30Dissolved Silver (Ag)2016/09/30Dissolved Silver (Ag)2016/09/30Dissolved Titanium (Ti)2016/09/30Dissolved Tinanium (Ti)2016/09/30Dissolved Tinanium (U)2016/09/30Dissolved Vanatium (U)2016/09/30Dissolved Mercury (Hg)2016/09/30Dissolved Mercury (Hg)2016/09/30RX3Matrix SpikeDissolved Mercury (Hg)2016/09/30RK3Method BlankDissolved Mercury (Hg)2016/09/30R55Method BlankOrthophosphate (P)2016/09/30R55Spiked BlankOrthophosphate (P)2016/09/30R55Method BlankTotal Kjeldahl Nitrogen2016/09/30R55Spiked BlankOrtal Kjeldahl Nitrogen2016/09/30R56< | Dissolved Titanium (Ti)2016/09/30<0.0010Dissolved Vanadium (V)2016/09/30<0.0010 | C5         RPD         Dissolved Tranium (Ti)         2016/09/30         <0.0010 | C5         RPD         Dissolved Tranium (Ti)         2016/09/30         <0.0001 |



| QA/QC   |      |              |                          | Date       |         |          |       |           |
|---------|------|--------------|--------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                | Analyzed   | Value   | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Nitrate (N)    | 2016/10/01 |         | 103      | %     | 80 - 120  |
| 8417633 | JLD  | Spiked Blank | Dissolved Nitrite (N)    | 2016/10/01 |         | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Nitrate (N)    | 2016/10/01 |         | 102      | %     | 80 - 120  |
| 8417633 | JLD  | Method Blank | Dissolved Nitrite (N)    | 2016/10/01 | <0.010  |          | mg/L  |           |
|         |      |              | Dissolved Nitrate (N)    | 2016/10/01 | <0.010  |          | mg/L  |           |
| 8417633 | JLD  | RPD          | Dissolved Nitrite (N)    | 2016/10/01 | NC      |          | %     | 20        |
|         |      |              | Dissolved Nitrate (N)    | 2016/10/01 | 0.73    |          | %     | 20        |
| 8417669 | JHC  | Matrix Spike | Dissolved Barium (Ba)    | 2016/09/30 |         | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/09/30 |         | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/09/30 |         | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/09/30 |         | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/09/30 |         | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/09/30 |         | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/09/30 |         | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/09/30 |         | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/09/30 |         | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/09/30 |         | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/09/30 |         | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/09/30 |         | 97       | %     | 80 - 120  |
| 8417669 | JHC  | Spiked Blank | Dissolved Barium (Ba)    | 2016/09/30 |         | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/09/30 |         | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/09/30 |         | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/09/30 |         | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/09/30 |         | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/09/30 |         | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/09/30 |         | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/09/30 |         | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/09/30 |         | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/09/30 |         | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/09/30 |         | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/09/30 |         | 99       | %     | 80 - 120  |
| 8417669 | JHC  | Method Blank | Dissolved Barium (Ba)    | 2016/09/30 | <0.010  |          | mg/L  |           |
|         |      |              | Dissolved Boron (B)      | 2016/09/30 | <0.020  |          | mg/L  |           |
|         |      |              | Dissolved Calcium (Ca)   | 2016/09/30 | <0.30   |          | mg/L  |           |
|         |      |              | Dissolved Iron (Fe)      | 2016/09/30 | <0.060  |          | mg/L  |           |
|         |      |              | Dissolved Lithium (Li)   | 2016/09/30 | <0.020  |          | mg/L  |           |
|         |      |              | Dissolved Magnesium (Mg) | 2016/09/30 | <0.20   |          | mg/L  |           |
|         |      |              | Dissolved Manganese (Mn) | 2016/09/30 | <0.0040 |          | mg/L  |           |
|         |      |              | Dissolved Phosphorus (P) | 2016/09/30 | <0.10   |          | mg/L  |           |
|         |      |              | Dissolved Potassium (K)  | 2016/09/30 | <0.30   |          | mg/L  |           |
|         |      |              | Dissolved Silicon (Si)   | 2016/09/30 | <0.10   |          | mg/L  |           |
|         |      |              | Dissolved Sodium (Na)    | 2016/09/30 | <0.50   |          | mg/L  |           |
|         |      |              | Dissolved Strontium (Sr) | 2016/09/30 | < 0.020 |          | mg/L  |           |
|         |      |              | Dissolved Sulphur (S)    | 2016/09/30 | <0.20   |          | mg/L  | • •       |
| 8417669 | JHC  | RPD          | Dissolved Calcium (Ca)   | 2016/09/30 | 1.0     |          | %     | 20        |
|         |      |              | Dissolved Iron (Fe)      | 2016/09/30 | NC      |          | %     | 20        |
|         |      |              | Dissolved Magnesium (Mg) | 2016/09/30 | 0.94    |          | %     | 20        |
|         |      |              | Dissolved Manganese (Mn) | 2016/09/30 | NC      |          | %     | 20        |
|         |      |              | Dissolved Potassium (K)  | 2016/09/30 | NC      |          | %     | 20        |
| 0447670 |      | Matula C. Il | Dissolved Sodium (Na)    | 2016/09/30 | 0.12    |          | %     | 20        |
| 8417670 |      | •            | Dissolved Ammonia (N)    | 2016/09/30 |         | NC       | %     | 80 - 120  |
| 8417670 | MB5  | Spiked Blank | Dissolved Ammonia (N)    | 2016/09/30 |         | 98       | %     | 80 - 120  |





## QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |                          |                                                   | Date                     |          |            |        |                      |
|---------|------|--------------------------|---------------------------------------------------|--------------------------|----------|------------|--------|----------------------|
| Batch   | Init | QC Type                  | Parameter                                         | Analyzed                 | Value    | Recovery   | UNITS  | QC Limits            |
| 8417670 | MB5  | Method Blank             | Dissolved Ammonia (N)                             | 2016/09/30               | <0.050   |            | mg/L   |                      |
| 8417670 | MB5  | RPD                      | Dissolved Ammonia (N)                             | 2016/09/30               | 3.2      |            | %      | 20                   |
| 8417688 | MB5  | Matrix Spike [PQ3528-01] | Dissolved Ammonia (N)                             | 2016/09/30               |          | NC         | %      | 80 - 120             |
| 8417688 | MB5  | Spiked Blank             | Dissolved Ammonia (N)                             | 2016/09/30               |          | 97         | %      | 80 - 120             |
| 8417688 | MB5  | Method Blank             | Dissolved Ammonia (N)                             | 2016/09/30               | <0.050   |            | mg/L   |                      |
| 8417688 | MB5  | RPD [PQ3528-01]          | Dissolved Ammonia (N)                             | 2016/09/30               | 1.3      |            | %      | 20                   |
| 8417829 | JHC  | Matrix Spike             | Dissolved Barium (Ba)                             | 2016/10/01               |          | 112        | %      | 80 - 120             |
|         |      |                          | Dissolved Boron (B)                               | 2016/10/01               |          | 104        | %      | 80 - 120             |
|         |      |                          | Dissolved Calcium (Ca)                            | 2016/10/01               |          | NC         | %      | 80 - 120             |
|         |      |                          | Dissolved Iron (Fe)                               | 2016/10/01               |          | 111        | %      | 80 - 120             |
|         |      |                          | Dissolved Lithium (Li)                            | 2016/10/01               |          | 114        | %      | 80 - 120             |
|         |      |                          | Dissolved Magnesium (Mg)                          | 2016/10/01               |          | 106        | %      | 80 - 120             |
|         |      |                          | Dissolved Manganese (Mn)                          | 2016/10/01               |          | 105        | %      | 80 - 120             |
|         |      |                          | Dissolved Phosphorus (P)                          | 2016/10/01               |          | 118        | %      | 80 - 120             |
|         |      |                          | Dissolved Potassium (K)                           | 2016/10/01               |          | 115        | %      | 80 - 120             |
|         |      |                          | Dissolved Silicon (Si)                            | 2016/10/01               |          | NC         | %      | 80 - 120             |
|         |      |                          | Dissolved Sodium (Na)                             | 2016/10/01               |          | NC         | %      | 80 - 120             |
|         |      |                          | Dissolved Strontium (Sr)                          | 2016/10/01               |          | 111        | %      | 80 - 120             |
| 8417829 | JHC  | Spiked Blank             | Dissolved Barium (Ba)                             | 2016/10/01               |          | 105        | %      | 80 - 120             |
|         |      |                          | Dissolved Boron (B)                               | 2016/10/01               |          | 97         | %      | 80 - 120             |
|         |      |                          | Dissolved Calcium (Ca)                            | 2016/10/01               |          | 103        | %      | 80 - 120             |
|         |      |                          | Dissolved Iron (Fe)                               | 2016/10/01               |          | 106        | %      | 80 - 120             |
|         |      |                          | Dissolved Lithium (Li)                            | 2016/10/01               |          | 107        | %      | 80 - 120             |
|         |      |                          | Dissolved Magnesium (Mg)                          | 2016/10/01               |          | 103        | %      | 80 - 120             |
|         |      |                          | Dissolved Manganese (Mn)                          | 2016/10/01               |          | 103        | %      | 80 - 120             |
|         |      |                          | Dissolved Phosphorus (P)                          | 2016/10/01               |          | 101        | %      | 80 - 120             |
|         |      |                          | Dissolved Potassium (K)                           | 2016/10/01               |          | 107        | %      | 80 - 120             |
|         |      |                          | Dissolved Silicon (Si)                            | 2016/10/01               |          | 100<br>109 | %<br>% | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Sodium (Na)<br>Dissolved Strontium (Sr) | 2016/10/01<br>2016/10/01 |          | 109        | %      | 80 - 120<br>80 - 120 |
| 8417829 | JHC  | Method Blank             | Dissolved Barium (Ba)                             | 2016/10/01               | <0.010   | 105        | ™g/L   | 80 - 120             |
| 0417029 | JIIC | Methou Didrik            | Dissolved Boron (B)                               | 2016/10/01               | <0.010   |            | mg/L   |                      |
|         |      |                          | Dissolved Calcium (Ca)                            | 2016/10/01               | <0.30    |            | mg/L   |                      |
|         |      |                          | Dissolved Iron (Fe)                               | 2016/10/01               | <0.30    |            | mg/L   |                      |
|         |      |                          | Dissolved Lithium (Li)                            | 2016/10/01               | <0.020   |            | mg/L   |                      |
|         |      |                          | Dissolved Magnesium (Mg)                          | 2016/10/01               | <0.20    |            | mg/L   |                      |
|         |      |                          | Dissolved Manganese (Mn)                          | 2016/10/01               | <0.0040  |            | mg/L   |                      |
|         |      |                          | Dissolved Phosphorus (P)                          | 2016/10/01               | <0.10    |            | mg/L   |                      |
|         |      |                          | Dissolved Potassium (K)                           | 2016/10/01               | < 0.30   |            | mg/L   |                      |
|         |      |                          | Dissolved Silicon (Si)                            | 2016/10/01               | <0.10    |            | mg/L   |                      |
|         |      |                          | Dissolved Sodium (Na)                             | 2016/10/01               | 0.50,    |            | mg/L   |                      |
|         |      |                          |                                                   |                          | RDL=0.50 |            | 0,     |                      |
|         |      |                          | Dissolved Strontium (Sr)                          | 2016/10/01               | <0.020   |            | mg/L   |                      |
|         |      |                          | Dissolved Sulphur (S)                             | 2016/10/01               | <0.20    |            | mg/L   |                      |
| 8417829 | JHC  | RPD                      | Dissolved Barium (Ba)                             | 2016/10/01               | 0.047    |            | %      | 20                   |
|         |      |                          | Dissolved Boron (B)                               | 2016/10/01               | 0.55     |            | %      | 20                   |
|         |      |                          | Dissolved Calcium (Ca)                            | 2016/10/01               | 0.15     |            | %      | 20                   |
|         |      |                          | Dissolved Iron (Fe)                               | 2016/10/01               | 1.3      |            | %      | 20                   |
|         |      |                          | Dissolved Lithium (Li)                            | 2016/10/01               | NC       |            | %      | 20                   |
|         |      |                          | Dissolved Magnesium (Mg)                          | 2016/10/01               | 0.13     |            | %      | 20                   |
|         |      |                          | Dissolved Manganese (Mn)                          | 2016/10/01               | 0.044    |            | %      | 20                   |
|         |      |                          | Dissolved Phosphorus (P)                          | 2016/10/01               | NC       |            | %      | 20                   |

Page 16 of 26



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                              | Date       |            |          |       |           |
|---------|------|--------------------------|------------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Potassium (K)      | 2016/10/01 | 0.21       |          | %     | 20        |
|         |      |                          | Dissolved Silicon (Si)       | 2016/10/01 | 0.18       |          | %     | 20        |
|         |      |                          | Dissolved Sodium (Na)        | 2016/10/01 | 0.084      |          | %     | 20        |
|         |      |                          | Dissolved Strontium (Sr)     | 2016/10/01 | 0.045      |          | %     | 20        |
|         |      |                          | Dissolved Sulphur (S)        | 2016/10/01 | 0.25       |          | %     | 20        |
| 8418321 | MUK  | Matrix Spike             | Dissolved Organic Carbon (C) | 2016/10/01 |            | 109      | %     | 80 - 120  |
| 8418321 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/01 |            | 97       | %     | 80 - 120  |
| 8418321 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/01 | <0.50      |          | mg/L  |           |
| 8418321 | MUK  | RPD                      | Dissolved Organic Carbon (C) | 2016/10/01 | NC         |          | %     | 20        |
| 8418324 | MUK  | Matrix Spike [PQ3528-01] | Dissolved Organic Carbon (C) | 2016/10/01 |            | 103      | %     | 80 - 120  |
| 8418324 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/01 |            | 93       | %     | 80 - 120  |
| 8418324 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/01 | <0.50      |          | mg/L  |           |
| 8418324 | MUK  | RPD [PQ3528-01]          | Dissolved Organic Carbon (C) | 2016/10/01 | 5.3        |          | %     | 20        |
| 8418959 | MB5  | Matrix Spike             | Dissolved Phosphorus (P)     | 2016/10/04 |            | 97       | %     | 80 - 120  |
| 8418959 | MB5  | QC Standard              | Dissolved Phosphorus (P)     | 2016/10/04 |            | 100      | %     | N/A       |
| 8418959 | MB5  | Spiked Blank             | Dissolved Phosphorus (P)     | 2016/10/04 |            | 97       | %     | 80 - 120  |
| 8418959 | MB5  | Method Blank             | Dissolved Phosphorus (P)     | 2016/10/04 | 0.0052,    |          | mg/L  |           |
|         |      |                          |                              |            | RDL=0.0030 |          |       |           |
| 8418959 | MB5  | RPD                      | Dissolved Phosphorus (P)     | 2016/10/04 | NC         |          | %     | 20        |
| 8419031 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 105      | %     | 80 - 120  |
| 8419031 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 95       | %     | 80 - 120  |
| 8419031 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 106      | %     | 80 - 120  |
| 8419031 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/03 | <0.050     |          | mg/L  |           |
| 8419031 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/03 | NC         |          | %     | 20        |
| 8419036 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 106      | %     | 80 - 120  |
| 8419036 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 99       | %     | 80 - 120  |
| 8419036 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/03 |            | 99       | %     | 80 - 120  |
| 8419036 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/03 | <0.050     |          | mg/L  |           |
| 8419036 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/03 | NC         |          | %     | 20        |
| 8419564 | KP9  | Matrix Spike             | Dissolved Chloride (Cl)      | 2016/10/03 |            | 102      | %     | 80 - 120  |
| 8419564 | KP9  | Spiked Blank             | Dissolved Chloride (Cl)      | 2016/10/03 |            | 108      | %     | 80 - 120  |
| 8419564 | KP9  | Method Blank             | Dissolved Chloride (Cl)      | 2016/10/03 | 2.0,       |          | mg/L  |           |
|         |      |                          |                              |            | RDL=1.0    |          |       |           |
| 8419564 | KP9  | RPD                      | Dissolved Chloride (Cl)      | 2016/10/03 | NC         |          | %     | 20        |
| 8419569 | KP9  | Matrix Spike             | Dissolved Sulphate (SO4)     | 2016/10/03 |            | 130 (1)  | %     | 80 - 120  |
| 8419569 | KP9  | Spiked Blank             | Dissolved Sulphate (SO4)     | 2016/10/03 |            | 106      | %     | 80 - 120  |
| 8419569 | KP9  | Method Blank             | Dissolved Sulphate (SO4)     | 2016/10/03 | <1.0       |          | mg/L  |           |
| 8419569 | KP9  | RPD                      | Dissolved Sulphate (SO4)     | 2016/10/03 | NC         |          | %     | 20        |
| 8419725 | RK3  | Matrix Spike             | Dissolved Mercury (Hg)       | 2016/10/03 |            | 93       | %     | 80 - 120  |
| 8419725 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)       | 2016/10/03 |            | 91       | %     | 80 - 120  |
| 8419725 | RK3  | Method Blank             | Dissolved Mercury (Hg)       | 2016/10/03 | <0.0020    |          | ug/L  |           |
| 8419725 | RK3  | RPD                      | Dissolved Mercury (Hg)       | 2016/10/03 | NC         |          | %     | 20        |
| 8419734 | RK3  | Matrix Spike             | Total Mercury (Hg)           | 2016/10/03 |            | 101      | %     | 80 - 120  |
| 8419734 | RK3  | Spiked Blank             | Total Mercury (Hg)           | 2016/10/03 |            | 109      | %     | 80 - 120  |
| 8419734 | RK3  | Method Blank             | Total Mercury (Hg)           | 2016/10/03 | <0.0020    |          | ug/L  |           |
| 8419734 | RK3  | RPD                      | Total Mercury (Hg)           | 2016/10/03 | NC         |          | %     | 20        |
| 8419977 | PC5  | Matrix Spike             | Dissolved Aluminum (Al)      | 2016/10/04 |            | 120      | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)      | 2016/10/04 |            | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)       | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)     | 2016/10/04 |            | 106      | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)       | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)      | 2016/10/04 |            | 97       | %     | 80 - 120  |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                           | Date       |            |          |       |           |
|---------|------|--------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 112      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 108      | %     | 80 - 120  |
| 8419977 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/04 |            | 114      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 |            | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 110      | %     | 80 - 120  |
| 8419977 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/04 | 0.0031,    |          | mg/L  |           |
|         |      |              |                           |            | RDL=0.0030 |          | 0,    |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 | <0.00060   |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 | <0.000020  |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 | <0.00030   |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 | <0.00050   |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 | <0.00010   |          | mg/L  |           |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 | <0.00010   |          | mg/L  |           |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 | < 0.0010   |          | mg/L  |           |



Report Date: 2016/10/07

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                              | Date       |            |          |       |           |
|---------|------|--------------------------|------------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Zinc (Zn)          | 2016/10/04 | 0.0030,    |          | mg/L  |           |
|         |      |                          |                              |            | RDL=0.0030 |          |       |           |
| 8419977 | PC5  | RPD                      | Dissolved Aluminum (Al)      | 2016/10/04 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Chromium (Cr)      | 2016/10/04 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Copper (Cu)        | 2016/10/04 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Lead (Pb)          | 2016/10/04 | NC         |          | %     | 20        |
| 8421839 | RSA  | Matrix Spike [PQ3528-07] | 1,4-Difluorobenzene (sur.)   | 2016/10/07 |            | 107      | %     | 70 - 130  |
|         |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/07 |            | 107      | %     | 70 - 130  |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/07 |            | 115      | %     | 70 - 130  |
|         |      |                          | Benzene                      | 2016/10/07 |            | 91       | %     | 70 - 130  |
|         |      |                          | Toluene                      | 2016/10/07 |            | 94       | %     | 70 - 130  |
|         |      |                          | Ethylbenzene                 | 2016/10/07 |            | 99       | %     | 70 - 130  |
|         |      |                          | m & p-Xylene                 | 2016/10/07 |            | 98       | %     | 70 - 130  |
|         |      |                          | o-Xylene                     | 2016/10/07 |            | 99       | %     | 70 - 130  |
|         |      |                          | F1 (C6-C10)                  | 2016/10/07 |            | 81       | %     | 70 - 130  |
| 8421839 | RSA  | Spiked Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/06 |            | 106      | %     | 70 - 130  |
|         |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/06 |            | 107      | %     | 70 - 130  |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/06 |            | 101      | %     | 70 - 130  |
|         |      |                          | Benzene                      | 2016/10/06 |            | 91       | %     | 70 - 130  |
|         |      |                          | Toluene                      | 2016/10/06 |            | 94       | %     | 70 - 130  |
|         |      |                          | Ethylbenzene                 | 2016/10/06 |            | 99       | %     | 70 - 130  |
|         |      |                          | m & p-Xylene                 | 2016/10/06 |            | 98       | %     | 70 - 130  |
|         |      |                          | o-Xylene                     | 2016/10/06 |            | 98       | %     | 70 - 130  |
|         |      |                          | F1 (C6-C10)                  | 2016/10/06 |            | 96       | %     | 70 - 130  |
| 8421839 | RSA  | Method Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/06 |            | 114      | %     | 70 - 130  |
|         |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/06 |            | 105      | %     | 70 - 130  |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/06 |            | 105      | %     | 70 - 130  |
|         |      |                          | Benzene                      | 2016/10/06 | <0.00040   |          | mg/L  |           |
|         |      |                          | Toluene                      | 2016/10/06 | <0.00040   |          | mg/L  |           |
|         |      |                          | Ethylbenzene                 | 2016/10/06 | <0.00040   |          | mg/L  |           |
|         |      |                          | m & p-Xylene                 | 2016/10/06 | <0.00080   |          | mg/L  |           |
|         |      |                          | o-Xylene                     | 2016/10/06 | <0.00040   |          | mg/L  |           |
|         |      |                          | Xylenes (Total)              | 2016/10/06 | <0.00080   |          | mg/L  |           |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/06 | <0.10      |          | mg/L  |           |
|         |      |                          | F1 (C6-C10)                  | 2016/10/06 | <0.10      |          | mg/L  |           |
| 8421839 | RSA  | RPD [PQ3527-07]          | Benzene                      | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | Toluene                      | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | Ethylbenzene                 | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | m & p-Xylene                 | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | o-Xylene                     | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | Xylenes (Total)              | 2016/10/06 | NC         |          | %     | 40        |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/06 | NC         |          | %     | 40        |



Report Date: 2016/10/07

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

#### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC |      |         |             | Date       |       |                |           |
|-------|------|---------|-------------|------------|-------|----------------|-----------|
| Batch | Init | QC Type | Parameter   | Analyzed   | Value | Recovery UNITS | QC Limits |
|       |      |         | F1 (C6-C10) | 2016/10/06 | NC    | %              | 40        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



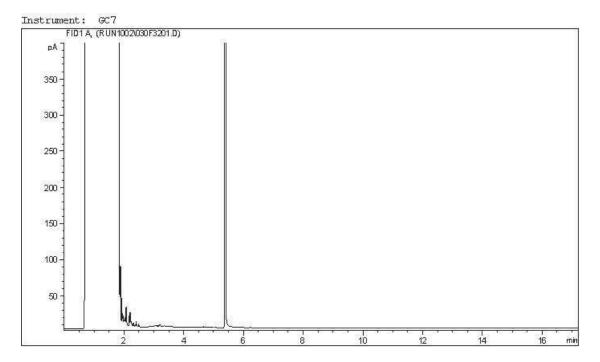
### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

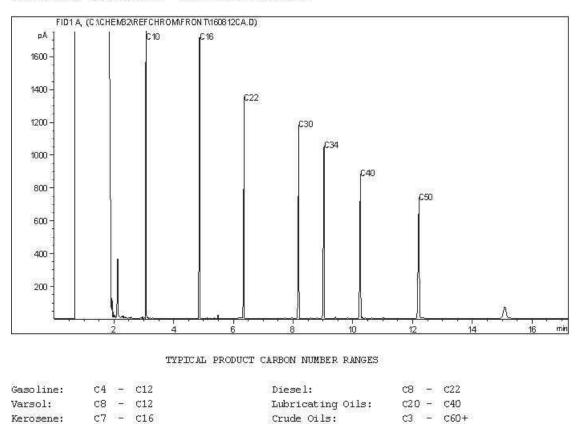
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

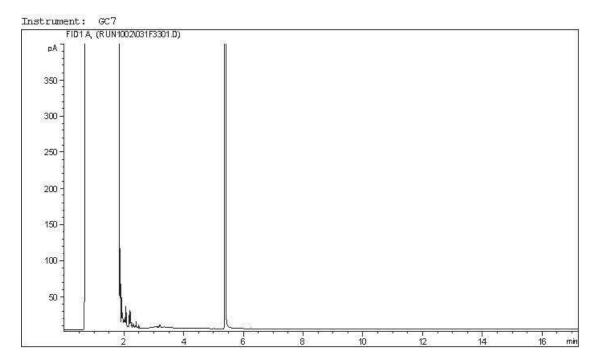
Junzhi Gras

Janet Gao, B.Sc., QP, Supervisor, Organics

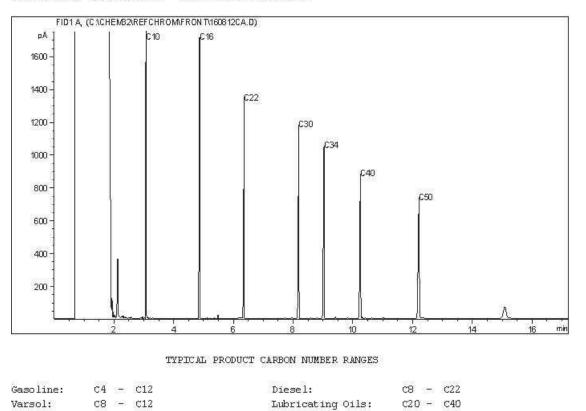

Lisa Thum, C.E.T., QP, Manager, Inorganics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


| Invoice Information                              | Report Information (if differs from invoice)                                                | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turnaround Time (TAT) Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|--------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| company: Stontec Consulting Ltd                  | Company:                                                                                    | Quotation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 - 7 Days Regular (Most analyses)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| Contact Name: Dylan King                         | Contact Name:                                                                               | P.O. #/ AFE#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                  | Address:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rush TAT (Surcharges will be applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| AB, TSK216                                       |                                                                                             | Project #: 10773396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Same Day 2 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                  | Phone:                                                                                      | Site Location: Springbank SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Day 3-4 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                  | Email:                                                                                      | Site #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| copies: Dale Nisbet a state con                  | Copies:                                                                                     | Sampled By: D.Nisbet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rush Confirmation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Laboratory Use O                                 |                                                                                             | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regulatory Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| YES NO Cooler ID<br>Seal Present 7 Temp // // // | Depot Reception                                                                             | Ned X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AT1/CCME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Seal Intact Temp // // //                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Seal Present<br>Seal Intact Temp                 |                                                                                             | Disso<br>Disso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: State of the state o |     |
| Cooling Media VIS NO Cooler ID                   | 24 COC                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D50 (Drilling Waste)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 |
| Seal Present Temp                                |                                                                                             | (F1:F4<br>inter Water<br>lated Metals<br>lated Metals<br>lifty 4<br>e (75 micron)<br>e (75 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Cooling Media                                    |                                                                                             | EX F1-F4<br>utine W<br>guiated<br>inity 4<br>inity 4<br>ve (75 n<br>ve (75 n)ve (75                                                                                                                                                                                                                                                                                                                                                                                                                    | £ 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Sample Identification Dep                        | pth (Unit) Date Sampled (VYY/MM/DD) Sampled Matrix B 10 10 10 10 10 10 10 10 10 10 10 10 10 | Regult Re                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fur E g Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 1 MW16-21-11                                     | 2016/09/29:52 12 1                                                                          | V-V 14 15 15 V V V 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume please take<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 2 MU16-23-36                                     | 1 16:56 13 5                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume please take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 3 MW16-23-14                                     | + 17:32 13 -                                                                                | 990-2-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOC from Battine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 4                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bottle tor PVIE at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|                                                  |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Due to furbidity plasse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 2                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Filter and prestructions<br>metals discluded macual<br>and Doc for multipostic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 8                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and DOC For Mull62036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   |
| 9                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | submitted some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 10                                               |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | day as sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Please Indicate Filtered, Preserved or Both      | h (F, P, F/P)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                  | /MM/DD) Time (HH:MM) Received by: (Signatu                                                  | re/ Print) DATE (YYYY/MM/DD) Time (HH:MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29-Sep-16 19:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Reinquished by: (Signature/ Print) DATE (TTTT)   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |


36

. .



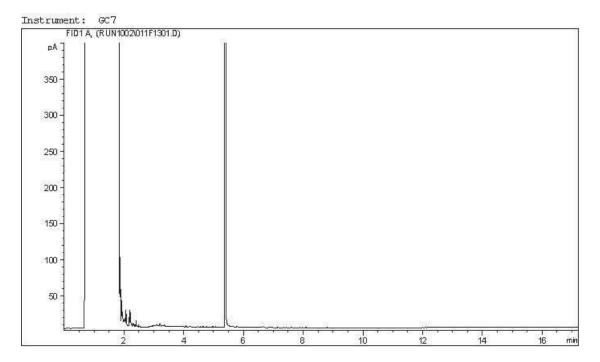

Carbon Range Distribution - Reference Chromatogram



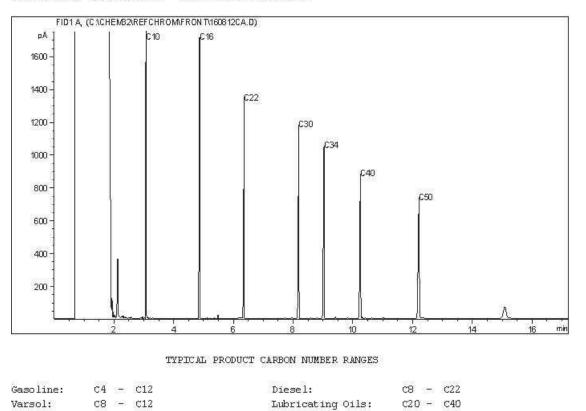


Carbon Range Distribution - Reference Chromatogram




Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

c7 - c16


Kerosene:

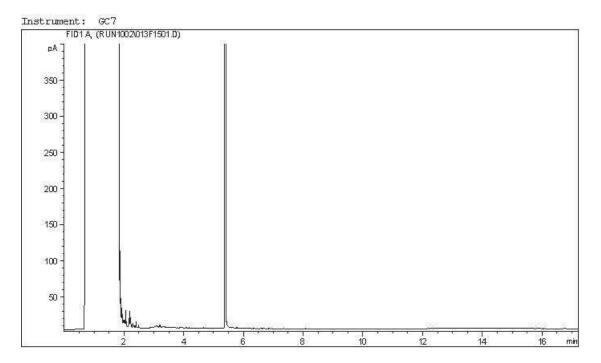
Crude Oils:

C3 - C60+

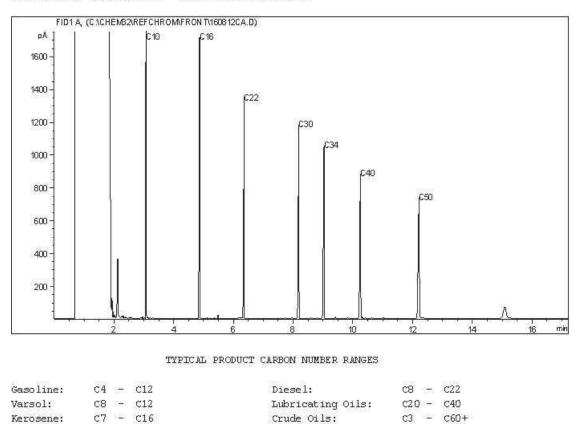


Carbon Range Distribution - Reference Chromatogram




Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

c7 - c16


Kerosene:

Crude Oils:

C3 - C60+



Carbon Range Distribution - Reference Chromatogram



Maxiam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031906

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/11 Report #: R2279234 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B686123

## Received: 2016/09/30, 15:57

Sample Matrix: Water # Samples Received: 4

|                                          |         | Date       | Date       |                   |                      |
|------------------------------------------|---------|------------|------------|-------------------|----------------------|
| Analyses Q                               | uantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 4       | N/A        | 2016/10/03 | AB SOP-00005      | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 4       | N/A        | 2016/10/08 | AB SOP-00039      | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 3       | N/A        | 2016/10/06 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Chloride by Automated Colourimetry       | 1       | N/A        | 2016/10/07 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 4       | 2016/09/30 | 2016/10/01 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 4       | 2016/09/30 | 2016/10/01 | CAL SOP-00013     | SM 22 9223 A,B m     |
| Carbon (DOC) -Lab Filtered (1)           | 1       | N/A        | 2016/10/05 | CAL SOP-00077     | MMCW 119 1996 m      |
| Carbon (DOC) (1)                         | 3       | N/A        | 2016/10/05 | CAL SOP-00077     | MMCW 119 1996 m      |
| Conductivity @25C                        | 4       | N/A        | 2016/10/03 | AB SOP-00005      | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 4       | 2016/10/03 | 2016/10/04 | AB SOP-00040      | CCME PHC-CWS m       |
|                                          |         |            |            | AB SOP-00037      |                      |
| Hardness                                 | 1       | N/A        | 2016/10/05 | AB WI-00065       | Auto Calc            |
| Hardness                                 | 3       | N/A        | 2016/10/08 | AB WI-00065       | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 3       | 2016/10/07 | 2016/10/07 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury-Low Level-Dissolved-Lab Filtered | 1       | 2016/10/04 | 2016/10/04 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 4       | 2016/10/04 | 2016/10/04 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 3       | N/A        | 2016/10/07 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICP-Dissolved-Lab Filtered   | 1       | N/A        | 2016/10/05 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 3       | N/A        | 2016/10/04 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Elements by ICPMS-Dissolved-Lab Filtered | 1       | N/A        | 2016/10/04 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Ion Balance                              | 4       | N/A        | 2016/10/01 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 1       | N/A        | 2016/10/05 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 3       | N/A        | 2016/10/08 | AB WI-00065       | Auto Calc            |
| Ammonia-N (Dissolved) - Lab Filtered     | 1       | N/A        | 2016/10/05 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Ammonia-N (Dissolved)                    | 3       | N/A        | 2016/10/05 | AB SOP-00007      | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 4       | N/A        | 2016/10/03 | AB WI-00065       | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 4       | N/A        | 2016/10/03 | AB WI-00065       | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 4       | N/A        | 2016/10/03 | AB SOP-00023      | SM 22 4110 B m       |
| pH @25°C                                 | 4       | N/A        | 2016/10/03 | AB SOP-00005      | SM 22 4500-H+B m     |
| Orthophosphate by Konelab                | 4       | N/A        | 2016/10/03 | AB SOP-00025      | SM 22 4500-P A,F m   |



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031906

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/11 Report #: R2279234 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B686123

Received: 2016/09/30, 15:57

Sample Matrix: Water # Samples Received: 4

|                                         |          | Date       | Date       |                   |                      |
|-----------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Sulphate by Automated Colourimetry      | 3        | N/A        | 2016/10/06 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Sulphate by Automated Colourimetry      | 1        | N/A        | 2016/10/07 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Heterotrophic Plate Count               | 4        | 2016/09/30 | 2016/10/02 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)     | 1        | N/A        | 2016/10/07 | AB WI-00065       | Auto Calc            |
| Total Dissolved Solids (Calculated)     | 3        | N/A        | 2016/10/08 | AB WI-00065       | Auto Calc            |
| Total Kjeldahl Nitrogen                 | 4        | 2016/10/04 | 2016/10/05 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Phosphorus-Dissolved-Lab Filtered | 1        | 2016/10/05 | 2016/10/05 | AB SOP-00024      | SM 22 4500-P A,B,F m |
| Phosphorus -P (Total, Dissolved)        | 3        | 2016/10/03 | 2016/10/04 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.





# AT1 BTEX AND F1-F2 IN WATER (WATER)

| Maxxam ID                      |         | PQ7066              | PQ7066              | PQ7067              | PQ7068              | PQ7069              |         |          |  |  |  |
|--------------------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|----------|--|--|--|
| Sampling Date                  |         | 2016/09/30<br>12:22 | 2016/09/30<br>12:22 | 2016/09/30<br>11:21 | 2016/09/30<br>14:02 | 2016/09/30<br>13:01 |         |          |  |  |  |
| COC Number                     |         | M031906             | M031906             | M031906             | M031906             | M031906             |         |          |  |  |  |
|                                | UNITS   | MW16-9-6            | MW16-9-6<br>Lab-Dup | MW16-25-9           | MW16-11-15          | MW16-2-6            | RDL     | QC Batch |  |  |  |
| Ext. Pet. Hydrocarbon          |         |                     |                     |                     |                     |                     |         |          |  |  |  |
| F2 (C10-C16 Hydrocarbons)      | mg/L    | <0.10               | N/A                 | <0.10               | <0.10               | 0.47                | 0.10    | 8419208  |  |  |  |
| Volatiles                      |         |                     |                     |                     |                     |                     |         |          |  |  |  |
| Benzene                        | mg/L    | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00044             | 0.00040 | 8424673  |  |  |  |
| Toluene                        | mg/L    | <0.00040            | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8424673  |  |  |  |
| Ethylbenzene                   | mg/L    | <0.00040            | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8424673  |  |  |  |
| m & p-Xylene                   | mg/L    | <0.00080            | <0.00080            | <0.00080            | <0.00080            | <0.00080            | 0.00080 | 8424673  |  |  |  |
| o-Xylene                       | mg/L    | <0.00040            | <0.00040            | <0.00040            | <0.00040            | <0.00040            | 0.00040 | 8424673  |  |  |  |
| Xylenes (Total)                | mg/L    | <0.00080            | <0.00080            | <0.00080            | <0.00080            | <0.00080            | 0.00080 | 8424673  |  |  |  |
| F1 (C6-C10) - BTEX             | mg/L    | <0.10               | <0.10               | <0.10               | <0.10               | <0.10               | 0.10    | 8424673  |  |  |  |
| F1 (C6-C10)                    | mg/L    | <0.10               | <0.10               | <0.10               | <0.10               | <0.10               | 0.10    | 8424673  |  |  |  |
| Surrogate Recovery (%)         |         |                     |                     |                     |                     |                     |         |          |  |  |  |
| 1,4-Difluorobenzene (sur.)     | %       | 111                 | 111                 | 111                 | 112                 | 111                 | N/A     | 8424673  |  |  |  |
| 4-Bromofluorobenzene (sur.)    | %       | 104                 | 105                 | 104                 | 105                 | 105                 | N/A     | 8424673  |  |  |  |
| D4-1,2-Dichloroethane (sur.)   | %       | 106                 | 107                 | 107                 | 108                 | 108                 | N/A     | 8424673  |  |  |  |
| O-TERPHENYL (sur.)             | %       | 94                  | N/A                 | 91                  | 94                  | 90                  | N/A     | 8419208  |  |  |  |
| RDL = Reportable Detection Lir | nit     |                     |                     |                     |                     |                     |         |          |  |  |  |
| Lab-Dup = Laboratory Initiated | Duplica | te                  |                     |                     |                     |                     |         |          |  |  |  |
| N/A = Not Applicable           |         |                     |                     |                     |                     |                     |         |          |  |  |  |



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PQ7066              | PQ7066              |         |          | PQ7067              |         |          |
|-----------------------------------|-------|---------------------|---------------------|---------|----------|---------------------|---------|----------|
| Sampling Date                     |       | 2016/09/30<br>12:22 | 2016/09/30<br>12:22 |         |          | 2016/09/30<br>11:21 |         |          |
| COC Number                        |       | M031906             | M031906             |         |          | M031906             |         |          |
|                                   | UNITS | MW16-9-6            | MW16-9-6<br>Lab-Dup | RDL     | QC Batch | MW16-25-9           | RDL     | QC Batch |
| Calculated Parameters             |       |                     | ·                   |         | ·        |                     | ·       | ·        |
| Anion Sum                         | meq/L | 21                  | N/A                 | N/A     | 8417613  | 13                  | N/A     | 8418022  |
| Cation Sum                        | meq/L | 22                  | N/A                 | N/A     | 8417613  | 14                  | N/A     | 8418022  |
| Hardness (CaCO3)                  | mg/L  | 930                 | N/A                 | 0.50    | 8418724  | 590                 | 0.50    | 8418724  |
| Ion Balance                       | N/A   | 1.1                 | N/A                 | 0.010   | 8417612  | 1.1                 | 0.010   | 8418021  |
| Dissolved Nitrate (NO3)           | mg/L  | 0.065               | N/A                 | 0.044   | 8418013  | 0.064               | 0.044   | 8418013  |
| Nitrate plus Nitrite (N)          | mg/L  | <0.020              | N/A                 | 0.020   | 8418014  | <0.020              | 0.020   | 8418014  |
| Dissolved Nitrite (NO2)           | mg/L  | <0.033              | N/A                 | 0.033   | 8418013  | <0.033              | 0.033   | 8418013  |
| Calculated Total Dissolved Solids | mg/L  | 1200                | N/A                 | 10      | 8417617  | 680                 | 10      | 8418023  |
| Misc. Inorganics                  |       |                     |                     |         |          |                     |         | •        |
| Conductivity                      | uS/cm | 1700                | N/A                 | 1.0     | 8419207  | 1100                | 1.0     | 8419207  |
| рН                                | рН    | 7.88                | N/A                 | N/A     | 8419206  | 8.11                | N/A     | 8419206  |
| Anions                            |       |                     |                     |         |          |                     |         |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | N/A                 | 0.50    | 8419203  | <0.50               | 0.50    | 8419203  |
| Alkalinity (Total as CaCO3)       | mg/L  | 510                 | N/A                 | 0.50    | 8419203  | 470                 | 0.50    | 8419203  |
| Bicarbonate (HCO3)                | mg/L  | 630                 | N/A                 | 0.50    | 8419203  | 580                 | 0.50    | 8419203  |
| Carbonate (CO3)                   | mg/L  | <0.50               | N/A                 | 0.50    | 8419203  | <0.50               | 0.50    | 8419203  |
| Hydroxide (OH)                    | mg/L  | <0.50               | N/A                 | 0.50    | 8419203  | <0.50               | 0.50    | 8419203  |
| Dissolved Sulphate (SO4)          | mg/L  | 490 (1)             | N/A                 | 5.0     | 8425289  | 150                 | 1.0     | 8425254  |
| Dissolved Chloride (Cl)           | mg/L  | 1.6                 | N/A                 | 1.0     | 8425265  | 8.2                 | 1.0     | 8425251  |
| Nutrients                         |       |                     |                     |         |          |                     |         |          |
| Dissolved Nitrite (N)             | mg/L  | <0.010              | <0.010              | 0.010   | 8419271  | <0.010              | 0.010   | 8419271  |
| Dissolved Nitrate (N)             | mg/L  | 0.015               | 0.016               | 0.010   | 8419271  | 0.015               | 0.010   | 8419271  |
| Elements                          |       |                     |                     |         |          |                     |         |          |
| Dissolved Aluminum (Al)           | mg/L  | <0.0030             | N/A                 | 0.0030  | 8419986  | 0.028               | 0.0030  | 8419986  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | N/A                 | 0.00060 | 8419986  | <0.00060            | 0.00060 | 8419986  |
| Dissolved Arsenic (As)            | mg/L  | 0.00093             | N/A                 | 0.00020 | 8419986  | 0.00078             | 0.00020 | 8419986  |
| Dissolved Barium (Ba)             | mg/L  | 0.039               | N/A                 | 0.010   | 8424941  | 0.053               | 0.010   | 8424941  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | N/A                 | 0.0010  | 8419986  | <0.0010             | 0.0010  | 8419986  |
| Dissolved Boron (B)               | mg/L  | 0.14                | N/A                 | 0.020   | 8424941  | 0.099               | 0.020   | 8424941  |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                      |       | PQ7066     | PQ7066              |          |          | PQ7067     |          |          |
|--------------------------------|-------|------------|---------------------|----------|----------|------------|----------|----------|
| Sampling Date                  |       | 2016/09/30 | 2016/09/30          |          |          | 2016/09/30 |          |          |
|                                |       | 12:22      | 12:22               |          |          | 11:21      |          |          |
| COC Number                     |       | M031906    | M031906             |          |          | M031906    |          |          |
|                                | UNITS | MW16-9-6   | MW16-9-6<br>Lab-Dup | RDL      | QC Batch | MW16-25-9  | RDL      | QC Batch |
| Dissolved Cadmium (Cd)         | mg/L  | 0.000073   | N/A                 | 0.000020 | 8419986  | 0.000065   | 0.000020 | 8419986  |
| Dissolved Calcium (Ca)         | mg/L  | 220        | N/A                 | 0.30     | 8424941  | 140        | 0.30     | 8424941  |
| Dissolved Chromium (Cr)        | mg/L  | 0.0043     | N/A                 | 0.0010   | 8419986  | <0.0010    | 0.0010   | 8419986  |
| Dissolved Cobalt (Co)          | mg/L  | 0.0037     | N/A                 | 0.00030  | 8419986  | 0.0020     | 0.00030  | 8419986  |
| Dissolved Copper (Cu)          | mg/L  | 0.00064    | N/A                 | 0.00020  | 8419986  | 0.0011     | 0.00020  | 8419986  |
| Dissolved Iron (Fe)            | mg/L  | 0.13       | N/A                 | 0.060    | 8424941  | 0.16       | 0.060    | 8424941  |
| Dissolved Lead (Pb)            | mg/L  | <0.00020   | N/A                 | 0.00020  | 8419986  | <0.00020   | 0.00020  | 8419986  |
| Dissolved Lithium (Li)         | mg/L  | 0.030      | N/A                 | 0.020    | 8424941  | 0.034      | 0.020    | 8424941  |
| Dissolved Magnesium (Mg)       | mg/L  | 94         | N/A                 | 0.20     | 8424941  | 59         | 0.20     | 8424941  |
| Dissolved Manganese (Mn)       | mg/L  | 0.93       | N/A                 | 0.0040   | 8424941  | 0.23       | 0.0040   | 8424941  |
| Dissolved Molybdenum (Mo)      | mg/L  | 0.00082    | N/A                 | 0.00020  | 8419986  | 0.0036     | 0.00020  | 8419986  |
| Dissolved Nickel (Ni)          | mg/L  | 0.0071     | N/A                 | 0.00050  | 8419986  | 0.0067     | 0.00050  | 8419986  |
| Dissolved Phosphorus (P)       | mg/L  | <0.10      | N/A                 | 0.10     | 8424941  | <0.10      | 0.10     | 8424941  |
| Dissolved Potassium (K)        | mg/L  | 5.6        | N/A                 | 0.30     | 8424941  | 6.6        | 0.30     | 8424941  |
| Dissolved Selenium (Se)        | mg/L  | <0.00020   | N/A                 | 0.00020  | 8419986  | 0.0014     | 0.00020  | 8419986  |
| Dissolved Silicon (Si)         | mg/L  | 5.5        | N/A                 | 0.10     | 8424941  | 7.0        | 0.10     | 8424941  |
| Dissolved Silver (Ag)          | mg/L  | <0.00010   | N/A                 | 0.00010  | 8419986  | <0.00010   | 0.00010  | 8419986  |
| Dissolved Sodium (Na)          | mg/L  | 71         | N/A                 | 0.50     | 8424941  | 34         | 0.50     | 8424941  |
| Dissolved Strontium (Sr)       | mg/L  | 1.4        | N/A                 | 0.020    | 8424941  | 0.74       | 0.020    | 8424941  |
| Dissolved Sulphur (S)          | mg/L  | 180        | N/A                 | 0.20     | 8424941  | 49         | 0.20     | 8424941  |
| Dissolved Thallium (Tl)        | mg/L  | <0.00020   | N/A                 | 0.00020  | 8419986  | <0.00020   | 0.00020  | 8419986  |
| Dissolved Tin (Sn)             | mg/L  | <0.0010    | N/A                 | 0.0010   | 8419986  | <0.0010    | 0.0010   | 8419986  |
| Dissolved Titanium (Ti)        | mg/L  | <0.0010    | N/A                 | 0.0010   | 8419986  | <0.0010    | 0.0010   | 8419986  |
| Dissolved Uranium (U)          | mg/L  | 0.0086     | N/A                 | 0.00010  | 8419986  | 0.014      | 0.00010  | 8419986  |
| Dissolved Vanadium (V)         | mg/L  | < 0.0010   | N/A                 | 0.0010   | 8419986  | 0.0011     | 0.0010   | 8419986  |
| Dissolved Zinc (Zn)            | mg/L  | <0.0030    | N/A                 | 0.0030   | 8419986  | <0.0030    | 0.0030   | 8419986  |
| RDL = Reportable Detection Lim | it .  |            |                     |          |          |            |          |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |         | PQ7068     | PQ7068                |         |          |
|-----------------------------------|---------|------------|-----------------------|---------|----------|
| Sampling Date                     |         | 2016/09/30 | 2016/09/30            |         |          |
|                                   |         | 14:02      | 14:02                 |         |          |
| COC Number                        |         | M031906    | M031906               |         |          |
|                                   | UNITS   | MW16-11-15 | MW16-11-15<br>Lab-Dup | RDL     | QC Batch |
| Calculated Parameters             |         |            |                       |         |          |
| Anion Sum                         | meq/L   | 39         | N/A                   | N/A     | 8418022  |
| Cation Sum                        | meq/L   | 38         | N/A                   | N/A     | 8418022  |
| Hardness (CaCO3)                  | mg/L    | 1200       | N/A                   | 0.50    | 8418724  |
| Ion Balance                       | N/A     | 0.98       | N/A                   | 0.010   | 8418021  |
| Dissolved Nitrate (NO3)           | mg/L    | <0.044     | N/A                   | 0.044   | 8418013  |
| Nitrate plus Nitrite (N)          | mg/L    | <0.020     | N/A                   | 0.020   | 8418014  |
| Dissolved Nitrite (NO2)           | mg/L    | <0.033     | N/A                   | 0.033   | 8418013  |
| Calculated Total Dissolved Solids | mg/L    | 2400       | N/A                   | 10      | 8418023  |
| Misc. Inorganics                  |         |            |                       |         | •        |
| Conductivity                      | uS/cm   | 3100       | 3100                  | 1.0     | 8419207  |
| рН                                | рН      | 7.99       | 7.98                  | N/A     | 8419206  |
| Anions                            |         |            |                       |         |          |
| Alkalinity (PP as CaCO3)          | mg/L    | <0.50      | <0.50                 | 0.50    | 8419203  |
| Alkalinity (Total as CaCO3)       | mg/L    | 410        | 410                   | 0.50    | 8419203  |
| Bicarbonate (HCO3)                | mg/L    | 500        | 500                   | 0.50    | 8419203  |
| Carbonate (CO3)                   | mg/L    | <0.50      | <0.50                 | 0.50    | 8419203  |
| Hydroxide (OH)                    | mg/L    | <0.50      | <0.50                 | 0.50    | 8419203  |
| Dissolved Sulphate (SO4)          | mg/L    | 1500 (1)   | N/A                   | 10      | 8425254  |
| Dissolved Chloride (Cl)           | mg/L    | 1.7        | N/A                   | 1.0     | 8425251  |
| Nutrients                         |         |            | •                     |         |          |
| Dissolved Nitrite (N)             | mg/L    | <0.010     | N/A                   | 0.010   | 8419271  |
| Dissolved Nitrate (N)             | mg/L    | <0.010     | N/A                   | 0.010   | 8419271  |
| Elements                          |         |            | •                     |         |          |
| Dissolved Aluminum (Al)           | mg/L    | <0.0030    | N/A                   | 0.0030  | 8419986  |
| Dissolved Antimony (Sb)           | mg/L    | <0.00060   | N/A                   | 0.00060 | 8419986  |
| Dissolved Arsenic (As)            | mg/L    | 0.0012     | N/A                   | 0.00020 | 8419986  |
| Dissolved Barium (Ba)             | mg/L    | 0.016      | N/A                   | 0.010   | 8424941  |
| Dissolved Beryllium (Be)          | mg/L    | <0.0010    | N/A                   | 0.0010  | 8419986  |
| RDL = Reportable Detection Limit  |         |            |                       |         |          |
| Lab-Dup = Laboratory Initiated Du | plicate |            |                       |         |          |
| •                                 | plicate |            |                       |         |          |

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                                                    |       | PQ7068              | PQ7068                |          |          |
|----------------------------------------------------------------------------------------------|-------|---------------------|-----------------------|----------|----------|
| Sampling Date                                                                                |       | 2016/09/30<br>14:02 | 2016/09/30<br>14:02   |          |          |
| COC Number                                                                                   |       | M031906             | M031906               |          |          |
|                                                                                              | UNITS | MW16-11-15          | MW16-11-15<br>Lab-Dup | RDL      | QC Batch |
| Dissolved Boron (B)                                                                          | mg/L  | 0.10                | N/A                   | 0.020    | 8424941  |
| Dissolved Cadmium (Cd)                                                                       | mg/L  | 0.000043            | N/A                   | 0.000020 | 8419986  |
| Dissolved Calcium (Ca)                                                                       | mg/L  | 290                 | N/A                   | 0.30     | 8424941  |
| Dissolved Chromium (Cr)                                                                      | mg/L  | <0.0010             | N/A                   | 0.0010   | 8419986  |
| Dissolved Cobalt (Co)                                                                        | mg/L  | 0.0016              | N/A                   | 0.00030  | 8419986  |
| Dissolved Copper (Cu)                                                                        | mg/L  | 0.00029             | N/A                   | 0.00020  | 8419986  |
| Dissolved Iron (Fe)                                                                          | mg/L  | 0.37                | N/A                   | 0.060    | 8424941  |
| Dissolved Lead (Pb)                                                                          | mg/L  | <0.00020            | N/A                   | 0.00020  | 8419986  |
| Dissolved Lithium (Li)                                                                       | mg/L  | 0.050               | N/A                   | 0.020    | 8424941  |
| Dissolved Magnesium (Mg)                                                                     | mg/L  | 110                 | N/A                   | 0.20     | 8424941  |
| Dissolved Manganese (Mn)                                                                     | mg/L  | 0.77                | N/A                   | 0.0040   | 8424941  |
| Dissolved Molybdenum (Mo)                                                                    | mg/L  | 0.0015              | N/A                   | 0.00020  | 8419986  |
| Dissolved Nickel (Ni)                                                                        | mg/L  | 0.0027              | N/A                   | 0.00050  | 8419986  |
| Dissolved Phosphorus (P)                                                                     | mg/L  | <0.10               | N/A                   | 0.10     | 8424941  |
| Dissolved Potassium (K)                                                                      | mg/L  | 6.0                 | N/A                   | 0.30     | 8424941  |
| Dissolved Selenium (Se)                                                                      | mg/L  | <0.00020            | N/A                   | 0.00020  | 8419986  |
| Dissolved Silicon (Si)                                                                       | mg/L  | 4.8                 | N/A                   | 0.10     | 8424941  |
| Dissolved Silver (Ag)                                                                        | mg/L  | <0.00010            | N/A                   | 0.00010  | 8419986  |
| Dissolved Sodium (Na)                                                                        | mg/L  | 320                 | N/A                   | 0.50     | 8424941  |
| Dissolved Strontium (Sr)                                                                     | mg/L  | 2.6                 | N/A                   | 0.020    | 8424941  |
| Dissolved Sulphur (S)                                                                        | mg/L  | 480                 | N/A                   | 0.20     | 8424941  |
| Dissolved Thallium (Tl)                                                                      | mg/L  | <0.00020            | N/A                   | 0.00020  | 8419986  |
| Dissolved Tin (Sn)                                                                           | mg/L  | <0.0010             | N/A                   | 0.0010   | 8419986  |
| Dissolved Titanium (Ti)                                                                      | mg/L  | <0.0010             | N/A                   | 0.0010   | 8419986  |
| Dissolved Uranium (U)                                                                        | mg/L  | 0.0071              | N/A                   | 0.00010  | 8419986  |
| Dissolved Vanadium (V)                                                                       | mg/L  | <0.0010             | N/A                   | 0.0010   | 8419986  |
| Dissolved Zinc (Zn)                                                                          | mg/L  | 0.0053              | N/A                   | 0.0030   | 8419986  |
| RDL = Reportable Detection Limit<br>Lab-Dup = Laboratory Initiated D<br>N/A = Not Applicable |       |                     |                       |          |          |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                                                 |           | PQ7069      |         |          |  |  |  |
|-------------------------------------------------------------------------------------------|-----------|-------------|---------|----------|--|--|--|
| Sampling Date                                                                             |           | 2016/09/30  |         |          |  |  |  |
|                                                                                           |           | 13:01       |         |          |  |  |  |
| COC Number                                                                                |           | M031906     |         |          |  |  |  |
|                                                                                           | UNITS     | MW16-2-6    | RDL     | QC Batch |  |  |  |
| Calculated Parameters                                                                     |           |             |         |          |  |  |  |
| Anion Sum                                                                                 | meq/L     | 83          | N/A     | 8418022  |  |  |  |
| Cation Sum                                                                                | meq/L     | 83          | N/A     | 8418022  |  |  |  |
| Hardness (CaCO3)                                                                          | mg/L      | 2600        | 0.50    | 8418020  |  |  |  |
| Ion Balance                                                                               | N/A       | 1.0         | 0.010   | 8418021  |  |  |  |
| Dissolved Nitrate (NO3)                                                                   | mg/L      | <0.22       | 0.22    | 8418013  |  |  |  |
| Nitrate plus Nitrite (N)                                                                  | mg/L      | 0.024       | 0.020   | 8418014  |  |  |  |
| Dissolved Nitrite (NO2)                                                                   | mg/L      | 0.078       | 0.033   | 8418013  |  |  |  |
| Calculated Total Dissolved Solids                                                         | mg/L      | 5300        | 10      | 8418023  |  |  |  |
| Misc. Inorganics                                                                          |           |             |         | •        |  |  |  |
| Conductivity                                                                              | uS/cm     | 5900        | 1.0     | 8419207  |  |  |  |
| рН                                                                                        | рН        | 7.95        | N/A     | 8419206  |  |  |  |
| Anions                                                                                    |           |             |         |          |  |  |  |
| Alkalinity (PP as CaCO3)                                                                  | mg/L      | <0.50       | 0.50    | 8419203  |  |  |  |
| Alkalinity (Total as CaCO3)                                                               | mg/L      | 520         | 0.50    | 8419203  |  |  |  |
| Bicarbonate (HCO3)                                                                        | mg/L      | 630         | 0.50    | 8419203  |  |  |  |
| Carbonate (CO3)                                                                           | mg/L      | <0.50       | 0.50    | 8419203  |  |  |  |
| Hydroxide (OH)                                                                            | mg/L      | <0.50       | 0.50    | 8419203  |  |  |  |
| Dissolved Sulphate (SO4)                                                                  | mg/L      | 3500 (1)    | 25      | 8426427  |  |  |  |
| Dissolved Chloride (Cl)                                                                   | mg/L      | 6.0         | 1.0     | 8426417  |  |  |  |
| Nutrients                                                                                 |           |             |         |          |  |  |  |
| Dissolved Nitrite (N)                                                                     | mg/L      | 0.024       | 0.010   | 8419271  |  |  |  |
| Dissolved Nitrate (N)                                                                     | mg/L      | <0.050 (2)  | 0.050   | 8419271  |  |  |  |
| Lab Filtered Elements                                                                     |           |             |         |          |  |  |  |
| Dissolved Aluminum (Al)                                                                   | mg/L      | 0.016       | 0.0030  | 8419977  |  |  |  |
| Dissolved Antimony (Sb)                                                                   | mg/L      | 0.00073     | 0.00060 | 8419977  |  |  |  |
| Dissolved Arsenic (As)                                                                    | mg/L      | 0.0044      | 0.00020 | 8419977  |  |  |  |
| Dissolved Barium (Ba)                                                                     | mg/L      | 0.018       | 0.010   | 8421827  |  |  |  |
| Dissolved Beryllium (Be)                                                                  | mg/L      | <0.0010     | 0.0010  | 8419977  |  |  |  |
| RDL = Reportable Detection Limit                                                          |           |             |         |          |  |  |  |
| N/A = Not Applicable                                                                      |           |             |         |          |  |  |  |
| (1) Detection limits raised due to dilution to bring analyte within the calibrated range. |           |             |         |          |  |  |  |
| (2) Detection limits raised due to r                                                      | matrix in | terference. |         |          |  |  |  |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                                        |       | PQ7069          |              |            |
|----------------------------------------------------------------------------------|-------|-----------------|--------------|------------|
| Sampling Date                                                                    |       | 2016/09/30      |              |            |
|                                                                                  |       | 13:01           |              |            |
| COC Number                                                                       |       | M031906         |              |            |
|                                                                                  | UNITS | MW16-2-6        | RDL          | QC Batch   |
| Dissolved Boron (B)                                                              | mg/L  | 0.11            | 0.020        | 8421827    |
| Dissolved Cadmium (Cd)                                                           | mg/L  | 0.000092        | 0.000020     | 8419977    |
| Dissolved Calcium (Ca)                                                           | mg/L  | 390             | 0.30         | 8421827    |
| Dissolved Chromium (Cr)                                                          | mg/L  | <0.0010         | 0.0010       | 8419977    |
| Dissolved Cobalt (Co)                                                            | mg/L  | 0.0060          | 0.00030      | 8419977    |
| Dissolved Copper (Cu)                                                            | mg/L  | 0.00084         | 0.00020      | 8419977    |
| Dissolved Iron (Fe)                                                              | mg/L  | <0.060          | 0.060        | 8421827    |
| Dissolved Lead (Pb)                                                              | mg/L  | <0.00020        | 0.00020      | 8419977    |
| Dissolved Lithium (Li)                                                           | mg/L  | 0.11            | 0.020        | 8421827    |
| Dissolved Magnesium (Mg)                                                         | mg/L  | 400             | 0.20         | 8421827    |
| Dissolved Manganese (Mn)                                                         | mg/L  | 1.5             | 0.0040       | 8421827    |
| Dissolved Molybdenum (Mo)                                                        | mg/L  | 0.0071          | 0.00020      | 8419977    |
| Dissolved Nickel (Ni)                                                            | mg/L  | 0.016           | 0.00050      | 8419977    |
| Dissolved Phosphorus (P)                                                         | mg/L  | <0.10           | 0.10         | 8421827    |
| Dissolved Potassium (K)                                                          | mg/L  | 9.4             | 0.30         | 8421827    |
| Dissolved Selenium (Se)                                                          | mg/L  | 0.0013          | 0.00020      | 8419977    |
| Dissolved Silicon (Si)                                                           | mg/L  | 5.9             | 0.10         | 8421827    |
| Dissolved Silver (Ag)                                                            | mg/L  | <0.00010        | 0.00010      | 8419977    |
| Dissolved Sodium (Na)                                                            | mg/L  | 690 (1)         | 5.0          | 8421827    |
| Dissolved Strontium (Sr)                                                         | mg/L  | 4.6             | 0.020        | 8421827    |
| Dissolved Sulphur (S)                                                            | mg/L  | 1200 (1)        | 2.0          | 8421827    |
| Dissolved Thallium (Tl)                                                          | mg/L  | <0.00020        | 0.00020      | 8419977    |
| Dissolved Tin (Sn)                                                               | mg/L  | <0.0010         | 0.0010       | 8419977    |
| Dissolved Titanium (Ti)                                                          | mg/L  | < 0.0010        | 0.0010       | 8419977    |
| Dissolved Uranium (U)                                                            | mg/L  | 0.040           | 0.00010      | 8419977    |
| Dissolved Vanadium (V)                                                           | mg/L  | 0.0016          | 0.0010       | 8419977    |
| Dissolved Zinc (Zn)                                                              | mg/L  | 0.016           | 0.0030       | 8419977    |
| RDL = Reportable Detection Limit<br>(1) Detection limits raised due to<br>range. |       | o bring analyte | within the o | calibrated |



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PQ7066              | PQ7066              |        | PQ7067              | PQ7067               |        | PQ7068              |        |          |
|-------------------------------|-----------|---------------------|---------------------|--------|---------------------|----------------------|--------|---------------------|--------|----------|
| Sampling Date                 |           | 2016/09/30<br>12:22 | 2016/09/30<br>12:22 |        | 2016/09/30<br>11:21 | 2016/09/30<br>11:21  |        | 2016/09/30<br>14:02 |        |          |
| COC Number                    |           | M031906             | M031906             |        | M031906             | M031906              |        | M031906             |        |          |
|                               | UNITS     | MW16-9-6            | MW16-9-6<br>Lab-Dup | RDL    | MW16-25-9           | MW16-25-9<br>Lab-Dup | RDL    | MW16-11-15          | RDL    | QC Batch |
| Misc. Inorganics              |           |                     |                     |        |                     |                      |        |                     |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 4.7                 | N/A                 | 0.50   | 5.6                 | N/A                  | 0.50   | 3.1                 | 0.50   | 8422700  |
| Microbiological Param.        | •         | •                   |                     | •      |                     |                      | •      |                     | •      |          |
| E.Coli DST                    | mpn/100mL | <1.0                | N/A                 | 1.0    | <10 (1)             | N/A                  | 10     | <100 (1)            | 100    | 8416950  |
| Fecal Coliforms               | MPN/100mL | <1.0                | N/A                 | 1.0    | <10 (1)             | N/A                  | 10     | <100 (1)            | 100    | 8416953  |
| Heterotrophic Plate Count     | CFU/mL    | 1100                | 1100                | 1.0    | 7900 (2)            | 8300                 | 10     | 23000 (3)           | 100    | 8416947  |
| Total Coliforms DST           | mpn/100mL | 390                 | N/A                 | 1.0    | >2400 (1)           | N/A                  | 10     | 100 (1)             | 100    | 8416950  |
| Nutrients                     |           |                     |                     |        |                     |                      |        |                     |        |          |
| Dissolved Ammonia (N)         | mg/L      | 0.16                | 0.16                | 0.050  | 0.12                | N/A                  | 0.050  | 0.49                | 0.050  | 8423168  |
| Total Kjeldahl Nitrogen       | mg/L      | 0.20                | N/A                 | 0.050  | 0.54 (1)            | N/A                  | 0.25   | 3.7 (1)             | 0.25   | 8421122  |
| Orthophosphate (P)            | mg/L      | 0.0036              | N/A                 | 0.0030 | 0.0086              | N/A                  | 0.0030 | <0.0030             | 0.0030 | 8419663  |
| Dissolved Phosphorus (P)      | mg/L      | 0.0059              | 0.0062              | 0.0030 | 0.016               | N/A                  | 0.0030 | 0.0033              | 0.0030 | 8419539  |
| RDL = Reportable Detection Li | mit       | -                   |                     | •      | •                   | •                    | •      |                     |        |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Spreader colonies were present in the Petri dish. Presence of spreader colonies may obscure other colonies, possibly biasing results.

(3) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.



### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                       |               | PQ7068                | PQ7069          | PQ7069              |          |          |
|---------------------------------|---------------|-----------------------|-----------------|---------------------|----------|----------|
| Sampling Date                   |               | 2016/09/30            | 2016/09/30      | 2016/09/30          |          |          |
|                                 |               | 14:02                 | 13:01           | 13:01               |          |          |
| COC Number                      |               | M031906               | M031906         | M031906             |          |          |
|                                 | UNITS         | MW16-11-15<br>Lab-Dup | MW16-2-6        | MW16-2-6<br>Lab-Dup | RDL      | QC Batch |
| Lab Filtered Inorganics         |               |                       |                 |                     |          |          |
| Dissolved Organic Carbon (C)    | mg/L          | N/A                   | 6.2             | 6.5                 | 0.50     | 8422695  |
| Microbiological Param.          |               |                       |                 |                     |          |          |
| E.Coli DST                      | mpn/100mL     | N/A                   | <100 (1)        | N/A                 | 100      | 8416950  |
| Fecal Coliforms                 | MPN/100mL     | N/A                   | <100 (1)        | N/A                 | 100      | 8416953  |
| Heterotrophic Plate Count       | CFU/mL        | 24000                 | 49000 (2)       | 48000               | 100      | 8416947  |
| Total Coliforms DST             | mpn/100mL     | N/A                   | <100 (1)        | N/A                 | 100      | 8416950  |
| Nutrients                       |               |                       |                 |                     |          |          |
| Total Kjeldahl Nitrogen         | mg/L          | N/A                   | 5.1 (1)         | N/A                 | 0.25     | 8421122  |
| Orthophosphate (P)              | mg/L          | N/A                   | 0.0041          | N/A                 | 0.0030   | 8419663  |
| Lab Filtered Nutrients          | •             |                       |                 |                     |          |          |
| Dissolved Ammonia (N)           | mg/L          | N/A                   | 0.27            | 0.24                | 0.050    | 8423178  |
| Dissolved Phosphorus (P)        | mg/L          | N/A                   | 0.0094          | 0.0090              | 0.0030   | 8422263  |
| RDL = Reportable Detection Li   | nit           |                       |                 |                     |          |          |
| Lab-Dup = Laboratory Initiated  | Duplicate     |                       |                 |                     |          |          |
| N/A = Not Applicable            |               |                       |                 |                     |          |          |
| (1) Due to the sample matrix, s | ample require | d dilution. Dete      | ection limit wa | as adjusted ac      | cordingl | y        |

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.



# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                     |        | PQ7066          |          | PQ7067          |           | PQ7068         | PQ7069     |        |          |
|-------------------------------|--------|-----------------|----------|-----------------|-----------|----------------|------------|--------|----------|
| Sampling Date                 |        | 2016/09/30      |          | 2016/09/30      |           | 2016/09/30     | 2016/09/30 |        |          |
|                               |        | 12:22           |          | 11:21           |           | 14:02          | 13:01      |        |          |
| COC Number                    |        | M031906         |          | M031906         |           | M031906        | M031906    |        |          |
|                               | UNITS  | MW16-9-6        | RDL      | MW16-25-9       | RDL       | MW16-11-15     | MW16-2-6   | RDL    | QC Batch |
| Low Level Elements            |        |                 |          |                 |           |                |            |        |          |
| Dissolved Mercury (Hg)        | ug/L   | <0.0020         | 0.0020   | 0.0035          | 0.0020    | 0.0036         | N/A        | 0.0020 | 8426284  |
| Total Mercury (Hg)            | ug/L   | <0.020 (1)      | 0.020    | <2.0 (1)        | 2.0       | <6.0 (1)       | <6.0 (1)   | 6.0    | 8421406  |
| Lab Filtered Elements-Low     |        |                 |          |                 |           |                |            |        |          |
| Dissolved Mercury (Hg)        | ug/L   | N/A             | N/A      | N/A             | N/A       | N/A            | <0.0020    | 0.0020 | 8421467  |
| RDL = Reportable Detection L  | imit   |                 |          |                 |           |                |            |        |          |
| N/A = Not Applicable          |        |                 |          |                 |           |                |            |        |          |
| (1) Due to the sample matrix, | sample | required diluti | on. Dete | ection limit wa | s adjuste | ed accordingly |            |        |          |



#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.3°C

Results relate only to the items tested.



### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                          |                             | Date       |              |            |           |           |
|---------|------|--------------------------|-----------------------------|------------|--------------|------------|-----------|-----------|
| Batch   | Init | QC Type                  | Parameter                   | Analyzed   | Value        | Recovery   |           | QC Limits |
| 8416947 | GK1  | Method Blank             | Heterotrophic Plate Count   | 2016/10/02 | <1.0         |            | CFU/mL    |           |
| 8416947 | GK1  | RPD                      | Heterotrophic Plate Count   | 2016/10/02 | 3.5          |            | %         | N/A       |
|         |      |                          | Heterotrophic Plate Count   | 2016/10/02 | 6.8          |            | %         | N/A       |
|         |      |                          | Heterotrophic Plate Count   | 2016/10/02 | 0.60         |            | %         | N/A       |
|         |      |                          | Heterotrophic Plate Count   | 2016/10/02 | NC           |            | %         | N/A       |
| 8416947 | GK1  | RPD [PQ7066-09]          | Heterotrophic Plate Count   | 2016/10/02 | 2.2          |            | %         | N/A       |
| 8416947 | GK1  | RPD [PQ7067-09]          | Heterotrophic Plate Count   | 2016/10/02 | 5.4          |            | %         | N/A       |
| 8416947 | GK1  | RPD [PQ7068-09]          | Heterotrophic Plate Count   | 2016/10/02 | 4.3          |            | %         | N/A       |
| 8416947 | GK1  | RPD [PQ7069-09]          | Heterotrophic Plate Count   | 2016/10/02 | 1.5          |            | %         | N/A       |
| 8416950 | GK1  | Method Blank             | E.Coli DST                  | 2016/10/01 | <1.0         |            | mpn/100   | )         |
|         |      |                          | Total Coliforms DST         | 2016/10/01 | <1.0         |            | mpn/100   | )         |
| 8416950 | GK1  | RPD                      | Total Coliforms DST         | 2016/10/01 | NC           |            | %         | N/A       |
| 8416953 | GK1  | Method Blank             | Fecal Coliforms             | 2016/10/01 | <1.0         |            | MPN/10    |           |
| 8416953 | GK1  | RPD                      | Fecal Coliforms             | 2016/10/01 | NC           |            | %         | N/A       |
| 8419203 | LQ1  | Spiked Blank             | Alkalinity (Total as CaCO3) | 2016/10/03 |              | 100        | %         | 80 - 120  |
| 8419203 | LQ1  | Method Blank             | Alkalinity (PP as CaCO3)    | 2016/10/03 | <0.50        |            | mg/L      |           |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/10/03 | <0.50        |            | mg/L      |           |
|         |      |                          | Bicarbonate (HCO3)          | 2016/10/03 | <0.50        |            | mg/L      |           |
|         |      |                          | Carbonate (CO3)             | 2016/10/03 | <0.50        |            | mg/L      |           |
|         |      |                          | Hydroxide (OH)              | 2016/10/03 | <0.50        |            | mg/L      |           |
| 8419203 | LQ1  | RPD [PQ7068-01]          | Alkalinity (PP as CaCO3)    | 2016/10/03 | NC           |            | %         | 20        |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/10/03 | 0.49         |            | %         | 20        |
|         |      |                          | Bicarbonate (HCO3)          | 2016/10/03 | 0.49         |            | %         | 20        |
|         |      |                          | Carbonate (CO3)             | 2016/10/03 | NC           |            | %         | 20        |
|         |      |                          | Hydroxide (OH)              | 2016/10/03 | NC           |            | %         | 20        |
| 8419206 | LQ1  | Spiked Blank             | рН                          | 2016/10/03 |              | 100        | %         | 97 - 103  |
| 8419206 | LQ1  | RPD [PQ7068-01]          | pH                          | 2016/10/03 | 0.054        |            | %         | N/A       |
| 8419207 | LQ1  | Spiked Blank             | Conductivity                | 2016/10/03 |              | 102        | %         | 90 - 110  |
| 8419207 | LQ1  | Method Blank             | Conductivity                | 2016/10/03 | <1.0         |            | uS/cm     |           |
| 8419207 | LQ1  | RPD [PQ7068-01]          | Conductivity                | 2016/10/03 | 0.33         |            | %         | 20        |
| 8419208 | LSH  | Matrix Spike             | O-TERPHENYL (sur.)          | 2016/10/03 |              | 101        | %         | 50 - 130  |
|         |      |                          | F2 (C10-C16 Hydrocarbons)   | 2016/10/03 |              | 100        | %         | 50 - 130  |
| 8419208 | LSH  | Spiked Blank             | O-TERPHENYL (sur.)          | 2016/10/03 |              | 97         | %         | 50 - 130  |
| 0.10100 |      |                          | F2 (C10-C16 Hydrocarbons)   | 2016/10/03 |              | 96         | %         | 70 - 130  |
| 8419208 | LSH  | Method Blank             | O-TERPHENYL (sur.)          | 2016/10/03 |              | 98         | %         | 50 - 130  |
| 0115200 | 2011 | Method Blank             | F2 (C10-C16 Hydrocarbons)   | 2016/10/03 | <0.10        | 50         | mg/L      | 50 150    |
| 8419208 | LSH  | RPD                      | F2 (C10-C16 Hydrocarbons)   | 2016/10/03 | NC           |            | %         | 40        |
| 8419271 |      | Matrix Spike [PQ7066-01] |                             | 2016/10/03 | Ne           | 102        | %         | 80 - 120  |
| 0415271 | LQI  |                          | Dissolved Nitrate (N)       | 2016/10/03 |              | 102        | %         | 80 - 120  |
| 8419271 | 101  | Spiked Blank             | Dissolved Nitrite (N)       | 2016/10/03 |              | 103        | %         | 80 - 120  |
| 0415271 | LQI  | Spiked Blank             | Dissolved Nitrate (N)       | 2016/10/03 |              | 101        | %         | 80 - 120  |
| 8419271 | LQ1  | Method Blank             | Dissolved Nitrite (N)       | 2016/10/03 | <0.010       | 102        | mg/L      | 80 - 120  |
| 0419271 | LQI  |                          | Dissolved Nitrate (N)       | 2016/10/03 | <0.010       |            | -         |           |
| 8419271 | LQ1  | RPD [PQ7066-01]          | Dissolved Nitrite (N)       | 2016/10/03 | <0.010<br>NC |            | mg/L<br>% | 20        |
| 0419271 | LQI  | KPD [PQ7000-01]          |                             |            |              |            |           |           |
| Q/10E20 | MDE  | Matrix Spika [DOJOSE 02] | Dissolved Nitrate (N)       | 2016/10/03 | NC           | 07         | %         | 20        |
| 8419539 | MB5  | Matrix Spike [PQ7066-03] | Dissolved Phosphorus (P)    | 2016/10/04 |              | 97         | %         | 80 - 120  |
| 8419539 | MB5  |                          | Dissolved Phosphorus (P)    | 2016/10/04 |              | 99<br>102  | %         | 80 - 120  |
| 8419539 | MB5  |                          | Dissolved Phosphorus (P)    | 2016/10/04 | <0.0020      | 102        | %         | 80 - 120  |
| 8419539 | MB5  |                          | Dissolved Phosphorus (P)    | 2016/10/04 | <0.0030      |            | mg/L      | 20        |
| 8419539 | MB5  | RPD [PQ7066-03]          | Dissolved Phosphorus (P)    | 2016/10/04 | NC           | <b>a</b> - | %         | 20        |
| 8419663 | MB5  | Matrix Spike             | Orthophosphate (P)          | 2016/10/03 |              | 96         | %         | 80 - 120  |
| 8419663 | MB5  | Spiked Blank             | Orthophosphate (P)          | 2016/10/03 |              | 101        | %         | 80 - 120  |



| QA/QC   |      |              |                           | Date       |            |          |       |           |
|---------|------|--------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
| 8419663 | MB5  | Method Blank | Orthophosphate (P)        | 2016/10/03 | <0.0030    |          | mg/L  |           |
| 8419663 | MB5  | RPD          | Orthophosphate (P)        | 2016/10/03 | NC         |          | %     | 20        |
| 8419977 | PC5  | Matrix Spike | Dissolved Aluminum (Al)   | 2016/10/04 |            | 120      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 |            | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 |            | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 112      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 108      | %     | 80 - 120  |
| 8419977 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/04 |            | 114      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 |            | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 110      | %     | 80 - 120  |
| 8419977 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/04 | 0.0031,    |          | mg/L  |           |
|         |      |              |                           |            | RDL=0.0030 |          |       |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 | <0.00060   |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 | <0.000020  |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 | <0.00030   |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 | <0.00050   |          | mg/L  |           |



Report Date: 2016/10/11

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                           | Date       |            |          |       |           |
|---------|------|--------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 | < 0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 | < 0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/04 | < 0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 | < 0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 | < 0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 | < 0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 | <0.0010    |          | mg/L  |           |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 | 0.0030,    |          | mg/L  |           |
|         |      |              |                           |            | RDL=0.0030 |          | 0.    |           |
| 8419977 | PC5  | RPD          | Dissolved Aluminum (Al)   | 2016/10/04 | NC         |          | %     | 20        |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 | NC         |          | %     | 20        |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 | NC         |          | %     | 20        |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 | NC         |          | %     | 20        |
| 8419986 | STI  | Matrix Spike | Dissolved Aluminum (Al)   | 2016/10/04 |            | 120      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 |            | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 |            | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 |            | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 86       | %     | 80 - 120  |
| 8419986 | STI  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/04 |            | 123 (1)  | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/04 |            | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/04 |            | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/04 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/04 |            | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/04 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/04 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/04 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/04 |            | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/04 |            | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/04 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/04 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/04 |            | 95       | %     | 80 - 120  |
| 8419986 | STI  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/04 | <0.0030    |          | mg/L  |           |



| QA/QC   |      |               |                                                    | Date       |               |          |             |           |
|---------|------|---------------|----------------------------------------------------|------------|---------------|----------|-------------|-----------|
| Batch   | Init | QC Type       | Parameter                                          | Analyzed   | Value         | Recovery | UNITS       | QC Limits |
|         |      |               | Dissolved Antimony (Sb)                            | 2016/10/04 | <0.00060      |          | mg/L        |           |
|         |      |               | Dissolved Arsenic (As)                             | 2016/10/04 | <0.00020      |          | mg/L        |           |
|         |      |               | Dissolved Beryllium (Be)                           | 2016/10/04 | < 0.0010      |          | mg/L        |           |
|         |      |               | Dissolved Cadmium (Cd)                             | 2016/10/04 | <0.000020     |          | mg/L        |           |
|         |      |               | Dissolved Chromium (Cr)                            | 2016/10/04 | < 0.0010      |          | mg/L        |           |
|         |      |               | Dissolved Cobalt (Co)                              | 2016/10/04 | < 0.00030     |          | mg/L        |           |
|         |      |               | Dissolved Copper (Cu)                              | 2016/10/04 | <0.00020      |          | mg/L        |           |
|         |      |               | Dissolved Lead (Pb)                                | 2016/10/04 | < 0.00020     |          | mg/L        |           |
|         |      |               | Dissolved Molybdenum (Mo)                          | 2016/10/04 | < 0.00020     |          | mg/L        |           |
|         |      |               | Dissolved Nickel (Ni)                              | 2016/10/04 | < 0.00050     |          | mg/L        |           |
|         |      |               | Dissolved Selenium (Se)                            | 2016/10/04 | < 0.00020     |          | mg/L        |           |
|         |      |               | Dissolved Silver (Ag)                              | 2016/10/04 | < 0.00010     |          | mg/L        |           |
|         |      |               | Dissolved Thallium (TI)                            | 2016/10/04 | <0.00020      |          | mg/L        |           |
|         |      |               | Dissolved Tin (Sn)                                 | 2016/10/04 | < 0.0010      |          | mg/L        |           |
|         |      |               | Dissolved Titanium (Ti)                            | 2016/10/04 | <0.0010       |          | mg/L        |           |
|         |      |               | Dissolved Uranium (U)                              | 2016/10/04 | < 0.00010     |          | mg/L        |           |
|         |      |               | Dissolved Vanadium (V)                             | 2016/10/04 | <0.0010       |          | mg/L        |           |
|         |      |               | Dissolved Zinc (Zn)                                | 2016/10/04 | <0.0010       |          | mg/L        |           |
| 8419986 | STI  | RPD           | Dissolved Aluminum (Al)                            | 2016/10/04 | <0.0030<br>NC |          | 111g/L<br>% | 20        |
| 0415500 | 511  |               | Dissolved Antimony (Sb)                            | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Artenic (As)                             | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Arsenic (AS)<br>Dissolved Beryllium (Be) | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Berymun (Be)                             | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Cobalt (Co)                              | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Copper (Cu)                              | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Copper (Cd)<br>Dissolved Lead (Pb)       | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Lead (PD)<br>Dissolved Molybdenum (Mo)   | 2016/10/04 | 0.86          |          | %           | 20        |
|         |      |               | Dissolved Nickel (Ni)                              | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Nickel (N)<br>Dissolved Selenium (Se)    | 2016/10/04 | 1.9           |          | %           | 20        |
|         |      |               |                                                    |            |               |          |             | 20        |
|         |      |               | Dissolved Silver (Ag)                              | 2016/10/04 | NC            |          | %<br>%      |           |
|         |      |               | Dissolved Thallium (TI)                            | 2016/10/04 | NC            |          | %           | 20<br>20  |
|         |      |               | Dissolved Tin (Sn)                                 | 2016/10/04 | NC            |          |             |           |
|         |      |               | Dissolved Titanium (Ti)                            | 2016/10/04 | NC            |          | %           | 20        |
|         |      |               | Dissolved Uranium (U)                              | 2016/10/04 | 1.1           |          | %           | 20        |
|         |      |               | Dissolved Vanadium (V)                             | 2016/10/04 | NC            |          | %           | 20        |
| 0424422 |      | Matuin Calles | Dissolved Zinc (Zn)                                | 2016/10/04 | NC            | NG       | %           | 20        |
| 8421122 |      | Matrix Spike  | Total Kjeldahl Nitrogen                            | 2016/10/05 |               | NC       | %           | 80 - 120  |
| 8421122 |      | QC Standard   | Total Kjeldahl Nitrogen                            | 2016/10/05 |               | 94       | %           | 80 - 120  |
| 8421122 |      | Spiked Blank  | Total Kjeldahl Nitrogen                            | 2016/10/05 | -0.050        | 92       | %           | 80 - 120  |
| 8421122 | MB5  | Method Blank  | Total Kjeldahl Nitrogen                            | 2016/10/05 | <0.050        |          | mg/L        | •••       |
| 8421122 | MB5  | RPD           | Total Kjeldahl Nitrogen                            | 2016/10/05 | 12            |          | %           | 20        |
| 8421406 | RK3  | Matrix Spike  | Total Mercury (Hg)                                 | 2016/10/04 |               | 105      | %           | 80 - 120  |
| 8421406 | RK3  | Spiked Blank  | Total Mercury (Hg)                                 | 2016/10/04 |               | 97       | %           | 80 - 120  |
| 8421406 | RK3  | Method Blank  | Total Mercury (Hg)                                 | 2016/10/04 | <0.0020       |          | ug/L        | •••       |
| 8421406 | RK3  | RPD           | Total Mercury (Hg)                                 | 2016/10/04 | NC            |          | %           | 20        |
| 8421467 | RK3  | Matrix Spike  | Dissolved Mercury (Hg)                             | 2016/10/04 |               | 105      | %           | 80 - 120  |
| 8421467 | RK3  | Spiked Blank  | Dissolved Mercury (Hg)                             | 2016/10/04 |               | 104      | %           | 80 - 120  |
| 8421467 | RK3  | Method Blank  | Dissolved Mercury (Hg)                             | 2016/10/04 | <0.0020       |          | ug/L        |           |
| 8421467 | RK3  | RPD           | Dissolved Mercury (Hg)                             | 2016/10/04 | NC            |          | %           | 20        |
| 8421827 | JHC  | Matrix Spike  | Dissolved Barium (Ba)                              | 2016/10/05 |               | 94       | %           | 80 - 120  |
|         |      |               | Dissolved Boron (B)                                | 2016/10/05 |               | 92       | %           | 80 - 120  |
|         |      |               | Dissolved Calcium (Ca)                             | 2016/10/05 |               | 103      | %           | 80 - 120  |



Report Date: 2016/10/11

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                          | Date       |          |          |       |           |
|---------|------|--------------------------|--------------------------|------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                | Analyzed   | Value    | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Iron (Fe)      | 2016/10/05 |          | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Lithium (Li)   | 2016/10/05 |          | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Magnesium (Mg) | 2016/10/05 |          | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Manganese (Mn) | 2016/10/05 |          | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Phosphorus (P) | 2016/10/05 |          | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Potassium (K)  | 2016/10/05 |          | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Silicon (Si)   | 2016/10/05 |          | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)    | 2016/10/05 |          | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Strontium (Sr) | 2016/10/05 |          | 94       | %     | 80 - 120  |
| 8421827 | JHC  | Spiked Blank             | Dissolved Barium (Ba)    | 2016/10/05 |          | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Boron (B)      | 2016/10/05 |          | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Calcium (Ca)   | 2016/10/05 |          | 103      | %     | 80 - 120  |
|         |      |                          | Dissolved Iron (Fe)      | 2016/10/05 |          | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Lithium (Li)   | 2016/10/05 |          | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Magnesium (Mg) | 2016/10/05 |          | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Manganese (Mn) | 2016/10/05 |          | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Phosphorus (P) | 2016/10/05 |          | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Potassium (K)  | 2016/10/05 |          | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Silicon (Si)   | 2016/10/05 |          | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)    | 2016/10/05 |          | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Strontium (Sr) | 2016/10/05 |          | 96       | %     | 80 - 120  |
| 8421827 | JHC  | Method Blank             | Dissolved Barium (Ba)    | 2016/10/05 | <0.010   |          | mg/L  |           |
|         |      |                          | Dissolved Boron (B)      | 2016/10/05 | <0.020   |          | mg/L  |           |
|         |      |                          | Dissolved Calcium (Ca)   | 2016/10/05 | < 0.30   |          | mg/L  |           |
|         |      |                          | Dissolved Iron (Fe)      | 2016/10/05 | < 0.060  |          | mg/L  |           |
|         |      |                          | Dissolved Lithium (Li)   | 2016/10/05 | <0.020   |          | mg/L  |           |
|         |      |                          | Dissolved Magnesium (Mg) | 2016/10/05 | <0.20    |          | mg/L  |           |
|         |      |                          | Dissolved Manganese (Mn) | 2016/10/05 | < 0.0040 |          | mg/L  |           |
|         |      |                          | Dissolved Phosphorus (P) | 2016/10/05 | <0.10    |          | mg/L  |           |
|         |      |                          | Dissolved Potassium (K)  | 2016/10/05 | <0.30    |          | mg/L  |           |
|         |      |                          | Dissolved Silicon (Si)   | 2016/10/05 | <0.10    |          | mg/L  |           |
|         |      |                          | Dissolved Sodium (Na)    | 2016/10/05 | <0.50    |          | mg/L  |           |
|         |      |                          | Dissolved Strontium (Sr) | 2016/10/05 | <0.020   |          | mg/L  |           |
|         |      |                          | Dissolved Sulphur (S)    | 2016/10/05 | <0.20    |          | mg/L  |           |
| 8421827 | JHC  | RPD                      | Dissolved Barium (Ba)    | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Boron (B)      | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Calcium (Ca)   | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Iron (Fe)      | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Lithium (Li)   | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Magnesium (Mg) | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Manganese (Mn) | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Phosphorus (P) | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Potassium (K)  | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Silicon (Si)   | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Sodium (Na)    | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Strontium (Sr) | 2016/10/05 | NC       |          | %     | 20        |
|         |      |                          | Dissolved Sulphur (S)    | 2016/10/05 | NC       |          | %     | 20        |
| 8422263 | MB5  | Matrix Spike [PQ7069-01] | Dissolved Phosphorus (P) | 2016/10/05 |          | 94       | %     | 80 - 120  |
| 8422263 | MB5  | QC Standard              | Dissolved Phosphorus (P) | 2016/10/05 |          | 102      | %     | 80 - 120  |
| 8422263 | MB5  | Spiked Blank             | Dissolved Phosphorus (P) | 2016/10/05 |          | 102      | %     | 80 - 120  |
| 8422263 | MB5  | Method Blank             | Dissolved Phosphorus (P) | 2016/10/05 | <0.0030  | 105      | mg/L  | 00 120    |
| 84///63 |      |                          |                          |            | V.UUJU   |          |       |           |



| QA/QC     |      |                          |                              | Date                     |           |          |           |           |
|-----------|------|--------------------------|------------------------------|--------------------------|-----------|----------|-----------|-----------|
| Batch     | Init | QC Type                  | Parameter                    | Analyzed                 | Value     | Recovery | UNITS     | QC Limits |
| 8422695   | MUK  | Matrix Spike [PQ7069-01] | Dissolved Organic Carbon (C) | 2016/10/05               |           | NC       | %         | 80 - 120  |
| 8422695   | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/05               |           | 104      | %         | 80 - 120  |
| 8422695   | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/05               | <0.50     |          | mg/L      |           |
| 8422695   | MUK  | RPD [PQ7069-01]          | Dissolved Organic Carbon (C) | 2016/10/05               | 3.6       |          | %         | 20        |
| 8422700   | MUK  | Matrix Spike             | Dissolved Organic Carbon (C) | 2016/10/05               |           | NC       | %         | 80 - 120  |
| 8422700   | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/05               |           | 95       | %         | 80 - 120  |
| 8422700   | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/05               | <0.50     |          | mg/L      |           |
| 8422700   | MUK  | RPD                      | Dissolved Organic Carbon (C) | 2016/10/05               | 3.0       |          | %         | 20        |
| 8423168   | MB5  | Matrix Spike [PQ7066-03] | Dissolved Ammonia (N)        | 2016/10/05               |           | 93       | %         | 80 - 120  |
| 8423168   | MB5  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/10/05               |           | 94       | %         | 80 - 120  |
| 8423168   | MB5  | Method Blank             | Dissolved Ammonia (N)        | 2016/10/05               | <0.050    |          | mg/L      |           |
| 8423168   | MB5  | RPD [PQ7066-03]          | Dissolved Ammonia (N)        | 2016/10/05               | NC        |          | %         | 20        |
| 8423178   | MB5  | Matrix Spike [PQ7069-01] | Dissolved Ammonia (N)        | 2016/10/06               |           | 83       | %         | 80 - 120  |
| 8423178   | MB5  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/10/05               |           | 97       | %         | 80 - 120  |
| 8423178   | MB5  | Method Blank             | Dissolved Ammonia (N)        | 2016/10/05               | <0.050    |          | mg/L      |           |
| 8423178   | MB5  | RPD [PQ7069-01]          | Dissolved Ammonia (N)        | 2016/10/05               | NC        |          | %         | 20        |
| 8424673   | RSA  | Matrix Spike [PQ7067-08] | 1,4-Difluorobenzene (sur.)   | 2016/10/07               |           | 103      | %         | 70 - 130  |
|           |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/07               |           | 106      | %         | 70 - 130  |
|           |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/07               |           | 114      | %         | 70 - 130  |
|           |      |                          | Benzene                      | 2016/10/07               |           | 89       | %         | 70 - 130  |
|           |      |                          | Toluene                      | 2016/10/07               |           | 89       | %         | 70 - 130  |
|           |      |                          | Ethylbenzene                 | 2016/10/07               |           | 91       | %         | 70 - 130  |
|           |      |                          | m & p-Xylene                 | 2016/10/07               |           | 90       | %         | 70 - 130  |
|           |      |                          | o-Xylene                     | 2016/10/07               |           | 91       | %         | 70 - 130  |
|           |      |                          | F1 (C6-C10)                  | 2016/10/07               |           | 84       | %         | 70 - 130  |
| 8424673   | RSA  | Spiked Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/07               |           | 104      | %         | 70 - 130  |
|           |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/07               |           | 106      | %         | 70 - 130  |
|           |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/07               |           | 112      | %         | 70 - 130  |
|           |      |                          | Benzene                      | 2016/10/07               |           | 88       | %         | 70 - 130  |
|           |      |                          | Toluene                      | 2016/10/07               |           | 89       | %         | 70 - 130  |
|           |      |                          | Ethylbenzene                 | 2016/10/07               |           | 92       | %         | 70 - 130  |
|           |      |                          | m & p-Xylene                 | 2016/10/07               |           | 91       | %         | 70 - 130  |
|           |      |                          | o-Xylene                     | 2016/10/07               |           | 91       | %         | 70 - 130  |
| 0.40.4670 |      |                          | F1 (C6-C10)                  | 2016/10/07               |           | 87       | %         | 70 - 130  |
| 8424673   | RSA  | Method Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/08               |           | 112      | %         | 70 - 130  |
|           |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/08               |           | 105      | %         | 70 - 130  |
|           |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/08               |           | 105      | %         | 70 - 130  |
|           |      |                          | Benzene                      | 2016/10/08               | < 0.00040 |          | mg/L      |           |
|           |      |                          | Toluene                      | 2016/10/08               | <0.00040  |          | mg/L      |           |
|           |      |                          | Ethylbenzene                 | 2016/10/08               | <0.00040  |          | mg/L      |           |
|           |      |                          | m & p-Xylene                 | 2016/10/08               | <0.00080  |          | mg/L      |           |
|           |      |                          | o-Xylene                     | 2016/10/08               | <0.00040  |          | mg/L      |           |
|           |      |                          | Xylenes (Total)              | 2016/10/08               | <0.00080  |          | mg/L      |           |
|           |      |                          | F1 (C6-C10) - BTEX           | 2016/10/08               | <0.10     |          | mg/L      |           |
| 9121672   | DCV  |                          | F1 (C6-C10)                  | 2016/10/08<br>2016/10/08 | <0.10     |          | mg/L<br>% | 40        |
| 8424673   | RSA  | RPD [PQ7066-08]          | Benzene                      |                          | NC        |          | %<br>%    | 40<br>40  |
|           |      |                          | Toluene<br>Ethylbenzene      | 2016/10/08<br>2016/10/08 | NC<br>NC  |          | %         | 40<br>40  |
|           |      |                          | m & p-Xylene                 | 2016/10/08               | NC        |          | %         | 40<br>40  |
|           |      |                          | o-Xylene                     | 2016/10/08               | NC        |          | %         | 40<br>40  |
|           |      |                          | Xylenes (Total)              | 2016/10/08               | NC        |          | %         | 40<br>40  |
|           |      |                          | F1 (C6-C10) - BTEX           | 2016/10/08               | NC        |          | %         | 40<br>40  |
| L         |      |                          |                              | 2010/10/08               | NC        |          | /0        | +0        |



Report Date: 2016/10/11

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC    |       |              |                                                     | Date       |         |          |       |           |
|----------|-------|--------------|-----------------------------------------------------|------------|---------|----------|-------|-----------|
| Batch    | Init  | QC Type      | Parameter                                           | Analyzed   | Value   | Recovery | UNITS | QC Limits |
|          |       |              | F1 (C6-C10)                                         | 2016/10/08 | NC      |          | %     | 40        |
| 8424941  | MAP   | Matrix Spike | Dissolved Barium (Ba)                               | 2016/10/08 |         | 99       | %     | 80 - 120  |
|          |       |              | Dissolved Boron (B)                                 | 2016/10/08 |         | 95       | %     | 80 - 120  |
|          |       |              | Dissolved Calcium (Ca)                              | 2016/10/08 |         | NC       | %     | 80 - 120  |
|          |       |              | Dissolved Iron (Fe)                                 | 2016/10/08 |         | 97       | %     | 80 - 120  |
|          |       |              | Dissolved Lithium (Li)                              | 2016/10/08 |         | 108      | %     | 80 - 120  |
|          |       |              | Dissolved Magnesium (Mg)                            | 2016/10/08 |         | NC       | %     | 80 - 120  |
|          |       |              | Dissolved Manganese (Mn)                            | 2016/10/08 |         | NC       | %     | 80 - 120  |
|          |       |              | Dissolved Phosphorus (P)                            | 2016/10/08 |         | 103      | %     | 80 - 120  |
|          |       |              | Dissolved Potassium (K)                             | 2016/10/08 |         | 112      | %     | 80 - 120  |
|          |       |              | Dissolved Silicon (Si)                              | 2016/10/08 |         | NC       | %     | 80 - 120  |
|          |       |              | Dissolved Sodium (Na)                               | 2016/10/08 |         | NC       | %     | 80 - 120  |
|          |       |              | Dissolved Strontium (Sr)                            | 2016/10/08 |         | NC       | %     | 80 - 120  |
| 8424941  | MAP   | Spiked Blank | Dissolved Barium (Ba)                               | 2016/10/07 |         | 95       | %     | 80 - 120  |
|          |       | - F          | Dissolved Boron (B)                                 | 2016/10/07 |         | 90       | %     | 80 - 120  |
|          |       |              | Dissolved Calcium (Ca)                              | 2016/10/07 |         | 104      | %     | 80 - 120  |
|          |       |              | Dissolved Iron (Fe)                                 | 2016/10/07 |         | 101      | %     | 80 - 120  |
|          |       |              | Dissolved Lithium (Li)                              | 2016/10/07 |         | 95       | %     | 80 - 120  |
|          |       |              | Dissolved Magnesium (Mg)                            | 2016/10/07 |         | 100      | %     | 80 - 120  |
|          |       |              | Dissolved Manganese (Mn)                            | 2016/10/07 |         | 98       | %     | 80 - 120  |
|          |       |              | Dissolved Phosphorus (P)                            | 2016/10/07 |         | 97       | %     | 80 - 120  |
|          |       |              | Dissolved Potassium (K)                             | 2016/10/07 |         | 95       | %     | 80 - 120  |
|          |       |              | Dissolved Silicon (Si)                              | 2016/10/07 |         | 97       | %     | 80 - 120  |
|          |       |              | Dissolved Sodium (Na)                               | 2016/10/07 |         | 97       | %     | 80 - 120  |
|          |       |              | Dissolved Strontium (Sr)                            | 2016/10/07 |         | 96       | %     | 80 - 120  |
| 8424941  | MAP   | Method Blank | Dissolved Barium (Ba)                               | 2016/10/07 | <0.010  | 50       | mg/L  | 00 110    |
| 0.2.0.12 |       |              | Dissolved Boron (B)                                 | 2016/10/07 | < 0.020 |          | mg/L  |           |
|          |       |              | Dissolved Calcium (Ca)                              | 2016/10/07 | < 0.30  |          | mg/L  |           |
|          |       |              | Dissolved Iron (Fe)                                 | 2016/10/07 | <0.060  |          | mg/L  |           |
|          |       |              | Dissolved Lithium (Li)                              | 2016/10/07 | <0.020  |          | mg/L  |           |
|          |       |              | Dissolved Magnesium (Mg)                            | 2016/10/07 | <0.20   |          | mg/L  |           |
|          |       |              | Dissolved Manganese (Mn)                            | 2016/10/07 | <0.0040 |          | mg/L  |           |
|          |       |              | Dissolved Phosphorus (P)                            | 2016/10/07 | <0.10   |          | mg/L  |           |
|          |       |              | Dissolved Potassium (K)                             | 2016/10/07 | <0.30   |          | mg/L  |           |
|          |       |              | Dissolved Silicon (Si)                              | 2016/10/07 | <0.10   |          | mg/L  |           |
|          |       |              | Dissolved Sodium (Na)                               | 2016/10/07 | < 0.50  |          | mg/L  |           |
|          |       |              | Dissolved Strontium (Sr)                            | 2016/10/07 | <0.020  |          | mg/L  |           |
|          |       |              | Dissolved Sulphur (S)                               | 2016/10/07 | <0.20   |          | mg/L  |           |
| 8424941  | MAP   | RPD          | Dissolved Barium (Ba)                               | 2016/10/07 | NC      |          | %     | 20        |
| 0424541  | IVIAI |              | Dissolved Boron (B)                                 | 2016/10/07 | 0.58    |          | %     | 20        |
|          |       |              | Dissolved Calcium (Ca)                              | 2016/10/07 | 0.041   |          | %     | 20        |
|          |       |              | Dissolved Iron (Fe)                                 | 2016/10/07 | 2.2     |          | %     | 20        |
|          |       |              | Dissolved Lithium (Li)                              | 2016/10/07 | 1.6     |          | %     | 20        |
|          |       |              | Dissolved Magnesium (Mg)                            | 2016/10/07 | 10      |          | %     | 20        |
|          |       |              | Dissolved Magnesium (Mg)                            | 2016/10/07 | 2.5     |          | %     | 20        |
|          |       |              | Dissolved Phosphorus (P)                            | 2016/10/07 | NC      |          | %     | 20        |
|          |       |              | Dissolved Phospholus (P)<br>Dissolved Potassium (K) | 2016/10/07 | 0.27    |          | %     | 20        |
|          |       |              | Dissolved Silicon (Si)                              | 2016/10/07 | 0.27    |          | %     | 20        |
|          |       |              | Dissolved Solicon (Si)<br>Dissolved Sodium (Na)     | 2016/10/07 |         |          | %     | 20        |
|          |       |              |                                                     |            | 11      |          |       |           |
|          |       |              | Dissolved Strontium (Sr)                            | 2016/10/07 | 0.080   |          | %     | 20        |
| 0105051  | KD0   | Matrix Saika | Dissolved Sulphur (S)                               | 2016/10/07 | 9.8     |          | %     | 20        |
| 8425251  | KP9   | Matrix Spike | Dissolved Chloride (Cl)                             | 2016/10/06 |         | NC       | %     | 80 - 120  |



#### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |              |                          | Date       |         |          |       |           |
|---------|------|--------------|--------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                | Analyzed   | Value   | Recovery | UNITS | QC Limits |
| 8425251 | KP9  | Spiked Blank | Dissolved Chloride (Cl)  | 2016/10/06 |         | 107      | %     | 80 - 120  |
| 8425251 | KP9  | Method Blank | Dissolved Chloride (Cl)  | 2016/10/06 | <1.0    |          | mg/L  |           |
| 8425251 | KP9  | RPD          | Dissolved Chloride (Cl)  | 2016/10/06 | 0.071   |          | %     | 20        |
| 8425254 | KP9  | Matrix Spike | Dissolved Sulphate (SO4) | 2016/10/06 |         | NC       | %     | 80 - 120  |
| 8425254 | KP9  | Spiked Blank | Dissolved Sulphate (SO4) | 2016/10/06 |         | 104      | %     | 80 - 120  |
| 8425254 | KP9  | Method Blank | Dissolved Sulphate (SO4) | 2016/10/06 | <1.0    |          | mg/L  |           |
| 8425254 | KP9  | RPD          | Dissolved Sulphate (SO4) | 2016/10/06 | 0.53    |          | %     | 20        |
| 8425265 | KP9  | Matrix Spike | Dissolved Chloride (Cl)  | 2016/10/06 |         | 108      | %     | 80 - 120  |
| 8425265 | KP9  | Spiked Blank | Dissolved Chloride (Cl)  | 2016/10/06 |         | 106      | %     | 80 - 120  |
| 8425265 | KP9  | Method Blank | Dissolved Chloride (Cl)  | 2016/10/06 | <1.0    |          | mg/L  |           |
| 8425265 | KP9  | RPD          | Dissolved Chloride (Cl)  | 2016/10/06 | NC      |          | %     | 20        |
| 8425289 | KP9  | Matrix Spike | Dissolved Sulphate (SO4) | 2016/10/06 |         | 112      | %     | 80 - 120  |
| 8425289 | KP9  | Spiked Blank | Dissolved Sulphate (SO4) | 2016/10/06 |         | 102      | %     | 80 - 120  |
| 8425289 | KP9  | Method Blank | Dissolved Sulphate (SO4) | 2016/10/06 | <1.0    |          | mg/L  |           |
| 8425289 | KP9  | RPD          | Dissolved Sulphate (SO4) | 2016/10/06 | NC      |          | %     | 20        |
| 8426284 | RK3  | Matrix Spike | Dissolved Mercury (Hg)   | 2016/10/07 |         | 102      | %     | 80 - 120  |
| 8426284 | RK3  | Spiked Blank | Dissolved Mercury (Hg)   | 2016/10/07 |         | 90       | %     | 80 - 120  |
| 8426284 | RK3  | Method Blank | Dissolved Mercury (Hg)   | 2016/10/07 | <0.0020 |          | ug/L  |           |
| 8426284 | RK3  | RPD          | Dissolved Mercury (Hg)   | 2016/10/07 | NC      |          | %     | 20        |
| 8426417 | ZI   | Matrix Spike | Dissolved Chloride (Cl)  | 2016/10/07 |         | NC       | %     | 80 - 120  |
| 8426417 | ZI   | Spiked Blank | Dissolved Chloride (Cl)  | 2016/10/07 |         | 102      | %     | 80 - 120  |
| 8426417 | ZI   | Method Blank | Dissolved Chloride (Cl)  | 2016/10/07 | 1.0,    |          | mg/L  |           |
|         |      |              |                          |            | RDL=1.0 |          |       |           |
| 8426417 | ZI   | RPD          | Dissolved Chloride (Cl)  | 2016/10/07 | 4.0     |          | %     | 20        |
| 8426427 | ZI   | Matrix Spike | Dissolved Sulphate (SO4) | 2016/10/07 |         | NC       | %     | 80 - 120  |
| 8426427 | ZI   | Spiked Blank | Dissolved Sulphate (SO4) | 2016/10/07 |         | 102      | %     | 80 - 120  |
| 8426427 | ZI   | Method Blank | Dissolved Sulphate (SO4) | 2016/10/07 | <1.0    |          | mg/L  |           |
| 8426427 | ZI   | RPD          | Dissolved Sulphate (SO4) | 2016/10/07 | 0.59    |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



Report Date: 2016/10/11

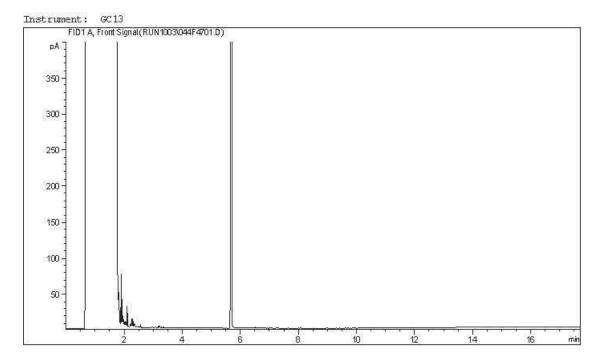
STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## VALIDATION SIGNATURE PAGE

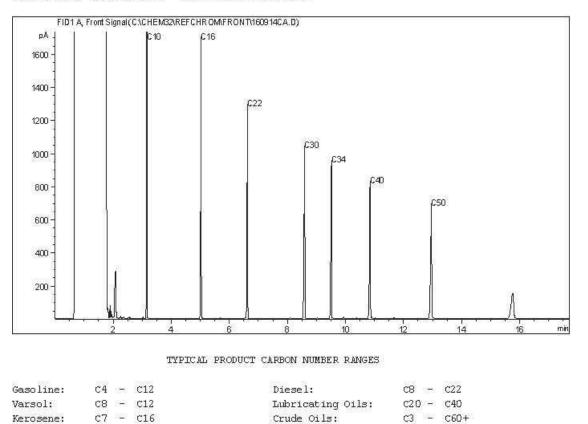
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

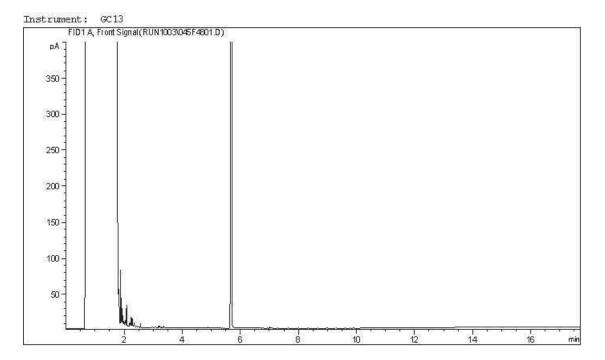
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

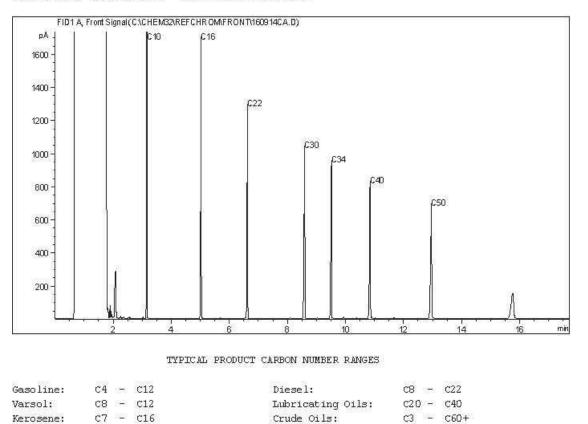

unchi Gras

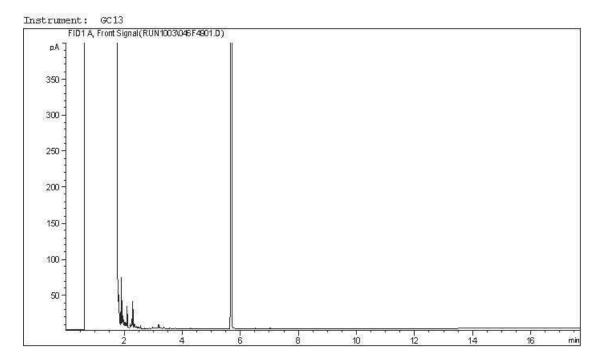
Janet Gao, B.Sc., QP, Supervisor, Organics


Harry (Peng) Liang, Senior Analyst

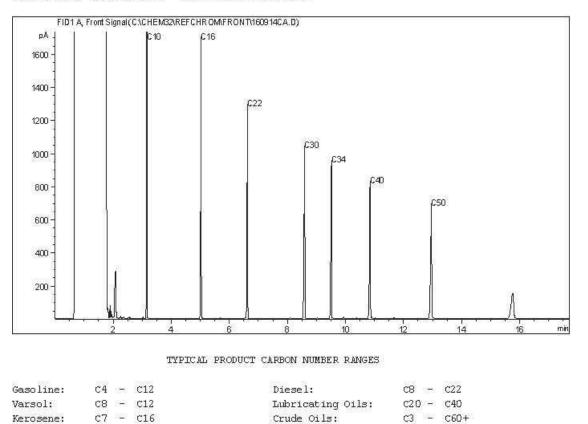

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

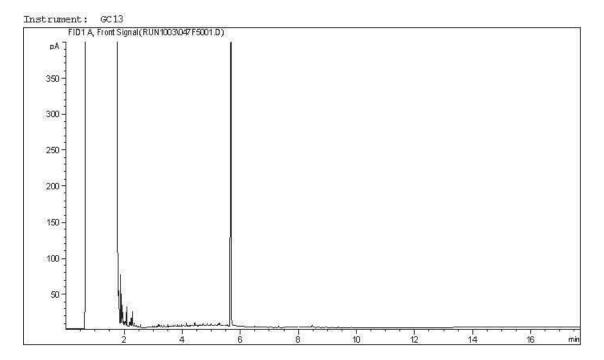
| company: Stantec Consulting 4d.<br>Contact Name: Dylan King      | Company:                                                                                                        | Contraction &                                                 |                                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Contact Name: Dylan King                                         |                                                                                                                 | Quotation #:                                                  | L 5 - 7 Days Regular (Most analyses)                                                  |
| - PICINI                                                         | Contact Name:                                                                                                   | P.O. #/ AFE#:                                                 | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS                                       |
| Address: 10160 112 St. Edmonton                                  | Address:                                                                                                        |                                                               | Rush TAT (Surcharges will be applied)                                                 |
| AB T5K 216                                                       |                                                                                                                 | Project #: 10773396                                           | Same Day 2 Days                                                                       |
| Phone: (790)969-223                                              | Phone:                                                                                                          | Site Location:Springhank SR ]                                 | 1 Day 3-4 Days                                                                        |
| Email: Dulan. Kingestoner.com<br>copies: Dole.Nisbetestonter.com | Email:                                                                                                          | Site #:                                                       | Date Required:                                                                        |
|                                                                  | Copies:                                                                                                         | Sampled By: D.NSbet                                           | Rush Confirmation #:                                                                  |
| Laboratory Use                                                   | Depot Reception                                                                                                 | Analysis Requested                                            | Regulatory Criteria                                                                   |
| Seal Present Temp 13 13 8                                        | Deput Neception                                                                                                 | Diss 8                                                        |                                                                                       |
| Cooling Media YES NO Cooler ID                                   |                                                                                                                 |                                                               | Drinking Water                                                                        |
| Seal Present Seal intact Cooline Media                           |                                                                                                                 |                                                               | Saskatchewan                                                                          |
| Cooling Media YES NO Cooler ID Seal Present                      | 2 2                                                                                                             | r trais                                                       | Superior Saskatchewan<br>Saskatchewan<br>D50 (Drilling Waste)<br>D50 (Drilling Waste) |
| Seal Intact Temp<br>Cooling Media                                | aine and a second se | 7 T T T T T T T T T T T T T T T T T T T                       |                                                                                       |
|                                                                  | Depth (Unit) Date Sampled Time Sampled Matrix 5                                                                 | EX F1<br>utine<br>rrcun,<br>inity<br>we (7)<br>XSS<br>Sic Cla |                                                                                       |
| 1 MW16-9-6                                                       | 2d(/09/30 12:22 V 13                                                                                            | BIT                       | Special Instructions                                                                  |
| 2 MW16-25-9                                                      | 1121 1                                                                                                          |                                                               | 13 Please filter and                                                                  |
| 3 MW16-11-15                                                     | 14:02                                                                                                           |                                                               | speserve dissolved                                                                    |
| * MW16-2-6                                                       | ¥ 13:01 ¥ ¥                                                                                                     | 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                       | 2 2 0 V 29MW16-2-6.                                                                   |
| 5                                                                |                                                                                                                 |                                                               | TOO teshid to field                                                                   |
| 6                                                                |                                                                                                                 |                                                               | TOO turbid to Seld<br>Filter                                                          |
| 7                                                                |                                                                                                                 |                                                               |                                                                                       |
| 8                                                                |                                                                                                                 |                                                               | Shipmitted some day<br>as sampled                                                     |
| 9                                                                |                                                                                                                 |                                                               | ur sur yes                                                                            |
| 10                                                               |                                                                                                                 |                                                               |                                                                                       |
| Please indicate Filtered, Preserved or Bo                        |                                                                                                                 |                                                               |                                                                                       |



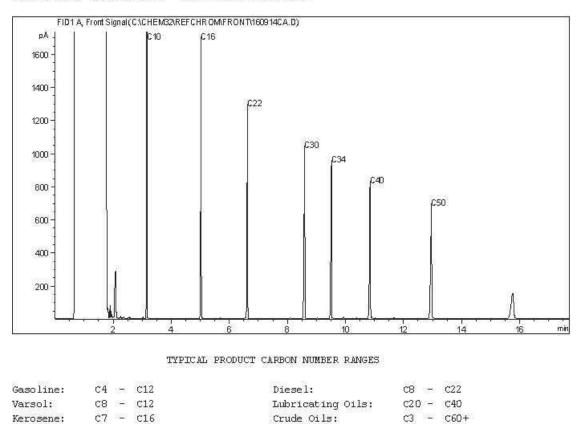


Carbon Range Distribution - Reference Chromatogram







Carbon Range Distribution - Reference Chromatogram






Carbon Range Distribution - Reference Chromatogram





Carbon Range Distribution - Reference Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation

or fingerprinting be required, please contact the laboratory.

Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031938

## Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/12 Report #: R2280617 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B686741

# Received: 2016/10/03, 18:51

Sample Matrix: Water # Samples Received: 2

|                                          |          | Date       | Date       |                              |                      |
|------------------------------------------|----------|------------|------------|------------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method            | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 2        | N/A        | 2016/10/04 | AB SOP-00005                 | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 2        | N/A        | 2016/10/08 | AB SOP-00039                 | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 2        | N/A        | 2016/10/07 | AB SOP-00020                 | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 2        | 2016/10/04 | 2016/10/05 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 2        | 2016/10/04 | 2016/10/05 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Carbon (DOC) -Lab Filtered (1)           | 1        | N/A        | 2016/10/06 | CAL SOP-00077                | MMCW 119 1996 m      |
| Carbon (DOC) (1)                         | 1        | N/A        | 2016/10/06 | CAL SOP-00077                | MMCW 119 1996 m      |
| Conductivity @25C                        | 2        | N/A        | 2016/10/04 | AB SOP-00005                 | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 2        | 2016/10/05 | 2016/10/09 | AB SOP-00040<br>AB SOP-00037 | CCME PHC-CWS m       |
| Hardness                                 | 1        | N/A        | 2016/10/05 | AB WI-00065                  | Auto Calc            |
| Hardness                                 | 1        | N/A        | 2016/10/07 | AB WI-00065                  | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 1        | 2016/10/11 | 2016/10/11 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury-Low Level-Dissolved-Lab Filtered | 1        | 2016/10/04 | 2016/10/04 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 2        | 2016/10/11 | 2016/10/11 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 1        | N/A        | 2016/10/07 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICP-Dissolved-Lab Filtered   | 1        | N/A        | 2016/10/05 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 1        | N/A        | 2016/10/06 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Elements by ICPMS-Dissolved-Lab Filtered | 1        | N/A        | 2016/10/05 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Ion Balance                              | 2        | N/A        | 2016/10/04 | AB WI-00065                  | Auto Calc            |
| Sum of cations, anions                   | 1        | N/A        | 2016/10/05 | AB WI-00065                  | Auto Calc            |
| Sum of cations, anions                   | 1        | N/A        | 2016/10/07 | AB WI-00065                  | Auto Calc            |
| Ammonia-N (Dissolved) - Lab Filtered     | 1        | N/A        | 2016/10/05 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Ammonia-N (Dissolved)                    | 1        | N/A        | 2016/10/05 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 2        | N/A        | 2016/10/05 | AB WI-00065                  | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 2        | N/A        | 2016/10/05 | AB WI-00065                  | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 2        | N/A        | 2016/10/04 | AB SOP-00023                 | SM 22 4110 B m       |
| рН @25°С                                 | 2        | N/A        | 2016/10/04 | AB SOP-00005                 | SM 22 4500-H+B m     |
| Orthophosphate by Konelab                | 2        | N/A        | 2016/10/04 | AB SOP-00025                 | SM 22 4500-P A,F m   |
| Sulphate by Automated Colourimetry       | 2        | N/A        | 2016/10/07 | AB SOP-00018                 | SM 22 4500-SO4 E m   |



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031938

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/12 Report #: R2280617 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B686741 Received: 2016/10/03, 18:51

Sample Matrix: Water # Samples Received: 2

|                                         |          | Date       | Date       |                   |                      |
|-----------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Heterotrophic Plate Count               | 2        | 2016/10/04 | 2016/10/06 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)     | 2        | N/A        | 2016/10/07 | AB WI-00065       | Auto Calc            |
| Total Kjeldahl Nitrogen                 | 2        | 2016/10/06 | 2016/10/07 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Phosphorus-Dissolved-Lab Filtered | 1        | 2016/10/05 | 2016/10/05 | AB SOP-00024      | SM 22 4500-P A,B,F m |
| Phosphorus -P (Total, Dissolved)        | 1        | 2016/10/05 | 2016/10/06 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



| AT1 | BTEX | AND | F1-F2 | IN WA | FER (WA | ATER) |
|-----|------|-----|-------|-------|---------|-------|
|-----|------|-----|-------|-------|---------|-------|

| Maxxam ID                                                |       | PR2485              | PR2486              |         |          |  |  |
|----------------------------------------------------------|-------|---------------------|---------------------|---------|----------|--|--|
| Sampling Date                                            |       | 2016/10/03<br>14:07 | 2016/10/03<br>17:32 |         |          |  |  |
| COC Number                                               |       | M031938             | M031938             |         |          |  |  |
|                                                          | UNITS | MW16-1-15           | MW16-16-11          | RDL     | QC Batch |  |  |
| Ext. Pet. Hydrocarbon                                    |       |                     |                     |         |          |  |  |
| F2 (C10-C16 Hydrocarbons)                                | mg/L  | <0.10               | <0.10               | 0.10    | 8422901  |  |  |
| Volatiles                                                |       |                     |                     |         |          |  |  |
| Benzene                                                  | mg/L  | <0.00040            | 0.0056              | 0.00040 | 8426391  |  |  |
| Toluene                                                  | mg/L  | <0.00040            | 0.024               | 0.00040 | 8426391  |  |  |
| Ethylbenzene                                             | mg/L  | <0.00040            | 0.0034              | 0.00040 | 8426391  |  |  |
| m & p-Xylene                                             | mg/L  | <0.00080            | 0.013               | 0.00080 | 8426391  |  |  |
| o-Xylene                                                 | mg/L  | <0.00040            | 0.0056              | 0.00040 | 8426391  |  |  |
| Xylenes (Total)                                          | mg/L  | <0.00080            | 0.019               | 0.00080 | 8426391  |  |  |
| F1 (C6-C10) - BTEX                                       | mg/L  | <0.10               | <0.10               | 0.10    | 8426391  |  |  |
| F1 (C6-C10)                                              | mg/L  | <0.10               | <0.10               | 0.10    | 8426391  |  |  |
| Surrogate Recovery (%)                                   |       |                     |                     |         |          |  |  |
| 1,4-Difluorobenzene (sur.)                               | %     | 100                 | 101                 | N/A     | 8426391  |  |  |
| 4-Bromofluorobenzene (sur.)                              | %     | 97                  | 97                  | N/A     | 8426391  |  |  |
| D4-1,2-Dichloroethane (sur.)                             | %     | 99                  | 96                  | N/A     | 8426391  |  |  |
| O-TERPHENYL (sur.)                                       | %     | 100                 | 100                 | N/A     | 8422901  |  |  |
| RDL = Reportable Detection Limit<br>N/A = Not Applicable |       |                     |                     |         |          |  |  |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                            |            | PR2485            | 1            |           |
|--------------------------------------|------------|-------------------|--------------|-----------|
|                                      |            | 2016/10/03        |              |           |
| Sampling Date                        |            | 14:07             |              |           |
| COC Number                           |            | M031938           |              |           |
|                                      | UNITS      | MW16-1-15         | RDL          | QC Batch  |
| Calculated Parameters                |            |                   |              |           |
| Anion Sum                            | meq/L      | 25                | N/A          | 8419644   |
| Cation Sum                           | meq/L      | 28                | N/A          | 8419644   |
| Hardness (CaCO3)                     | mg/L       | 1000              | 0.50         | 8420405   |
| Ion Balance                          | N/A        | 1.1               | 0.010        | 8419643   |
| Dissolved Nitrate (NO3)              | mg/L       | <0.044            | 0.044        | 8420406   |
| Nitrate plus Nitrite (N)             | mg/L       | <0.020            | 0.020        | 8420407   |
| Dissolved Nitrite (NO2)              | mg/L       | <0.033            | 0.033        | 8420406   |
| Calculated Total Dissolved Solids    | mg/L       | 1600              | 10           | 8419648   |
| Misc. Inorganics                     |            |                   |              |           |
| Conductivity                         | uS/cm      | 2100              | 1.0          | 8421412   |
| рН                                   | рН         | 7.88              | N/A          | 8421411   |
| Anions                               |            |                   |              |           |
| Alkalinity (PP as CaCO3)             | mg/L       | <0.50             | 0.50         | 8421408   |
| Alkalinity (Total as CaCO3)          | mg/L       | 300               | 0.50         | 8421408   |
| Bicarbonate (HCO3)                   | mg/L       | 360               | 0.50         | 8421408   |
| Carbonate (CO3)                      | mg/L       | <0.50             | 0.50         | 8421408   |
| Hydroxide (OH)                       | mg/L       | <0.50             | 0.50         | 8421408   |
| Dissolved Sulphate (SO4)             | mg/L       | 910 (1)           | 10           | 8426473   |
| Dissolved Chloride (Cl)              | mg/L       | 3.8               | 1.0          | 8426470   |
| Nutrients                            |            |                   |              |           |
| Dissolved Nitrite (N)                | mg/L       | <0.010            | 0.010        | 8421070   |
| Dissolved Nitrate (N)                | mg/L       | <0.010            | 0.010        | 8421070   |
| Elements                             |            |                   |              |           |
| Dissolved Aluminum (Al)              | mg/L       | <0.0030           | 0.0030       | 8421456   |
| Dissolved Antimony (Sb)              | mg/L       | <0.00060          | 0.00060      | 8421456   |
| Dissolved Arsenic (As)               | mg/L       | <0.00020          | 0.00020      | 8421456   |
| Dissolved Barium (Ba)                | mg/L       | 0.018             | 0.010        | 8424663   |
| Dissolved Beryllium (Be)             | mg/L       | <0.0010           | 0.0010       | 8421456   |
| Dissolved Boron (B)                  | mg/L       | 0.078             | 0.020        | 8424663   |
| RDL = Reportable Detection Limit     |            |                   |              |           |
| N/A = Not Applicable                 |            |                   |              |           |
| (1) Detection limits raised due to o | dilution t | o bring analyte v | vithin the c | alibrated |
| rango                                |            |                   |              |           |

range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PR2485     |          |          |
|----------------------------------|-------|------------|----------|----------|
| Sampling Date                    |       | 2016/10/03 |          |          |
|                                  |       | 14:07      |          |          |
| COC Number                       |       | M031938    |          |          |
|                                  | UNITS | MW16-1-15  | RDL      | QC Batch |
| Dissolved Cadmium (Cd)           | mg/L  | <0.000020  | 0.000020 | 8421456  |
| Dissolved Calcium (Ca)           | mg/L  | 230        | 0.30     | 8424663  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010    | 0.0010   | 8421456  |
| Dissolved Cobalt (Co)            | mg/L  | 0.0012     | 0.00030  | 8421456  |
| Dissolved Copper (Cu)            | mg/L  | <0.00020   | 0.00020  | 8421456  |
| Dissolved Iron (Fe)              | mg/L  | <0.060     | 0.060    | 8424663  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020   | 0.00020  | 8421456  |
| Dissolved Lithium (Li)           | mg/L  | 0.022      | 0.020    | 8424663  |
| Dissolved Magnesium (Mg)         | mg/L  | 110        | 0.20     | 8424663  |
| Dissolved Manganese (Mn)         | mg/L  | 0.88       | 0.0040   | 8424663  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.0028     | 0.00020  | 8421456  |
| Dissolved Nickel (Ni)            | mg/L  | 0.0010     | 0.00050  | 8421456  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10      | 0.10     | 8424663  |
| Dissolved Potassium (K)          | mg/L  | 4.8        | 0.30     | 8424663  |
| Dissolved Selenium (Se)          | mg/L  | <0.00020   | 0.00020  | 8421456  |
| Dissolved Silicon (Si)           | mg/L  | 4.7        | 0.10     | 8424663  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010   | 0.00010  | 8421456  |
| Dissolved Sodium (Na)            | mg/L  | 160        | 0.50     | 8424663  |
| Dissolved Strontium (Sr)         | mg/L  | 1.6        | 0.020    | 8424663  |
| Dissolved Sulphur (S)            | mg/L  | 340        | 0.20     | 8424663  |
| Dissolved Thallium (Tl)          | mg/L  | <0.00020   | 0.00020  | 8421456  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010    | 0.0010   | 8421456  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010    | 0.0010   | 8421456  |
| Dissolved Uranium (U)            | mg/L  | 0.0054     | 0.00010  | 8421456  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010    | 0.0010   | 8421456  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030    | 0.0030   | 8421456  |
| RDL = Reportable Detection Limit | it    |            |          |          |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PR2486              | PR2486                |         |          |
|-----------------------------------|-------|---------------------|-----------------------|---------|----------|
| Sampling Date                     |       | 2016/10/03<br>17:32 | 2016/10/03<br>17:32   |         |          |
| COC Number                        |       | M031938             | M031938               |         |          |
|                                   | UNITS | MW16-16-11          | MW16-16-11<br>Lab-Dup | RDL     | QC Batch |
| Calculated Parameters             | · · · |                     |                       |         |          |
| Anion Sum                         | meq/L | 78                  | N/A                   | N/A     | 8419644  |
| Cation Sum                        | meq/L | 75                  | N/A                   | N/A     | 8419644  |
| Hardness (CaCO3)                  | mg/L  | 2400                | N/A                   | 0.50    | 8420405  |
| Ion Balance                       | N/A   | 0.95                | N/A                   | 0.010   | 8419643  |
| Dissolved Nitrate (NO3)           | mg/L  | 0.14                | N/A                   | 0.044   | 8420406  |
| Nitrate plus Nitrite (N)          | mg/L  | 0.031               | N/A                   | 0.020   | 8420407  |
| Dissolved Nitrite (NO2)           | mg/L  | <0.033              | N/A                   | 0.033   | 8420406  |
| Calculated Total Dissolved Solids | mg/L  | 4900                | N/A                   | 10      | 8419648  |
| Misc. Inorganics                  |       |                     |                       |         | •        |
| Conductivity                      | uS/cm | 5400                | N/A                   | 1.0     | 8420879  |
| рН                                | рΗ    | 7.57                | N/A                   | N/A     | 8420878  |
| Anions                            |       |                     |                       |         |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | N/A                   | 0.50    | 8420877  |
| Alkalinity (Total as CaCO3)       | mg/L  | 630                 | N/A                   | 0.50    | 8420877  |
| Bicarbonate (HCO3)                | mg/L  | 770                 | N/A                   | 0.50    | 8420877  |
| Carbonate (CO3)                   | mg/L  | <0.50               | N/A                   | 0.50    | 8420877  |
| Hydroxide (OH)                    | mg/L  | <0.50               | N/A                   | 0.50    | 8420877  |
| Dissolved Sulphate (SO4)          | mg/L  | 3100 (1)            | N/A                   | 20      | 8426130  |
| Dissolved Chloride (Cl)           | mg/L  | 7.9                 | N/A                   | 1.0     | 8426126  |
| Nutrients                         |       |                     |                       |         |          |
| Dissolved Nitrite (N)             | mg/L  | <0.010              | N/A                   | 0.010   | 8421070  |
| Dissolved Nitrate (N)             | mg/L  | 0.031               | N/A                   | 0.010   | 8421070  |
| Lab Filtered Elements             |       |                     |                       |         |          |
| Dissolved Aluminum (Al)           | mg/L  | 0.0056              | 0.0072                | 0.0030  | 8421584  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | <0.00060              | 0.00060 | 8421584  |
| Dissolved Arsenic (As)            | mg/L  | 0.00085             | 0.00082               | 0.00020 | 8421584  |
| Dissolved Barium (Ba)             | mg/L  | 0.026               | N/A                   | 0.010   | 8421809  |
| Dissolved Beryllium (Be)          | mg/L  | < 0.0010            | <0.0010               | 0.0010  | 8421584  |

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                 |       | PR2486      | PR2486                |          |          |
|---------------------------|-------|-------------|-----------------------|----------|----------|
| Sampling Date             |       | 2016/10/03  | 2016/10/03            |          |          |
|                           | _     | 17:32       | 17:32                 |          |          |
| COC Number                | _     | M031938     | M031938               |          |          |
|                           | UNITS | MW16-16-11  | MW16-16-11<br>Lab-Dup | RDL      | QC Batch |
| Dissolved Boron (B)       | mg/L  | 0.20        | N/A                   | 0.020    | 8421809  |
| Dissolved Cadmium (Cd)    | mg/L  | 0.00014 (1) | 0.00011 (2)           | 0.000020 | 8421584  |
| Dissolved Calcium (Ca)    | mg/L  | 440         | N/A                   | 0.30     | 8421809  |
| Dissolved Chromium (Cr)   | mg/L  | <0.0010     | <0.0010               | 0.0010   | 8421584  |
| Dissolved Cobalt (Co)     | mg/L  | 0.0037      | 0.0035                | 0.00030  | 8421584  |
| Dissolved Copper (Cu)     | mg/L  | 0.0097      | 0.0099                | 0.00020  | 8421584  |
| Dissolved Iron (Fe)       | mg/L  | <0.060      | N/A                   | 0.060    | 8421809  |
| Dissolved Lead (Pb)       | mg/L  | <0.00020    | <0.00020              | 0.00020  | 8421584  |
| Dissolved Lithium (Li)    | mg/L  | 0.15        | N/A                   | 0.020    | 8421809  |
| Dissolved Magnesium (Mg)  | mg/L  | 320         | N/A                   | 0.20     | 8421809  |
| Dissolved Manganese (Mn)  | mg/L  | 2.3         | N/A                   | 0.0040   | 8421809  |
| Dissolved Molybdenum (Mo) | mg/L  | 0.0011      | 0.0011                | 0.00020  | 8421584  |
| Dissolved Nickel (Ni)     | mg/L  | 0.0066      | 0.0062                | 0.00050  | 8421584  |
| Dissolved Phosphorus (P)  | mg/L  | <0.10       | N/A                   | 0.10     | 8421809  |
| Dissolved Potassium (K)   | mg/L  | 15          | N/A                   | 0.30     | 8421809  |
| Dissolved Selenium (Se)   | mg/L  | 0.00038     | 0.00033               | 0.00020  | 8421584  |
| Dissolved Silicon (Si)    | mg/L  | 6.3         | N/A                   | 0.10     | 8421809  |
| Dissolved Silver (Ag)     | mg/L  | <0.00010    | <0.00010              | 0.00010  | 8421584  |
| Dissolved Sodium (Na)     | mg/L  | 600 (3)     | N/A                   | 5.0      | 8421809  |
| Dissolved Strontium (Sr)  | mg/L  | 4.9         | N/A                   | 0.020    | 8421809  |
| Dissolved Sulphur (S)     | mg/L  | 1000 (3)    | N/A                   | 2.0      | 8421809  |
| Dissolved Thallium (TI)   | mg/L  | <0.00020    | <0.00020              | 0.00020  | 8421584  |
| Dissolved Tin (Sn)        | mg/L  | <0.0010     | <0.0010               | 0.0010   | 8421584  |
| Dissolved Titanium (Ti)   | mg/L  | <0.0010     | <0.0010               | 0.0010   | 8421584  |
| Dissolved Uranium (U)     | mg/L  | 0.033       | 0.033                 | 0.00010  | 8421584  |
| Dissolved Vanadium (V)    | mg/L  | <0.0010     | <0.0010               | 0.0010   | 8421584  |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Duplicate exceeds acceptance criteria due to sample non homogeneity.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(3) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID           |       | PR2486              | PR2486              |        |          |
|---------------------|-------|---------------------|---------------------|--------|----------|
| Sampling Date       |       | 2016/10/03<br>17:32 | 2016/10/03<br>17:32 |        |          |
| COC Number          |       | M031938             | M031938             |        |          |
|                     | UNITS | MW16-16-11          | MW16-16-11          | RDL    | QC Batch |
|                     | UNITS | 1414410-10-11       | Lab-Dup             | NDL    | QC Datch |
| Dissolved Zinc (Zn) | mg/L  | <0.0030             | Lab-Dup<br><0.0030  | 0.0030 | 8421584  |



## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PR2485              | PR2485               |        | PR2486              | PR2486                |        |          |
|-------------------------------|-----------|---------------------|----------------------|--------|---------------------|-----------------------|--------|----------|
| Sampling Date                 |           | 2016/10/03<br>14:07 | 2016/10/03<br>14:07  |        | 2016/10/03<br>17:32 | 2016/10/03<br>17:32   |        |          |
| COC Number                    |           | M031938             | M031938              |        | M031938             | M031938               |        |          |
|                               | UNITS     | MW16-1-15           | MW16-1-15<br>Lab-Dup | RDL    | MW16-16-11          | MW16-16-11<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics              | -         | -                   | •                    |        |                     | ·                     |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 2.6                 | N/A                  | 0.50   | N/A                 | N/A                   | 0.50   | 8424431  |
| Lab Filtered Inorganics       |           |                     | 1                    |        |                     | 1                     | 1      |          |
| Dissolved Organic Carbon (C)  | mg/L      | N/A                 | N/A                  | 0.50   | 4.6                 | N/A                   | 0.50   | 8424424  |
| Microbiological Param.        | •         |                     |                      |        |                     |                       |        |          |
| E.Coli DST                    | mpn/100mL | <10 (1)             | N/A                  | 10     | <100 (1)            | N/A                   | 100    | 8421073  |
| Fecal Coliforms               | MPN/100mL | <10(1)              | N/A                  | 10     | <100 (1)            | N/A                   | 100    | 8421072  |
| Heterotrophic Plate Count     | CFU/mL    | 4900 (1)            | 5100                 | 10     | 50000 (2)           | 52000                 | 100    | 8421074  |
| Total Coliforms DST           | mpn/100mL | 230 (1)             | N/A                  | 10     | 200 (1)             | N/A                   | 100    | 8421073  |
| Nutrients                     |           |                     |                      |        |                     | •                     | •      |          |
| Dissolved Ammonia (N)         | mg/L      | <0.050              | N/A                  | 0.050  | N/A                 | N/A                   | N/A    | 8423168  |
| Total Kjeldahl Nitrogen       | mg/L      | 1.5 (3)             | N/A                  | 0.50   | 14 (3)              | N/A                   | 0.50   | 8424394  |
| Orthophosphate (P)            | mg/L      | <0.0030             | N/A                  | 0.0030 | 0.0045              | N/A                   | 0.0030 | 8421368  |
| Dissolved Phosphorus (P)      | mg/L      | <0.0030             | N/A                  | 0.0030 | N/A                 | N/A                   | N/A    | 8422351  |
| Lab Filtered Nutrients        | :         |                     | •                    |        |                     | •                     | •      |          |
| Dissolved Ammonia (N)         | mg/L      | N/A                 | N/A                  | N/A    | 0.60                | N/A                   | 0.050  | 8423178  |
| Dissolved Phosphorus (P)      | mg/L      | N/A                 | N/A                  | N/A    | 0.011               | N/A                   | 0.0030 | 8422263  |
| PDL - Papartable Detection Li |           | •                   | •                    |        | •                   | •                     |        | •        |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Spreader colonies were present in the Petri dish. Presence of spreader colonies may obscure other colonies, possibly biasing results.

(3) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                                                                                        |       | PR2485              |        | PR2486              |        |          |  |  |  |
|--------------------------------------------------------------------------------------------------|-------|---------------------|--------|---------------------|--------|----------|--|--|--|
| Sampling Date                                                                                    |       | 2016/10/03<br>14:07 |        | 2016/10/03<br>17:32 |        |          |  |  |  |
| COC Number                                                                                       |       | M031938             |        | M031938             |        |          |  |  |  |
|                                                                                                  | UNITS | MW16-1-15           | RDL    | MW16-16-11          | RDL    | QC Batch |  |  |  |
| Low Level Elements                                                                               |       |                     |        |                     |        |          |  |  |  |
| Dissolved Mercury (Hg)                                                                           | ug/L  | 0.0029              | 0.0020 | N/A                 | 0.0020 | 8428932  |  |  |  |
| Total Mercury (Hg)                                                                               | ug/L  | <2.0 (1)            | 2.0    | <6.0 (1)            | 6.0    | 8428935  |  |  |  |
| Lab Filtered Elements-Low                                                                        |       |                     |        |                     |        |          |  |  |  |
| Dissolved Mercury (Hg)                                                                           | ug/L  | N/A                 | N/A    | <0.0020             | 0.0020 | 8421467  |  |  |  |
| RDL = Reportable Detection L                                                                     | imit  |                     |        | -                   |        |          |  |  |  |
| N/A = Not Applicable                                                                             |       |                     |        |                     |        |          |  |  |  |
| (1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly |       |                     |        |                     |        |          |  |  |  |



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.3°C

Results relate only to the items tested.



## **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                 |                             | Date       |         | _        |        |           |
|---------|------|-----------------|-----------------------------|------------|---------|----------|--------|-----------|
| Batch   | Init | QC Type         | Parameter                   | Analyzed   | Value   | Recovery | UNITS  | QC Limits |
| 8420877 | IK0  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/10/04 |         | 93       | %      | 80 - 120  |
| 8420877 | IK0  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Bicarbonate (HCO3)          | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Carbonate (CO3)             | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Hydroxide (OH)              | 2016/10/04 | <0.50   |          | mg/L   |           |
| 8420877 | IK0  | RPD             | Alkalinity (PP as CaCO3)    | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/10/04 | 0.43    |          | %      | 20        |
|         |      |                 | Bicarbonate (HCO3)          | 2016/10/04 | 0.43    |          | %      | 20        |
|         |      |                 | Carbonate (CO3)             | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Hydroxide (OH)              | 2016/10/04 | NC      |          | %      | 20        |
| 8420878 | IK0  | Spiked Blank    | рН                          | 2016/10/04 |         | 100      | %      | 97 - 103  |
| 8420878 | IK0  | RPD             | рН                          | 2016/10/04 | 0.22    |          | %      | N/A       |
| 8420879 | IK0  | Spiked Blank    | Conductivity                | 2016/10/04 |         | 100      | %      | 90 - 110  |
| 8420879 | IK0  | Method Blank    | Conductivity                | 2016/10/04 | <1.0    |          | uS/cm  |           |
| 8420879 | IK0  | RPD             | Conductivity                | 2016/10/04 | 0.59    |          | %      | 20        |
| 8421070 | JLD  | Matrix Spike    | Dissolved Nitrite (N)       | 2016/10/04 |         | 102      | %      | 80 - 120  |
|         |      |                 | Dissolved Nitrate (N)       | 2016/10/04 |         | 104      | %      | 80 - 120  |
| 8421070 | JLD  | Spiked Blank    | Dissolved Nitrite (N)       | 2016/10/04 |         | 100      | %      | 80 - 120  |
|         |      |                 | Dissolved Nitrate (N)       | 2016/10/04 |         | 102      | %      | 80 - 120  |
| 8421070 | JLD  | Method Blank    | Dissolved Nitrite (N)       | 2016/10/04 | <0.010  |          | mg/L   |           |
|         |      |                 | Dissolved Nitrate (N)       | 2016/10/04 | <0.010  |          | mg/L   |           |
| 8421070 | JLD  | RPD             | Dissolved Nitrite (N)       | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Dissolved Nitrate (N)       | 2016/10/04 | 0.18    |          | %      | 20        |
| 8421072 | RP0  | Method Blank    | Fecal Coliforms             | 2016/10/05 | <1.0    |          | MPN/10 | )         |
| 8421072 | RP0  | RPD             | Fecal Coliforms             | 2016/10/05 | NC      |          | %      | N/A       |
| 8421073 | AP1  | Method Blank    | E.Coli DST                  | 2016/10/05 | <1.0    |          | mpn/10 | )         |
|         |      |                 | Total Coliforms DST         | 2016/10/05 | <1.0    |          | mpn/10 | )         |
| 8421073 | AP1  | RPD             | Total Coliforms DST         | 2016/10/05 | NC      |          | %      | N/A       |
| 8421074 | AP1  | Method Blank    | Heterotrophic Plate Count   | 2016/10/06 | <1.0    |          | CFU/mL |           |
| 8421074 | AP1  | RPD [PR2485-06] | Heterotrophic Plate Count   | 2016/10/06 | 3.6     |          | %      | N/A       |
| 8421074 | AP1  | RPD [PR2486-06] | Heterotrophic Plate Count   | 2016/10/06 | 3.1     |          | %      | N/A       |
| 8421368 | MB5  | Matrix Spike    | Orthophosphate (P)          | 2016/10/04 |         | 92       | %      | 80 - 120  |
| 8421368 | MB5  | Spiked Blank    | Orthophosphate (P)          | 2016/10/04 |         | 94       | %      | 80 - 120  |
| 8421368 | MB5  | Method Blank    | Orthophosphate (P)          | 2016/10/04 | <0.0030 |          | mg/L   |           |
| 8421368 | MB5  | RPD             | Orthophosphate (P)          | 2016/10/04 | NC      |          | %      | 20        |
| 8421408 | IK0  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/10/04 |         | 93       | %      | 80 - 120  |
| 8421408 | IK0  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Bicarbonate (HCO3)          | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Carbonate (CO3)             | 2016/10/04 | <0.50   |          | mg/L   |           |
|         |      |                 | Hydroxide (OH)              | 2016/10/04 | <0.50   |          | mg/L   |           |
| 8421408 | IK0  | RPD             | Alkalinity (PP as CaCO3)    | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Alkalinity (Total as CaCO3) | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Bicarbonate (HCO3)          | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Carbonate (CO3)             | 2016/10/04 | NC      |          | %      | 20        |
|         |      |                 | Hydroxide (OH)              | 2016/10/04 | NC      |          | %      | 20        |
| 8421411 | IK0  | Spiked Blank    | pH                          | 2016/10/04 | -       | 100      | %      | 97 - 103  |
| 8421411 | IK0  | RPD             | pH                          | 2016/10/04 | 0.98    |          | %      | N/A       |
| 8421412 | IKO  | Spiked Blank    | Conductivity                | 2016/10/04 |         | 100      | %      | 90 - 110  |
| 8421412 | IKO  | Method Blank    | Conductivity                | 2016/10/04 | <1.0    | 200      | uS/cm  | 110       |
| 8421412 | IKO  | RPD             | Conductivity                | 2016/10/04 | NC      |          | %      | 20        |



Report Date: 2016/10/12

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                           | Date       |            |          |       |           |
|---------|------|--------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
| 8421456 | PC5  | Matrix Spike | Dissolved Aluminum (Al)   | 2016/10/06 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/06 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/06 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/06 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/06 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/06 |            | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/06 |            | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/06 |            | 86       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/06 |            | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/06 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/06 |            | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/06 |            | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/06 |            | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/06 |            | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/06 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/06 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/06 |            | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/06 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/06 |            | 88       | %     | 80 - 120  |
| 8421456 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/06 |            | 121 (1)  | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/06 |            | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/06 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/06 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/06 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/06 |            | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/06 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/06 |            | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/06 |            | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/06 |            | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/06 |            | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/06 |            | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/06 |            | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/06 |            | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/06 |            | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/06 |            | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/06 |            | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/06 |            | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/06 |            | 99       | %     | 80 - 120  |
| 8421456 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/05 | <0.0030    |          | mg/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/05 | <0.00060   |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/05 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/05 | < 0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/05 | < 0.000020 |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/05 | < 0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/05 | <0.00030   |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/05 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/05 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/05 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/05 | <0.00050   |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/05 | <0.00020   |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/05 | < 0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/05 | < 0.00020  |          | mg/L  |           |



Report Date: 2016/10/12

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                           | Date       |           |               |       |                      |
|---------|------|--------------------------|---------------------------|------------|-----------|---------------|-------|----------------------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value     | Recovery      | UNITS | QC Limits            |
|         |      |                          | Dissolved Tin (Sn)        | 2016/10/05 | < 0.0010  |               | mg/L  |                      |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/10/05 | < 0.0010  |               | mg/L  |                      |
|         |      |                          | Dissolved Uranium (U)     | 2016/10/05 | < 0.00010 |               | mg/L  |                      |
|         |      |                          | Dissolved Vanadium (V)    | 2016/10/05 | < 0.0010  |               | mg/L  |                      |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/10/05 | < 0.0030  |               | mg/L  |                      |
| 8421456 | PC5  | RPD                      | Dissolved Aluminum (Al)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/06 | 4.3       |               | %     | 20                   |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Copper (Cu)     | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Lead (Pb)       | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/10/06 | 0.53      |               | %     | 20                   |
|         |      |                          | Dissolved Selenium (Se)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Silver (Ag)     | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Thallium (TI)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Tin (Sn)        | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Uranium (U)     | 2016/10/06 | 2.0       |               | %     | 20                   |
|         |      |                          | Dissolved Vanadium (V)    | 2016/10/06 | NC        |               | %     | 20                   |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/10/06 | NC        |               | %     | 20                   |
| 8421467 | RK3  | Matrix Spike             | Dissolved Mercury (Hg)    | 2016/10/04 |           | 105           | %     | 80 - 120             |
| 8421467 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)    | 2016/10/04 |           | 104           | %     | 80 - 120             |
| 8421467 | RK3  | Method Blank             | Dissolved Mercury (Hg)    | 2016/10/04 | <0.0020   | 20.           | ug/L  | 00 110               |
| 8421467 | RK3  | RPD                      | Dissolved Mercury (Hg)    | 2016/10/04 | NC        |               | %     | 20                   |
| 8421584 | PC5  | Matrix Spike [PR2486-01] | Dissolved Aluminum (Al)   | 2016/10/05 | i i c     | 111           | %     | 80 - 120             |
| 0121001 | 1 65 |                          | Dissolved Antimony (Sb)   | 2016/10/05 |           | 93            | %     | 80 - 120             |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/05 |           | 95            | %     | 80 - 120             |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/05 |           | 94            | %     | 80 - 120             |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/10/05 |           | 93            | %     | 80 - 120             |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/05 |           | 92            | %     | 80 - 120             |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/10/05 |           | 90            | %     | 80 - 120             |
|         |      |                          | Dissolved Copper (Cu)     | 2016/10/05 |           | 90            | %     | 80 - 120             |
|         |      |                          | Dissolved Lead (Pb)       | 2016/10/05 |           | 93            | %     | 80 - 120             |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/10/05 |           | 103           | %     | 80 - 120             |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/10/05 |           | 87            | %     | 80 - 120             |
|         |      |                          | Dissolved Selenium (Se)   | 2016/10/05 |           | 96            | %     | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Selenian (Se)   | 2016/10/05 |           | 92            | %     | 80 - 120             |
|         |      |                          | Dissolved Thallium (TI)   | 2016/10/05 |           | 93            | %     | 80 - 120             |
|         |      |                          | Dissolved Tin (Sn)        | 2016/10/05 |           | 95            | %     | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/10/05 |           | 96            | %     | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Uranium (U)     | 2016/10/05 |           | NC            | %     | 80 - 120             |
|         |      |                          | Dissolved Vanadium (V)    | 2016/10/05 |           | 96            | %     | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/10/05 |           | 89            | %     | 80 - 120<br>80 - 120 |
| 8421584 | PC5  | Spiked Blank             | Dissolved Aluminum (Al)   | 2016/10/05 |           | 89<br>121 (1) | %     | 80 - 120<br>80 - 120 |
| 0421304 | FCJ  |                          | Dissolved Antimony (Sb)   | 2016/10/05 |           | 98            | %     | 80 - 120<br>80 - 120 |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/05 |           | 98<br>96      |       | 80 - 120<br>80 - 120 |
|         |      |                          |                           |            |           |               | %     |                      |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/05 |           | 95            | %     | 80 - 120             |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/10/05 |           | 97<br>100     | %     | 80 - 120             |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/05 |           | 100           | %     | 80 - 120             |



| QA/QC   |      |                 |                           | Date       |           |          |       |           |
|---------|------|-----------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type         | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
|         |      |                 | Dissolved Cobalt (Co)     | 2016/10/05 |           | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Copper (Cu)     | 2016/10/05 |           | 98       | %     | 80 - 120  |
|         |      |                 | Dissolved Lead (Pb)       | 2016/10/05 |           | 102      | %     | 80 - 120  |
|         |      |                 | Dissolved Molybdenum (Mo) | 2016/10/05 |           | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/10/05 |           | 101      | %     | 80 - 120  |
|         |      |                 | Dissolved Selenium (Se)   | 2016/10/05 |           | 101      | %     | 80 - 120  |
|         |      |                 | Dissolved Silver (Ag)     | 2016/10/05 |           | 99       | %     | 80 - 120  |
|         |      |                 | Dissolved Thallium (Tl)   | 2016/10/05 |           | 102      | %     | 80 - 120  |
|         |      |                 | Dissolved Tin (Sn)        | 2016/10/05 |           | 103      | %     | 80 - 120  |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/10/05 |           | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Uranium (U)     | 2016/10/05 |           | 103      | %     | 80 - 120  |
|         |      |                 | Dissolved Vanadium (V)    | 2016/10/05 |           | 101      | %     | 80 - 120  |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/10/05 |           | 92       | %     | 80 - 120  |
| 8421584 | PC5  | Method Blank    | Dissolved Aluminum (Al)   | 2016/10/05 | <0.0030   |          | mg/L  |           |
|         |      |                 | Dissolved Antimony (Sb)   | 2016/10/05 | <0.00060  |          | mg/L  |           |
|         |      |                 | Dissolved Arsenic (As)    | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Beryllium (Be)  | 2016/10/05 | < 0.0010  |          | mg/L  |           |
|         |      |                 | Dissolved Cadmium (Cd)    | 2016/10/05 | <0.000020 |          | mg/L  |           |
|         |      |                 | Dissolved Chromium (Cr)   | 2016/10/05 | < 0.0010  |          | mg/L  |           |
|         |      |                 | Dissolved Cobalt (Co)     | 2016/10/05 | <0.00030  |          | mg/L  |           |
|         |      |                 | Dissolved Copper (Cu)     | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Lead (Pb)       | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Molybdenum (Mo) | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/10/05 | <0.00050  |          | mg/L  |           |
|         |      |                 | Dissolved Selenium (Se)   | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Silver (Ag)     | 2016/10/05 | <0.00010  |          | mg/L  |           |
|         |      |                 | Dissolved Thallium (TI)   | 2016/10/05 | <0.00020  |          | mg/L  |           |
|         |      |                 | Dissolved Tin (Sn)        | 2016/10/05 | < 0.0010  |          | mg/L  |           |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/10/05 | < 0.0010  |          | mg/L  |           |
|         |      |                 | Dissolved Uranium (U)     | 2016/10/05 | < 0.00010 |          | mg/L  |           |
|         |      |                 | Dissolved Vanadium (V)    | 2016/10/05 | < 0.0010  |          | mg/L  |           |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/10/05 | < 0.0030  |          | mg/L  |           |
| 8421584 | PC5  | RPD [PR2486-01] | Dissolved Aluminum (Al)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Antimony (Sb)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Arsenic (As)    | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Beryllium (Be)  | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Cadmium (Cd)    | 2016/10/05 | 25 (1)    |          | %     | 20        |
|         |      |                 | Dissolved Chromium (Cr)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Cobalt (Co)     | 2016/10/05 | 6.8       |          | %     | 20        |
|         |      |                 | Dissolved Copper (Cu)     | 2016/10/05 | 1.8       |          | %     | 20        |
|         |      |                 | Dissolved Lead (Pb)       | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Molybdenum (Mo) | 2016/10/05 | 2.8       |          | %     | 20        |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/10/05 | 6.2       |          | %     | 20        |
|         |      |                 | Dissolved Selenium (Se)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Silver (Ag)     | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Thallium (TI)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Tin (Sn)        | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Uranium (U)     | 2016/10/05 | 0.46      |          | %     | 20        |
|         |      |                 | Dissolved Vanadium (V)    | 2016/10/05 | NC        |          | %     | 20        |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/10/05 | NC        |          | %     | 20        |
| 8421809 | JHC  | Matrix Spike    | Dissolved Barium (Ba)     | 2016/10/05 |           | 95       | %     | 80 - 120  |



Maxxam Job #: B686741 Report Date: 2016/10/12 STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| ery UNITS<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>% | QC Limits<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| %<br>%<br>%<br>%<br>%<br>%                                            | 80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| %<br>%<br>%<br>%<br>%<br>%                                            | 80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| %<br>%<br>%<br>%<br>%<br>%                                            | 80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %<br>%<br>%<br>%<br>%<br>%                                            | 80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %<br>%<br>%<br>%<br>%                                                 | 80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| %<br>%<br>%<br>%                                                      | 80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| %<br>%<br>%<br>%                                                      | 80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %<br>%<br>%<br>%                                                      | 80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| %<br>%<br>%                                                           | 80 - 120<br>80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| %<br>%                                                                | 80 - 120<br>80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| %<br>%                                                                | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %                                                                     | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %                                                                     | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| %                                                                     | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 0 3 5 9 5 1 4 2 3                                                   | 0 %<br>3 %<br>5 %<br>6 %<br>5 %<br>6 %<br>7 mg/L<br>7 mg/L |



| QA/QCDateBatchInitQC TypeParameterAnalyzedValueRecovery8422263MB5Method BlankDissolved Phosphorus (P)2016/10/05<0.00308422263MB5RPDDissolved Phosphorus (P)2016/10/05NC8422351MB5Matrix SpikeDissolved Phosphorus (P)2016/10/06222 (1)8422351MB5QC StandardDissolved Phosphorus (P)2016/10/061078422351MB5Spiked BlankDissolved Phosphorus (P)2016/10/061058422351MB5Method BlankDissolved Phosphorus (P)2016/10/06<0.0030                                              | mg/L<br>%<br>%<br>%<br>mg/L | 20<br>80 - 120<br>80 - 120 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|
| 8422263MB5RPDDissolved Phosphorus (P)2016/10/05NC8422351MB5Matrix SpikeDissolved Phosphorus (P)2016/10/0622 (1)8422351MB5QC StandardDissolved Phosphorus (P)2016/10/061078422351MB5Spiked BlankDissolved Phosphorus (P)2016/10/061058422351MB5Method BlankDissolved Phosphorus (P)2016/10/06<0.0030                                                                                                                                                                     | %<br>%<br>%<br>mg/L         | 80 - 120<br>80 - 120       |
| 8422263MB5RPDDissolved Phosphorus (P)2016/10/05NC8422351MB5Matrix SpikeDissolved Phosphorus (P)2016/10/0622 (1)8422351MB5QC StandardDissolved Phosphorus (P)2016/10/061078422351MB5Spiked BlankDissolved Phosphorus (P)2016/10/061058422351MB5Method BlankDissolved Phosphorus (P)2016/10/06<0.0030                                                                                                                                                                     | %<br>%<br>%<br>mg/L         | 80 - 120<br>80 - 120       |
| 8422351         MB5         Matrix Spike         Dissolved Phosphorus (P)         2016/10/06         22 (1)           8422351         MB5         QC Standard         Dissolved Phosphorus (P)         2016/10/06         107           8422351         MB5         Spiked Blank         Dissolved Phosphorus (P)         2016/10/06         105           8422351         MB5         Method Blank         Dissolved Phosphorus (P)         2016/10/06         <0.0030 | %<br>%<br>%<br>mg/L         | 80 - 120                   |
| 8422351         MB5         QC Standard         Dissolved Phosphorus (P)         2016/10/06         107           8422351         MB5         Spiked Blank         Dissolved Phosphorus (P)         2016/10/06         105           8422351         MB5         Method Blank         Dissolved Phosphorus (P)         2016/10/06         <0.0030                                                                                                                       | %<br>mg/L                   |                            |
| 8422351MB5Spiked BlankDissolved Phosphorus (P)2016/10/061058422351MB5Method BlankDissolved Phosphorus (P)2016/10/06<0.0030                                                                                                                                                                                                                                                                                                                                              | mg/L                        |                            |
| 8422351         MB5         Method Blank         Dissolved Phosphorus (P)         2016/10/06         <0.0030                                                                                                                                                                                                                                                                                                                                                            | mg/L                        | 80 - 120                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                            |
| 8422351 MB5 RPD Dissolved Phosphorus (P) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 20                         |
| 8422901 VP4 Matrix Spike O-TERPHENYL (sur.) 2016/10/08 102                                                                                                                                                                                                                                                                                                                                                                                                              | %                           | 50 - 130                   |
| F2 (C10-C16 Hydrocarbons) 2016/10/08 100                                                                                                                                                                                                                                                                                                                                                                                                                                | %                           | 50 - 130                   |
| 8422901 VP4 Spiked Blank O-TERPHENYL (sur.) 2016/10/08 103                                                                                                                                                                                                                                                                                                                                                                                                              | %                           | 50 - 130                   |
| F2 (C10-C16 Hydrocarbons) 2016/10/08 100                                                                                                                                                                                                                                                                                                                                                                                                                                | %                           | 70 - 130                   |
| 8422901 VP4 Method Blank O-TERPHENYL (sur.) 2016/10/08 98                                                                                                                                                                                                                                                                                                                                                                                                               | %                           | 50 - 130                   |
| F2 (C10-C16 Hydrocarbons) 2016/10/08 <0.10                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L                        |                            |
| 8422901 VP4 RPD F2 (C10-C16 Hydrocarbons) 2016/10/08 NC                                                                                                                                                                                                                                                                                                                                                                                                                 | %                           | 40                         |
| 8423168 MB5 Matrix Spike Dissolved Ammonia (N) 2016/10/05 93                                                                                                                                                                                                                                                                                                                                                                                                            | %                           | 80 - 120                   |
| 8423168 MB5 Spiked Blank Dissolved Ammonia (N) 2016/10/05 94                                                                                                                                                                                                                                                                                                                                                                                                            | %                           | 80 - 120                   |
| 8423168 MB5 Method Blank Dissolved Ammonia (N) 2016/10/05 <0.050                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                        |                            |
| 8423168 MB5 RPD Dissolved Ammonia (N) 2016/10/05 NC                                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 20                         |
| 8423178 MB5 Matrix Spike Dissolved Ammonia (N) 2016/10/06 83                                                                                                                                                                                                                                                                                                                                                                                                            | %                           | 80 - 120                   |
| 8423178 MB5 Spiked Blank Dissolved Ammonia (N) 2016/10/05 97                                                                                                                                                                                                                                                                                                                                                                                                            | %                           | 80 - 120                   |
| 8423178 MB5 Method Blank Dissolved Ammonia (N) 2016/10/05 <0.050                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                        |                            |
| 8423178 MB5 RPD Dissolved Ammonia (N) 2016/10/05 NC                                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 20                         |
| 8424394 MB5 Matrix Spike Total Kjeldahl Nitrogen 2016/10/07 NC                                                                                                                                                                                                                                                                                                                                                                                                          | %                           | 80 - 120                   |
| 8424394 MB5 QC Standard Total Kjeldahl Nitrogen 2016/10/07 89                                                                                                                                                                                                                                                                                                                                                                                                           | %                           | 80 - 120                   |
| 8424394 MB5 Spiked Blank Total Kjeldahl Nitrogen 2016/10/07 84                                                                                                                                                                                                                                                                                                                                                                                                          | %                           | 80 - 120                   |
| 8424394 MB5 Method Blank Total Kjeldahl Nitrogen 2016/10/07 <0.050                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                        |                            |
| 8424394 MB5 RPD Total Kjeldahl Nitrogen 2016/10/07 2.0                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 20                         |
| 8424424 MUK Matrix Spike Dissolved Organic Carbon (C) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 80 - 120                   |
| 8424424 MUK Spiked Blank Dissolved Organic Carbon (C) 2016/10/06 99                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 80 - 120                   |
| 8424424 MUK Method Blank Dissolved Organic Carbon (C) 2016/10/06 <0.50                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                        |                            |
| 8424424 MUK RPD Dissolved Organic Carbon (C) 2016/10/06 2.4                                                                                                                                                                                                                                                                                                                                                                                                             | %                           | 20                         |
| 8424431 MUK Matrix Spike Dissolved Organic Carbon (C) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 80 - 120                   |
| 8424431 MUK Spiked Blank Dissolved Organic Carbon (C) 2016/10/06 103                                                                                                                                                                                                                                                                                                                                                                                                    | %                           | 80 - 120                   |
| 8424431 MUK Method Blank Dissolved Organic Carbon (C) 2016/10/06 <0.50                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                        |                            |
| 8424431 MUK RPD Dissolved Organic Carbon (C) 2016/10/06 1.7                                                                                                                                                                                                                                                                                                                                                                                                             | %                           | 20                         |
| 8424663         JHC         Matrix Spike         Dissolved Barium (Ba)         2016/10/06         95                                                                                                                                                                                                                                                                                                                                                                    | %                           | 80 - 120                   |
| Dissolved Boron (B) 2016/10/06 93                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                           | 80 - 120                   |
| Dissolved Calcium (Ca) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                           | 80 - 120                   |
| Dissolved Iron (Fe) 2016/10/06 94                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                           | 80 - 120                   |
| Dissolved Lithium (Li) 2016/10/06 99                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                           | 80 - 120                   |
| Dissolved Magnesium (Mg) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 80 - 120                   |
| Dissolved Manganese (Mn) 2016/10/06 96                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 80 - 120                   |
| Dissolved Phosphorus (P) 2016/10/06 102                                                                                                                                                                                                                                                                                                                                                                                                                                 | %                           | 80 - 120                   |
| Dissolved Potassium (K) 2016/10/06 107                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 80 - 120                   |
| Dissolved Silicon (Si) 2016/10/06 94                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                           | 80 - 120                   |
| Dissolved Sodium (Na) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                           | 80 - 120                   |
| Dissolved Strontium (Sr) 2016/10/06 NC                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                           | 80 - 120                   |
| 8424663         JHC         Spiked Blank         Dissolved Barium (Ba)         2016/10/06         100                                                                                                                                                                                                                                                                                                                                                                   | %                           | 80 - 120                   |
| Dissolved Boron (B) 2016/10/06 94                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                           | 80 - 120                   |
| Dissolved Calcium (Ca) 2016/10/06 102                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                           | 80 - 120                   |
| Dissolved Iron (Fe) 2016/10/06 98                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                           | 80 - 120                   |
| Dissolved Lithium (Li) 2016/10/06 101                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                           | 80 - 120                   |



| QA/QC   |      |              |                              | Date       |         |          |       |           |
|---------|------|--------------|------------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                    | Analyzed   | Value   | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Magnesium (Mg)     | 2016/10/06 |         | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)     | 2016/10/06 |         | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)     | 2016/10/06 |         | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)      | 2016/10/06 |         | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)       | 2016/10/06 |         | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)        | 2016/10/06 |         | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)     | 2016/10/06 |         | 98       | %     | 80 - 120  |
| 8424663 | JHC  | Method Blank | Dissolved Barium (Ba)        | 2016/10/06 | <0.010  |          | mg/L  |           |
|         |      |              | Dissolved Boron (B)          | 2016/10/06 | <0.020  |          | mg/L  |           |
|         |      |              | Dissolved Calcium (Ca)       | 2016/10/06 | <0.30   |          | mg/L  |           |
|         |      |              | Dissolved Iron (Fe)          | 2016/10/06 | <0.060  |          | mg/L  |           |
|         |      |              | Dissolved Lithium (Li)       | 2016/10/06 | <0.020  |          | mg/L  |           |
|         |      |              | Dissolved Magnesium (Mg)     | 2016/10/06 | <0.20   |          | mg/L  |           |
|         |      |              | Dissolved Manganese (Mn)     | 2016/10/06 | <0.0040 |          | mg/L  |           |
|         |      |              | Dissolved Phosphorus (P)     | 2016/10/06 | <0.10   |          | mg/L  |           |
|         |      |              | Dissolved Potassium (K)      | 2016/10/06 | <0.30   |          | mg/L  |           |
|         |      |              | Dissolved Silicon (Si)       | 2016/10/06 | <0.10   |          | mg/L  |           |
|         |      |              | Dissolved Sodium (Na)        | 2016/10/06 | <0.50   |          | mg/L  |           |
|         |      |              | Dissolved Strontium (Sr)     | 2016/10/06 | <0.020  |          | mg/L  |           |
|         |      |              | Dissolved Sulphur (S)        | 2016/10/06 | <0.20   |          | mg/L  |           |
| 8424663 | JHC  | RPD          | Dissolved Calcium (Ca)       | 2016/10/07 | 0.86    |          | %     | 20        |
|         |      |              | Dissolved Iron (Fe)          | 2016/10/07 | 2.1     |          | %     | 20        |
|         |      |              | Dissolved Magnesium (Mg)     | 2016/10/07 | 0.073   |          | %     | 20        |
|         |      |              | Dissolved Manganese (Mn)     | 2016/10/07 | 0.30    |          | %     | 20        |
|         |      |              | Dissolved Potassium (K)      | 2016/10/07 | 0.63    |          | %     | 20        |
|         |      |              | Dissolved Sodium (Na)        | 2016/10/07 | 0.074   |          | %     | 20        |
| 8426126 | ZI   | Matrix Spike | Dissolved Chloride (Cl)      | 2016/10/07 |         | NC       | %     | 80 - 120  |
| 8426126 | ZI   | Spiked Blank | Dissolved Chloride (Cl)      | 2016/10/07 |         | 104      | %     | 80 - 120  |
| 8426126 | ZI   | Method Blank | Dissolved Chloride (Cl)      | 2016/10/07 | 1.4,    |          | mg/L  |           |
|         |      |              |                              |            | RDL=1.0 |          |       |           |
| 8426126 | ZI   | RPD          | Dissolved Chloride (Cl)      | 2016/10/07 | 8.6     |          | %     | 20        |
| 8426130 | ZI   | Matrix Spike | Dissolved Sulphate (SO4)     | 2016/10/07 |         | NC       | %     | 80 - 120  |
| 8426130 | ZI   | Spiked Blank | Dissolved Sulphate (SO4)     | 2016/10/07 |         | 106      | %     | 80 - 120  |
| 8426130 | ZI   | Method Blank | Dissolved Sulphate (SO4)     | 2016/10/07 | <1.0    |          | mg/L  |           |
| 8426130 | ZI   | RPD          | Dissolved Sulphate (SO4)     | 2016/10/07 | 0.50    |          | %     | 20        |
| 8426391 | MZ   | Matrix Spike | 1,4-Difluorobenzene (sur.)   | 2016/10/08 |         | 99       | %     | 70 - 130  |
|         |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/08 |         | 98       | %     | 70 - 130  |
|         |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/08 |         | 96       | %     | 70 - 130  |
|         |      |              | Benzene                      | 2016/10/08 |         | 100      | %     | 70 - 130  |
|         |      |              | Toluene                      | 2016/10/08 |         | 98       | %     | 70 - 130  |
|         |      |              | Ethylbenzene                 | 2016/10/08 |         | 100      | %     | 70 - 130  |
|         |      |              | m & p-Xylene                 | 2016/10/08 |         | 90       | %     | 70 - 130  |
|         |      |              | o-Xylene                     | 2016/10/08 |         | 99       | %     | 70 - 130  |
|         |      |              | F1 (C6-C10)                  | 2016/10/08 |         | 84       | %     | 70 - 130  |
| 8426391 | MZ   | Spiked Blank | 1,4-Difluorobenzene (sur.)   | 2016/10/08 |         | 99       | %     | 70 - 130  |
|         |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/08 |         | 97       | %     | 70 - 130  |
|         |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/08 |         | 95       | %     | 70 - 130  |
|         |      |              | Benzene                      | 2016/10/08 |         | 98       | %     | 70 - 130  |
|         |      |              | Toluene                      | 2016/10/08 |         | 97       | %     | 70 - 130  |
|         |      |              | Ethylbenzene                 | 2016/10/08 |         | 99       | %     | 70 - 130  |
|         |      |              | m & p-Xylene                 | 2016/10/08 |         | 88       | %     | 70 - 130  |
|         |      |              | o-Xylene                     | 2016/10/08 |         | 102      | %     | 70 - 130  |



Report Date: 2016/10/12

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                              | Date       |            |          |       |           |
|---------|------|--------------|------------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                    | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |              | F1 (C6-C10)                  | 2016/10/08 |            | 105      | %     | 70 - 130  |
| 8426391 | MZ   | Method Blank | 1,4-Difluorobenzene (sur.)   | 2016/10/08 |            | 100      | %     | 70 - 130  |
|         |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/08 |            | 96       | %     | 70 - 130  |
|         |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/08 |            | 96       | %     | 70 - 130  |
|         |      |              | Benzene                      | 2016/10/08 | <0.00040   |          | mg/L  |           |
|         |      |              | Toluene                      | 2016/10/08 | < 0.00040  |          | mg/L  |           |
|         |      |              | Ethylbenzene                 | 2016/10/08 | <0.00040   |          | mg/L  |           |
|         |      |              | m & p-Xylene                 | 2016/10/08 | <0.00080   |          | mg/L  |           |
|         |      |              | o-Xylene                     | 2016/10/08 | <0.00040   |          | mg/L  |           |
|         |      |              | Xylenes (Total)              | 2016/10/08 | <0.00080   |          | mg/L  |           |
|         |      |              | F1 (C6-C10) - BTEX           | 2016/10/08 | <0.10      |          | mg/L  |           |
|         |      |              | F1 (C6-C10)                  | 2016/10/08 | <0.10      |          | mg/L  |           |
| 8426391 | MZ   | RPD          | Benzene                      | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | Toluene                      | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | Ethylbenzene                 | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | m & p-Xylene                 | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | o-Xylene                     | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | Xylenes (Total)              | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | F1 (C6-C10) - BTEX           | 2016/10/08 | NC         |          | %     | 40        |
|         |      |              | F1 (C6-C10)                  | 2016/10/08 | NC         |          | %     | 40        |
| 8426470 | ZI   | Matrix Spike | Dissolved Chloride (Cl)      | 2016/10/07 |            | NC       | %     | 80 - 120  |
| 8426470 | ZI   | Spiked Blank | Dissolved Chloride (Cl)      | 2016/10/07 |            | 101      | %     | 80 - 120  |
| 8426470 | ZI   | Method Blank | Dissolved Chloride (Cl)      | 2016/10/07 | <1.0       |          | mg/L  |           |
| 8426470 | ZI   | RPD          | Dissolved Chloride (Cl)      | 2016/10/07 | 6.0        |          | %     | 20        |
| 8426473 | ZI   | Matrix Spike | Dissolved Sulphate (SO4)     | 2016/10/07 |            | NC       | %     | 80 - 120  |
| 8426473 | ZI   | Spiked Blank | Dissolved Sulphate (SO4)     | 2016/10/07 |            | 103      | %     | 80 - 120  |
| 8426473 | ZI   | Method Blank | Dissolved Sulphate (SO4)     | 2016/10/07 | <1.0       |          | mg/L  |           |
| 8426473 | ZI   | RPD          | Dissolved Sulphate (SO4)     | 2016/10/07 | 0.075      |          | %     | 20        |
| 8428932 | RK3  | Matrix Spike | Dissolved Mercury (Hg)       | 2016/10/11 |            | 107      | %     | 80 - 120  |
| 8428932 | RK3  | Spiked Blank | Dissolved Mercury (Hg)       | 2016/10/11 |            | 120      | %     | 80 - 120  |
| 8428932 | RK3  | Method Blank | Dissolved Mercury (Hg)       | 2016/10/11 | 0.0030,    |          | ug/L  |           |
|         |      |              |                              |            | RDL=0.0020 |          |       |           |
| 8428932 | RK3  | RPD          | Dissolved Mercury (Hg)       | 2016/10/11 | NC         |          | %     | 20        |
| 8428935 | RK3  | Matrix Spike | Total Mercury (Hg)           | 2016/10/11 |            | 114      | %     | 80 - 120  |
| 8428935 | RK3  | Spiked Blank | Total Mercury (Hg)           | 2016/10/11 |            | 108      | %     | 80 - 120  |
| 8428935 | RK3  | Method Blank | Total Mercury (Hg)           | 2016/10/11 | <0.0020    |          | ug/L  |           |



## **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |         |                    | Date       |       |                |             |
|---------|------|---------|--------------------|------------|-------|----------------|-------------|
| Batch   | Init | QC Type | Parameter          | Analyzed   | Value | Recovery UNITS | G QC Limits |
| 8428935 | RK3  | RPD     | Total Mercury (Hg) | 2016/10/11 | NC    | %              | 20          |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



Report Date: 2016/10/12

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

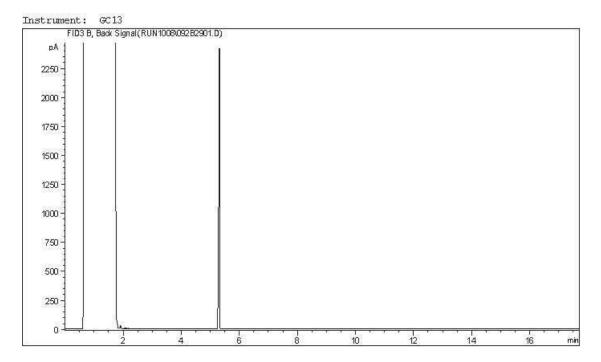
## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

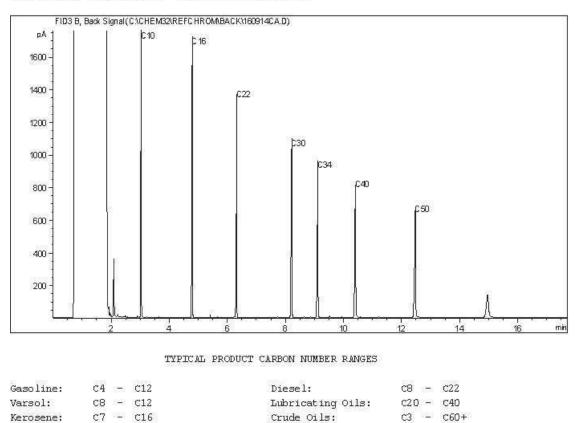
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

unchi Gras

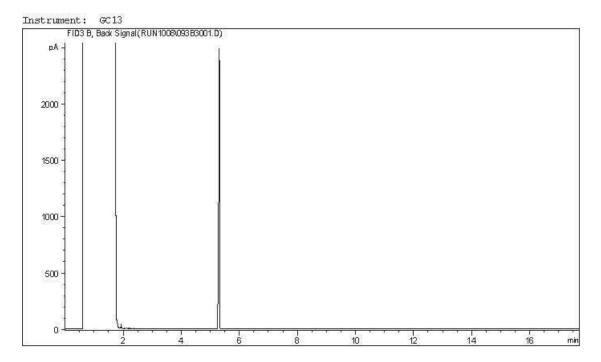

Janet Gao, B.Sc., QP, Supervisor, Organics

Harry (Peng) Liang, Senior Analyst

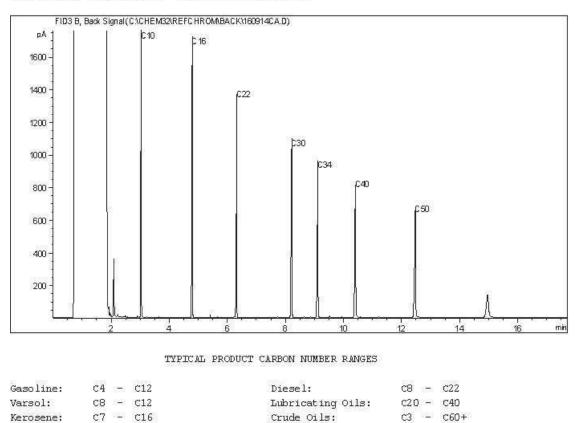

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Invoice Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Report Information (if differs from invoice) | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turnaround Time (TAT) Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| company: Stanter Consulting 4d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company:                                     | Quotation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Days Regular (Most analyses)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Contact Name: Dylon King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact Name:                                | P.O. #/ AFE#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Address: 10160 112 St Edmonton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Address:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rush TAT (Surcharges will be applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AB, TSK26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | Project #: 1077.3396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Same Day 2 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phone: (740) 969-2223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Phone:                                       | Site Location: Springbank SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Day 3-4 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Email: DV on King@stantec.com<br>copies: Dale, Nisoef @stantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Email:<br>Copies:                            | Site #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Required:<br>Rush Confirmation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Laboratory Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Regulatory Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| YES         NO         Cooler ID           Seal Present         Temp         10         14         13           Cooling Media         YES         NO         Cooler ID         Seal Present         Seal Present         Seal Present         Temp         10         14         13           Seal Present         NO         Cooler ID         Seal Present         Temp         Seal Present         Temp         Seal Present         Temp         Seal Present         Seal Present         Temp         Seal Present         Seal Prese |                                              | BTEX F1-F4<br>BTEX F1-F4<br>Regulated Metals Tot □ Diso<br>Mercury Total S Disolved □<br>Salinity 4<br>Salinity 4 | Subornal dependence<br>Subornal |
| 4         5           5         6           7         8           9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aut of Partine<br>Bottle due to low<br>Sample volume.<br>Submitted Same<br>day os sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | MW16-1-15 10 11 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | day os samplea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Please indicate Filtered, Preserved or Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oth (F, P, F/P)                              | MW16-16-11 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relinquished by: (Signature/ Print) DATE (YY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YY/MM/DD) Time (HH:MM) Received by: (Signa   | ture/ Print) DATE (YYYY/MM/DD) Time (HH:MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03-Oct-16 18:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### CCME Hydrocarbons in Water (F2; C10-C16) Chromatogram




Carbon Range Distribution - Reference Chromatogram




Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

#### CCME Hydrocarbons in Water (F2; C10-C16) Chromatogram



Carbon Range Distribution - Reference Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031942

## Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/13 Report #: R2281727 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B687243

## Received: 2016/10/04, 18:07

Sample Matrix: Water # Samples Received: 8

|                                          |          | Date       | Date       |                              |                      |
|------------------------------------------|----------|------------|------------|------------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method            | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 8        | N/A        | 2016/10/05 | AB SOP-00005                 | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 8        | N/A        | 2016/10/12 | AB SOP-00039                 | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 8        | N/A        | 2016/10/08 | AB SOP-00020                 | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 8        | 2016/10/05 | 2016/10/06 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 8        | 2016/10/05 | 2016/10/06 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Carbon (DOC) -Lab Filtered (1)           | 1        | N/A        | 2016/10/07 | CAL SOP-00077                | MMCW 119 1996 m      |
| Carbon (DOC) (1)                         | 7        | N/A        | 2016/10/06 | CAL SOP-00077                | MMCW 119 1996 m      |
| Conductivity @25C                        | 7        | N/A        | 2016/10/05 | AB SOP-00005                 | SM 22 2510 B m       |
| Conductivity @25C                        | 1        | N/A        | 2016/10/11 | AB SOP-00004                 | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 6        | 2016/10/05 | 2016/10/09 | AB SOP-00040<br>AB SOP-00037 | CCME PHC-CWS m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 2        | 2016/10/05 | 2016/10/10 | AB SOP-00040<br>AB SOP-00037 | CCME PHC-CWS m       |
| Hardness                                 | 8        | N/A        | 2016/10/08 | AB WI-00065                  | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 7        | 2016/10/12 | 2016/10/12 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury-Low Level-Dissolved-Lab Filtered | 1        | 2016/10/13 | 2016/10/13 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 8        | 2016/10/11 | 2016/10/11 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 7        | N/A        | 2016/10/08 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICP-Dissolved-Lab Filtered   | 1        | N/A        | 2016/10/07 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 7        | N/A        | 2016/10/06 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Elements by ICPMS-Dissolved-Lab Filtered | 1        | N/A        | 2016/10/07 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Ion Balance                              | 8        | N/A        | 2016/10/06 | AB WI-00065                  | Auto Calc            |
| Sum of cations, anions                   | 8        | N/A        | 2016/10/08 | AB WI-00065                  | Auto Calc            |
| Ammonia-N (Dissolved) - Lab Filtered     | 1        | N/A        | 2016/10/09 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Ammonia-N (Dissolved)                    | 7        | N/A        | 2016/10/05 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 8        | N/A        | 2016/10/07 | AB WI-00065                  | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 8        | N/A        | 2016/10/07 | AB WI-00065                  | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 8        | N/A        | 2016/10/06 | AB SOP-00023                 | SM 22 4110 B m       |
| рН @25°С                                 | 7        | N/A        | 2016/10/05 | AB SOP-00005                 | SM 22 4500-H+B m     |
| рН @25С                                  | 1        | N/A        | 2016/10/11 | AB SOP-00006                 | SM 22 4500 H+B m     |
| Orthophosphate by Konelab                | 8        | N/A        | 2016/10/06 | AB SOP-00025                 | SM 22 4500-P A,F m   |

Page 1 of 39



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031942

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/13 Report #: R2281727 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

## MAXXAM JOB #: B687243 Received: 2016/10/04, 18:07

Sample Matrix: Water # Samples Received: 8

|                                         |          | Date       | Date       |                   |                      |
|-----------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Sulphate by Automated Colourimetry      | 8        | N/A        | 2016/10/08 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Heterotrophic Plate Count               | 8        | 2016/10/05 | 2016/10/07 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated)     | 8        | N/A        | 2016/10/08 | AB WI-00065       | Auto Calc            |
| Total Kjeldahl Nitrogen                 | 2        | 2016/10/07 | 2016/10/07 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Kjeldahl Nitrogen                 | 6        | 2016/10/10 | 2016/10/12 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Phosphorus-Dissolved-Lab Filtered | 1        | 2016/10/06 | 2016/10/09 | AB SOP-00024      | SM 22 4500-P A,B,F m |
| Phosphorus -P (Total, Dissolved)        | 7        | 2016/10/05 | 2016/10/06 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

### **Encryption Key**

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.





# AT1 BTEX AND F1-F2 IN WATER (WATER)

|                       | 2016/10/04                                                          |                                                     |                                                                        |                                                                                          | PR5503                                                                                                     | PR5504                                                                                                                        |                                                                                                                                                |                                                                                                                                                            |  |  |
|-----------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       |                                                                     | 2016/10/04                                          | 2016/10/04                                                             | 2016/10/04                                                                               | 2016/10/04                                                                                                 | 2016/10/04                                                                                                                    |                                                                                                                                                |                                                                                                                                                            |  |  |
|                       | 10:50                                                               | 10:10                                               | 12:14                                                                  | 13:16                                                                                    | 15:04                                                                                                      | 16:12                                                                                                                         |                                                                                                                                                |                                                                                                                                                            |  |  |
|                       | M031942                                                             | M031942                                             | M031942                                                                | M031942                                                                                  | M031942                                                                                                    | M031942                                                                                                                       |                                                                                                                                                |                                                                                                                                                            |  |  |
| INITS                 | MW16-18-6                                                           | MW16-18-10                                          | MW16-4-20                                                              | MW16-5-11                                                                                | MW16-10-15                                                                                                 | MW16-8-8                                                                                                                      | RDL                                                                                                                                            | QC Batch                                                                                                                                                   |  |  |
| Ext. Pet. Hydrocarbon |                                                                     |                                                     |                                                                        |                                                                                          |                                                                                                            |                                                                                                                               |                                                                                                                                                |                                                                                                                                                            |  |  |
| ng/L                  | <0.10                                                               | <0.10                                               | <0.10                                                                  | <0.10                                                                                    | <0.10                                                                                                      | <0.10                                                                                                                         | 0.10                                                                                                                                           | 8422901                                                                                                                                                    |  |  |
|                       |                                                                     |                                                     |                                                                        |                                                                                          |                                                                                                            |                                                                                                                               | •                                                                                                                                              |                                                                                                                                                            |  |  |
| ng/L                  | <0.00040                                                            | <0.00040                                            | <0.00040                                                               | 0.00055                                                                                  | <0.00040                                                                                                   | <0.00040                                                                                                                      | 0.00040                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | <0.00040                                                            | 0.0013                                              | <0.00040                                                               | 0.0013                                                                                   | <0.00040                                                                                                   | <0.00040                                                                                                                      | 0.00040                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | 0.00062                                                             | 0.00068                                             | <0.00040                                                               | <0.00040                                                                                 | <0.00040                                                                                                   | <0.00040                                                                                                                      | 0.00040                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | 0.0020                                                              | 0.0029                                              | <0.00080                                                               | <0.00080                                                                                 | <0.00080                                                                                                   | <0.00080                                                                                                                      | 0.00080                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | 0.0010                                                              | 0.0012                                              | <0.00040                                                               | <0.00040                                                                                 | <0.00040                                                                                                   | <0.00040                                                                                                                      | 0.00040                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | 0.0030                                                              | 0.0041                                              | <0.00080                                                               | <0.00080                                                                                 | <0.00080                                                                                                   | <0.00080                                                                                                                      | 0.00080                                                                                                                                        | 8428043                                                                                                                                                    |  |  |
| ng/L                  | <0.10                                                               | <0.10                                               | <0.10                                                                  | <0.10                                                                                    | <0.10                                                                                                      | <0.10                                                                                                                         | 0.10                                                                                                                                           | 8428043                                                                                                                                                    |  |  |
| ng/L                  | <0.10                                                               | <0.10                                               | <0.10                                                                  | <0.10                                                                                    | <0.10                                                                                                      | <0.10                                                                                                                         | 0.10                                                                                                                                           | 8428043                                                                                                                                                    |  |  |
|                       |                                                                     |                                                     |                                                                        |                                                                                          |                                                                                                            |                                                                                                                               |                                                                                                                                                |                                                                                                                                                            |  |  |
| %                     | 104                                                                 | 107                                                 | 106                                                                    | 106                                                                                      | 107                                                                                                        | 106                                                                                                                           | N/A                                                                                                                                            | 8428043                                                                                                                                                    |  |  |
| %                     | 100                                                                 | 100                                                 | 100                                                                    | 99                                                                                       | 102                                                                                                        | 101                                                                                                                           | N/A                                                                                                                                            | 8428043                                                                                                                                                    |  |  |
| %                     | 102                                                                 | 101                                                 | 102                                                                    | 100                                                                                      | 102                                                                                                        | 100                                                                                                                           | N/A                                                                                                                                            | 8428043                                                                                                                                                    |  |  |
| %                     | 97                                                                  | 97                                                  | 98                                                                     | 95                                                                                       | 97                                                                                                         | 98                                                                                                                            | N/A                                                                                                                                            | 8422901                                                                                                                                                    |  |  |
| t                     |                                                                     |                                                     |                                                                        |                                                                                          |                                                                                                            |                                                                                                                               |                                                                                                                                                |                                                                                                                                                            |  |  |
|                       |                                                                     |                                                     |                                                                        |                                                                                          |                                                                                                            |                                                                                                                               |                                                                                                                                                |                                                                                                                                                            |  |  |
|                       | ng/L<br>ng/L<br>ng/L<br>ng/L<br>ng/L<br>ng/L<br>ng/L<br>%<br>%<br>% | NITS         MW16-18-6           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10         MW16-4-20           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10         MW16-4-20         MW16-5-11           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10         MW16-4-20         MW16-5-11         MW16-10-15           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10         MW16-4-20         MW16-5-11         MW16-10-15         MW16-8-8           ng/L         <0.10 | NITS         MW16-18-6         MW16-18-10         MW16-4-20         MW16-5-11         MW16-10-15         MW16-8-8         RDL           ng/L         <0.10 |  |  |



|                                |       | 71-F2 IIN W/ |            | ·/      |          |
|--------------------------------|-------|--------------|------------|---------|----------|
| Maxxam ID                      |       | PR5505       | PR5506     |         |          |
| Sampling Date                  |       | 2016/10/04   | 2016/10/04 |         |          |
|                                |       | 16:06        | 12:15      |         |          |
| COC Number                     |       | M031942      | M031942    |         |          |
|                                | UNITS | MW16-8-19    | MW16-4-16  | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon          |       |              |            |         |          |
| F2 (C10-C16 Hydrocarbons)      | mg/L  | <0.10        | <0.10      | 0.10    | 8422901  |
| Volatiles                      |       |              |            | •       |          |
| Benzene                        | mg/L  | <0.00040     | <0.00040   | 0.00040 | 8428043  |
| Toluene                        | mg/L  | <0.00040     | <0.00040   | 0.00040 | 8428043  |
| Ethylbenzene                   | mg/L  | <0.00040     | <0.00040   | 0.00040 | 8428043  |
| m & p-Xylene                   | mg/L  | <0.00080     | <0.00080   | 0.00080 | 8428043  |
| o-Xylene                       | mg/L  | <0.00040     | <0.00040   | 0.00040 | 8428043  |
| Xylenes (Total)                | mg/L  | <0.00080     | <0.00080   | 0.00080 | 8428043  |
| F1 (C6-C10) - BTEX             | mg/L  | <0.10        | <0.10      | 0.10    | 8428043  |
| F1 (C6-C10)                    | mg/L  | <0.10        | <0.10      | 0.10    | 8428043  |
| Surrogate Recovery (%)         |       |              |            |         |          |
| 1,4-Difluorobenzene (sur.)     | %     | 105          | 107        | N/A     | 8428043  |
| 4-Bromofluorobenzene (sur.)    | %     | 101          | 102        | N/A     | 8428043  |
| D4-1,2-Dichloroethane (sur.)   | %     | 100          | 103        | N/A     | 8428043  |
| O-TERPHENYL (sur.)             | %     | 97           | 95         | N/A     | 8422901  |
| RDL = Reportable Detection Lir | nit   |              |            |         |          |
| N/A = Not Applicable           |       |              |            |         |          |

### AT1 BTEX AND F1-F2 IN WATER (WATER)



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| xxam ID                        |          | PR5499              | PR5499               | PR5500              |          | PR5501              |         |             |
|--------------------------------|----------|---------------------|----------------------|---------------------|----------|---------------------|---------|-------------|
| npling Date                    |          | 2016/10/04<br>10:50 | 2016/10/04<br>10:50  | 2016/10/04<br>10:10 |          | 2016/10/04<br>12:14 |         |             |
| C Number                       |          | M031942             | M031942              | M031942             |          | M031942             |         |             |
|                                | UNITS    | MW16-18-6           | MW16-18-6<br>Lab-Dup | MW16-18-10          | RDL      | MW16-4-20           | RDL     | QC Batch    |
| culated Parameters             | <u> </u> |                     | ·                    | -                   | <u> </u> | -                   | ·       | •           |
| on Sum                         | meq/L    | 13                  | N/A                  | 13                  | N/A      | 54                  | N/A     | 8421120     |
| ion Sum                        | meq/L    | 12                  | N/A                  | 12                  | N/A      | 50                  | N/A     | 8421120     |
| rdness (CaCO3)                 | mg/L     | 480                 | N/A                  | 160                 | 0.50     | 1700                | 0.50    | 8422175     |
| Balance                        | N/A      | 0.98                | N/A                  | 0.93                | 0.010    | 0.94                | 0.010   | 8421119     |
| solved Nitrate (NO3)           | mg/L     | 5.3                 | N/A                  | 0.51                | 0.044    | <0.044              | 0.044   | 8421045     |
| rate plus Nitrite (N)          | mg/L     | 1.2                 | N/A                  | 0.13                | 0.020    | <0.020              | 0.020   | 8421046     |
| solved Nitrite (NO2)           | mg/L     | 0.10                | N/A                  | 0.054               | 0.033    | <0.033              | 0.033   | 8421045     |
| culated Total Dissolved Solids | mg/L     | 650                 | N/A                  | 680                 | 10       | 3400                | 10      | 8421121     |
| sc. Inorganics                 |          |                     |                      |                     |          |                     |         |             |
| nductivity                     | uS/cm    | 1100                | N/A                  | 1200                | 1.0      | 4000                | 1.0     | 8422994     |
|                                | рН       | 8.01                | N/A                  | 8.10                | N/A      | 7.52                | N/A     | 8422993     |
| ions                           |          |                     |                      |                     |          |                     |         |             |
| alinity (PP as CaCO3)          | mg/L     | <0.50               | N/A                  | <0.50               | 0.50     | <0.50               | 0.50    | 8422991     |
| alinity (Total as CaCO3)       | mg/L     | 420                 | N/A                  | 410                 | 0.50     | 460                 | 0.50    | 8422991     |
| arbonate (HCO3)                | mg/L     | 510                 | N/A                  | 500                 | 0.50     | 570                 | 0.50    | 8422991     |
| bonate (CO3)                   | mg/L     | <0.50               | N/A                  | <0.50               | 0.50     | <0.50               | 0.50    | 8422991     |
| droxide (OH)                   | mg/L     | <0.50               | N/A                  | <0.50               | 0.50     | <0.50               | 0.50    | 8422991     |
| solved Sulphate (SO4)          | mg/L     | 100                 | 100                  | 110                 | 1.0      | 2100 (1)            | 20      | 8427521     |
| solved Chloride (Cl)           | mg/L     | 72                  | 69                   | 78                  | 1.0      | 3.0                 | 1.0     | 8427519     |
| trients                        |          |                     |                      |                     |          |                     |         |             |
| solved Nitrite (N)             | mg/L     | 0.031               | N/A                  | 0.017               | 0.010    | <0.010              | 0.010   | 8423525     |
| solved Nitrate (N)             | mg/L     | 1.2                 | N/A                  | 0.12                | 0.010    | <0.010              | 0.010   | 8423525     |
| ments                          |          |                     |                      |                     |          |                     |         |             |
| solved Aluminum (Al)           | mg/L     | <0.0030             | N/A                  | <0.0030             | 0.0030   | <0.0030             | 0.0030  | 8422814     |
| solved Antimony (Sb)           | mg/L     | <0.00060            | N/A                  | <0.00060            | 0.00060  | <0.00060            | 0.00060 | 8422814     |
| solved Arsenic (As)            | mg/L     | 0.00022             | N/A                  | 0.00039             | 0.00020  | 0.0017              | 0.00020 | 8422814     |
| solved Barium (Ba)             | mg/L     | 0.075               | N/A                  | 0.030               | 0.010    | <0.010              | 0.010   | 8426610     |
| solved Beryllium (Be)          | mg/L     | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0010             | 0.0010  | 8422814     |
| solved Boron (B)               | mg/L     | 0.088               | N/A                  | 0.14                | 0.020    | 0.11                | 0.020   | 8426610     |
| solved Beryllium (Be)          | mg/L     | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0                | 0010    | 0010 0.0010 |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PR5499              | PR5499               | PR5500              |          | PR5501              |          |          |
|----------------------------------|-------|---------------------|----------------------|---------------------|----------|---------------------|----------|----------|
| Sampling Date                    |       | 2016/10/04<br>10:50 | 2016/10/04<br>10:50  | 2016/10/04<br>10:10 |          | 2016/10/04<br>12:14 |          |          |
| COC Number                       |       | M031942             | M031942              | M031942             |          | M031942             |          |          |
|                                  | UNITS | MW16-18-6           | MW16-18-6<br>Lab-Dup | MW16-18-10          | RDL      | MW16-4-20           | RDL      | QC Batch |
| Dissolved Cadmium (Cd)           | mg/L  | <0.000020           | N/A                  | <0.000020           | 0.000020 | <0.000020           | 0.000020 | 8422814  |
| Dissolved Calcium (Ca)           | mg/L  | 86                  | N/A                  | 38                  | 0.30     | 380                 | 0.30     | 8426610  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0010             | 0.0010   | 8422814  |
| Dissolved Cobalt (Co)            | mg/L  | <0.00030            | N/A                  | 0.00034             | 0.00030  | 0.00034             | 0.00030  | 8422814  |
| Dissolved Copper (Cu)            | mg/L  | 0.00067             | N/A                  | <0.00020            | 0.00020  | <0.00020            | 0.00020  | 8422814  |
| Dissolved Iron (Fe)              | mg/L  | <0.060              | N/A                  | <0.060              | 0.060    | 2.2                 | 0.060    | 8426610  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020            | N/A                  | <0.00020            | 0.00020  | <0.00020            | 0.00020  | 8422814  |
| Dissolved Lithium (Li)           | mg/L  | 0.026               | N/A                  | 0.031               | 0.020    | 0.070               | 0.020    | 8426610  |
| Dissolved Magnesium (Mg)         | mg/L  | 63                  | N/A                  | 16                  | 0.20     | 180                 | 0.20     | 8426610  |
| Dissolved Manganese (Mn)         | mg/L  | 0.058               | N/A                  | 0.20                | 0.0040   | 0.60                | 0.0040   | 8426610  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.0019              | N/A                  | 0.0037              | 0.00020  | 0.0016              | 0.00020  | 8422814  |
| Dissolved Nickel (Ni)            | mg/L  | 0.00099             | N/A                  | <0.00050            | 0.00050  | <0.00050            | 0.00050  | 8422814  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10               | N/A                  | <0.10               | 0.10     | <0.10               | 0.10     | 8426610  |
| Dissolved Potassium (K)          | mg/L  | 2.4                 | N/A                  | 1.3                 | 0.30     | 8.2                 | 0.30     | 8426610  |
| Dissolved Selenium (Se)          | mg/L  | 0.0012              | N/A                  | 0.00066             | 0.00020  | <0.00020            | 0.00020  | 8422814  |
| Dissolved Silicon (Si)           | mg/L  | 4.1                 | N/A                  | 3.4                 | 0.10     | 4.3                 | 0.10     | 8426610  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010            | N/A                  | <0.00010            | 0.00010  | <0.00010            | 0.00010  | 8422814  |
| Dissolved Sodium (Na)            | mg/L  | 66                  | N/A                  | 200                 | 0.50     | 370                 | 0.50     | 8426610  |
| Dissolved Strontium (Sr)         | mg/L  | 0.75                | N/A                  | 0.27                | 0.020    | 6.0 (1)             | 0.20     | 8426610  |
| Dissolved Sulphur (S)            | mg/L  | 29                  | N/A                  | 33                  | 0.20     | 730 (1)             | 2.0      | 8426610  |
| Dissolved Thallium (TI)          | mg/L  | <0.00020            | N/A                  | <0.00020            | 0.00020  | <0.00020            | 0.00020  | 8422814  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0010             | 0.0010   | 8422814  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0010             | 0.0010   | 8422814  |
| Dissolved Uranium (U)            | mg/L  | 0.011               | N/A                  | 0.0064              | 0.00010  | 0.0023              | 0.00010  | 8422814  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010             | N/A                  | <0.0010             | 0.0010   | <0.0010             | 0.0010   | 8422814  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030             | N/A                  | <0.0030             | 0.0030   | <0.0030             | 0.0030   | 8422814  |
| RDI = Reportable Detection Limit | !     |                     | •                    |                     | ••       |                     | •        | •        |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PR5502              | PR5502               |          | PR5503              |          | PR5503                |          |
|-----------------------------------|-------|---------------------|----------------------|----------|---------------------|----------|-----------------------|----------|
| Sampling Date                     |       | 2016/10/04<br>13:16 | 2016/10/04<br>13:16  |          | 2016/10/04<br>15:04 |          | 2016/10/04<br>15:04   |          |
| COC Number                        |       | M031942             | M031942              |          | M031942             |          | M031942               |          |
|                                   | UNITS | MW16-5-11           | MW16-5-11<br>Lab-Dup | QC Batch | MW16-10-15          | RDL      | MW16-10-15<br>Lab-Dup | QC Batch |
| Calculated Parameters             |       |                     |                      |          |                     |          |                       |          |
| Anion Sum                         | meq/L | 8.8                 | N/A                  | 8421120  | N/A                 | N/A      | N/A                   | 8421120  |
| Cation Sum                        | meq/L | 8.7                 | N/A                  | 8421120  | N/A                 | N/A      | N/A                   | 8421120  |
| Hardness (CaCO3)                  | mg/L  | 340                 | N/A                  | 8422175  | N/A                 | 0.50     | N/A                   | 8422175  |
| Ion Balance                       | N/A   | 0.99                | N/A                  | 8421119  | N/A                 | 0.010    | N/A                   | 8421119  |
| Dissolved Nitrate (NO3)           | mg/L  | 3.3                 | N/A                  | 8421045  | N/A                 | 0.044    | N/A                   | 8421045  |
| Nitrate plus Nitrite (N)          | mg/L  | 0.76                | N/A                  | 8421046  | N/A                 | 0.020    | N/A                   | 8421046  |
| Dissolved Nitrite (NO2)           | mg/L  | <0.033              | N/A                  | 8421045  | N/A                 | 0.033    | N/A                   | 8421045  |
| Calculated Total Dissolved Solids | mg/L  | 440                 | N/A                  | 8421121  | N/A                 | 10       | N/A                   | 8421121  |
| Misc. Inorganics                  |       |                     | •                    | •        |                     |          |                       |          |
| Conductivity                      | uS/cm | 780                 | N/A                  | 8422994  | 3000                | 1.0      | N/A                   | 8429611  |
| рН                                | рН    | 7.96                | N/A                  | 8422993  | 7.65                | N/A      | 7.62                  | 8429487  |
| Anions                            |       |                     | •                    | •        |                     |          |                       |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | N/A                  | 8422991  | N/A                 | 0.50     | N/A                   | N/A      |
| Alkalinity (Total as CaCO3)       | mg/L  | 380                 | N/A                  | 8422991  | N/A                 | 0.50     | N/A                   | N/A      |
| Bicarbonate (HCO3)                | mg/L  | 470                 | N/A                  | 8422991  | N/A                 | 0.50     | N/A                   | N/A      |
| Carbonate (CO3)                   | mg/L  | <0.50               | N/A                  | 8422991  | N/A                 | 0.50     | N/A                   | N/A      |
| Hydroxide (OH)                    | mg/L  | <0.50               | N/A                  | 8422991  | N/A                 | 0.50     | N/A                   | N/A      |
| Dissolved Sulphate (SO4)          | mg/L  | 43                  | N/A                  | 8427480  | N/A                 | 1.0      | N/A                   | N/A      |
| Dissolved Chloride (Cl)           | mg/L  | 4.8                 | N/A                  | 8427477  | N/A                 | 1.0      | N/A                   | N/A      |
| Nutrients                         |       |                     |                      |          | •                   |          |                       |          |
| Dissolved Nitrite (N)             | mg/L  | <0.010              | N/A                  | 8423525  | N/A                 | 0.010    | N/A                   | N/A      |
| Dissolved Nitrate (N)             | mg/L  | 0.76                | N/A                  | 8423525  | N/A                 | 0.010    | N/A                   | N/A      |
| Elements                          |       |                     |                      |          | •                   |          |                       |          |
| Dissolved Aluminum (Al)           | mg/L  | 0.011               | N/A                  | 8422814  | N/A                 | 0.0030   | N/A                   | N/A      |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | N/A                  | 8422814  | N/A                 | 0.00060  | N/A                   | N/A      |
| Dissolved Arsenic (As)            | mg/L  | 0.0010              | N/A                  | 8422814  | N/A                 | 0.00020  | N/A                   | N/A      |
| Dissolved Barium (Ba)             | mg/L  | 0.068               | 0.068                | 8426625  | N/A                 | 0.010    | N/A                   | N/A      |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | N/A                  | 8422814  | N/A                 | 0.0010   | N/A                   | N/A      |
| Dissolved Boron (B)               | mg/L  | 0.036               | 0.035                | 8426625  | N/A                 | 0.020    | N/A                   | N/A      |
| Dissolved Cadmium (Cd)            | mg/L  | <0.000020           | N/A                  | 8422814  | N/A                 | 0.000020 | N/A                   | N/A      |
| RDL = Reportable Detection Limit  |       |                     |                      |          |                     |          |                       |          |
|                                   |       |                     |                      |          |                     |          |                       |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                 |       | PR5502     | PR5502               |          | PR5503     |         | PR5503                |          |
|---------------------------|-------|------------|----------------------|----------|------------|---------|-----------------------|----------|
| Sampling Date             |       | 2016/10/04 | 2016/10/04           |          | 2016/10/04 |         | 2016/10/04            |          |
|                           |       | 13:16      | 13:16                |          | 15:04      |         | 15:04                 |          |
| COC Number                |       | M031942    | M031942              |          | M031942    |         | M031942               |          |
|                           | UNITS | MW16-5-11  | MW16-5-11<br>Lab-Dup | QC Batch | MW16-10-15 | RDL     | MW16-10-15<br>Lab-Dup | QC Batch |
| Dissolved Calcium (Ca)    | mg/L  | 76         | 76                   | 8426625  | N/A        | 0.30    | N/A                   | N/A      |
| Dissolved Chromium (Cr)   | mg/L  | <0.0010    | N/A                  | 8422814  | N/A        | 0.0010  | N/A                   | N/A      |
| Dissolved Cobalt (Co)     | mg/L  | 0.0010     | N/A                  | 8422814  | N/A        | 0.00030 | N/A                   | N/A      |
| Dissolved Copper (Cu)     | mg/L  | <0.00020   | N/A                  | 8422814  | N/A        | 0.00020 | N/A                   | N/A      |
| Dissolved Iron (Fe)       | mg/L  | 0.061      | 0.062                | 8426625  | N/A        | 0.060   | N/A                   | N/A      |
| Dissolved Lead (Pb)       | mg/L  | <0.00020   | N/A                  | 8422814  | N/A        | 0.00020 | N/A                   | N/A      |
| Dissolved Lithium (Li)    | mg/L  | <0.020     | <0.020               | 8426625  | N/A        | 0.020   | N/A                   | N/A      |
| Dissolved Magnesium (Mg)  | mg/L  | 38         | 38                   | 8426625  | N/A        | 0.20    | N/A                   | N/A      |
| Dissolved Manganese (Mn)  | mg/L  | 0.15       | 0.15                 | 8426625  | N/A        | 0.0040  | N/A                   | N/A      |
| Dissolved Molybdenum (Mo) | mg/L  | 0.012      | N/A                  | 8422814  | N/A        | 0.00020 | N/A                   | N/A      |
| Dissolved Nickel (Ni)     | mg/L  | 0.0020     | N/A                  | 8422814  | N/A        | 0.00050 | N/A                   | N/A      |
| Dissolved Phosphorus (P)  | mg/L  | <0.10      | <0.10                | 8426625  | N/A        | 0.10    | N/A                   | N/A      |
| Dissolved Potassium (K)   | mg/L  | 3.7        | 3.7                  | 8426625  | N/A        | 0.30    | N/A                   | N/A      |
| Dissolved Selenium (Se)   | mg/L  | 0.0031     | N/A                  | 8422814  | N/A        | 0.00020 | N/A                   | N/A      |
| Dissolved Silicon (Si)    | mg/L  | 4.2        | 4.1                  | 8426625  | N/A        | 0.10    | N/A                   | N/A      |
| Dissolved Silver (Ag)     | mg/L  | <0.00010   | N/A                  | 8422814  | N/A        | 0.00010 | N/A                   | N/A      |
| Dissolved Sodium (Na)     | mg/L  | 39         | 39                   | 8426625  | N/A        | 0.50    | N/A                   | N/A      |
| Dissolved Strontium (Sr)  | mg/L  | 0.82       | 0.81                 | 8426625  | N/A        | 0.020   | N/A                   | N/A      |
| Dissolved Sulphur (S)     | mg/L  | 13         | 13                   | 8426625  | N/A        | 0.20    | N/A                   | N/A      |
| Dissolved Thallium (TI)   | mg/L  | <0.00020   | N/A                  | 8422814  | N/A        | 0.00020 | N/A                   | N/A      |
| Dissolved Tin (Sn)        | mg/L  | <0.0010    | N/A                  | 8422814  | N/A        | 0.0010  | N/A                   | N/A      |
| Dissolved Titanium (Ti)   | mg/L  | <0.0010    | N/A                  | 8422814  | N/A        | 0.0010  | N/A                   | N/A      |
| Dissolved Uranium (U)     | mg/L  | 0.0053     | N/A                  | 8422814  | N/A        | 0.00010 | N/A                   | N/A      |
| Dissolved Vanadium (V)    | mg/L  | <0.0010    | N/A                  | 8422814  | N/A        | 0.0010  | N/A                   | N/A      |
| Dissolved Zinc (Zn)       | mg/L  | <0.0030    | N/A                  | 8422814  | N/A        | 0.0030  | N/A                   | N/A      |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PR5504              |          | PR5505              |          |          | PR5506              |          |          |
|-----------------------------------|-------|---------------------|----------|---------------------|----------|----------|---------------------|----------|----------|
| Sampling Date                     |       | 2016/10/04<br>16:12 |          | 2016/10/04<br>16:06 |          |          | 2016/10/04<br>12:15 |          |          |
| COC Number                        |       | M031942             |          | M031942             |          |          | M031942             |          |          |
|                                   | UNITS | MW16-8-8            | QC Batch | MW16-8-19           | RDL      | QC Batch | MW16-4-16           | RDL      | QC Batch |
| Calculated Parameters             |       |                     |          |                     |          |          |                     | •        |          |
| Anion Sum                         | meq/L | 12                  | 8421120  | 15                  | N/A      | 8421120  | 55                  | N/A      | 8421120  |
| Cation Sum                        | meq/L | 12                  | 8421120  | 14                  | N/A      | 8421120  | 51                  | N/A      | 8421120  |
| Hardness (CaCO3)                  | mg/L  | 550                 | 8422175  | 580                 | 0.50     | 8422175  | 1700                | 0.50     | 8422175  |
| Ion Balance                       | N/A   | 1.0                 | 8421119  | 0.93                | 0.010    | 8422190  | 0.94                | 0.010    | 8422190  |
| Dissolved Nitrate (NO3)           | mg/L  | 6.9                 | 8421045  | 3.1                 | 0.044    | 8422191  | 0.045               | 0.044    | 8422191  |
| Nitrate plus Nitrite (N)          | mg/L  | 1.6                 | 8421046  | 0.70                | 0.020    | 8422192  | <0.020              | 0.020    | 8422192  |
| Dissolved Nitrite (NO2)           | mg/L  | < 0.033             | 8421045  | <0.033              | 0.033    | 8422191  | <0.033              | 0.033    | 8422191  |
| Calculated Total Dissolved Solids | mg/L  | 640                 | 8421121  | 750                 | 10       | 8422193  | 3400                | 10       | 8422193  |
| Misc. Inorganics                  | ••    |                     | • •      |                     | +        | ••       |                     | •        | ł        |
| Conductivity                      | uS/cm | 1100                | 8422994  | 1300                | 1.0      | 8422994  | 4000                | 1.0      | 8422994  |
| рН                                | рН    | 7.90                | 8422993  | 7.74                | N/A      | 8422993  | 7.45                | N/A      | 8422993  |
| Anions                            |       |                     |          |                     | •        |          |                     | •        |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | 8422991  | <0.50               | 0.50     | 8422991  | <0.50               | 0.50     | 8422991  |
| Alkalinity (Total as CaCO3)       | mg/L  | 370                 | 8422991  | 460                 | 0.50     | 8422991  | 460                 | 0.50     | 8422991  |
| Bicarbonate (HCO3)                | mg/L  | 450                 | 8422991  | 560                 | 0.50     | 8422991  | 560                 | 0.50     | 8422991  |
| Carbonate (CO3)                   | mg/L  | <0.50               | 8422991  | <0.50               | 0.50     | 8422991  | <0.50               | 0.50     | 8422991  |
| Hydroxide (OH)                    | mg/L  | <0.50               | 8422991  | <0.50               | 0.50     | 8422991  | <0.50               | 0.50     | 8422991  |
| Dissolved Sulphate (SO4)          | mg/L  | 140                 | 8427521  | 110                 | 1.0      | 8427521  | 2200 (1)            | 20       | 8427480  |
| Dissolved Chloride (Cl)           | mg/L  | 60                  | 8427519  | 110                 | 1.0      | 8427519  | 3.0                 | 1.0      | 8427477  |
| Nutrients                         |       |                     |          |                     | •        | · ·      |                     | •        | •        |
| Dissolved Nitrite (N)             | mg/L  | <0.010              | 8423525  | <0.010              | 0.010    | 8423525  | <0.010              | 0.010    | 8423525  |
| Dissolved Nitrate (N)             | mg/L  | 1.6                 | 8423525  | 0.70                | 0.010    | 8423525  | 0.010               | 0.010    | 8423525  |
| Elements                          |       |                     |          |                     |          |          |                     |          |          |
| Dissolved Aluminum (Al)           | mg/L  | <0.0030             | 8422814  | <0.0030             | 0.0030   | 8422814  | <0.0030             | 0.0030   | 8422814  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | 8422814  | <0.00060            | 0.00060  | 8422814  | <0.00060            | 0.00060  | 8422814  |
| Dissolved Arsenic (As)            | mg/L  | <0.00020            | 8422814  | <0.00020            | 0.00020  | 8422814  | 0.0019              | 0.00020  | 8422814  |
| Dissolved Barium (Ba)             | mg/L  | 0.039               | 8426610  | 0.054               | 0.010    | 8426610  | <0.010              | 0.010    | 8426610  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | 8422814  | <0.0010             | 0.0010   | 8422814  | <0.0010             | 0.0010   | 8422814  |
| Dissolved Boron (B)               | mg/L  | 0.043               | 8426610  | 0.043               | 0.020    | 8426610  | 0.11                | 0.020    | 8426610  |
| Dissolved Cadmium (Cd)            | mg/L  | 0.000040            | 8422814  | 0.000029            | 0.000020 | 8422814  | <0.000020           | 0.000020 | 8422814  |
| BDL = Reportable Detection Limit  | • •   |                     |          |                     |          |          |                     | •        |          |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PR5504     |          | PR5505     |         |          | PR5506     |         |          |
|----------------------------------|-------|------------|----------|------------|---------|----------|------------|---------|----------|
| Sampling Date                    |       | 2016/10/04 |          | 2016/10/04 |         |          | 2016/10/04 |         |          |
|                                  |       | 16:12      |          | 16:06      |         |          | 12:15      |         |          |
| COC Number                       |       | M031942    |          | M031942    |         |          | M031942    |         |          |
|                                  | UNITS | MW16-8-8   | QC Batch | MW16-8-19  | RDL     | QC Batch | MW16-4-16  | RDL     | QC Batch |
| Dissolved Calcium (Ca)           | mg/L  | 120        | 8426610  | 130        | 0.30    | 8426610  | 380        | 0.30    | 8426610  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010    | 8422814  | <0.0010    | 0.0010  | 8422814  | <0.0010    | 0.0010  | 8422814  |
| Dissolved Cobalt (Co)            | mg/L  | 0.00057    | 8422814  | <0.00030   | 0.00030 | 8422814  | 0.00031    | 0.00030 | 8422814  |
| Dissolved Copper (Cu)            | mg/L  | 0.00032    | 8422814  | <0.00020   | 0.00020 | 8422814  | <0.00020   | 0.00020 | 8422814  |
| Dissolved Iron (Fe)              | mg/L  | <0.060     | 8426610  | <0.060     | 0.060   | 8426610  | 2.2        | 0.060   | 8426610  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020   | 8422814  | <0.00020   | 0.00020 | 8422814  | <0.00020   | 0.00020 | 8422814  |
| Dissolved Lithium (Li)           | mg/L  | <0.020     | 8426610  | <0.020     | 0.020   | 8426610  | 0.074      | 0.020   | 8426610  |
| Dissolved Magnesium (Mg)         | mg/L  | 60         | 8426610  | 60         | 0.20    | 8426610  | 180        | 0.20    | 8426610  |
| Dissolved Manganese (Mn)         | mg/L  | 0.12       | 8426610  | 0.0062     | 0.0040  | 8426610  | 0.60       | 0.0040  | 8426610  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.0011     | 8422814  | 0.00085    | 0.00020 | 8422814  | 0.0015     | 0.00020 | 8422814  |
| Dissolved Nickel (Ni)            | mg/L  | 0.0025     | 8422814  | <0.00050   | 0.00050 | 8422814  | <0.00050   | 0.00050 | 8422814  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10      | 8426610  | <0.10      | 0.10    | 8426610  | <0.10      | 0.10    | 8426610  |
| Dissolved Potassium (K)          | mg/L  | 5.8        | 8426610  | 5.7        | 0.30    | 8426610  | 8.5        | 0.30    | 8426610  |
| Dissolved Selenium (Se)          | mg/L  | 0.011      | 8422814  | 0.0080     | 0.00020 | 8422814  | <0.00020   | 0.00020 | 8422814  |
| Dissolved Silicon (Si)           | mg/L  | 4.2        | 8426610  | 3.7        | 0.10    | 8426610  | 4.4        | 0.10    | 8426610  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010   | 8422814  | <0.00010   | 0.00010 | 8422814  | <0.00010   | 0.00010 | 8422814  |
| Dissolved Sodium (Na)            | mg/L  | 25         | 8426610  | 47         | 0.50    | 8426610  | 390        | 0.50    | 8426610  |
| Dissolved Strontium (Sr)         | mg/L  | 0.90       | 8426610  | 1.3        | 0.020   | 8426610  | 5.9 (1)    | 0.20    | 8426610  |
| Dissolved Sulphur (S)            | mg/L  | 45         | 8426610  | 29         | 0.20    | 8426610  | 720 (1)    | 2.0     | 8426610  |
| Dissolved Thallium (Tl)          | mg/L  | <0.00020   | 8422814  | <0.00020   | 0.00020 | 8422814  | <0.00020   | 0.00020 | 8422814  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010    | 8422814  | <0.0010    | 0.0010  | 8422814  | <0.0010    | 0.0010  | 8422814  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010    | 8422814  | 0.0010     | 0.0010  | 8422814  | <0.0010    | 0.0010  | 8422814  |
| Dissolved Uranium (U)            | mg/L  | 0.011      | 8422814  | 0.0053     | 0.00010 | 8422814  | 0.0022     | 0.00010 | 8422814  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010    | 8422814  | <0.0010    | 0.0010  | 8422814  | <0.0010    | 0.0010  | 8422814  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030    | 8422814  | <0.0030    | 0.0030  | 8422814  | < 0.0030   | 0.0030  | 8422814  |
| RDL = Reportable Detection Limit |       |            |          |            |         |          |            |         |          |
|                                  |       |            |          |            |         |          |            |         |          |

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                                                                                            |       | PR5506               |      |          |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------|----------------------|------|----------|--|--|--|--|
| Sampling Date                                                                                        |       | 2016/10/04<br>12:15  |      |          |  |  |  |  |
| COC Number                                                                                           |       | M031942              |      |          |  |  |  |  |
|                                                                                                      | UNITS | MW16-4-16<br>Lab-Dup | RDL  | QC Batch |  |  |  |  |
| Misc. Inorganics                                                                                     |       |                      |      |          |  |  |  |  |
| Conductivity                                                                                         | uS/cm | 4000                 | 1.0  | 8422994  |  |  |  |  |
| рН                                                                                                   | рН    | 7.46                 | N/A  | 8422993  |  |  |  |  |
| Anions                                                                                               |       |                      |      |          |  |  |  |  |
| Alkalinity (PP as CaCO3)                                                                             | mg/L  | <0.50                | 0.50 | 8422991  |  |  |  |  |
| Alkalinity (Total as CaCO3)                                                                          | mg/L  | 460                  | 0.50 | 8422991  |  |  |  |  |
| Bicarbonate (HCO3)                                                                                   | mg/L  | 560                  | 0.50 | 8422991  |  |  |  |  |
| Carbonate (CO3)                                                                                      | mg/L  | <0.50                | 0.50 | 8422991  |  |  |  |  |
| Hydroxide (OH)                                                                                       | mg/L  | <0.50                | 0.50 | 8422991  |  |  |  |  |
| RDL = Reportable Detection Limit<br>Lab-Dup = Laboratory Initiated Duplicate<br>N/A = Not Applicable |       |                      |      |          |  |  |  |  |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                            |            | PR5503          |            |            |  |  |  |  |
|--------------------------------------|------------|-----------------|------------|------------|--|--|--|--|
| Someling Data                        |            | 2016/10/04      |            |            |  |  |  |  |
| Sampling Date                        |            | 15:04           |            |            |  |  |  |  |
| COC Number                           |            | M031942         |            |            |  |  |  |  |
|                                      | UNITS      | MW16-10-15      | RDL        | QC Batch   |  |  |  |  |
| Calculated Parameters                |            |                 |            |            |  |  |  |  |
| Anion Sum                            | meq/L      | 45              | N/A        | 8421120    |  |  |  |  |
| Cation Sum                           | meq/L      | 42              | N/A        | 8421120    |  |  |  |  |
| Hardness (CaCO3)                     | mg/L       | 1400            | 0.50       | 8422175    |  |  |  |  |
| Ion Balance                          | N/A        | 0.94            | 0.010      | 8421119    |  |  |  |  |
| Dissolved Nitrate (NO3)              | mg/L       | 0.12            | 0.044      | 8421045    |  |  |  |  |
| Nitrate plus Nitrite (N)             | mg/L       | 0.027           | 0.020      | 8421046    |  |  |  |  |
| Dissolved Nitrite (NO2)              | mg/L       | <0.033          | 0.033      | 8421045    |  |  |  |  |
| Calculated Total Dissolved Solids    | mg/L       | 2800            | 10         | 8421121    |  |  |  |  |
| Anions                               | ÷          |                 |            |            |  |  |  |  |
| Alkalinity (PP as CaCO3)             | mg/L       | <5.0            | 5.0        | 8422991    |  |  |  |  |
| Alkalinity (Total as CaCO3)          | mg/L       | 380             | 5.0        | 8422991    |  |  |  |  |
| Bicarbonate (HCO3)                   | mg/L       | 470             | 5.0        | 8422991    |  |  |  |  |
| Carbonate (CO3)                      | mg/L       | <5.0            | 5.0        | 8422991    |  |  |  |  |
| Hydroxide (OH)                       | mg/L       | <5.0            | 5.0        | 8422991    |  |  |  |  |
| Dissolved Sulphate (SO4)             | mg/L       | 1800 (1)        | 20         | 8427480    |  |  |  |  |
| Dissolved Chloride (Cl)              | mg/L       | 7.1             | 1.0        | 8427477    |  |  |  |  |
| Nutrients                            |            |                 |            |            |  |  |  |  |
| Dissolved Nitrite (N)                | mg/L       | <0.010          | 0.010      | 8423539    |  |  |  |  |
| Dissolved Nitrate (N)                | mg/L       | 0.027           | 0.010      | 8423539    |  |  |  |  |
| Lab Filtered Elements                |            | -               |            |            |  |  |  |  |
| Dissolved Aluminum (Al)              | mg/L       | 0.0042          | 0.0030     | 8423671    |  |  |  |  |
| Dissolved Antimony (Sb)              | mg/L       | 0.00079         | 0.00060    | 8423671    |  |  |  |  |
| Dissolved Arsenic (As)               | mg/L       | 0.0012          | 0.00020    | 8423671    |  |  |  |  |
| Dissolved Barium (Ba)                | mg/L       | 0.022           | 0.010      | 8426641    |  |  |  |  |
| Dissolved Beryllium (Be)             | mg/L       | <0.0010         | 0.0010     | 8423671    |  |  |  |  |
| Dissolved Boron (B)                  | mg/L       | 0.12            | 0.020      | 8426641    |  |  |  |  |
| Dissolved Cadmium (Cd)               | mg/L       | 0.00010         | 0.000020   | 8423671    |  |  |  |  |
| Dissolved Calcium (Ca)               | mg/L       | 320             | 0.30       | 8426641    |  |  |  |  |
| Dissolved Chromium (Cr)              | mg/L       | <0.0010         | 0.0010     | 8423671    |  |  |  |  |
| RDL = Reportable Detection Limit     |            |                 |            |            |  |  |  |  |
| N/A = Not Applicable                 |            |                 |            |            |  |  |  |  |
| (1) Detection limits raised due to o | dilution t | o bring analyte | within the | calibrated |  |  |  |  |
| range.                               |            |                 |            |            |  |  |  |  |



# **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                          |            | PR5503          |            |            |
|------------------------------------|------------|-----------------|------------|------------|
| Sampling Date                      |            | 2016/10/04      |            |            |
|                                    |            | 15:04           |            |            |
| COC Number                         |            | M031942         |            |            |
|                                    | UNITS      | MW16-10-15      | RDL        | QC Batch   |
| Dissolved Cobalt (Co)              | mg/L       | 0.0043          | 0.00030    | 8423671    |
| Dissolved Copper (Cu)              | mg/L       | <0.00020        | 0.00020    | 8423671    |
| Dissolved Iron (Fe)                | mg/L       | <0.060          | 0.060      | 8426641    |
| Dissolved Lead (Pb)                | mg/L       | <0.00020        | 0.00020    | 8423671    |
| Dissolved Lithium (Li)             | mg/L       | 0.055           | 0.020      | 8426641    |
| Dissolved Magnesium (Mg)           | mg/L       | 140             | 0.20       | 8426641    |
| Dissolved Manganese (Mn)           | mg/L       | 1.0             | 0.0040     | 8426641    |
| Dissolved Molybdenum (Mo)          | mg/L       | 0.0034          | 0.00020    | 8423671    |
| Dissolved Nickel (Ni)              | mg/L       | 0.013           | 0.00050    | 8423671    |
| Dissolved Phosphorus (P)           | mg/L       | <0.10           | 0.10       | 8426641    |
| Dissolved Potassium (K)            | mg/L       | 11              | 0.30       | 8426641    |
| Dissolved Selenium (Se)            | mg/L       | 0.00038         | 0.00020    | 8423671    |
| Dissolved Silicon (Si)             | mg/L       | 4.5             | 0.10       | 8426641    |
| Dissolved Silver (Ag)              | mg/L       | <0.00010        | 0.00010    | 8423671    |
| Dissolved Sodium (Na)              | mg/L       | 330             | 0.50       | 8426641    |
| Dissolved Strontium (Sr)           | mg/L       | 3.4             | 0.020      | 8426641    |
| Dissolved Sulphur (S)              | mg/L       | 650 (1)         | 2.0        | 8426641    |
| Dissolved Thallium (Tl)            | mg/L       | <0.00020        | 0.00020    | 8423671    |
| Dissolved Tin (Sn)                 | mg/L       | <0.0010         | 0.0010     | 8423671    |
| Dissolved Titanium (Ti)            | mg/L       | <0.0010         | 0.0010     | 8423671    |
| Dissolved Uranium (U)              | mg/L       | 0.012           | 0.00010    | 8423671    |
| Dissolved Vanadium (V)             | mg/L       | <0.0010         | 0.0010     | 8423671    |
| Dissolved Zinc (Zn)                | mg/L       | <0.0030         | 0.0030     | 8423671    |
| RDL = Reportable Detection Limi    | t          |                 |            |            |
| (1) Detection limits raised due to | dilution t | o bring analyte | within the | calibrated |
| range.                             |            |                 |            |            |



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PR5499              | PR5499               |        |          | PR5500              | PR5500                |        |          |
|-------------------------------|-----------|---------------------|----------------------|--------|----------|---------------------|-----------------------|--------|----------|
| Sampling Date                 |           | 2016/10/04<br>10:50 | 2016/10/04<br>10:50  |        |          | 2016/10/04<br>10:10 | 2016/10/04<br>10:10   |        |          |
| COC Number                    |           | M031942             | M031942              |        |          | M031942             | M031942               |        |          |
|                               | UNITS     | MW16-18-6           | MW16-18-6<br>Lab-Dup | RDL    | QC Batch | MW16-18-10          | MW16-18-10<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics              |           |                     |                      |        |          |                     |                       |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 4.9                 | N/A                  | 0.50   | 8424431  | 2.6                 | N/A                   | 0.50   | 8424431  |
| Microbiological Param.        |           |                     |                      |        |          |                     |                       | •      |          |
| E.Coli DST                    | mpn/100mL | <10 (1)             | N/A                  | 10     | 8422823  | <100 (1)            | N/A                   | 100    | 8422823  |
| Fecal Coliforms               | MPN/100mL | <10 (1)             | N/A                  | 10     | 8422822  | <100 (1)            | N/A                   | 100    | 8422822  |
| Heterotrophic Plate Count     | CFU/mL    | 4400 (2)            | 4400                 | 10     | 8422824  | 17000 (2)           | 18000                 | 100    | 8422824  |
| Total Coliforms DST           | mpn/100mL | 140 (1)             | N/A                  | 10     | 8422823  | 310 (1)             | N/A                   | 100    | 8422823  |
| Nutrients                     |           |                     |                      |        | •        |                     | •                     |        |          |
| Dissolved Ammonia (N)         | mg/L      | <0.050              | N/A                  | 0.050  | 8423168  | <0.050              | N/A                   | 0.050  | 8423168  |
| Total Kjeldahl Nitrogen       | mg/L      | 1.3                 | N/A                  | 0.050  | 8428234  | 18 (3)              | N/A                   | 1.3    | 8428215  |
| Orthophosphate (P)            | mg/L      | <0.0030             | N/A                  | 0.0030 | 8424717  | <0.0030             | N/A                   | 0.0030 | 8424717  |
| Dissolved Phosphorus (P)      | mg/L      | 0.0038              | N/A                  | 0.0030 | 8422351  | <0.0030             | N/A                   | 0.0030 | 8422351  |
| PDL - Departable Detection Li | an it     |                     |                      |        |          |                     |                       |        |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(3) Detection limits raised due to dilution to bring analyte within the calibrated range.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PR5501              | PR5501               |        |          | PR5502              | PR5502               |        |          |
|-------------------------------|-----------|---------------------|----------------------|--------|----------|---------------------|----------------------|--------|----------|
| Sampling Date                 |           | 2016/10/04<br>12:14 | 2016/10/04<br>12:14  |        |          | 2016/10/04<br>13:16 | 2016/10/04<br>13:16  |        |          |
| COC Number                    |           | M031942             | M031942              |        |          | M031942             | M031942              |        |          |
|                               | UNITS     | MW16-4-20           | MW16-4-20<br>Lab-Dup | RDL    | QC Batch | MW16-5-11           | MW16-5-11<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics              |           |                     | ·                    |        |          |                     |                      |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 5.1                 | N/A                  | 0.50   | 8424431  | 2.8                 | N/A                  | 0.50   | 8424431  |
| Microbiological Param.        |           |                     | 1                    |        | 1        |                     |                      | 1      |          |
| E.Coli DST                    | mpn/100mL | <2.0 (1)            | N/A                  | 2.0    | 8422823  | <100 (1)            | N/A                  | 100    | 8422823  |
| Fecal Coliforms               | MPN/100mL | <2.0 (1)            | N/A                  | 2.0    | 8422822  | <100 (1)            | N/A                  | 100    | 8422822  |
| Heterotrophic Plate Count     | CFU/mL    | 550 (2)             | 560                  | 2.0    | 8422824  | 44000 (2)           | 44000                | 100    | 8422824  |
| Total Coliforms DST           | mpn/100mL | <2.0 (1)            | N/A                  | 2.0    | 8422823  | <100 (1)            | N/A                  | 100    | 8422823  |
| Nutrients                     | •         |                     | •                    | •      | •        |                     | •                    |        |          |
| Dissolved Ammonia (N)         | mg/L      | 0.96                | N/A                  | 0.050  | 8423168  | 0.062               | N/A                  | 0.050  | 8423168  |
| Total Kjeldahl Nitrogen       | mg/L      | 1.1                 | N/A                  | 0.050  | 8425847  | 7.5 (2)             | N/A                  | 0.25   | 8428216  |
| Orthophosphate (P)            | mg/L      | <0.0030             | N/A                  | 0.0030 | 8424717  | <0.0030             | N/A                  | 0.0030 | 8424717  |
| Dissolved Phosphorus (P)      | mg/L      | <0.0030 (3)         | <0.0030              | 0.0030 | 8422351  | 0.0034              | N/A                  | 0.0030 | 8422351  |
| BDL = Reportable Detection Li | mit       | •                   | •                    | ·      |          |                     | •                    |        |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(3) Matrix Spike exceeds acceptance limits due to matrix interference. Reanalysis yields similar results.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                      |           | PR5503              | PR5503                |        |          | PR5504              | PR5504              |        |          |
|--------------------------------|-----------|---------------------|-----------------------|--------|----------|---------------------|---------------------|--------|----------|
| Sampling Date                  |           | 2016/10/04<br>15:04 | 2016/10/04<br>15:04   |        |          | 2016/10/04<br>16:12 | 2016/10/04<br>16:12 |        |          |
| COC Number                     |           | M031942             | M031942               |        |          | M031942             | M031942             |        |          |
|                                | UNITS     | MW16-10-15          | MW16-10-15<br>Lab-Dup | RDL    | QC Batch | MW16-8-8            | MW16-8-8<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics               | ·         |                     | ·                     |        | ·        |                     | ·                   |        |          |
| Dissolved Organic Carbon (C)   | mg/L      | N/A                 | N/A                   | 0.50   | 8424431  | 2.8                 | N/A                 | 0.50   | 8424431  |
| Lab Filtered Inorganics        |           |                     |                       |        |          |                     |                     |        |          |
| Dissolved Organic Carbon (C)   | mg/L      | 4.2                 | 4.1                   | 0.50   | 8426109  | N/A                 | N/A                 | 0.50   | 8426109  |
| Microbiological Param.         |           |                     |                       |        |          |                     |                     |        |          |
| E.Coli DST                     | mpn/100mL | <100 (1)            | N/A                   | 100    | 8422823  | <100 (1)            | N/A                 | 100    | 8422823  |
| Fecal Coliforms                | MPN/100mL | 100 (1)             | N/A                   | 100    | 8422822  | <100 (1)            | N/A                 | 100    | 8422822  |
| Heterotrophic Plate Count      | CFU/mL    | >6000 (2)           | >6000                 | 100    | 8422824  | 34000 (2)           | 34000               | 100    | 8422824  |
| Total Coliforms DST            | mpn/100mL | 9100 (1)            | N/A                   | 100    | 8422823  | <100 (1)            | N/A                 | 100    | 8422823  |
| Nutrients                      |           |                     |                       |        |          |                     |                     |        |          |
| Dissolved Ammonia (N)          | mg/L      | N/A                 | N/A                   | 0.050  | 8423168  | 0.055               | N/A                 | 0.050  | 8423168  |
| Total Kjeldahl Nitrogen        | mg/L      | 5.4 (3)             | N/A                   | 0.25   | 8428234  | 0.95                | N/A                 | 0.050  | 8428215  |
| Orthophosphate (P)             | mg/L      | <0.0030             | N/A                   | 0.0030 | 8424717  | <0.0030             | N/A                 | 0.0030 | 8424717  |
| Dissolved Phosphorus (P)       | mg/L      | N/A                 | N/A                   | 0.0030 | N/A      | 0.0045              | N/A                 | 0.0030 | 8422351  |
| Lab Filtered Nutrients         |           |                     |                       |        |          |                     |                     |        | -        |
| Dissolved Ammonia (N)          | mg/L      | 0.59                | 0.69                  | 0.050  | 8428116  | N/A                 | N/A                 | N/A    | N/A      |
| Dissolved Phosphorus (P)       | mg/L      | 0.0035              | N/A                   | 0.0030 | 8423804  | N/A                 | N/A                 | N/A    | N/A      |
| RDL = Reportable Detection Lir | nit       |                     |                       |        |          |                     |                     |        |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(3) Detection limits raised due to dilution to bring analyte within the calibrated range.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PR5505              | PR5505               |        |          | PR5506              | PR5506               |        |          |
|-------------------------------|-----------|---------------------|----------------------|--------|----------|---------------------|----------------------|--------|----------|
| Sampling Date                 |           | 2016/10/04<br>16:06 | 2016/10/04<br>16:06  |        |          | 2016/10/04<br>12:15 | 2016/10/04<br>12:15  |        |          |
| COC Number                    |           | M031942             | M031942              |        |          | M031942             | M031942              |        |          |
|                               | UNITS     | MW16-8-19           | MW16-8-19<br>Lab-Dup | RDL    | QC Batch | MW16-4-16           | MW16-4-16<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics              |           |                     |                      |        |          |                     |                      |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | 1.3                 | N/A                  | 0.50   | 8424431  | 5.2                 | N/A                  | 0.50   | 8424431  |
| Microbiological Param.        | •         |                     |                      |        |          |                     | •                    |        |          |
| E.Coli DST                    | mpn/100mL | <1.0                | <1.0                 | 1.0    | 8422823  | <2.0 (1)            | N/A                  | 2.0    | 8422823  |
| Fecal Coliforms               | MPN/100mL | <1.0                | <1.0                 | 1.0    | 8422822  | <2.0 (1)            | N/A                  | 2.0    | 8422822  |
| Heterotrophic Plate Count     | CFU/mL    | 620                 | 610                  | 1.0    | 8422824  | 630 (2)             | 670                  | 2.0    | 8422824  |
| Total Coliforms DST           | mpn/100mL | 27                  | 30                   | 1.0    | 8422823  | <2.0 (1)            | N/A                  | 2.0    | 8422823  |
| Nutrients                     |           |                     |                      |        |          |                     |                      | •      |          |
| Dissolved Ammonia (N)         | mg/L      | <0.050              | N/A                  | 0.050  | 8423168  | 1.0                 | N/A                  | 0.050  | 8423168  |
| Total Kjeldahl Nitrogen       | mg/L      | 1.3                 | N/A                  | 0.050  | 8428216  | 1.1                 | N/A                  | 0.050  | 8425847  |
| Orthophosphate (P)            | mg/L      | <0.0030             | N/A                  | 0.0030 | 8424717  | <0.0030             | N/A                  | 0.0030 | 8424717  |
| Dissolved Phosphorus (P)      | mg/L      | <0.0030             | N/A                  | 0.0030 | 8422351  | <0.0030             | N/A                  | 0.0030 | 8422351  |
| RDL = Reportable Detection Li | mit       |                     | •                    |        |          |                     | •                    | •      |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| axxam ID                                                                                                                                                              |          | PR5499                                               | PR5500      | C           | PR5501                                                           |                                                        | PR5502                    | PR5503                                      |            |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|-------------|-------------|------------------------------------------------------------------|--------------------------------------------------------|---------------------------|---------------------------------------------|------------|----------------------------|
| welling Data                                                                                                                                                          |          | 2016/10/04                                           | 2016/10/    | /04         | 2016/10/0                                                        | )4                                                     | 2016/10/04                | 2016/10/04                                  | 1          |                            |
| mpling Date                                                                                                                                                           |          | 10:50                                                | 10:10       |             | 12:14                                                            |                                                        | 13:16                     | 15:04                                       |            |                            |
| OC Number                                                                                                                                                             |          | M031942                                              | M03194      | 12          | M031942                                                          | 2                                                      | M031942                   | M031942                                     |            |                            |
|                                                                                                                                                                       | UNITS    | MW16-18-6                                            | MW16-18     | 8-10 RE     | L MW16-4-2                                                       | 0 RDL                                                  | MW16-5-11                 | MW16-10-1                                   | 5 RDL      | QC Bat                     |
| w Level Elements                                                                                                                                                      |          |                                                      |             |             |                                                                  |                                                        |                           |                                             |            |                            |
| ssolved Mercury (Hg)                                                                                                                                                  | ug/L     | <0.0020                                              | < 0.002     | 0.00        | 20 <0.0020                                                       | 0.0020                                                 | < 0.0020                  | N/A                                         | 0.002      | 0 843032                   |
| otal Mercury (Hg)                                                                                                                                                     | ug/L     | <6.0 (1)                                             | <6.0 (      | 1) 6.       | ) <2.0 (1                                                        | ) 2.0                                                  | <20 (1)                   | <20 (1)                                     | 20         | 842893                     |
| b Filtered Elements-Low                                                                                                                                               |          | •                                                    |             | •           |                                                                  | •                                                      |                           | •                                           |            | •                          |
| ssolved Mercury (Hg)                                                                                                                                                  | ug/L     | N/A                                                  | N/A         | N/          | A N/A                                                            | N/A                                                    | N/A                       | <0.0020                                     | 0.002      | 0 843190                   |
| DL = Reportable Detection Lin<br>/A = Not Applicable<br>) Due to the sample matrix, s                                                                                 |          | equired dilutic                                      | n. Detecti  | ion limit v | vas adjusted ac                                                  | cordingly                                              |                           |                                             |            |                            |
| A = Not Applicable                                                                                                                                                    |          | equired dilutic                                      | on. Detecti | ion limit v | vas adjusted ac                                                  | cordingly                                              |                           |                                             |            |                            |
| A = Not Applicable                                                                                                                                                    |          | equired dilutic                                      | on. Detecti | ion limit v | vas adjusted ac                                                  | cordingly<br>PR550                                     | 5                         | PR5506                                      |            |                            |
| /A = Not Applicable<br>) Due to the sample matrix, s<br>Maxxam ID                                                                                                     |          | PR5504<br>2016/10/04                                 |             | ion limit v | PR5505<br>2016/10/04                                             | PR550<br>2016/10                                       | /04                       | 2016/10/04                                  |            |                            |
| A = Not Applicable<br>Due to the sample matrix, s<br>Maxxam ID<br>Sampling Date                                                                                       |          | PR5504<br>2016/10/04<br>16:12                        |             | ion limit v | PR5505<br>2016/10/04<br>16:06                                    | PR550<br>2016/10<br>16:06                              | /04                       | 2016/10/04<br>12:15                         |            |                            |
| /A = Not Applicable<br>) Due to the sample matrix, s<br>Maxxam ID                                                                                                     |          | PR5504<br>2016/10/04                                 |             | ion limit v | PR5505<br>2016/10/04                                             | PR550<br>2016/10<br>16:06<br>M03194                    | /04<br>12                 | 2016/10/04                                  |            |                            |
| A = Not Applicable<br>Due to the sample matrix, s<br>Maxxam ID<br>Sampling Date                                                                                       |          | PR5504<br>2016/10/04<br>16:12<br>M031942             |             | on limit v  | PR5505<br>2016/10/04<br>16:06<br>M031942                         | PR550<br>2016/10<br>16:06                              | /04<br>12<br>-19 RDI      | 2016/10/04<br>12:15                         | RDL        | QC Batch                   |
| A = Not Applicable<br>Due to the sample matrix, s<br>Maxxam ID<br>Sampling Date                                                                                       | sample r | PR5504<br>2016/10/04<br>16:12<br>M031942             |             |             | PR5505<br>2016/10/04<br>16:06<br>M031942                         | PR550<br>2016/10<br>16:06<br>M03194<br>MW16-8          | /04<br>12<br>-19 RDI      | 2016/10/04<br>12:15<br>M031942              | RDL        | QC Batch                   |
| A = Not Applicable<br>Due to the sample matrix, s<br>Maxxam ID<br>Sampling Date<br>COC Number                                                                         | sample r | PR5504<br>2016/10/04<br>16:12<br>M031942             |             |             | PR5505<br>2016/10/04<br>16:06<br>M031942<br>MW16-8-19            | PR550<br>2016/10<br>16:06<br>M03194<br>MW16-8          | /04<br>42<br>-19<br>p RDL | 2016/10/04<br>12:15<br>M031942              | <b>RDL</b> | <b>QC Batch</b><br>8430330 |
| <ul> <li>A = Not Applicable</li> <li>Due to the sample matrix, s</li> <li>Maxxam ID</li> <li>Sampling Date</li> <li>COC Number</li> <li>Low Level Elements</li> </ul> | Sample r | PR5504<br>2016/10/04<br>16:12<br>M031942<br>MW16-8-8 | RDL         | QC Batc     | PR5505<br>2016/10/04<br>16:06<br>M031942<br>MW16-8-19<br><0.0020 | PR550<br>2016/10<br>16:00<br>M0319<br>MW16-8<br>Lab-Du | /04<br>42<br>-19<br>p RDL | 2016/10/04<br>12:15<br>M031942<br>MW16-4-16 |            |                            |

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



## **GENERAL COMMENTS**

| Each te | emperature is the   | e average of | up to thre | cooler temperatures taken at receipt                                                                              |
|---------|---------------------|--------------|------------|-------------------------------------------------------------------------------------------------------------------|
|         | Package 1           | 7.0°0        |            |                                                                                                                   |
| Sample  | PR5503-01 Alka      | linity @25C  |            | INE WATER & DISS. REGULATED METALS (WATER) Comments<br>CO3,HCO3,OH: Detection limits raised due to sample matrix. |
| Result  | s relate only to th | ne items tes | ted.       |                                                                                                                   |



## **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                          |                           | Date       |           |          |       |           |
|---------|------|--------------------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
| 8422351 | MB5  | Matrix Spike [PR5501-03] | Dissolved Phosphorus (P)  | 2016/10/06 | 14140     | 22 (1)   | %     | 80 - 120  |
| 8422351 | MB5  | QC Standard              | Dissolved Phosphorus (P)  | 2016/10/06 |           | 107      | %     | 80 - 120  |
| 8422351 | MB5  | Spiked Blank             | Dissolved Phosphorus (P)  | 2016/10/06 |           | 105      | %     | 80 - 120  |
| 8422351 | MB5  | Method Blank             | Dissolved Phosphorus (P)  | 2016/10/06 | <0.0030   | 200      | mg/L  | 00 110    |
| 8422351 | MB5  | RPD [PR5501-03]          | Dissolved Phosphorus (P)  | 2016/10/06 | NC        |          | %     | 20        |
| 8422814 | PC5  | Matrix Spike             | Dissolved Aluminum (Al)   | 2016/10/06 |           | 108      | %     | 80 - 120  |
| 0.22011 |      | matintophic              | Dissolved Antimony (Sb)   | 2016/10/06 |           | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/06 |           | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/10/06 |           | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2016/10/06 |           | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2016/10/06 |           | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/10/06 |           | 104      | %     | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2016/10/06 |           | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2016/10/06 |           | 103      | %     | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/10/06 |           | 95       | %     | 80 - 120  |
| 8422814 | PC5  | Spiked Blank             | Dissolved Aluminum (Al)   | 2016/10/06 |           | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/06 |           | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/10/06 |           | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/10/06 |           | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2016/10/06 |           | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2016/10/06 |           | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (Tl)   | 2016/10/06 |           | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2016/10/06 |           | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/10/06 |           | 97       | %     | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2016/10/06 |           | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/10/06 |           | 97       | %     | 80 - 120  |
| 8422814 | PC5  | Method Blank             | Dissolved Aluminum (Al)   | 2016/10/06 | <0.0030   |          | mg/L  |           |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/10/06 | <0.00060  |          | mg/L  |           |
|         |      |                          | Dissolved Arsenic (As)    | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/10/06 | < 0.0010  |          | mg/L  |           |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/10/06 | <0.000020 |          | mg/L  |           |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/10/06 | <0.0010   |          | mg/L  |           |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/10/06 | <0.00030  |          | mg/L  |           |
|         |      |                          | Dissolved Copper (Cu)     | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |                          | Dissolved Lead (Pb)       | 2016/10/06 | <0.00020  |          | mg/L  |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                 |                             | Date       |           |          |           |                |
|---------|------|-----------------|-----------------------------|------------|-----------|----------|-----------|----------------|
| Batch   | Init | QC Type         | Parameter                   | Analyzed   | Value     | Recovery | UNITS     | QC Limits      |
|         |      |                 | Dissolved Molybdenum (Mo)   | 2016/10/06 | <0.00020  |          | mg/L      |                |
|         |      |                 | Dissolved Nickel (Ni)       | 2016/10/06 | <0.00050  |          | mg/L      |                |
|         |      |                 | Dissolved Selenium (Se)     | 2016/10/06 | <0.00020  |          | mg/L      |                |
|         |      |                 | Dissolved Silver (Ag)       | 2016/10/06 | < 0.00010 |          | mg/L      |                |
|         |      |                 | Dissolved Thallium (TI)     | 2016/10/06 | <0.00020  |          | mg/L      |                |
|         |      |                 | Dissolved Tin (Sn)          | 2016/10/06 | <0.0010   |          | mg/L      |                |
|         |      |                 | Dissolved Titanium (Ti)     | 2016/10/06 | <0.0010   |          | mg/L      |                |
|         |      |                 | Dissolved Uranium (U)       | 2016/10/06 | <0.00010  |          | mg/L      |                |
|         |      |                 | Dissolved Vanadium (V)      | 2016/10/06 | <0.0010   |          | mg/L      |                |
|         |      |                 | Dissolved Zinc (Zn)         | 2016/10/06 | <0.0030   |          | mg/L      |                |
| 8422814 | PC5  | RPD             | Dissolved Aluminum (Al)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Antimony (Sb)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Arsenic (As)      | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Beryllium (Be)    | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Chromium (Cr)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Cobalt (Co)       | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Copper (Cu)       | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Lead (Pb)         | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Molybdenum (Mo)   | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Nickel (Ni)       | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Selenium (Se)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Silver (Ag)       | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Thallium (TI)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Tin (Sn)          | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Titanium (Ti)     | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Uranium (U)       | 2016/10/06 | 0.56      |          | %         | 20             |
|         |      |                 | Dissolved Vanadium (V)      | 2016/10/06 | NC        |          | %         | 20             |
|         |      |                 | Dissolved Zinc (Zn)         | 2016/10/06 | NC        |          | %         | 20             |
| 8422822 | RP0  | Method Blank    | Fecal Coliforms             | 2016/10/06 | <1.0      |          | MPN/1     |                |
| 8422822 | RPO  | RPD [PR5505-09] | Fecal Coliforms             | 2016/10/06 | NC        |          | %         | N/A            |
| 8422823 | AP1  | Method Blank    | E.Coli DST                  | 2016/10/06 | <1.0      |          | mpn/10    |                |
| 0.22020 |      |                 | Total Coliforms DST         | 2016/10/06 | <1.0      |          | mpn/10    |                |
| 8422823 | AP1  | RPD [PR5505-09] | E.Coli DST                  | 2016/10/06 | NC        |          | %         | N/A            |
| 0.22020 |      |                 | Total Coliforms DST         | 2016/10/06 | 11        |          | %         | N/A            |
| 8422824 | AP1  | Method Blank    | Heterotrophic Plate Count   | 2016/10/07 | <1.0      |          | CFU/m     |                |
| 8422824 | AP1  | RPD [PR5499-09] | Heterotrophic Plate Count   | 2016/10/07 | 0.90      |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5500-09] | Heterotrophic Plate Count   | 2016/10/07 | 8.7       |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5501-09] | Heterotrophic Plate Count   | 2016/10/07 | 1.8       |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5502-09] | Heterotrophic Plate Count   | 2016/10/07 | 1.6       |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5503-09] | Heterotrophic Plate Count   | 2016/10/07 | NC        |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5504-09] | Heterotrophic Plate Count   | 2016/10/07 | 1.2       |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5505-09] | Heterotrophic Plate Count   | 2016/10/07 | 1.6       |          | %         | N/A            |
| 8422824 | AP1  | RPD [PR5506-09] | Heterotrophic Plate Count   | 2016/10/07 | 7.4       |          | %         | N/A            |
| 8422901 | VP4  | Matrix Spike    | O-TERPHENYL (sur.)          | 2016/10/08 |           | 102      | %         | 50 - 130       |
| 0.22002 | •••• | ind in opine    | F2 (C10-C16 Hydrocarbons)   | 2016/10/08 |           | 100      | %         | 50 - 130       |
| 8422901 | VP4  | Spiked Blank    | O-TERPHENYL (sur.)          | 2016/10/08 |           | 100      | %         | 50 - 130       |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/10/08 |           | 100      | %         | 70 - 130       |
| 8422901 | VP4  | Method Blank    | O-TERPHENYL (sur.)          | 2016/10/08 |           | 98       | %         | 50 - 130       |
|         |      |                 | F2 (C10-C16 Hydrocarbons)   | 2016/10/08 | <0.10     | 50       | mg/L      | 00 100         |
| 8422901 | VP4  | RPD             | F2 (C10-C16 Hydrocarbons)   | 2016/10/08 | NC        |          | %         | 40             |
| 8422901 | IK0  | Spiked Blank    | Alkalinity (Total as CaCO3) | 2016/10/05 | inc.      | 98       | %         | 40<br>80 - 120 |
| 8422991 | IKO  | Method Blank    | Alkalinity (PP as CaCO3)    | 2016/10/05 | <0.50     | 50       | ∽<br>mg/L | 00 - 120       |



| QA/QC<br>Batch | Init | QC Type         | Parameter                                          | Date<br>Analyzed         | Value        | Recovery  | UNITS       | QC Limit           |
|----------------|------|-----------------|----------------------------------------------------|--------------------------|--------------|-----------|-------------|--------------------|
| Baton          |      | Q0.7pc          | Alkalinity (Total as CaCO3)                        | 2016/10/05               | <0.50        | neeerery  | mg/L        | Q0                 |
|                |      |                 | Bicarbonate (HCO3)                                 | 2016/10/05               | <0.50        |           | mg/L        |                    |
|                |      |                 | Carbonate (CO3)                                    | 2016/10/05               | <0.50        |           | mg/L        |                    |
|                |      |                 | Hydroxide (OH)                                     | 2016/10/05               | <0.50        |           | mg/L        |                    |
| 8422991        | IKO  | RPD [PR5506-01] | Alkalinity (PP as CaCO3)                           | 2016/10/05               | NC           |           | %           | 20                 |
| 0422551        | into |                 | Alkalinity (Total as CaCO3)                        | 2016/10/05               | 0.13         |           | %           | 20                 |
|                |      |                 | Bicarbonate (HCO3)                                 | 2016/10/05               | 0.13         |           | %           | 20                 |
|                |      |                 | Carbonate (CO3)                                    | 2016/10/05               | NC           |           | %           | 20                 |
|                |      |                 | Hydroxide (OH)                                     | 2016/10/05               | NC           |           | %           | 20                 |
| 8422993        | IKO  | Spiked Blank    | pH                                                 | 2016/10/05               | Ne           | 101       | %           | 97 - 10            |
| 8422993        | IKO  | RPD [PR5506-01] | pH                                                 | 2016/10/05               | 0.17         | 101       | %           | N/A                |
| 8422994        | IKO  | Spiked Blank    | Conductivity                                       | 2016/10/05               | 0.17         | 99        | %           | 90 - 11            |
| 8422994        | IKO  | Method Blank    | Conductivity                                       | 2016/10/05               | <1.0         | 55        | uS/cm       | 50 11              |
| 8422994        | IKO  | RPD [PR5506-01] | Conductivity                                       | 2016/10/05               | 0.25         |           | %           | 20                 |
| 8423168        | MB5  | Matrix Spike    | Dissolved Ammonia (N)                              | 2016/10/05               | 0.25         | 93        | %           | 80 - 12            |
| 8423168        | MB5  | Spiked Blank    | Dissolved Ammonia (N)                              | 2016/10/05               |              | 94        | %           | 80 - 12            |
| 8423168        | MB5  | •               | Dissolved Ammonia (N)                              | 2016/10/05               | <0.050       | 54        | mg/L        | 00 12              |
| 3423168        | MB5  |                 | Dissolved Ammonia (N)                              | 2016/10/05               | NC           |           | %           | 20                 |
| 8423525        | CT6  | Matrix Spike    | Dissolved Nitrite (N)                              | 2016/10/06               | NC           | 102       | %           | 80 - 12            |
| 5425525        | cro  | Matrix Spike    | Dissolved Nitrate (N)                              | 2016/10/06               |              | 102       | %           | 80 - 12            |
| 8423525        | CT6  | Spiked Blank    | Dissolved Nitrite (N)                              | 2016/10/06               |              | 100       | %           | 80 - 12            |
| 5425525        | CIU  | Spiked blank    | Dissolved Nitrate (N)                              | 2016/10/06               |              | 100       | %           | 80 - 12            |
| 8423525        | CT6  | Method Blank    | Dissolved Nitrite (N)                              | 2016/10/06               | <0.010       | 101       | ∽<br>mg/L   | 80 - 12            |
| 5425525        | CIU  | Method Dialik   | Dissolved Nitrate (N)                              | 2016/10/06               | <0.010       |           | mg/L        |                    |
| 8423525        | CT6  | RPD             | Dissolved Nitrite (N)                              | 2016/10/06               | <0.010<br>NC |           | ₩<br>%      | 20                 |
| 5425525        | CIU  | INF D           | Dissolved Nitrate (N)                              | 2016/10/06               | NC           |           | %           | 20                 |
| 8423539        | CT6  | Matrix Spike    | Dissolved Nitrite (N)                              | 2016/10/06               | NC           | NC        | %           | 80 - 12            |
| 0423333        | CIU  | Matrix Spike    | Dissolved Nitrate (N)                              | 2016/10/06               |              | 105       | %           | 80 - 12            |
| 8423539        | сте  | Spiked Blank    | Dissolved Nitrite (N)                              | 2016/10/06               |              | 105       | %           | 80 - 12            |
| 0423333        | CT6  | эрікей ыанк     | Dissolved Nitrate (N)                              | 2016/10/06               |              | 100       | %           | 80 - 12            |
| 8423539        | CT6  | Method Blank    | Dissolved Nitrite (N)                              | 2016/10/06               | <0.010       | 101       | ™g/L        | 00 - 12            |
| 0423333        | CIU  |                 | Dissolved Nitrate (N)                              | 2016/10/06               | <0.010       |           | mg/L        |                    |
| 8423539        | CT6  | RPD             | Dissolved Nitrite (N)                              | 2016/10/06               | 2.0          |           | 111g/L<br>% | 20                 |
| 5425559        | CIO  | RPD             | Dissolved Nitrate (N)                              | 2016/10/06               | 2.0          |           | %           | 20                 |
| 8423671        | PC5  | Matrix Spike    | Dissolved Aluminum (Al)                            | 2016/10/06               | 2.5          | 93        | %           | 20<br>80 - 12      |
| 0423071        | FCJ  | Matrix Spike    | Dissolved Antimony (Sb)                            | 2016/10/06               |              | 95        | %           | 80 - 12            |
|                |      |                 | Dissolved Arteniory (SD)<br>Dissolved Arsenic (As) | 2016/10/06               |              | 95        | %           | 80 - 12            |
|                |      |                 | Dissolved Arsenic (As)<br>Dissolved Beryllium (Be) |                          |              | 83        | %           | 80 - 12            |
|                |      |                 |                                                    | 2016/10/06               |              |           |             |                    |
|                |      |                 | Dissolved Cadmium (Cd)<br>Dissolved Chromium (Cr)  | 2016/10/06               |              | 93<br>96  | %           | 80 - 12<br>80 - 12 |
|                |      |                 | Dissolved Cobalt (Co)                              | 2016/10/06<br>2016/10/06 |              | 90        | %<br>%      |                    |
|                |      |                 | Dissolved Copper (Cu)                              |                          |              |           |             | 80 - 12            |
|                |      |                 |                                                    | 2016/10/06<br>2016/10/06 |              | 91        | %           | 80 - 12            |
|                |      |                 | Dissolved Lead (Pb)                                |                          |              | 90<br>102 | %           | 80 - 12<br>80 - 12 |
|                |      |                 | Dissolved Molybdenum (Mo)                          | 2016/10/06               |              | 103       | %           |                    |
|                |      |                 | Dissolved Nickel (Ni)                              | 2016/10/06               |              | 92        | %           | 80 - 12            |
|                |      |                 | Dissolved Selenium (Se)                            | 2016/10/06               |              | 97        | %           | 80 - 12            |
|                |      |                 | Dissolved Silver (Ag)                              | 2016/10/06               |              | 91        | %           | 80 - 12            |
|                |      |                 | Dissolved Thallium (TI)                            | 2016/10/06               |              | 90        | %           | 80 - 12            |
|                |      |                 | Dissolved Tin (Sn)                                 | 2016/10/06               |              | 110       | %           | 80 - 12            |
|                |      |                 | Dissolved Titanium (Ti)                            | 2016/10/06               |              | 98        | %           | 80 - 12            |
|                |      |                 | Dissolved Uranium (U)                              | 2016/10/06               |              | 90        | %           | 80 - 12            |
|                |      |                 | Dissolved Vanadium (V)                             | 2016/10/06               |              | 97        | %           | 80 - 12            |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |              |                           | Date       |           |          |       |           |
|---------|------|--------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/06 |           | NC       | %     | 80 - 120  |
| 8423671 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/06 |           | 128 (1)  | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/06 |           | 86       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/06 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/06 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/06 |           | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/06 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/06 |           | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/06 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/06 |           | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/06 |           | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/06 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/06 |           | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/06 |           | 93       | %     | 80 - 120  |
| 8423671 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/06 | <0.0030   |          | mg/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/06 | <0.00060  |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/06 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/06 | <0.000020 |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/06 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/06 | <0.00030  |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/06 | <0.00050  |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/06 | <0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/06 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/06 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/06 | < 0.0010  |          | mg/L  |           |
|         |      |              | Dissolved Uranium (U)     | 2016/10/06 | <0.00010  |          | mg/L  |           |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/06 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/06 | <0.0030   |          | mg/L  |           |
| 8423671 | PC5  | RPD          | Dissolved Aluminum (Al)   | 2016/10/06 | NC        |          | %     | 20        |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/06 | NC        |          | %     | 20        |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/06 | 4.4       |          | %     | 20        |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/06 | NC        |          | %     | 20        |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/06 | NC        |          | %     | 20        |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/06 | 3.4       |          | %     | 20        |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/06 | 2.6       |          | %     | 20        |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/06 | 1.7       |          | %     | 20        |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/06 | 0.33      |          | %     | 20        |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/06 | 0.66      |          | %     | 20        |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/06 | 4.5       |          | %     | 20        |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/06 | NC        |          | %     | 20        |
|         |      |              | Dissolved Thallium (Tl)   | 2016/10/06 | NC        |          | %     | 20        |





| QA/QC   |      |                          |                              | Date       |            |          |      |           |
|---------|------|--------------------------|------------------------------|------------|------------|----------|------|-----------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value      | Recovery |      | QC Limits |
|         |      |                          | Dissolved Tin (Sn)           | 2016/10/06 | NC         |          | %    | 20        |
|         |      |                          | Dissolved Titanium (Ti)      | 2016/10/06 | NC         |          | %    | 20        |
|         |      |                          | Dissolved Uranium (U)        | 2016/10/06 | 1.6        |          | %    | 20        |
|         |      |                          | Dissolved Vanadium (V)       | 2016/10/06 | NC         |          | %    | 20        |
|         |      |                          | Dissolved Zinc (Zn)          | 2016/10/06 | 4.1        |          | %    | 20        |
| 8423804 | RM9  | Matrix Spike             | Dissolved Phosphorus (P)     | 2016/10/09 |            | 97       | %    | 80 - 120  |
| 8423804 | RM9  | QC Standard              | Dissolved Phosphorus (P)     | 2016/10/09 |            | 94       | %    | 80 - 120  |
| 8423804 | RM9  | Spiked Blank             | Dissolved Phosphorus (P)     | 2016/10/09 |            | 93       | %    | 80 - 120  |
| 8423804 | RM9  | Method Blank             | Dissolved Phosphorus (P)     | 2016/10/09 | 0.0031,    |          | mg/L |           |
|         |      |                          |                              |            | RDL=0.0030 |          |      |           |
| 8423804 | RM9  | RPD                      | Dissolved Phosphorus (P)     | 2016/10/09 | NC         |          | %    | 20        |
| 8424431 | MUK  | Matrix Spike             | Dissolved Organic Carbon (C) | 2016/10/06 |            | NC       | %    | 80 - 120  |
| 8424431 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/06 |            | 103      | %    | 80 - 120  |
| 8424431 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/06 | <0.50      |          | mg/L |           |
| 8424431 | MUK  | RPD                      | Dissolved Organic Carbon (C) | 2016/10/06 | 1.7        |          | %    | 20        |
| 8424717 | MB5  | Matrix Spike             | Orthophosphate (P)           | 2016/10/06 |            | 97       | %    | 80 - 120  |
| 8424717 | MB5  | Spiked Blank             | Orthophosphate (P)           | 2016/10/06 |            | 100      | %    | 80 - 120  |
| 8424717 | MB5  | Method Blank             | Orthophosphate (P)           | 2016/10/06 | <0.0030    |          | mg/L |           |
| 8424717 | MB5  | RPD                      | Orthophosphate (P)           | 2016/10/06 | NC         |          | %    | 20        |
| 8425847 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/07 |            | 84       | %    | 80 - 120  |
| 8425847 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/07 |            | 85       | %    | 80 - 120  |
| 8425847 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/07 |            | 89       | %    | 80 - 120  |
| 8425847 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/07 | 0.071,     |          | mg/L |           |
|         |      |                          |                              |            | RDL=0.050  |          |      |           |
| 8425847 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/07 | NC         |          | %    | 20        |
| 8426109 | MUK  | Matrix Spike [PR5503-01] | Dissolved Organic Carbon (C) | 2016/10/07 |            | 104      | %    | 80 - 120  |
| 8426109 | MUK  | Spiked Blank             | Dissolved Organic Carbon (C) | 2016/10/07 |            | 102      | %    | 80 - 120  |
| 8426109 | MUK  | Method Blank             | Dissolved Organic Carbon (C) | 2016/10/07 | <0.50      |          | mg/L |           |
| 8426109 |      | RPD [PR5503-01]          | Dissolved Organic Carbon (C) | 2016/10/07 | 0.86       |          | %    | 20        |
| 8426610 | JHC  | Matrix Spike             | Dissolved Barium (Ba)        | 2016/10/08 |            | 83       | %    | 80 - 120  |
|         |      |                          | Dissolved Boron (B)          | 2016/10/08 |            | 82       | %    | 80 - 120  |
|         |      |                          | Dissolved Calcium (Ca)       | 2016/10/08 |            | NC       | %    | 80 - 120  |
|         |      |                          | Dissolved Iron (Fe)          | 2016/10/08 |            | 83       | %    | 80 - 120  |
|         |      |                          | Dissolved Lithium (Li)       | 2016/10/08 |            | 87       | %    | 80 - 120  |
|         |      |                          | Dissolved Magnesium (Mg)     | 2016/10/08 |            | 88       | %    | 80 - 120  |
|         |      |                          | Dissolved Manganese (Mn)     | 2016/10/08 |            | 84       | %    | 80 - 120  |
|         |      |                          | Dissolved Phosphorus (P)     | 2016/10/08 |            | 88       | %    | 80 - 120  |
|         |      |                          | Dissolved Potassium (K)      | 2016/10/08 |            | 97       | %    | 80 - 120  |
|         |      |                          | Dissolved Silicon (Si)       | 2016/10/08 |            | 85       | %    | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)        | 2016/10/08 |            | 94       | %    | 80 - 120  |
|         |      |                          | Dissolved Strontium (Sr)     | 2016/10/08 |            | 80       | %    | 80 - 120  |
| 8426610 | JHC  | Spiked Blank             | Dissolved Barium (Ba)        | 2016/10/08 |            | 85       | %    | 80 - 120  |
|         |      |                          | Dissolved Boron (B)          | 2016/10/08 |            | 82       | %    | 80 - 120  |
|         |      |                          | Dissolved Calcium (Ca)       | 2016/10/08 |            | 91       | %    | 80 - 120  |
|         |      |                          | Dissolved Iron (Fe)          | 2016/10/08 |            | 88       | %    | 80 - 120  |
|         |      |                          | Dissolved Lithium (Li)       | 2016/10/08 |            | 89       | %    | 80 - 120  |
|         |      |                          | Dissolved Magnesium (Mg)     | 2016/10/08 |            | 91       | %    | 80 - 120  |
|         |      |                          | Dissolved Manganese (Mn)     | 2016/10/08 |            | 87       | %    | 80 - 120  |
|         |      |                          | Dissolved Phosphorus (P)     | 2016/10/08 |            | 89       | %    | 80 - 120  |
|         |      |                          | Dissolved Potassium (K)      | 2016/10/08 |            | 97       | %    | 80 - 120  |
|         |      |                          | Dissolved Silicon (Si)       | 2016/10/08 |            | 86       | %    | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)        | 2016/10/08 |            | 96       | %    | 80 - 120  |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |       |                          |                                                   | Date                     |         |          |        |           |
|---------|-------|--------------------------|---------------------------------------------------|--------------------------|---------|----------|--------|-----------|
| Batch   | Init  | QC Type                  | Parameter                                         | Analyzed                 | Value   | Recovery | UNITS  | QC Limits |
|         |       |                          | Dissolved Strontium (Sr)                          | 2016/10/08               |         | 83       | %      | 80 - 120  |
| 8426610 | JHC   | Method Blank             | Dissolved Barium (Ba)                             | 2016/10/08               | <0.010  |          | mg/L   |           |
|         |       |                          | Dissolved Boron (B)                               | 2016/10/08               | <0.020  |          | mg/L   |           |
|         |       |                          | Dissolved Calcium (Ca)                            | 2016/10/08               | <0.30   |          | mg/L   |           |
|         |       |                          | Dissolved Iron (Fe)                               | 2016/10/08               | <0.060  |          | mg/L   |           |
|         |       |                          | Dissolved Lithium (Li)                            | 2016/10/08               | <0.020  |          | mg/L   |           |
|         |       |                          | Dissolved Magnesium (Mg)                          | 2016/10/08               | <0.20   |          | mg/L   |           |
|         |       |                          | Dissolved Manganese (Mn)                          | 2016/10/08               | <0.0040 |          | mg/L   |           |
|         |       |                          | Dissolved Phosphorus (P)                          | 2016/10/08               | <0.10   |          | mg/L   |           |
|         |       |                          | Dissolved Potassium (K)                           | 2016/10/08               | <0.30   |          | mg/L   |           |
|         |       |                          | Dissolved Silicon (Si)                            | 2016/10/08               | <0.10   |          | mg/L   |           |
|         |       |                          | Dissolved Sodium (Na)                             | 2016/10/08               | <0.50   |          | mg/L   |           |
|         |       |                          | Dissolved Strontium (Sr)                          | 2016/10/08               | <0.020  |          | mg/L   |           |
|         |       |                          | Dissolved Sulphur (S)                             | 2016/10/08               | <0.20   |          | mg/L   |           |
| 8426610 | JHC   | RPD                      | Dissolved Barium (Ba)                             | 2016/10/08               | 2.6     |          | %      | 20        |
|         |       |                          | Dissolved Boron (B)                               | 2016/10/08               | NC      |          | %      | 20        |
|         |       |                          | Dissolved Calcium (Ca)                            | 2016/10/08               | 2.9     |          | %      | 20        |
|         |       |                          | Dissolved Iron (Fe)                               | 2016/10/08               | 2.9     |          | %      | 20        |
|         |       |                          | Dissolved Lithium (Li)                            | 2016/10/08               | NC      |          | %      | 20        |
|         |       |                          | Dissolved Magnesium (Mg)                          | 2016/10/08               | 2.2     |          | %      | 20        |
|         |       |                          | Dissolved Manganese (Mn)                          | 2016/10/08               | 3.1     |          | %      | 20        |
|         |       |                          | Dissolved Phosphorus (P)                          | 2016/10/08               | NC      |          | %      | 20        |
|         |       |                          | Dissolved Potassium (K)                           | 2016/10/08               | 0.48    |          | %      | 20        |
|         |       |                          | Dissolved Silicon (Si)                            | 2016/10/08               | 2.8     |          | %      | 20        |
|         |       |                          | Dissolved Sodium (Na)                             | 2016/10/08               | 1.3     |          | %      | 20        |
|         |       |                          | Dissolved Strontium (Sr)                          | 2016/10/08               | 2.7     |          | %      | 20        |
|         |       |                          | Dissolved Sulphur (S)                             | 2016/10/08               | 2.7     |          | %      | 20        |
| 8426625 | MAP   | Matrix Spike [PR5502-04] | Dissolved Barium (Ba)                             | 2016/10/08               |         | 86       | %      | 80 - 120  |
| 0.10010 |       |                          | Dissolved Boron (B)                               | 2016/10/08               |         | 83       | %      | 80 - 120  |
|         |       |                          | Dissolved Calcium (Ca)                            | 2016/10/08               |         | NC       | %      | 80 - 120  |
|         |       |                          | Dissolved Iron (Fe)                               | 2016/10/08               |         | 94       | %      | 80 - 120  |
|         |       |                          | Dissolved Lithium (Li)                            | 2016/10/08               |         | 85       | %      | 80 - 120  |
|         |       |                          | Dissolved Magnesium (Mg)                          | 2016/10/08               |         | 89       | %      | 80 - 120  |
|         |       |                          | Dissolved Manganese (Mn)                          | 2016/10/08               |         | 92       | %      | 80 - 120  |
|         |       |                          | Dissolved Phosphorus (P)                          | 2016/10/08               |         | 93       | %      | 80 - 120  |
|         |       |                          | Dissolved Potassium (K)                           | 2016/10/08               |         | 89       | %      | 80 - 120  |
|         |       |                          | Dissolved Focassian (K)                           | 2016/10/08               |         | 91       | %      | 80 - 120  |
|         |       |                          | Dissolved Sodium (Na)                             |                          |         | 91<br>84 | %      | 80 - 120  |
|         |       |                          |                                                   | 2016/10/08               |         | 85       |        | 80 - 120  |
| 8426625 |       | Spiked Blank             | Dissolved Strontium (Sr)<br>Dissolved Barium (Ba) | 2016/10/08<br>2016/10/08 |         | 89       | %<br>% | 80 - 120  |
| 0420025 | IVIAP | эрікей Біанк             |                                                   |                          |         |          |        |           |
|         |       |                          | Dissolved Boron (B)                               | 2016/10/08               |         | 85       | %      | 80 - 120  |
|         |       |                          | Dissolved Calcium (Ca)                            | 2016/10/08               |         | 103      | %      | 80 - 120  |
|         |       |                          | Dissolved Iron (Fe)                               | 2016/10/08               |         | 97       | %      | 80 - 120  |
|         |       |                          | Dissolved Lithium (Li)                            | 2016/10/08               |         | 87       | %      | 80 - 120  |
|         |       |                          | Dissolved Magnesium (Mg)                          | 2016/10/08               |         | 94       | %      | 80 - 120  |
|         |       |                          | Dissolved Manganese (Mn)                          | 2016/10/08               |         | 95       | %      | 80 - 120  |
|         |       |                          | Dissolved Phosphorus (P)                          | 2016/10/08               |         | 93       | %      | 80 - 120  |
|         |       |                          | Dissolved Potassium (K)                           | 2016/10/08               |         | 89       | %      | 80 - 120  |
|         |       |                          | Dissolved Silicon (Si)                            | 2016/10/08               |         | 94       | %      | 80 - 120  |
|         |       |                          | Dissolved Sodium (Na)                             | 2016/10/08               |         | 90       | %      | 80 - 120  |
|         |       |                          | Dissolved Strontium (Sr)                          | 2016/10/08               |         | 90       | %      | 80 - 120  |
| 8426625 | MAP   | Method Blank             | Dissolved Barium (Ba)                             | 2016/10/08               | <0.010  |          | mg/L   |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                 |                                                      | Date       |          |           |        |                      |
|---------|------|-----------------|------------------------------------------------------|------------|----------|-----------|--------|----------------------|
| Batch   | Init | QC Type         | Parameter                                            | Analyzed   | Value    | Recovery  | UNITS  | QC Limits            |
|         |      |                 | Dissolved Boron (B)                                  | 2016/10/08 | <0.020   |           | mg/L   |                      |
|         |      |                 | Dissolved Calcium (Ca)                               | 2016/10/08 | <0.30    |           | mg/L   |                      |
|         |      |                 | Dissolved Iron (Fe)                                  | 2016/10/08 | <0.060   |           | mg/L   |                      |
|         |      |                 | Dissolved Lithium (Li)                               | 2016/10/08 | <0.020   |           | mg/L   |                      |
|         |      |                 | Dissolved Magnesium (Mg)                             | 2016/10/08 | <0.20    |           | mg/L   |                      |
|         |      |                 | Dissolved Manganese (Mn)                             | 2016/10/08 | < 0.0040 |           | mg/L   |                      |
|         |      |                 | Dissolved Phosphorus (P)                             | 2016/10/08 | <0.10    |           | mg/L   |                      |
|         |      |                 | Dissolved Potassium (K)                              | 2016/10/08 | < 0.30   |           | mg/L   |                      |
|         |      |                 | Dissolved Silicon (Si)                               | 2016/10/08 | <0.10    |           | mg/L   |                      |
|         |      |                 | Dissolved Sodium (Na)                                | 2016/10/08 | <0.50    |           | mg/L   |                      |
|         |      |                 | Dissolved Strontium (Sr)                             | 2016/10/08 | <0.020   |           | mg/L   |                      |
|         |      |                 | Dissolved Sulphur (S)                                | 2016/10/08 | <0.20    |           | mg/L   |                      |
| 8426625 | MAP  | RPD [PR5502-04] | Dissolved Barium (Ba)                                | 2016/10/08 | 0.16     |           | %      | 20                   |
|         |      |                 | Dissolved Boron (B)                                  | 2016/10/08 | NC       |           | %      | 20                   |
|         |      |                 | Dissolved Calcium (Ca)                               | 2016/10/08 | 0.21     |           | %      | 20                   |
|         |      |                 | Dissolved Iron (Fe)                                  | 2016/10/08 | NC       |           | %      | 20                   |
|         |      |                 | Dissolved Lithium (Li)                               | 2016/10/08 | NC       |           | %      | 20                   |
|         |      |                 | Dissolved Magnesium (Mg)                             | 2016/10/08 | 0.68     |           | %      | 20                   |
|         |      |                 | Dissolved Manganese (Mn)                             | 2016/10/08 | 0.20     |           | %      | 20                   |
|         |      |                 | Dissolved Phosphorus (P)                             | 2016/10/08 | NC       |           | %      | 20                   |
|         |      |                 | Dissolved Potassium (K)                              | 2016/10/08 | 0.10     |           | %      | 20                   |
|         |      |                 | Dissolved Silicon (Si)                               | 2016/10/08 | 0.54     |           | %      | 20                   |
|         |      |                 | Dissolved Sodium (Na)                                | 2016/10/08 | 0.29     |           | %      | 20                   |
|         |      |                 | Dissolved Strontium (Sr)                             | 2016/10/08 | 0.20     |           | %      | 20                   |
|         |      |                 | Dissolved Sulphur (S)                                | 2016/10/08 | 0.74     |           | %      | 20                   |
| 8426641 | JHC  | Matrix Spike    | Dissolved Barium (Ba)                                | 2016/10/08 | 0.7 1    | 82        | %      | 80 - 120             |
| 0120011 | 5110 | matikopite      | Dissolved Boron (B)                                  | 2016/10/08 |          | 84        | %      | 80 - 120             |
|         |      |                 | Dissolved Calcium (Ca)                               | 2016/10/08 |          | NC        | %      | 80 - 120             |
|         |      |                 | Dissolved Iron (Fe)                                  | 2016/10/08 |          | 88        | %      | 80 - 120             |
|         |      |                 | Dissolved Lithium (Li)                               | 2016/10/08 |          | 87        | %      | 80 - 120             |
|         |      |                 | Dissolved Magnesium (Mg)                             | 2016/10/08 |          | NC        | %      | 80 - 120             |
|         |      |                 | Dissolved Marganese (Mn)                             | 2016/10/08 |          | NC        | %      | 80 - 120             |
|         |      |                 | Dissolved Phosphorus (P)                             | 2016/10/08 |          | 102       | %      | 80 - 120             |
|         |      |                 | Dissolved Potassium (K)                              | 2016/10/08 |          | 95        | %      | 80 - 120             |
|         |      |                 | Dissolved Fotassidin (K)<br>Dissolved Silicon (Si)   | 2016/10/08 |          | NC        | %      | 80 - 120             |
|         |      |                 | Dissolved Sodium (Na)                                | 2016/10/08 |          | NC        | %      | 80 - 120             |
|         |      |                 | Dissolved Strontium (Sr)                             | 2016/10/08 |          | NC        | %      | 80 - 120             |
| 8426641 | JHC  | Spiked Blank    | Dissolved Barium (Ba)                                | 2016/10/08 |          | 91        | %      | 80 - 120<br>80 - 120 |
| 0420041 | JUC  | Spiked Dialik   | Dissolved Barlan (Ba)                                | 2016/10/07 |          | 87        | %      | 80 - 120<br>80 - 120 |
|         |      |                 | Dissolved Calcium (Ca)                               | 2016/10/07 |          | 97        | %      | 80 - 120<br>80 - 120 |
|         |      |                 | Dissolved Iron (Fe)                                  | 2016/10/07 |          | 94        | %      | 80 - 120<br>80 - 120 |
|         |      |                 | Dissolved Lithium (Li)                               | 2016/10/07 |          | 94<br>91  | %      | 80 - 120<br>80 - 120 |
|         |      |                 |                                                      | 2016/10/07 |          |           |        |                      |
|         |      |                 | Dissolved Magnesium (Mg)<br>Dissolved Manganese (Mn) | 2016/10/07 |          | 95<br>93  | %<br>% | 80 - 120             |
|         |      |                 |                                                      |            |          |           |        | 80 - 120<br>80 - 120 |
|         |      |                 | Dissolved Phosphorus (P)<br>Dissolved Potassium (K)  | 2016/10/07 |          | 94<br>101 | %      | 80 - 120<br>80 - 120 |
|         |      |                 |                                                      | 2016/10/07 |          | 101       | %      | 80 - 120<br>80 - 120 |
|         |      |                 | Dissolved Silicon (Si)                               | 2016/10/07 |          | 91        | %      | 80 - 120             |
|         |      |                 | Dissolved Sodium (Na)                                | 2016/10/07 |          | 99        | %      | 80 - 120             |
| 0420044 |      |                 | Dissolved Strontium (Sr)                             | 2016/10/07 | -0.010   | 88        | %      | 80 - 120             |
| 8426641 | JHC  | Method Blank    | Dissolved Barium (Ba)                                | 2016/10/07 | <0.010   |           | mg/L   |                      |
|         |      |                 | Dissolved Boron (B)                                  | 2016/10/07 | < 0.020  |           | mg/L   |                      |
|         |      |                 | Dissolved Calcium (Ca)                               | 2016/10/07 | <0.30    |           | mg/L   |                      |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC         |      |                          |                              | Date       |                 |           |             |                      |
|---------------|------|--------------------------|------------------------------|------------|-----------------|-----------|-------------|----------------------|
| Batch         | Init | QC Type                  | Parameter                    | Analyzed   | Value           | Recovery  | UNITS       | QC Limits            |
|               |      |                          | Dissolved Iron (Fe)          | 2016/10/07 | <0.060          |           | mg/L        |                      |
|               |      |                          | Dissolved Lithium (Li)       | 2016/10/07 | <0.020          |           | mg/L        |                      |
|               |      |                          | Dissolved Magnesium (Mg)     | 2016/10/07 | <0.20           |           | mg/L        |                      |
|               |      |                          | Dissolved Manganese (Mn)     | 2016/10/07 | < 0.0040        |           | mg/L        |                      |
|               |      |                          | Dissolved Phosphorus (P)     | 2016/10/07 | <0.10           |           | mg/L        |                      |
|               |      |                          | Dissolved Potassium (K)      | 2016/10/07 | < 0.30          |           | mg/L        |                      |
|               |      |                          | Dissolved Silicon (Si)       | 2016/10/07 | <0.10           |           | mg/L        |                      |
|               |      |                          | Dissolved Sodium (Na)        | 2016/10/07 | <0.50           |           | mg/L        |                      |
|               |      |                          | Dissolved Strontium (Sr)     | 2016/10/07 | <0.020          |           | mg/L        |                      |
|               |      |                          | Dissolved Sulphur (S)        | 2016/10/07 | <0.20           |           | mg/L        |                      |
| 8426641       | JHC  | RPD                      | Dissolved Calcium (Ca)       | 2016/10/07 | 0.18            |           | %           | 20                   |
|               |      |                          | Dissolved Iron (Fe)          | 2016/10/07 | 6.5             |           | %           | 20                   |
|               |      |                          | Dissolved Magnesium (Mg)     | 2016/10/07 | 0.23            |           | %           | 20                   |
|               |      |                          | Dissolved Manganese (Mn)     | 2016/10/07 | 0.34            |           | %           | 20                   |
|               |      |                          | Dissolved Potassium (K)      | 2016/10/07 | 1.5             |           | %           | 20                   |
|               |      |                          | Dissolved Sodium (Na)        | 2016/10/07 | 3.3             |           | %           | 20                   |
| 8427477       | ZI   | Matrix Spike             | Dissolved Chloride (Cl)      | 2016/10/08 |                 | NC        | %           | 80 - 120             |
| 8427477       | ZI   | Spiked Blank             | Dissolved Chloride (Cl)      | 2016/10/08 |                 | 104       | %           | 80 - 120             |
| 8427477       | ZI   | Method Blank             | Dissolved Chloride (Cl)      | 2016/10/08 | 1.5,            | 201       | mg/L        | 00 110               |
| • • • • • • • |      |                          |                              |            | RDL=1.0         |           |             |                      |
| 8427477       | ZI   | RPD                      | Dissolved Chloride (Cl)      | 2016/10/08 | 1.0             |           | %           | 20                   |
| 8427480       | ZI   | Matrix Spike             | Dissolved Sulphate (SO4)     | 2016/10/08 | 1.0             | NC        | %           | 80 - 120             |
| 8427480       | ZI   | Spiked Blank             | Dissolved Sulphate (SO4)     | 2016/10/08 |                 | 102       | %           | 80 - 120             |
| 8427480       | ZI   | Method Blank             | Dissolved Sulphate (SO4)     | 2016/10/08 | <1.0            | 102       | mg/L        | 80 - 120             |
| 8427480       | ZI   | RPD                      | Dissolved Sulphate (SO4)     | 2016/10/08 | 2.2             |           | 111g/L<br>% | 20                   |
| 8427519       | ZI   | Matrix Spike [PR5499-01] | Dissolved Chloride (Cl)      | 2016/10/08 | 2.2             | NC        | %           | 80 - 120             |
| 8427519       | ZI   | Spiked Blank             | Dissolved Chloride (Cl)      | 2016/10/08 |                 | 106       | %           | 80 - 120<br>80 - 120 |
| 8427519       | ZI   | Method Blank             | Dissolved Chloride (Cl)      | 2016/10/08 | 1.8,            | 100       |             | 80 - 120             |
| 0427519       | 21   | Method Didlik            | Dissolved Chloride (CI)      | 2010/10/08 | 1.8,<br>RDL=1.0 |           | mg/L        |                      |
| 8427519       | ZI   | RPD [PR5499-01]          | Dissolved Chloride (Cl)      | 2016/10/08 | 4.9             |           | %           | 20                   |
| 8427521       | ZI   | Matrix Spike [PR5499-01] | Dissolved Sulphate (SO4)     | 2016/10/08 | 4.5             | NC        | %           | 80 - 120             |
| 8427521       | ZI   | Spiked Blank             | Dissolved Sulphate (SO4)     | 2016/10/08 |                 | 101       | %           | 80 - 120             |
| 8427521       | ZI   | Method Blank             | Dissolved Sulphate (SO4)     | 2016/10/08 | <1.0            | 101       | mg/L        | 00 120               |
| 8427521       | ZI   | RPD [PR5499-01]          | Dissolved Sulphate (SO4)     | 2016/10/08 | 0.75            |           | 111g/L<br>% | 20                   |
| 8428043       | RSU  | Matrix Spike             | 1,4-Difluorobenzene (sur.)   | 2016/10/12 | 0.75            | 97        | %           | 70 - 130             |
| 0420043       | 1.50 | Matrix Spike             | 4-Bromofluorobenzene (sur.)  | 2016/10/12 |                 | 94        | %           | 70 - 130<br>70 - 130 |
|               |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/12 |                 | 95        | %           | 70 - 130<br>70 - 130 |
|               |      |                          | Benzene                      | 2016/10/12 |                 | 94        | %           | 70 - 130             |
|               |      |                          | Toluene                      | 2016/10/12 |                 | 88        | %           | 70 - 130             |
|               |      |                          | Ethylbenzene                 | 2016/10/12 |                 | 98        | %           | 70 - 130<br>70 - 130 |
|               |      |                          |                              | 2016/10/12 |                 |           | %           |                      |
|               |      |                          | m & p-Xylene                 |            |                 | 91<br>04  |             | 70 - 130             |
|               |      |                          | o-Xylene                     | 2016/10/12 |                 | 94<br>105 | %           | 70 - 130             |
| 0420042       | DCU  |                          | F1 (C6-C10)                  | 2016/10/12 |                 | 105       | %           | 70 - 130             |
| 8428043       | RSU  | Spiked Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/12 |                 | 98        | %           | 70 - 130             |
|               |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/12 |                 | 96        | %           | 70 - 130             |
|               |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/12 |                 | 93        | %           | 70 - 130             |
|               |      |                          | Benzene                      | 2016/10/12 |                 | 95        | %           | 70 - 130             |
|               |      |                          | Toluene                      | 2016/10/12 |                 | 89        | %           | 70 - 130             |
|               |      |                          | Ethylbenzene                 | 2016/10/12 |                 | 101       | %           | 70 - 130             |
|               |      |                          | m & p-Xylene                 | 2016/10/12 |                 | 93        | %           | 70 - 130             |
|               |      |                          | o-Xylene                     | 2016/10/12 |                 | 95        | %           | 70 - 130             |
|               |      |                          | F1 (C6-C10)                  | 2016/10/12 |                 | 107       | %           | 70 - 130             |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                              | Date       |            |          |           |               |
|---------|------|--------------------------|------------------------------|------------|------------|----------|-----------|---------------|
| Batch   | Init | QC Type                  | Parameter                    | Analyzed   | Value      | Recovery | UNITS     | QC Limits     |
| 8428043 | RSU  | Method Blank             | 1,4-Difluorobenzene (sur.)   | 2016/10/12 |            | 106      | %         | 70 - 130      |
|         |      |                          | 4-Bromofluorobenzene (sur.)  | 2016/10/12 |            | 101      | %         | 70 - 130      |
|         |      |                          | D4-1,2-Dichloroethane (sur.) | 2016/10/12 |            | 98       | %         | 70 - 130      |
|         |      |                          | Benzene                      | 2016/10/12 | < 0.00040  |          | mg/L      |               |
|         |      |                          | Toluene                      | 2016/10/12 | < 0.00040  |          | mg/L      |               |
|         |      |                          | Ethylbenzene                 | 2016/10/12 | < 0.00040  |          | mg/L      |               |
|         |      |                          | m & p-Xylene                 | 2016/10/12 | <0.00080   |          | mg/L      |               |
|         |      |                          | o-Xylene                     | 2016/10/12 | <0.00040   |          | mg/L      |               |
|         |      |                          | Xylenes (Total)              | 2016/10/12 | <0.00080   |          | mg/L      |               |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/12 | <0.10      |          | mg/L      |               |
|         |      |                          | F1 (C6-C10)                  | 2016/10/12 | <0.10      |          | mg/L      |               |
| 8428043 | RSU  | RPD                      | Benzene                      | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | Toluene                      | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | Ethylbenzene                 | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | m & p-Xylene                 | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | o-Xylene                     | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | Xylenes (Total)              | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | F1 (C6-C10) - BTEX           | 2016/10/12 | NC         |          | %         | 40            |
|         |      |                          | F1 (C6-C10)                  | 2016/10/12 | NC         |          | %         | 40            |
| 8428116 | RM9  | Matrix Spike [PR5503-01] | Dissolved Ammonia (N)        | 2016/10/09 |            | NC       | %         | 80 - 120      |
| 8428116 | RM9  | Spiked Blank             | Dissolved Ammonia (N)        | 2016/10/09 |            | 101      | %         | 80 - 120      |
| 8428116 | RM9  | Method Blank             | Dissolved Ammonia (N)        | 2016/10/09 | <0.050     |          | mg/L      |               |
| 8428116 | RM9  | RPD [PR5503-01]          | Dissolved Ammonia (N)        | 2016/10/09 | 16         |          | %         | 20            |
| 8428215 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/12 |            | NC       | %         | 80 - 120      |
| 8428215 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/12 |            | 94       | %         | N/A           |
| 8428215 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/12 |            | 93       | %         | ,<br>80 - 120 |
| 8428215 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/12 | <0.050     |          | mg/L      |               |
| 8428215 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/12 | 9.5        |          | %         | 20            |
| 8428216 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/12 |            | 85       | %         | 80 - 120      |
| 8428216 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/12 |            | 90       | %         | 80 - 120      |
| 8428216 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/12 |            | 87       | %         | 80 - 120      |
| 8428216 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/12 | <0.050     |          | mg/L      |               |
| 8428216 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/12 | NC         |          | %         | 20            |
| 8428234 | MB5  | Matrix Spike             | Total Kjeldahl Nitrogen      | 2016/10/11 |            | 86       | %         | 80 - 120      |
| 8428234 | MB5  | QC Standard              | Total Kjeldahl Nitrogen      | 2016/10/11 |            | 96       | %         | 80 - 120      |
| 8428234 | MB5  | Spiked Blank             | Total Kjeldahl Nitrogen      | 2016/10/11 |            | 92       | %         | 80 - 120      |
| 8428234 | MB5  | Method Blank             | Total Kjeldahl Nitrogen      | 2016/10/11 | <0.050     |          | mg/L      |               |
| 8428234 | MB5  | RPD                      | Total Kjeldahl Nitrogen      | 2016/10/11 | NC         |          | %         | 20            |
| 8428935 | RK3  | Matrix Spike             | Total Mercury (Hg)           | 2016/10/11 |            | 114      | %         | 80 - 120      |
| 8428935 | RK3  | Spiked Blank             | Total Mercury (Hg)           | 2016/10/11 |            | 108      | %         | 80 - 120      |
| 8428935 | RK3  | Method Blank             | Total Mercury (Hg)           | 2016/10/11 | <0.0020    |          | ug/L      |               |
| 8428935 | RK3  | RPD                      | Total Mercury (Hg)           | 2016/10/11 | NC         |          | %         | 20            |
| 8429487 | YU   | Spiked Blank             | pH                           | 2016/10/11 | -          | 100      | %         | 97 - 103      |
| 8429487 | YU   | RPD [PR5503-01]          | pH                           | 2016/10/11 | 0.39       |          | %         | N/A           |
| 8429611 | FM0  | Spiked Blank             | Conductivity                 | 2016/10/11 |            | 100      | %         | 90 - 110      |
| 8429611 | FM0  | Method Blank             | Conductivity                 | 2016/10/11 | 1.4,       |          | uS/cm     | -             |
|         | -    | -                        | ,                            | / /        | RDL=1.0    |          | -,        |               |
| 8429611 | FM0  | RPD                      | Conductivity                 | 2016/10/11 | 2.1        |          | %         | 20            |
| 8430325 | RK3  | Matrix Spike             | Dissolved Mercury (Hg)       | 2016/10/12 | <b>-</b> + | 112      | %         | 80 - 120      |
| 8430325 | RK3  | Spiked Blank             | Dissolved Mercury (Hg)       | 2016/10/12 |            | 98       | %         | 80 - 120      |
| 8430325 | RK3  | Method Blank             | Dissolved Mercury (Hg)       | 2016/10/12 | <0.0020    | 55       | ug/L      | 55 120        |
| 8430325 | RK3  | RPD                      | Dissolved Mercury (Hg)       | 2016/10/12 | NC         |          | ug/∟<br>% | 20            |
| 5430323 |      |                          |                              | 2010/10/12 | iii C      |          | 70        | 20            |

#### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |                          |                        | Date       |         |          |       |           |
|---------|------|--------------------------|------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter              | Analyzed   | Value   | Recovery | UNITS | QC Limits |
| 8430330 | RK3  | Matrix Spike [PR5506-06] | Dissolved Mercury (Hg) | 2016/10/12 |         | 103      | %     | 80 - 120  |
| 8430330 | RK3  | Spiked Blank             | Dissolved Mercury (Hg) | 2016/10/12 |         | 96       | %     | 80 - 120  |
| 8430330 | RK3  | Method Blank             | Dissolved Mercury (Hg) | 2016/10/12 | <0.0020 |          | ug/L  |           |
| 8430330 | RK3  | RPD [PR5505-06]          | Dissolved Mercury (Hg) | 2016/10/12 | NC      |          | %     | 20        |
| 8431903 | RK3  | Matrix Spike             | Dissolved Mercury (Hg) | 2016/10/13 |         | 101      | %     | 80 - 120  |
| 8431903 | RK3  | Spiked Blank             | Dissolved Mercury (Hg) | 2016/10/13 |         | 110      | %     | 80 - 120  |
| 8431903 | RK3  | Method Blank             | Dissolved Mercury (Hg) | 2016/10/13 | <0.0020 |          | ug/L  |           |
| 8431903 | RK3  | RPD                      | Dissolved Mercury (Hg) | 2016/10/13 | NC      |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

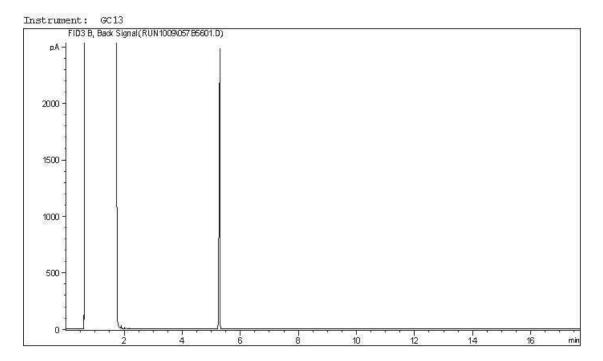


## VALIDATION SIGNATURE PAGE

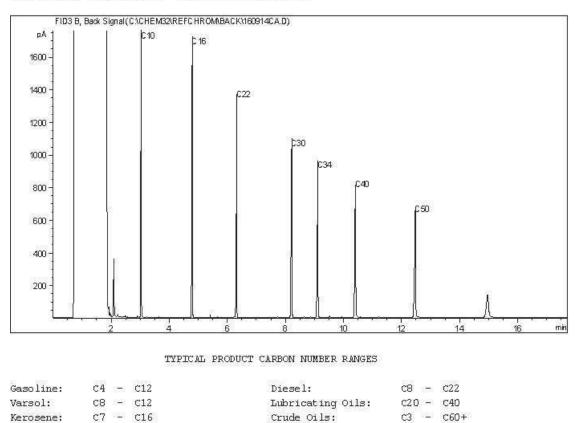
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

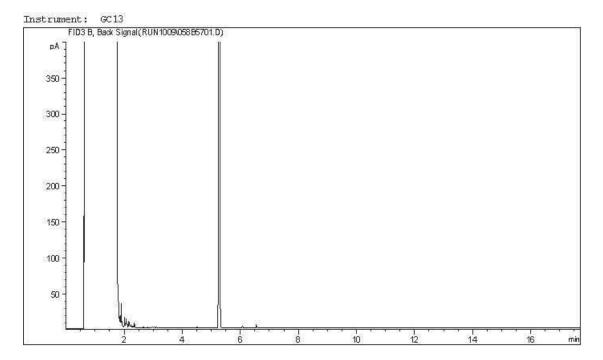

Harry (Peng) Liang, Senior Analyst

yonicatelk

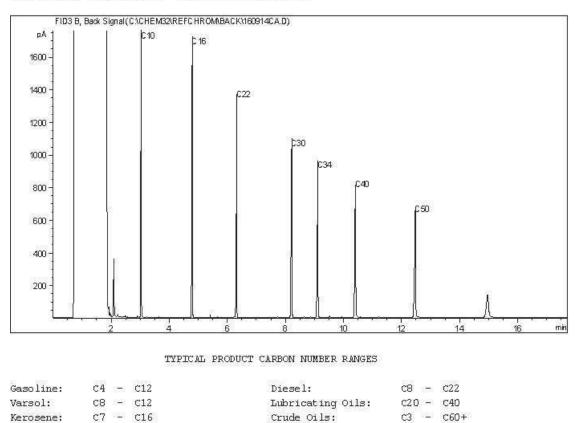

Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Invoice Information                                                                            | Report Informatio        | n (if differs from   | n invoice)                               |                                       | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124<br>Turnarou                                                                           | nd Time (TAT) Required                    |
|------------------------------------------------------------------------------------------------|--------------------------|----------------------|------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|
| company: Startec Casulting Etd                                                                 | Company:                 |                      | 1.11                                     | Quotation #:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-7 Days                                                                                  | Regular (Most analyses)                   |
| Dil Vi                                                                                         | Contact Name:            |                      | 1                                        | P.O. #/ AFE#:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | DVANCE NOTICE FOR RUSH PROJECTS           |
|                                                                                                | Address:                 |                      |                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rush TAT                                                                                  | (Surcharges will be applied)              |
| AB, TSK 26                                                                                     |                          | 6                    | 1211 16                                  | Project #:                            | 10773396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Same Day                                                                                  | 2 Days                                    |
|                                                                                                | Phone:                   | 1                    |                                          | Site Location:                        | Springtonk Sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 Day                                                                                     | 3-4 Days                                  |
| Email: Dylan. Kinge startec. com                                                               |                          | a                    |                                          | Site #:                               | Dural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date Required:                                                                            |                                           |
| copies: Dale.Nisbettastantec.com                                                               | Copies:                  | 1                    | 1                                        | Sampled By:                           | p.Nisbet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rush Confirmatio                                                                          | n#:                                       |
| Laboratory Use C                                                                               |                          |                      |                                          |                                       | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | Regulatory Criteria                       |
| Seal Present 2 Temp 8 7 6                                                                      | Depot Recep              | lon                  |                                          | Diss 🕅                                | ived K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mmonis<br>(mS<br>plate cant                                                               | AT1/CCME                                  |
| Cooling Media YES NO Cooler ID                                                                 |                          |                      |                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ammonio<br>Garms<br>The plante ca                                                         | Drinking Water                            |
| Seal Present Temp                                                                              |                          |                      |                                          | Tot                                   | TotaPR Diss<br>i micron)<br>(% Sand, Silt, Clay)<br>(% Sand, Sa | Dissollard Arman<br>TKN<br>DOC<br>Otal Colificans<br>Eccal Colificans<br>Eccal Colificans | Saskatchewan                              |
| Cooling Media YES NO Cooler ID                                                                 |                          |                      | *                                        | tals                                  | nd, Si ndfil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dissolued Ar<br>TKN<br>DAN Colifier<br>Coli Colifier<br>eterntrephic                      | D50 (Drilling Waste)                      |
| Seal Infact Temp                                                                               |                          |                      | F2                                       | F4<br>Nate<br>d Me                    | Total<br>micron)<br>(% Sand,<br>ss II Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ITAN<br>ITAN<br>Otal Coli<br>Coli                                                         | Z Other:                                  |
| Cooling Media Sample Identification De                                                         | epth (Unit) Date Sampled | Time<br>Sampled Matr | # of contail<br>BTEX F1 []<br>BTEX F1-F2 | BTEX F1-F4<br>Routine Wi<br>Regulated | nity 4<br>nity 4<br>ne (75<br>ic Clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2298092                                                                                   |                                           |
|                                                                                                | (YYYY/MM/OD)             | (HH:MM)              | BTE BTE                                  | BTE<br>Rot                            | Me Sail Sie Bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OF OF OF OF                                                                               | E Special Instructions                    |
| 1 MULG-VG-G<br>2 MULG-18-10                                                                    | 2016/10/04               | 10:50 W              | 15 V                                     |                                       | + 6 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | please filter and                         |
| 3 MU16-4-20                                                                                    | TRUE OF BELLEVILLE       | 12:14                |                                          |                                       | 1 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | parameters for                            |
| * MU16-5-11                                                                                    |                          | 13:16                |                                          |                                       | 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | - parameters tos                          |
| 5 MW16-10-15                                                                                   |                          | 15.04                |                                          |                                       | 073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | - MW16-10-15.                             |
| 5 MW16-4-4                                                                                     |                          | 16:12                |                                          |                                       | 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | Not field fillered due<br>to turbid it y. |
| 7 MU16-8-19                                                                                    |                          | 16:06                |                                          |                                       | 077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |                                           |
| 8 MUIG-4-16                                                                                    | V                        | 12:15                | 7 10 1                                   | 4 4.                                  | 7 876 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>***</b>                                                                                | Submitted same<br>day. as sampled.        |
| 9                                                                                              |                          | Sull. Pa             |                                          | 14 4/10 201                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | day as sampled                            |
| 10                                                                                             |                          | 4                    |                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                         |                                           |
| Please indicate Filtered, Preserved or Both<br>Relinquished by: (Signature/ Print) DATE (YYYY, | h (F, P, F/P)            | Roceium              |                                          | (Print)                               | DATE (YYYY/MM/DD) Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04.0                                                                                      | ct-16 18:07                               |
|                                                                                                |                          | neceive              | a by. (Signate                           | iner Frincy                           | [white [1111/mm/ob]] Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e (minimu) 04-0                                                                           | VF1010.07                                 |

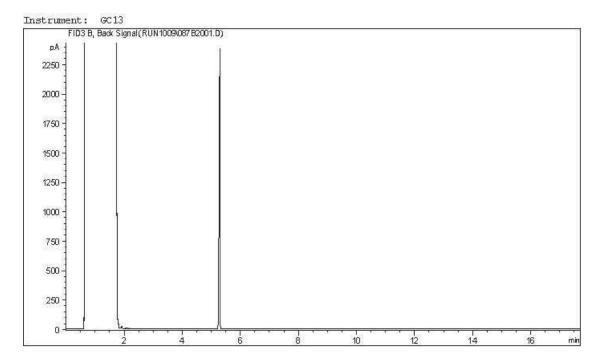



Carbon Range Distribution - Reference Chromatogram

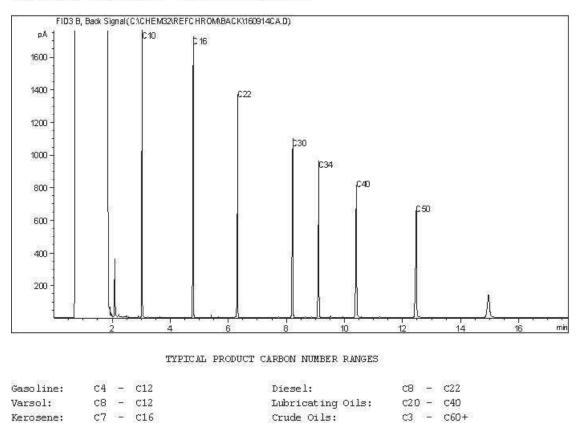


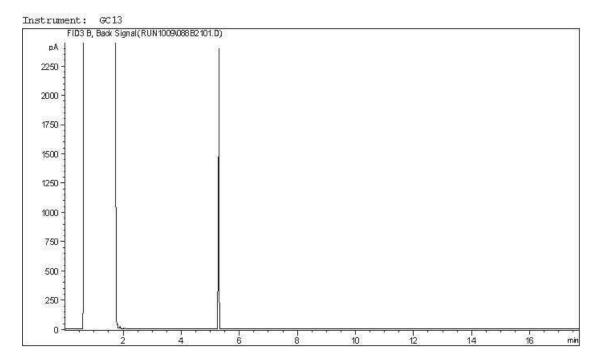

Note: This information is provided for reference purposes only. Should detailed chemist interpretation

or fingerprinting be required, please contact the laboratory.

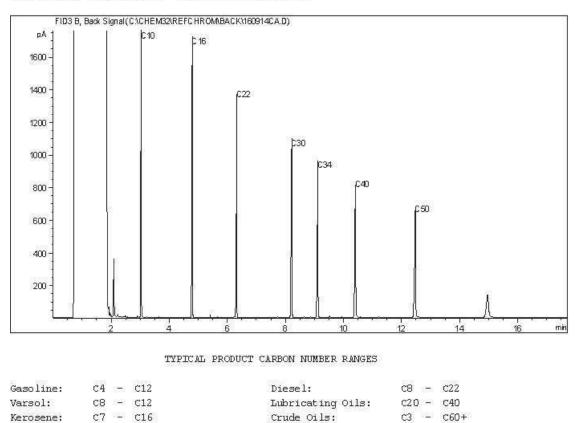


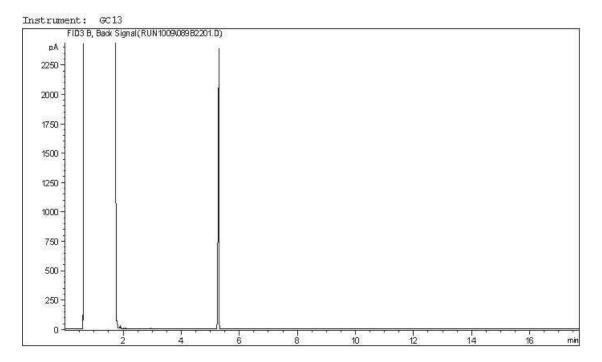

Carbon Range Distribution - Reference Chromatogram



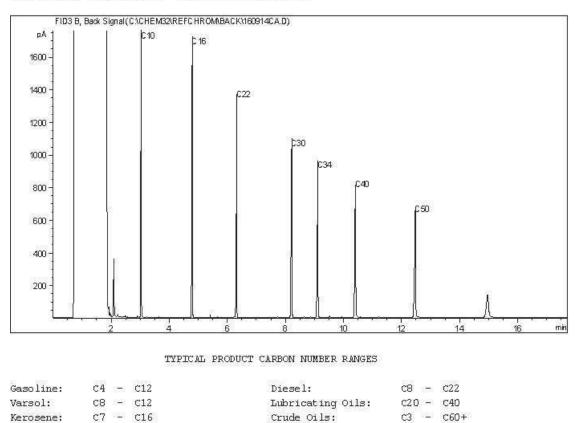


Note: This information is provided for reference purposes only. Should detailed chemist interpretation

or fingerprinting be required, please contact the laboratory.



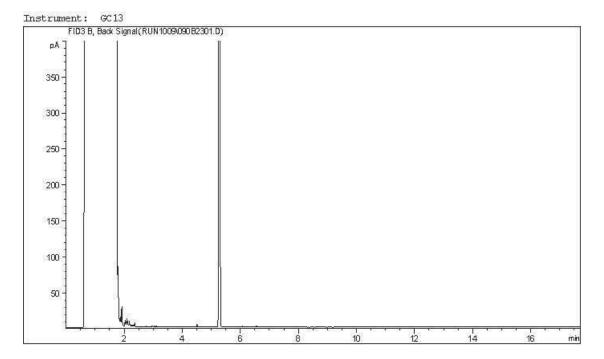


Carbon Range Distribution - Reference Chromatogram



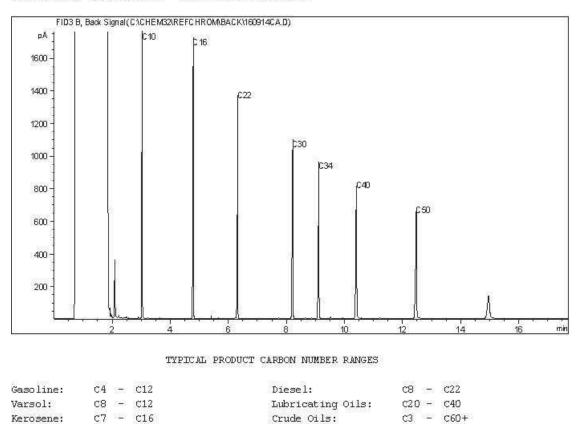


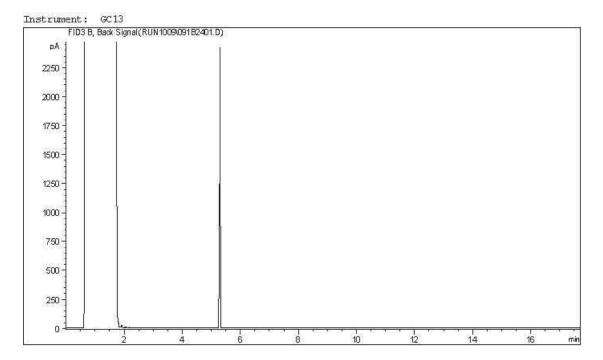

Carbon Range Distribution - Reference Chromatogram



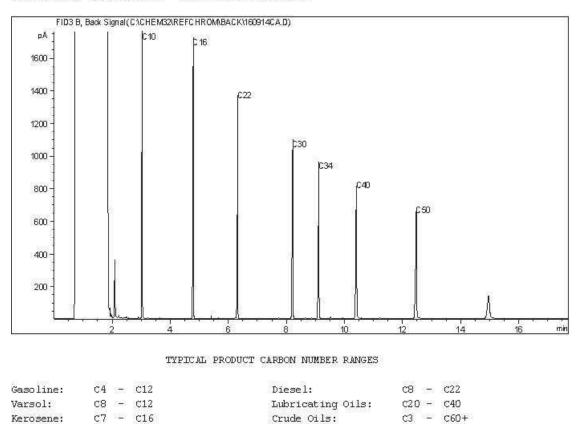


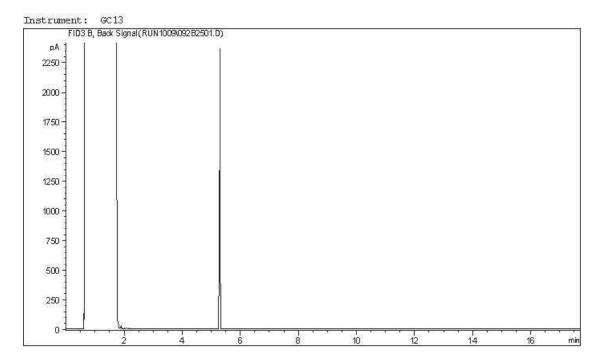

Carbon Range Distribution - Reference Chromatogram



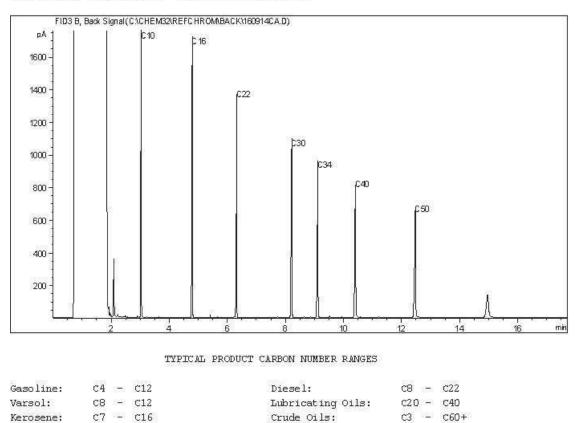


Note: This information is provided for reference purposes only. Should detailed chemist interpretation

or fingerprinting be required, please contact the laboratory.





Carbon Range Distribution - Reference Chromatogram






Carbon Range Distribution - Reference Chromatogram





Carbon Range Distribution - Reference Chromatogram



Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031946

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/18 Report #: R2284237 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

# MAXXAM JOB #: B688395

## Received: 2016/10/06, 18:35

Sample Matrix: Water # Samples Received: 2

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 2        | N/A        | 2016/10/11 | AB SOP-00005      | SM 22 2320 B m       |
| Chloride by Automated Colourimetry       | 2        | N/A        | 2016/10/14 | AB SOP-00020      | SM 22-4500-Cl G m    |
| Conductivity @25C                        | 2        | N/A        | 2016/10/11 | AB SOP-00005      | SM 22 2510 B m       |
| Hardness                                 | 2        | N/A        | 2016/10/13 | AB WI-00065       | Auto Calc            |
| Mercury-Low Level-Dissolved-Lab Filtered | 2        | 2016/10/13 | 2016/10/13 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 2        | 2016/10/17 | 2016/10/18 | CAL SOP-00007     | EPA 1631 RE 20460 m  |
| Elements by ICP-Dissolved-Lab Filtered   | 2        | N/A        | 2016/10/12 | AB SOP-00042      | EPA 200.7 CFR 2012 m |
| Elements by ICPMS-Dissolved-Lab Filtered | 2        | N/A        | 2016/10/11 | AB SOP-00043      | EPA 200.8 R5.4 m     |
| Ion Balance                              | 2        | N/A        | 2016/10/12 | AB WI-00065       | Auto Calc            |
| Sum of cations, anions                   | 2        | N/A        | 2016/10/13 | AB WI-00065       | Auto Calc            |
| Nitrate and Nitrite                      | 2        | N/A        | 2016/10/12 | AB WI-00065       | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 2        | N/A        | 2016/10/12 | AB WI-00065       | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 2        | N/A        | 2016/10/11 | AB SOP-00023      | SM 22 4110 B m       |
| pH @25°C                                 | 2        | N/A        | 2016/10/11 | AB SOP-00005      | SM 22 4500-H+B m     |
| Sulphate by Automated Colourimetry       | 2        | N/A        | 2016/10/14 | AB SOP-00018      | SM 22 4500-SO4 E m   |
| Total Dissolved Solids (Calculated)      | 2        | N/A        | 2016/10/14 | AB WI-00065       | Auto Calc            |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PS2812              | PS2812               |         |          | PS2813              |         |          |
|-----------------------------------|-------|---------------------|----------------------|---------|----------|---------------------|---------|----------|
| Sampling Date                     |       | 2016/10/06<br>10:10 | 2016/10/06<br>10:10  |         |          | 2016/10/06<br>16:56 |         |          |
| COC Number                        |       | M031946             | M031946              |         |          | M031946             |         |          |
|                                   | UNITS | MW16-17-5           | MW16-17-5<br>Lab-Dup | RDL     | QC Batch | MW16-12-3           | RDL     | QC Batch |
| Calculated Parameters             |       |                     |                      | -       | ·        |                     |         |          |
| Anion Sum                         | meq/L | 110                 | N/A                  | N/A     | 8425566  | 33                  | N/A     | 8425566  |
| Cation Sum                        | meq/L | 100                 | N/A                  | N/A     | 8425566  | 31                  | N/A     | 8425566  |
| Hardness (CaCO3)                  | mg/L  | 3500                | N/A                  | 0.50    | 8425564  | 1300                | 0.50    | 8425564  |
| Ion Balance                       | N/A   | 0.93                | N/A                  | 0.010   | 8425565  | 0.94                | 0.010   | 8425565  |
| Dissolved Nitrate (NO3)           | mg/L  | 5.0                 | N/A                  | 0.044   | 8425549  | 1.5                 | 0.044   | 8425549  |
| Nitrate plus Nitrite (N)          | mg/L  | 1.3                 | N/A                  | 0.020   | 8425550  | 0.34                | 0.020   | 8425550  |
| Dissolved Nitrite (NO2)           | mg/L  | 0.55                | N/A                  | 0.033   | 8425549  | <0.033              | 0.033   | 8425549  |
| Calculated Total Dissolved Solids | mg/L  | 6900                | N/A                  | 10      | 8425570  | 1900                | 10      | 8425570  |
| Misc. Inorganics                  |       |                     | •                    |         |          |                     | •       |          |
| Conductivity                      | uS/cm | 6900                | N/A                  | 1.0     | 8428919  | 2600                | 1.0     | 8428919  |
| рН                                | рН    | 7.81                | N/A                  | N/A     | 8428920  | 7.97                | N/A     | 8428920  |
| Anions                            | • •   |                     | •                    |         |          |                     | •       |          |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | N/A                  | 0.50    | 8428917  | <0.50               | 0.50    | 8428917  |
| Alkalinity (Total as CaCO3)       | mg/L  | 520                 | N/A                  | 0.50    | 8428917  | 410                 | 0.50    | 8428917  |
| Bicarbonate (HCO3)                | mg/L  | 640                 | N/A                  | 0.50    | 8428917  | 510                 | 0.50    | 8428917  |
| Carbonate (CO3)                   | mg/L  | <0.50               | N/A                  | 0.50    | 8428917  | <0.50               | 0.50    | 8428917  |
| Hydroxide (OH)                    | mg/L  | <0.50               | N/A                  | 0.50    | 8428917  | <0.50               | 0.50    | 8428917  |
| Dissolved Sulphate (SO4)          | mg/L  | 4800 (1)            | N/A                  | 50      | 8433413  | 900 (1)             | 10      | 8433413  |
| Dissolved Chloride (Cl)           | mg/L  | 8.7                 | N/A                  | 1.0     | 8433409  | 230 (1)             | 2.0     | 8433409  |
| Nutrients                         |       |                     |                      |         |          |                     |         |          |
| Dissolved Nitrite (N)             | mg/L  | 0.17                | 0.17                 | 0.010   | 8428824  | <0.010              | 0.010   | 8428827  |
| Dissolved Nitrate (N)             | mg/L  | 1.1                 | 1.1                  | 0.010   | 8428824  | 0.34                | 0.010   | 8428827  |
| Lab Filtered Elements             |       |                     |                      |         |          |                     |         |          |
| Dissolved Aluminum (Al)           | mg/L  | 0.0039              | N/A                  | 0.0030  | 8428460  | 0.0070              | 0.0030  | 8428460  |
| Dissolved Antimony (Sb)           | mg/L  | 0.00062             | N/A                  | 0.00060 | 8428460  | <0.00060            | 0.00060 | 8428460  |
| Dissolved Arsenic (As)            | mg/L  | 0.00053             | N/A                  | 0.00020 | 8428460  | 0.00092             | 0.00020 | 8428460  |
| Dissolved Barium (Ba)             | mg/L  | 0.041               | N/A                  | 0.010   | 8431017  | 0.12                | 0.010   | 8431036  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | N/A                  | 0.0010  | 8428460  | <0.0010             | 0.0010  | 8428460  |
| Dissolved Boron (B)               | mg/L  | 0.12                | N/A                  | 0.020   | 8431017  | 0.051               | 0.020   | 8431036  |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

|       | 2016/10/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2016/10/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2016/10/06                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 10:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16:56                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | M031946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M031946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M031946                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNITS | MW16-17-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW16-17-5<br>Lab-Dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW16-12-3                                                                                                                                                                                                                                                                                                              | RDL                                                                                                                                                                                                                                                                                                                                                                   | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mg/L  | 0.00028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000036                                                                                                                                                                                                                                                                                                               | 0.000020                                                                                                                                                                                                                                                                                                                                                              | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.0010                                                                                                                                                                                                                                                                                                                | 0.0010                                                                                                                                                                                                                                                                                                                                                                | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.00083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00030                                                                                                                                                                                                                                                                                                               | 0.00030                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0018                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.060                                                                                                                                                                                                                                                                                                                 | 0.060                                                                                                                                                                                                                                                                                                                                                                 | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00020                                                                                                                                                                                                                                                                                                               | 0.00020                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.030                                                                                                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                 | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 600 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.025                                                                                                                                                                                                                                                                                                                  | 0.0040                                                                                                                                                                                                                                                                                                                                                                | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0021                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0041                                                                                                                                                                                                                                                                                                                 | 0.00050                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.10                                                                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.4                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0016                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1                                                                                                                                                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00010                                                                                                                                                                                                                                                                                                               | 0.00010                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 750 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                                                                                                    | 0.020                                                                                                                                                                                                                                                                                                                                                                 | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 1500 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8431017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                                                                                                                                                                                                                                  | 8431036                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00020                                                                                                                                                                                                                                                                                                               | 0.00020                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.0010                                                                                                                                                                                                                                                                                                                | 0.0010                                                                                                                                                                                                                                                                                                                                                                | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.0010                                                                                                                                                                                                                                                                                                                | 0.0010                                                                                                                                                                                                                                                                                                                                                                | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.010                                                                                                                                                                                                                                                                                                                  | 0.00010                                                                                                                                                                                                                                                                                                                                                               | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0011                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                                                                                | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/L  | 0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.0030                                                                                                                                                                                                                                                                                                                | 0.0030                                                                                                                                                                                                                                                                                                                                                                | 8428460                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | mg/L           mg/L | UNITS         MW16-17-5           mg/L         0.00028           mg/L         410           mg/L         0.0010           mg/L         0.00083           mg/L         0.00083           mg/L         0.00017           mg/L         0.00017           mg/L         0.00017           mg/L         0.00010           mg/L         0.0017           mg/L         0.0015           mg/L         0.0015           mg/L         0.0015           mg/L         0.0011           mg/L         0.011           mg/L         0.034           mg/L         5.2           mg/L         750 (1)           mg/L         4.7           mg/L         4.7           mg/L         0.0010           mg/L         <0.0010 | M031946         M031946           UNITS         MW16-17-5<br>Lab-Dup           mg/L         0.00028         N/A           mg/L         410         N/A           mg/L         0.00028         N/A           mg/L         0.0010         N/A           mg/L         0.00083         N/A           mg/L         0.0017         N/A           mg/L         0.015         N/A           mg/L         0.015         N/A           mg/L         0.0015         N/A           mg/L         0.0054         N/A           mg/L         0.11         N/A           mg/L         0.034         N/A           mg/L         0.034         N/A           mg/L         5.2         N/A           mg/L         750 (1)         N/A | Image         M031946         M031946         M031946           UNITS         MW16-17-5<br>MW16-17-5<br>Lab-Dup         RDL           mg/L         0.00028         N/A         0.00020           mg/L         410         N/A         0.30           mg/L         410         N/A         0.0010           mg/L         0.0010         N/A         0.0010           mg/L         0.0017         N/A         0.00020           mg/L         0.0017         N/A         0.0020           mg/L         0.015         N/A         0.0020           mg/L         0.0015         N/A         0.00020           mg/L         0.0054         N/A         0.00020           mg/L         0.011         N/A         0.10           mg/L         0.034         N/A         0.00020           mg/L         0.034         N/A         0.00010           mg/L         5.0         N/ | M031946         M031946         M031946         M031946           UNITS         MW16-17-5         MW16-17-5         RDL         QC Batch           mg/L         0.00028         N/A         0.00020         8428460           mg/L         410         N/A         0.30         8431017           mg/L         <0.0010 | M031946         M031946         M031946         M031946           UNITS         MW16-17-5         MW16-17-5         RDL         QC Batch         MW16-12-3           mg/L         0.00028         N/A         0.00020         8428460         0.000036           mg/L         410         N/A         0.30         8431017         270           mg/L         <0.0010 | M031946         M031946         M031946         M031946           UNITS         MW16-17-5         MW16-17-5<br>Lab-Dup         RDL         QC Batch         MW16-12-3         RDL           mg/L         0.00028         N/A         0.00020         8428460         0.000036         0.00020           mg/L         410         N/A         0.30         8431017         270         0.30           mg/L         400         N/A         0.0010         8428460         <0.0010 |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                                                                                        |       | PS2812              | PS2813              |        |          |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------|---------------------|---------------------|--------|----------|--|--|--|--|
| Sampling Date                                                                                    |       | 2016/10/06<br>10:10 | 2016/10/06<br>16:56 |        |          |  |  |  |  |
| COC Number                                                                                       |       | M031946             | M031946             |        |          |  |  |  |  |
|                                                                                                  | UNITS | MW16-17-5           | MW16-12-3           | RDL    | QC Batch |  |  |  |  |
| Low Level Elements                                                                               |       |                     |                     |        |          |  |  |  |  |
| Total Mercury (Hg)                                                                               | ug/L  | <0.20 (1)           | 0.30 (1)            | 0.20   | 8435873  |  |  |  |  |
| Lab Filtered Elements-Low                                                                        |       |                     |                     |        |          |  |  |  |  |
| Dissolved Mercury (Hg)                                                                           | ug/L  | <0.0020             | <0.0020             | 0.0020 | 8431903  |  |  |  |  |
| RDL = Reportable Detection Limit                                                                 |       |                     |                     |        |          |  |  |  |  |
| (1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly |       |                     |                     |        |          |  |  |  |  |



#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.7°C

Results relate only to the items tested.



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## **QUALITY ASSURANCE REPORT**

| QA/QC   |      |              |                           | Date       |           |          |       |           |
|---------|------|--------------|---------------------------|------------|-----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value     | Recovery | UNITS | QC Limits |
| 8428460 | PC5  | Matrix Spike | Dissolved Aluminum (Al)   | 2016/10/11 |           | 89       | %     | 80 - 120  |
|         |      | ·            | Dissolved Antimony (Sb)   | 2016/10/11 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/11 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/11 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/11 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/11 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/11 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/11 |           | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/11 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/11 |           | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/11 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/11 |           | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/11 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/11 |           | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/11 |           | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/11 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/11 |           | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/11 |           | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/11 |           | 90       | %     | 80 - 120  |
| 8428460 | PC5  | Spiked Blank | Dissolved Aluminum (Al)   | 2016/10/11 |           | 119      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/11 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/11 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/11 |           | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/11 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/11 |           | 91       | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/11 |           | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/11 |           | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/11 |           | 87       | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/11 |           | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/11 |           | 86       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/11 |           | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/11 |           | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/11 |           | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2016/10/11 |           | 83       | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2016/10/11 |           | 85       | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2016/10/11 |           | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2016/10/11 |           | 89       | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2016/10/11 |           | 85       | %     | 80 - 120  |
| 8428460 | PC5  | Method Blank | Dissolved Aluminum (Al)   | 2016/10/11 | <0.0030   |          | mg/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2016/10/11 | <0.00060  |          | mg/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2016/10/11 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2016/10/11 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2016/10/11 | <0.000020 |          | mg/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2016/10/11 | <0.0010   |          | mg/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2016/10/11 | <0.00030  |          | mg/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2016/10/11 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2016/10/11 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2016/10/11 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2016/10/11 | <0.00050  |          | mg/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2016/10/11 | <0.00020  |          | mg/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2016/10/11 | < 0.00010 |          | mg/L  |           |
|         |      |              | Dissolved Thallium (TI)   | 2016/10/11 | <0.00020  |          | mg/L  |           |



STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                          |                             | Date       |            |          |       |           |
|---------|------|--------------------------|-----------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Туре                  | Parameter                   | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                          | Dissolved Tin (Sn)          | 2016/10/11 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Titanium (Ti)     | 2016/10/11 | <0.0010    |          | mg/L  |           |
|         |      |                          | Dissolved Uranium (U)       | 2016/10/11 | < 0.00010  |          | mg/L  |           |
|         |      |                          | Dissolved Vanadium (V)      | 2016/10/11 | < 0.0010   |          | mg/L  |           |
|         |      |                          | Dissolved Zinc (Zn)         | 2016/10/11 | 0.0046,    |          | mg/L  |           |
|         |      |                          |                             |            | RDL=0.0030 |          |       |           |
| 8428460 | PC5  | RPD                      | Dissolved Aluminum (Al)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Antimony (Sb)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Arsenic (As)      | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Beryllium (Be)    | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Chromium (Cr)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Cobalt (Co)       | 2016/10/11 | 6.4        |          | %     | 20        |
|         |      |                          | Dissolved Copper (Cu)       | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Lead (Pb)         | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Molybdenum (Mo)   | 2016/10/11 | 4.9        |          | %     | 20        |
|         |      |                          | Dissolved Nickel (Ni)       | 2016/10/11 | 1.7        |          | %     | 20        |
|         |      |                          | Dissolved Selenium (Se)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Silver (Ag)       | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Thallium (TI)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Tin (Sn)          | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Titanium (Ti)     | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Uranium (U)       | 2016/10/11 | 0.93       |          | %     | 20        |
|         |      |                          | Dissolved Vanadium (V)      | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Zinc (Zn)         | 2016/10/11 | NC         |          | %     | 20        |
| 8428824 | NW4  | Matrix Spike [PS2812-01] | Dissolved Nitrite (N)       | 2016/10/11 |            | 102      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 |            | 101      | %     | 80 - 120  |
| 8428824 | NW4  | Spiked Blank             | Dissolved Nitrite (N)       | 2016/10/11 |            | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 |            | 101      | %     | 80 - 120  |
| 8428824 | NW4  | Method Blank             | Dissolved Nitrite (N)       | 2016/10/11 | < 0.010    |          | mg/L  |           |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 | < 0.010    |          | mg/L  |           |
| 8428824 | NW4  | RPD [PS2812-01]          | Dissolved Nitrite (N)       | 2016/10/11 | 0.48       |          | %     | 20        |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 | 0.053      |          | %     | 20        |
| 8428827 | NW4  | Matrix Spike             | Dissolved Nitrite (N)       | 2016/10/11 |            | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 |            | 102      | %     | 80 - 120  |
| 8428827 | NW4  | Spiked Blank             | Dissolved Nitrite (N)       | 2016/10/11 |            | 100      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 |            | 101      | %     | 80 - 120  |
| 8428827 | NW4  | Method Blank             | Dissolved Nitrite (N)       | 2016/10/11 | < 0.010    |          | mg/L  |           |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 | < 0.010    |          | mg/L  |           |
| 8428827 | NW4  | RPD                      | Dissolved Nitrite (N)       | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Nitrate (N)       | 2016/10/11 | 0          |          | %     | 20        |
| 8428917 | JLD  | Spiked Blank             | Alkalinity (Total as CaCO3) | 2016/10/11 |            | 99       | %     | 80 - 120  |
| 8428917 | JLD  | Method Blank             | Alkalinity (PP as CaCO3)    | 2016/10/11 | <0.50      |          | mg/L  |           |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/10/11 | <0.50      |          | mg/L  |           |
|         |      |                          | Bicarbonate (HCO3)          | 2016/10/11 | <0.50      |          | mg/L  |           |
|         |      |                          | Carbonate (CO3)             | 2016/10/11 | <0.50      |          | mg/L  |           |
|         |      |                          | Hydroxide (OH)              | 2016/10/11 | <0.50      |          | mg/L  |           |
| 8428917 | JLD  | RPD                      | Alkalinity (PP as CaCO3)    | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Alkalinity (Total as CaCO3) | 2016/10/11 | 0.80       |          | %     | 20        |
|         |      |                          | Bicarbonate (HCO3)          | 2016/10/11 | 0.80       |          | %     | 20        |
|         |      |                          | Carbonate (CO3)             | 2016/10/11 | NC         |          | %     | 20        |
|         |      |                          | Hydroxide (OH)              | 2016/10/11 | NC         |          | %     | 20        |
| 8428919 | JLD  | Spiked Blank             | Conductivity                | 2016/10/11 |            | 99       | %     | 90 - 110  |



| QA/QC   |      |              |                          | Date       |          |          |       |           |
|---------|------|--------------|--------------------------|------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                | Analyzed   | Value    | Recovery | UNITS | QC Limits |
| 8428919 | JLD  | Method Blank | Conductivity             | 2016/10/11 | <1.0     | · · ·    | uS/cm |           |
| 8428919 | JLD  | RPD          | Conductivity             | 2016/10/11 | 0.15     |          | %     | 20        |
| 8428920 | JLD  | Spiked Blank | рН                       | 2016/10/11 |          | 101      | %     | 97 - 103  |
| 8428920 | JLD  | RPD          | рН                       | 2016/10/11 | 0.43     |          | %     | N/A       |
| 8431017 | JHC  | Matrix Spike | Dissolved Barium (Ba)    | 2016/10/12 |          | 86       | %     | 80 - 120  |
| 8431017 |      | ·            | Dissolved Boron (B)      | 2016/10/12 |          | 90       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/12 |          | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/12 |          | 86       | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/12 |          | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/12 |          | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/10/12 |          | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/12 |          | 88       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/12 |          | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/12 |          | 88       | %     | 80 - 120  |
|         | JHC  | Spiked Blank | Dissolved Barium (Ba)    | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/10/12 |          | 92       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/12 |          | 95       | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/12 |          | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/12 |          | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/12 |          | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/10/12 |          | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/12 |          | 94       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/12 |          | 94       | %     | 80 - 120  |
| 8431017 | JHC  | Method Blank | Dissolved Barium (Ba)    | 2016/10/12 | < 0.010  |          | mg/L  |           |
|         |      |              | Dissolved Boron (B)      | 2016/10/12 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/12 | < 0.30   |          | mg/L  |           |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/12 | <0.060   |          | mg/L  |           |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/12 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/12 | <0.20    |          | mg/L  |           |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/12 | < 0.0040 |          | mg/L  |           |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/12 | <0.10    |          | mg/L  |           |
|         |      |              | Dissolved Potassium (K)  | 2016/10/12 | <0.30    |          | mg/L  |           |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/12 | <0.10    |          | mg/L  |           |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/12 | <0.50    |          | mg/L  |           |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/12 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Sulphur (S)    | 2016/10/12 | <0.20    |          | mg/L  |           |
| 8431017 | JHC  | RPD          | Dissolved Calcium (Ca)   | 2016/10/12 | 0.75     |          | %     | 20        |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/12 | 11       |          | %     | 20        |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/12 | 0.97     |          | %     | 20        |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/12 | 0.68     |          | %     | 20        |
|         |      |              | Dissolved Potassium (K)  | 2016/10/12 | 0.28     |          | %     | 20        |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/12 | 0.24     |          | %     | 20        |
| 8431036 | JHC  | Matrix Spike | Dissolved Barium (Ba)    | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/12 |          | 95       | %     | 80 - 120  |
|         |      |              |                          | 2016/10/12 |          | 96       | %     |           |
|         |      |              | Dissolved Iron (Fe)      | 2010/10/12 |          | 90       | 70    | 80 - 120  |



Report Date: 2016/10/18

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |               |                          | Date       |          |          |       |           |
|---------|------|---------------|--------------------------|------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type       | Parameter                | Analyzed   | Value    | Recovery | UNITS | QC Limits |
|         |      |               | Dissolved Magnesium (Mg) | 2016/10/12 |          | 102      | %     | 80 - 120  |
|         |      |               | Dissolved Manganese (Mn) | 2016/10/12 |          | 96       | %     | 80 - 120  |
|         |      |               | Dissolved Phosphorus (P) | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |               | Dissolved Potassium (K)  | 2016/10/12 |          | 102      | %     | 80 - 120  |
|         |      |               | Dissolved Silicon (Si)   | 2016/10/12 |          | 94       | %     | 80 - 120  |
|         |      |               | Dissolved Sodium (Na)    | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |               | Dissolved Strontium (Sr) | 2016/10/12 |          | 91       | %     | 80 - 120  |
| 8431036 | JHC  | Spiked Blank  | Dissolved Barium (Ba)    | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |               | Dissolved Boron (B)      | 2016/10/12 |          | 93       | %     | 80 - 120  |
|         |      |               | Dissolved Calcium (Ca)   | 2016/10/12 |          | 94       | %     | 80 - 120  |
|         |      |               | Dissolved Iron (Fe)      | 2016/10/12 |          | 95       | %     | 80 - 120  |
|         |      |               | Dissolved Lithium (Li)   | 2016/10/12 |          | 102      | %     | 80 - 120  |
|         |      |               | Dissolved Magnesium (Mg) | 2016/10/12 |          | 104      | %     | 80 - 120  |
|         |      |               | Dissolved Manganese (Mn) | 2016/10/12 |          | 99       | %     | 80 - 120  |
|         |      |               | Dissolved Phosphorus (P) | 2016/10/12 |          | 98       | %     | 80 - 120  |
|         |      |               | Dissolved Potassium (K)  | 2016/10/12 |          | 102      | %     | 80 - 120  |
|         |      |               | Dissolved Silicon (Si)   | 2016/10/12 |          | 94       | %     | 80 - 120  |
|         |      |               | Dissolved Sodium (Na)    | 2016/10/12 |          | 100      | %     | 80 - 120  |
|         |      |               | Dissolved Strontium (Sr) | 2016/10/12 |          | 94       | %     | 80 - 120  |
| 8431036 | JHC  | Method Blank  | Dissolved Barium (Ba)    | 2016/10/12 | <0.010   | 54       | mg/L  | 00-120    |
| 0431030 | JIIC | Methou Bialik | Dissolved Boron (B)      | 2016/10/12 | <0.010   |          | mg/L  |           |
|         |      |               |                          |            | <0.020   |          |       |           |
|         |      |               | Dissolved Calcium (Ca)   | 2016/10/12 |          |          | mg/L  |           |
|         |      |               | Dissolved Iron (Fe)      | 2016/10/12 | <0.060   |          | mg/L  |           |
|         |      |               | Dissolved Lithium (Li)   | 2016/10/12 | <0.020   |          | mg/L  |           |
|         |      |               | Dissolved Magnesium (Mg) | 2016/10/12 | <0.20    |          | mg/L  |           |
|         |      |               | Dissolved Manganese (Mn) | 2016/10/12 | < 0.0040 |          | mg/L  |           |
|         |      |               | Dissolved Phosphorus (P) | 2016/10/12 | <0.10    |          | mg/L  |           |
|         |      |               | Dissolved Potassium (K)  | 2016/10/12 | < 0.30   |          | mg/L  |           |
|         |      |               | Dissolved Silicon (Si)   | 2016/10/12 | < 0.10   |          | mg/L  |           |
|         |      |               | Dissolved Sodium (Na)    | 2016/10/12 | <0.50    |          | mg/L  |           |
|         |      |               | Dissolved Strontium (Sr) | 2016/10/12 | <0.020   |          | mg/L  |           |
|         |      |               | Dissolved Sulphur (S)    | 2016/10/12 | <0.20    |          | mg/L  |           |
| 3431036 | JHC  | RPD           | Dissolved Calcium (Ca)   | 2016/10/12 | NC       |          | %     | 20        |
|         |      |               | Dissolved Iron (Fe)      | 2016/10/12 | NC       |          | %     | 20        |
|         |      |               | Dissolved Magnesium (Mg) | 2016/10/12 | NC       |          | %     | 20        |
|         |      |               | Dissolved Manganese (Mn) | 2016/10/12 | NC       |          | %     | 20        |
|         |      |               | Dissolved Potassium (K)  | 2016/10/12 | NC       |          | %     | 20        |
|         |      |               | Dissolved Sodium (Na)    | 2016/10/12 | NC       |          | %     | 20        |
| 8431903 | RK3  | Matrix Spike  | Dissolved Mercury (Hg)   | 2016/10/13 |          | 101      | %     | 80 - 120  |
| 8431903 | RK3  | Spiked Blank  | Dissolved Mercury (Hg)   | 2016/10/13 |          | 110      | %     | 80 - 120  |
| 8431903 | RK3  | Method Blank  | Dissolved Mercury (Hg)   | 2016/10/13 | <0.0020  |          | ug/L  |           |
| 8431903 | RK3  | RPD           | Dissolved Mercury (Hg)   | 2016/10/13 | NC       |          | %     | 20        |
| 8433409 | ZI   | Matrix Spike  | Dissolved Chloride (Cl)  | 2016/10/14 |          | NC       | %     | 80 - 120  |
| 8433409 | ZI   | Spiked Blank  | Dissolved Chloride (Cl)  | 2016/10/14 |          | 105      | %     | 80 - 120  |
| 8433409 | ZI   | Method Blank  | Dissolved Chloride (Cl)  | 2016/10/14 | <1.0     |          | mg/L  |           |
| 8433409 | ZI   | RPD           | Dissolved Chloride (Cl)  | 2016/10/14 | 13       |          | %     | 20        |
| 8433413 | ZI   | Matrix Spike  | Dissolved Sulphate (SO4) | 2016/10/14 |          | NC       | %     | 80 - 120  |
| 8433413 | ZI   | Spiked Blank  | Dissolved Sulphate (SO4) | 2016/10/14 |          | 107      | %     | 80 - 120  |
| 3433413 | ZI   | Method Blank  | Dissolved Sulphate (SO4) | 2016/10/14 | <1.0     |          | mg/L  |           |
| 3433413 | ZI   | RPD           | Dissolved Sulphate (SO4) | 2016/10/14 | 0.68     |          | %     | 20        |
| 8435873 | RK3  | Matrix Spike  | Total Mercury (Hg)       | 2016/10/17 |          | 82       | %     | 80 - 120  |
| 8435873 | RK3  | Spiked Blank  | Total Mercury (Hg)       | 2016/10/17 |          | 81       | %     | 80 - 120  |



#### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |              |                    | Date       |                       |          |       |           |
|---------|------|--------------|--------------------|------------|-----------------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter          | Analyzed   | Value                 | Recovery | UNITS | QC Limits |
| 8435873 | RK3  | Method Blank | Total Mercury (Hg) | 2016/10/17 | 0.0028,<br>RDL=0.0020 |          | ug/L  |           |
| 8435873 | RK3  | RPD          | Total Mercury (Hg) | 2016/10/18 | NC                    |          | %     | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Page 10 of 12



## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

agant

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Harry (Peng) Liang, Senior Analyst

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Invoice Information                                       | Rep               | ort Informatio               | n (if differ    | s from i  | nvoice) Project Information |           |       |          |           | Turn     | around    | Time (TAT) Required                                                                                             |        |             |      |           |                |                                           |
|-----------------------------------------------------------|-------------------|------------------------------|-----------------|-----------|-----------------------------|-----------|-------|----------|-----------|----------|-----------|-----------------------------------------------------------------------------------------------------------------|--------|-------------|------|-----------|----------------|-------------------------------------------|
| npany: Stantecconsulting Utd                              | Company:          |                              |                 |           |                             |           | Qu    | otatio   | n#:       |          |           |                                                                                                                 |        |             |      | 15.7      | Days Rep       | gular (Most analyses)                     |
| tact Name: Dilon Ling                                     | Contact Na        | ame:                         |                 |           |                             |           | P.0   | ). #/ Al | FE#:      |          |           |                                                                                                                 |        |             | PL   | EASE PROV | IDE ADV        | ANCE NOTICE FOR RUSH PROJECTS             |
| ress: 10160 112 St, Edmonton                              | Address:          |                              |                 |           |                             |           |       |          | _         |          | -         | 201                                                                                                             |        |             |      | Rush      | TAT (Su        | rcharges will be applied)                 |
| AB, T5K-216                                               |                   |                              | _               | _         |                             | -         | Pro   | ject #:  | -         |          |           | 396                                                                                                             |        |             | _    | Same      |                | 2 Days                                    |
| 10: 040,969-2003                                          | Phone:            |                              | _               |           |                             | -         | -     | e Locat  | tion:     | 5        | FIL       | nder                                                                                                            | nK     | SRI         | _    | 1 Day     |                | 3-4 Days                                  |
| il: Dylan. Kingestartec. Com<br>Dale. Nisbetestartec. Com | Email:<br>Copies: |                              |                 |           |                             |           | Site  | npled    | 0.ee      | 0        | 4175      | ibet                                                                                                            |        | _           | -    | Require   |                |                                           |
| Laboratory Use                                            | -                 | atest testes                 |                 | States    | r                           |           | - 501 | nµreu    | Бү.       |          |           | 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | -      | 24          | Rusi | 1 Confirm | nation         |                                           |
| YES NO Cooler ID                                          | Only              | Depot Recep                  | tion            |           | -                           |           | T     | TT       | 8 5       |          | Analy     | sis Req                                                                                                         | lueste | 20          |      |           |                | Regulatory Criteria                       |
| eal Present N<br>Seal Intact Temp 12 12 11                |                   |                              |                 |           |                             |           |       |          | Diss      |          |           |                                                                                                                 |        |             |      |           |                | AT1/CCME                                  |
| VES NO Cooler ID                                          |                   |                              |                 |           |                             |           |       |          | ot Diccol | 2012     |           | Clay)                                                                                                           |        |             |      |           | JZE            | Drinking Water                            |
| al Intact Temp                                            |                   |                              |                 |           |                             |           |       |          | To        | 8        | 114       |                                                                                                                 |        |             |      |           | DO NOT ANALYZE | Saskatchewan                              |
| YES NO Cooler ID                                          |                   |                              |                 |           | ers                         | VOC       |       | ia.      | Total     |          | micron)   | Landfill                                                                                                        |        |             |      |           | NOT A          | Other:                                    |
| eal Intact Temp<br>bling Media                            |                   |                              |                 |           | contain                     |           | F1-F4 | e Water  | ted N     | 4        | 8 3       | ass                                                                                                             |        |             |      |           | 00             | outer.                                    |
| Sample Identification                                     | epth (Unit)       | Date Sampled<br>(YYYY/MM/DD) | Time<br>Sampled | Matrix    | of                          | BTEX F1   | BTEXF | Routine  | Regula    | Salinity | Sieve (75 | asic C                                                                                                          |        |             |      |           | - OLOH         | Special Instructions                      |
| Mu16-17-5                                                 | Hind              | 2016/10/06                   | (HH:MM)         | W         | #                           |           | 0 00  | V        | E E       | 2        | S +       |                                                                                                                 |        |             |      |           | T              | Due to law volume                         |
| MW16-12-3                                                 |                   | 2016/10/06                   | 16:56           | W         | Í                           |           | -     | V        | ~ ~       |          |           |                                                                                                                 |        |             |      |           |                | only Routine                              |
|                                                           | 480 PAT           |                              | 1111            |           |                             |           |       |          |           |          |           |                                                                                                                 |        |             |      |           |                | bottle filled.                            |
|                                                           |                   |                              |                 |           |                             | 2         |       |          |           |          |           |                                                                                                                 |        |             |      |           |                |                                           |
|                                                           | Bitt H            | n ie i                       |                 | That is a |                             |           |       |          |           |          |           |                                                                                                                 |        |             |      |           |                | Please prioritize                         |
|                                                           | - Contraction     |                              |                 |           |                             |           | -     |          | -         | -        | _         |                                                                                                                 | _      | _           |      | _         | _              | analysis to                               |
|                                                           | IT PERSONNELL     | 121 11 111                   | 12              |           |                             |           |       |          |           | -        |           |                                                                                                                 | -      | -           |      |           | -              | Fourtine parameters                       |
|                                                           | 1011010           |                              | 1 11 1444       | omar      |                             | 111       | 1     |          |           |          |           |                                                                                                                 |        |             |      |           |                | followed by discolved metals and finally. |
|                                                           | and the local     |                              |                 |           |                             |           | -     |          |           |          |           |                                                                                                                 | -      |             |      |           |                | mescury if sufficient                     |
| Please indicate Filtered, Preserved or Bo                 | th (F, P, F/P     | y '                          | _               |           | $\rightarrow$               |           |       |          | -         |          |           |                                                                                                                 |        |             |      |           |                | volume present                            |
| elinquished by: (Signature/ Print) DATE (YYY)             | Y/MM/DD)          | Time (HH:MM)                 | Re              | eceived   | by: (                       | Signat    | ure/  | Print)   | )         | DAT      | E (YYY    | Y/MM/C                                                                                                          | DD)    | Time (HH:MI | 1)   |           | 16.00          | t-16 18:35                                |
| Statistical / Dale Nisbert 2016/                          | 10/06             | 18:34                        |                 | 1-        | 16                          | 2         | JA    | ON       | Bil       | 20       | 216       | 006                                                                                                             |        | 1835        | 1    | Wendy     |                |                                           |
|                                                           | 2100              |                              |                 |           | -                           | 1 - 1 - 1 | 1.55  |          | 1111      |          |           | - vy                                                                                                            |        |             |      |           |                |                                           |

Maxam A Bureau Veritas Group Company

> Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031890

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/19 Report #: R2285204 Version: 2 - Revision

# **CERTIFICATE OF ANALYSIS – REVISED REPORT**

# MAXXAM JOB #: B685112

#### Received: 2016/09/29, 07:13

Sample Matrix: Water # Samples Received: 6

|                                          |          | Date       | Date       |                              |                      |
|------------------------------------------|----------|------------|------------|------------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method            | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 5        | N/A        | 2016/09/30 | AB SOP-00005                 | SM 22 2320 B m       |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2016/10/01 | AB SOP-00005                 | SM 22 2320 B m       |
| BTEX/F1 in Water by HS GC/MS/FID         | 6        | N/A        | 2016/10/04 | AB SOP-00039                 | CCME CWS/EPA 8260c m |
| Chloride by Automated Colourimetry       | 4        | N/A        | 2016/10/02 | AB SOP-00020                 | SM 22-4500-Cl G m    |
| Chloride by Automated Colourimetry       | 2        | N/A        | 2016/10/03 | AB SOP-00020                 | SM 22-4500-Cl G m    |
| Fecal Coliforms (MPN/100mL)              | 6        | 2016/09/29 | 2016/09/30 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Total Coliforms and E.Coli               | 6        | 2016/09/29 | 2016/09/30 | CAL SOP-00013                | SM 22 9223 A,B m     |
| Carbon (DOC) (1)                         | 6        | N/A        | 2016/10/01 | CAL SOP-00077                | MMCW 119 1996 m      |
| Conductivity @25C                        | 5        | N/A        | 2016/09/30 | AB SOP-00005                 | SM 22 2510 B m       |
| Conductivity @25C                        | 1        | N/A        | 2016/10/01 | AB SOP-00005                 | SM 22 2510 B m       |
| CCME Hydrocarbons in Water (F2; C10-C16) | 2        | 2016/09/30 | 2016/10/01 | AB SOP-00040                 | CCME PHC-CWS m       |
|                                          |          |            |            | AB SOP-00037                 |                      |
| CCME Hydrocarbons in Water (F2; C10-C16) | 4        | 2016/09/30 | 2016/10/02 | AB SOP-00040<br>AB SOP-00037 | CCME PHC-CWS m       |
| Hardness                                 | 6        | N/A        | 2016/10/04 | AB WI-00065                  | Auto Calc            |
| Mercury - Low Level (Dissolved)          | 6        | 2016/10/03 | 2016/10/03 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Mercury - Low Level (Total)              | 6        | 2016/09/30 | 2016/09/30 | CAL SOP-00007                | EPA 1631 RE 20460 m  |
| Elements by ICP - Dissolved              | 6        | N/A        | 2016/10/01 | AB SOP-00042                 | EPA 200.7 CFR 2012 m |
| Elements by ICPMS - Dissolved            | 6        | N/A        | 2016/09/30 | AB SOP-00043                 | EPA 200.8 R5.4 m     |
| Ion Balance                              | 6        | N/A        | 2016/09/30 | AB WI-00065                  | Auto Calc            |
| Sum of cations, anions                   | 6        | N/A        | 2016/10/04 | AB WI-00065                  | Auto Calc            |
| Ammonia-N (Dissolved)                    | 6        | N/A        | 2016/09/30 | AB SOP-00007                 | EPA 350.1 R2.0 m     |
| Nitrate and Nitrite                      | 6        | N/A        | 2016/10/03 | AB WI-00065                  | Auto Calc            |
| Nitrate + Nitrite-N (calculated)         | 6        | N/A        | 2016/10/03 | AB WI-00065                  | Auto Calc            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 1        | N/A        | 2016/09/30 | AB SOP-00023                 | SM 22 4110 B m       |
| Nitrogen, (Nitrite, Nitrate) by IC       | 5        | N/A        | 2016/10/01 | AB SOP-00023                 | SM 22 4110 B m       |
| pH @25°C                                 | 5        | N/A        | 2016/09/30 | AB SOP-00005                 | SM 22 4500-H+B m     |
| рН @25°С                                 | 1        | N/A        | 2016/10/01 | AB SOP-00005                 | SM 22 4500-H+B m     |
| Orthophosphate by Konelab                | 6        | N/A        | 2016/09/30 | AB SOP-00025                 | SM 22 4500-P A,F m   |
| Sulphate by Automated Colourimetry       | 4        | N/A        | 2016/10/02 | AB SOP-00018                 | SM 22 4500-SO4 E m   |
| Sulphate by Automated Colourimetry       | 2        | N/A        | 2016/10/03 | AB SOP-00018                 | SM 22 4500-SO4 E m   |

Page 1 of 29



Your Project #: 110773396 Site Location: SPRINGBANK SR1 Your C.O.C. #: M031890

#### Attention:DYLAN KING

STANTEC CONSULTING LTD 10160-112 STREET EDMONTON, AB CANADA T5K 2L6

> Report Date: 2016/10/19 Report #: R2285204 Version: 2 - Revision

# **CERTIFICATE OF ANALYSIS – REVISED REPORT**

#### MAXXAM JOB #: B685112 Received: 2016/09/29, 07:13

Sample Matrix: Water # Samples Received: 6

|                                     |          | Date       | Date       |                   |                      |
|-------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                            | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Heterotrophic Plate Count           | 6        | 2016/09/29 | 2016/10/01 | CAL SOP-00012     | SM 22 9215 A & B m   |
| Total Dissolved Solids (Calculated) | 6        | N/A        | 2016/10/04 | AB WI-00065       | Auto Calc            |
| Total Kjeldahl Nitrogen             | 1        | 2016/10/02 | 2016/10/03 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Total Kjeldahl Nitrogen             | 5        | 2016/10/03 | 2016/10/03 | AB SOP-00008      | EPA 351.1 R1978 m    |
| Phosphorus -P (Total, Dissolved)    | 6        | 2016/09/30 | 2016/10/01 | AB SOP-00024      | SM 22 4500-P A,B,F m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) DOC present in the sample should be considered as non-purgeable DOC.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Wendy Sears, Project manager Email: WSears@maxxam.ca Phone# (403)735-2277

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.





#### AT1 BTEX AND F1-F2 IN WATER (WATER)

| Maxxam ID                      |         | PQ0280             | PQ0281          | PQ0282           | PQ0283          | PQ0284          | PQ0285     |         |          |
|--------------------------------|---------|--------------------|-----------------|------------------|-----------------|-----------------|------------|---------|----------|
| Courselling Data               |         | 2016/09/28         | 2016/09/28      | 2016/09/28       | 2016/09/28      | 2016/09/28      | 2016/09/28 |         |          |
| Sampling Date                  |         | 10:16              | 10:58           | 11:45            | 17:10           | 17:11           | 18:34      |         |          |
| COC Number                     |         | M031890            | M031890         | M031890          | M031890         | M031890         | M031890    |         |          |
|                                | UNITS   | MW16-27-9          | MW16-26-18      | MW16-3-7         | MW16-24-30      | MW16-15-16      | MW16-22-26 | RDL     | QC Batch |
| Ext. Pet. Hydrocarbon          |         |                    |                 |                  |                 |                 |            |         |          |
| F2 (C10-C16 Hydrocarbons)      | mg/L    | <0.10              | <0.10           | <0.10            | <0.10           | <0.10           | <0.10      | 0.10    | 8416283  |
| Volatiles                      |         |                    |                 |                  | •               |                 | •          | •       |          |
| Benzene                        | mg/L    | <0.00040           | <0.00040        | <0.00040         | <0.00040        | <0.00040        | <0.00040   | 0.00040 | 8420469  |
| Toluene                        | mg/L    | <0.00040           | <0.00040        | <0.00040         | <0.00040        | <0.00040        | <0.00040   | 0.00040 | 8420469  |
| Ethylbenzene                   | mg/L    | <0.00040           | <0.00040        | <0.00040         | <0.00040        | <0.00040        | <0.00040   | 0.00040 | 8420469  |
| m & p-Xylene                   | mg/L    | <0.00080           | <0.00080        | <0.00080         | <0.00080        | <0.00080        | <0.00080   | 0.00080 | 8420469  |
| o-Xylene                       | mg/L    | <0.00040           | <0.00040        | <0.00040         | <0.00040        | <0.00040        | <0.00040   | 0.00040 | 8420469  |
| Xylenes (Total)                | mg/L    | <0.00080           | <0.00080        | <0.00080         | <0.00080        | <0.00080        | <0.00080   | 0.00080 | 8420469  |
| F1 (C6-C10) - BTEX             | mg/L    | <0.10              | <0.10           | <0.10            | <0.10           | <0.10           | <0.10      | 0.10    | 8420469  |
| F1 (C6-C10)                    | mg/L    | <0.10              | <0.10           | <0.10            | <0.10           | <0.10           | <0.10      | 0.10    | 8420469  |
| Surrogate Recovery (%)         |         |                    |                 |                  | •               |                 |            |         |          |
| 1,4-Difluorobenzene (sur.)     | %       | 108                | 109             | 108              | 109             | 108             | 108        | N/A     | 8420469  |
| 4-Bromofluorobenzene (sur.)    | %       | 106                | 106             | 106              | 107             | 107             | 106        | N/A     | 8420469  |
| D4-1,2-Dichloroethane (sur.)   | %       | 119                | 121             | 119              | 122             | 120             | 121        | N/A     | 8420469  |
| O-TERPHENYL (sur.)             | %       | 133 (1)            | 92              | 82               | 82              | 82              | 85         | N/A     | 8416283  |
| RDL = Reportable Detection Lir | nit     |                    |                 |                  | •               |                 | •          | •       |          |
| N/A = Not Applicable           |         |                    |                 |                  |                 |                 |            |         |          |
| (1) Surrogate recovery exceeds | accenta | ance criteria (hio | th recovery) As | results are non- | detect there is | no impact on da | ta quality |         |          |

(1) Surrogate recovery exceeds acceptance criteria (high recovery). As results are non-detect, there is no impact on data quality.



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |          | PQ0280              | PQ0280               |          | PQ0281              |         |          |
|-----------------------------------|----------|---------------------|----------------------|----------|---------------------|---------|----------|
| Sampling Date                     |          | 2016/09/28<br>10:16 | 2016/09/28<br>10:16  |          | 2016/09/28<br>10:58 |         |          |
| COC Number                        |          | M031890             | M031890              |          | M031890             |         |          |
|                                   | UNITS    | MW16-27-9           | MW16-27-9<br>Lab-Dup | QC Batch | MW16-26-18          | RDL     | QC Batch |
| Calculated Parameters             | <u> </u> |                     | ·                    | ·        |                     | ·       | ·        |
| Anion Sum                         | meq/L    | 25                  | N/A                  | 8415152  | 14                  | N/A     | 8415152  |
| Cation Sum                        | meq/L    | 22                  | N/A                  | 8415152  | 14                  | N/A     | 8415152  |
| Hardness (CaCO3)                  | mg/L     | 800                 | N/A                  | 8415148  | 140                 | 0.50    | 8415148  |
| Ion Balance                       | N/A      | 0.90                | N/A                  | 8415150  | 1.0                 | 0.010   | 8415150  |
| Dissolved Nitrate (NO3)           | mg/L     | <0.044              | N/A                  | 8415154  | <0.044              | 0.044   | 8415154  |
| Nitrate plus Nitrite (N)          | mg/L     | <0.020              | N/A                  | 8415156  | <0.020              | 0.020   | 8415156  |
| Dissolved Nitrite (NO2)           | mg/L     | <0.033              | N/A                  | 8415154  | <0.033              | 0.033   | 8415154  |
| Calculated Total Dissolved Solids | mg/L     | 1400                | N/A                  | 8415158  | 870                 | 10      | 8415158  |
| Misc. Inorganics                  |          |                     | •                    |          |                     | •       | •        |
| Conductivity                      | uS/cm    | 2000                | N/A                  | 8416121  | 1300                | 1.0     | 8416121  |
| рН                                | рН       | 7.77                | N/A                  | 8416120  | 8.29                | N/A     | 8416120  |
| Anions                            |          |                     | •                    |          |                     | •       | •        |
| Alkalinity (PP as CaCO3)          | mg/L     | <0.50               | N/A                  | 8416112  | <0.50               | 0.50    | 8416112  |
| Alkalinity (Total as CaCO3)       | mg/L     | 530                 | N/A                  | 8416112  | 260                 | 0.50    | 8416112  |
| Bicarbonate (HCO3)                | mg/L     | 650                 | N/A                  | 8416112  | 310                 | 0.50    | 8416112  |
| Carbonate (CO3)                   | mg/L     | <0.50               | N/A                  | 8416112  | <0.50               | 0.50    | 8416112  |
| Hydroxide (OH)                    | mg/L     | <0.50               | N/A                  | 8416112  | <0.50               | 0.50    | 8416112  |
| Dissolved Sulphate (SO4)          | mg/L     | 690 (1)             | N/A                  | 8419223  | 400 (1)             | 5.0     | 8419230  |
| Dissolved Chloride (Cl)           | mg/L     | 2.1                 | N/A                  | 8419222  | 2.0                 | 1.0     | 8419229  |
| Nutrients                         |          |                     |                      |          |                     |         |          |
| Dissolved Nitrite (N)             | mg/L     | <0.010              | <0.010               | 8416726  | <0.010              | 0.010   | 8416726  |
| Dissolved Nitrate (N)             | mg/L     | <0.010              | <0.010               | 8416726  | <0.010              | 0.010   | 8416726  |
| Elements                          |          |                     |                      |          |                     |         |          |
| Dissolved Aluminum (Al)           | mg/L     | <0.0030             | N/A                  | 8417228  | 0.0037              | 0.0030  | 8417228  |
| Dissolved Antimony (Sb)           | mg/L     | <0.00060            | N/A                  | 8417228  | <0.00060            | 0.00060 | 8417228  |
| Dissolved Arsenic (As)            | mg/L     | 0.00036             | N/A                  | 8417228  | <0.00020            | 0.00020 | 8417228  |
| Dissolved Barium (Ba)             | mg/L     | <0.010              | N/A                  | 8417829  | <0.010              | 0.010   | 8417829  |
| Dissolved Beryllium (Be)          | mg/L     | <0.0010             | N/A                  | 8417228  | <0.0010             | 0.0010  | 8417228  |
| Dissolved Boron (B)               | mg/L     | 0.13                | N/A                  | 8417829  | 0.13                | 0.020   | 8417829  |
| RDL = Reportable Detection Limit  |          |                     |                      |          |                     |         |          |
|                                   |          |                     |                      |          |                     |         |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                       |       | PQ0280     | PQ0280               |          | PQ0281     |          |          |
|---------------------------------|-------|------------|----------------------|----------|------------|----------|----------|
| Sampling Date                   |       | 2016/09/28 | 2016/09/28           |          | 2016/09/28 |          |          |
|                                 |       | 10:16      | 10:16                |          | 10:58      |          |          |
| COC Number                      |       | M031890    | M031890              |          | M031890    |          |          |
|                                 | UNITS | MW16-27-9  | MW16-27-9<br>Lab-Dup | QC Batch | MW16-26-18 | RDL      | QC Batch |
| Dissolved Cadmium (Cd)          | mg/L  | 0.000026   | N/A                  | 8417228  | <0.000020  | 0.000020 | 8417228  |
| Dissolved Calcium (Ca)          | mg/L  | 200        | N/A                  | 8417829  | 40         | 0.30     | 8417829  |
| Dissolved Chromium (Cr)         | mg/L  | <0.0010    | N/A                  | 8417228  | <0.0010    | 0.0010   | 8417228  |
| Dissolved Cobalt (Co)           | mg/L  | 0.0014     | N/A                  | 8417228  | <0.00030   | 0.00030  | 8417228  |
| Dissolved Copper (Cu)           | mg/L  | <0.00020   | N/A                  | 8417228  | 0.00021    | 0.00020  | 8417228  |
| Dissolved Iron (Fe)             | mg/L  | 0.42       | N/A                  | 8417829  | 0.15       | 0.060    | 8417829  |
| Dissolved Lead (Pb)             | mg/L  | <0.00020   | N/A                  | 8417228  | <0.00020   | 0.00020  | 8417228  |
| Dissolved Lithium (Li)          | mg/L  | 0.041      | N/A                  | 8417829  | 0.035      | 0.020    | 8417829  |
| Dissolved Magnesium (Mg)        | mg/L  | 75         | N/A                  | 8417829  | 11         | 0.20     | 8417829  |
| Dissolved Manganese (Mn)        | mg/L  | 0.41       | N/A                  | 8417829  | 0.083      | 0.0040   | 8417829  |
| Dissolved Molybdenum (Mo)       | mg/L  | 0.00058    | N/A                  | 8417228  | 0.0048     | 0.00020  | 8417228  |
| Dissolved Nickel (Ni)           | mg/L  | 0.00062    | N/A                  | 8417228  | <0.00050   | 0.00050  | 8417228  |
| Dissolved Phosphorus (P)        | mg/L  | <0.10      | N/A                  | 8417829  | <0.10      | 0.10     | 8417829  |
| Dissolved Potassium (K)         | mg/L  | 4.9        | N/A                  | 8417829  | 2.8        | 0.30     | 8417829  |
| Dissolved Selenium (Se)         | mg/L  | <0.00020   | N/A                  | 8417228  | <0.00020   | 0.00020  | 8417228  |
| Dissolved Silicon (Si)          | mg/L  | 5.7        | N/A                  | 8417829  | 4.5        | 0.10     | 8417829  |
| Dissolved Silver (Ag)           | mg/L  | <0.00010   | N/A                  | 8417228  | <0.00010   | 0.00010  | 8417228  |
| Dissolved Sodium (Na)           | mg/L  | 140        | N/A                  | 8417829  | 250        | 0.50     | 8417829  |
| Dissolved Strontium (Sr)        | mg/L  | 1.6        | N/A                  | 8417829  | 0.61       | 0.020    | 8417829  |
| Dissolved Sulphur (S)           | mg/L  | 180        | N/A                  | 8417829  | 130        | 0.20     | 8417829  |
| Dissolved Thallium (TI)         | mg/L  | <0.00020   | N/A                  | 8417228  | <0.00020   | 0.00020  | 8417228  |
| Dissolved Tin (Sn)              | mg/L  | <0.0010    | N/A                  | 8417228  | <0.0010    | 0.0010   | 8417228  |
| Dissolved Titanium (Ti)         | mg/L  | <0.0010    | N/A                  | 8417228  | <0.0010    | 0.0010   | 8417228  |
| Dissolved Uranium (U)           | mg/L  | 0.0049     | N/A                  | 8417228  | 0.00013    | 0.00010  | 8417228  |
| Dissolved Vanadium (V)          | mg/L  | <0.0010    | N/A                  | 8417228  | <0.0010    | 0.0010   | 8417228  |
| Dissolved Zinc (Zn)             | mg/L  | <0.0030    | N/A                  | 8417228  | <0.0030    | 0.0030   | 8417228  |
| RDL = Reportable Detection Limi | t     |            |                      |          |            |          | -        |
|                                 |       |            |                      |          |            |          |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                         |       | PQ0282              |         |          | PQ0283              | PQ0283                |         |          |
|-----------------------------------|-------|---------------------|---------|----------|---------------------|-----------------------|---------|----------|
| Sampling Date                     |       | 2016/09/28<br>11:45 |         |          | 2016/09/28<br>17:10 | 2016/09/28<br>17:10   |         |          |
| COC Number                        |       | M031890             |         |          | M031890             | M031890               |         |          |
|                                   | UNITS | MW16-3-7            | RDL     | QC Batch | MW16-24-30          | MW16-24-30<br>Lab-Dup | RDL     | QC Batch |
| Calculated Parameters             | · ·   |                     | ·       | <u> </u> |                     | -                     | ·       | ·        |
| Anion Sum                         | meq/L | 32                  | N/A     | 8415152  | 13                  | N/A                   | N/A     | 8415152  |
| Cation Sum                        | meq/L | 33                  | N/A     | 8415152  | 14                  | N/A                   | N/A     | 8415152  |
| Hardness (CaCO3)                  | mg/L  | 950                 | 0.50    | 8415148  | 160                 | N/A                   | 0.50    | 8415148  |
| Ion Balance                       | N/A   | 1.0                 | 0.010   | 8415150  | 1.1                 | N/A                   | 0.010   | 8415150  |
| Dissolved Nitrate (NO3)           | mg/L  | 1.3                 | 0.044   | 8415154  | <0.044              | N/A                   | 0.044   | 8415154  |
| Nitrate plus Nitrite (N)          | mg/L  | 0.30                | 0.020   | 8415156  | <0.020              | N/A                   | 0.020   | 8415156  |
| Dissolved Nitrite (NO2)           | mg/L  | 0.051               | 0.033   | 8415154  | <0.033              | N/A                   | 0.033   | 8415154  |
| Calculated Total Dissolved Solids | mg/L  | 2000                | 10      | 8415158  | 730                 | N/A                   | 10      | 8415158  |
| Misc. Inorganics                  |       |                     | •       |          |                     |                       | •       | •        |
| Conductivity                      | uS/cm | 2600                | 1.0     | 8416130  | 1100                | N/A                   | 1.0     | 8416121  |
| рН                                | рН    | 8.16                | N/A     | 8416129  | 8.19                | N/A                   | N/A     | 8416120  |
| Anions                            |       |                     | •       |          |                     |                       | •       | •        |
| Alkalinity (PP as CaCO3)          | mg/L  | <0.50               | 0.50    | 8416126  | <0.50               | N/A                   | 0.50    | 8416112  |
| Alkalinity (Total as CaCO3)       | mg/L  | 450                 | 0.50    | 8416126  | 460                 | N/A                   | 0.50    | 8416112  |
| Bicarbonate (HCO3)                | mg/L  | 550                 | 0.50    | 8416126  | 560                 | N/A                   | 0.50    | 8416112  |
| Carbonate (CO3)                   | mg/L  | <0.50               | 0.50    | 8416126  | <0.50               | N/A                   | 0.50    | 8416112  |
| Hydroxide (OH)                    | mg/L  | <0.50               | 0.50    | 8416126  | <0.50               | N/A                   | 0.50    | 8416112  |
| Dissolved Sulphate (SO4)          | mg/L  | 1100 (1)            | 10      | 8419661  | 160                 | N/A                   | 1.0     | 8419223  |
| Dissolved Chloride (Cl)           | mg/L  | 12                  | 1.0     | 8419658  | <1.0                | N/A                   | 1.0     | 8419222  |
| Nutrients                         |       |                     |         |          |                     |                       |         |          |
| Dissolved Nitrite (N)             | mg/L  | 0.016               | 0.010   | 8416726  | <0.010              | N/A                   | 0.010   | 8416726  |
| Dissolved Nitrate (N)             | mg/L  | 0.29                | 0.010   | 8416726  | <0.010              | N/A                   | 0.010   | 8416726  |
| Elements                          |       |                     | •       |          |                     |                       | •       | •        |
| Dissolved Aluminum (Al)           | mg/L  | 0.0064              | 0.0030  | 8417228  | <0.0030             | <0.0030               | 0.0030  | 8417228  |
| Dissolved Antimony (Sb)           | mg/L  | <0.00060            | 0.00060 | 8417228  | <0.00060            | <0.00060              | 0.00060 | 8417228  |
| Dissolved Arsenic (As)            | mg/L  | 0.00078             | 0.00020 | 8417228  | 0.0023              | 0.0022                | 0.00020 | 8417228  |
| Dissolved Barium (Ba)             | mg/L  | 0.035               | 0.010   | 8417829  | 0.019               | N/A                   | 0.010   | 8417829  |
| Dissolved Beryllium (Be)          | mg/L  | <0.0010             | 0.0010  | 8417228  | <0.0010             | <0.0010               | 0.0010  | 8417228  |
| Dissolved Boron (B)               | mg/L  | 0.10                | 0.020   | 8417829  | 0.089               | N/A                   | 0.020   | 8417829  |
| RDL = Reportable Detection Limit  | I     |                     |         |          |                     |                       |         |          |
|                                   |       |                     |         |          |                     |                       |         |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                       |       | PQ0282     |          |          | PQ0283     | PQ0283                |          |          |
|---------------------------------|-------|------------|----------|----------|------------|-----------------------|----------|----------|
| Sampling Date                   |       | 2016/09/28 |          |          | 2016/09/28 | 2016/09/28            |          |          |
| COO Number                      |       | 11:45      |          |          | 17:10      | 17:10                 |          |          |
| COC Number                      | -     | M031890    |          |          | M031890    | M031890               |          |          |
|                                 | UNITS | MW16-3-7   | RDL      | QC Batch | MW16-24-30 | MW16-24-30<br>Lab-Dup | RDL      | QC Batch |
| Dissolved Cadmium (Cd)          | mg/L  | 0.000036   | 0.000020 | 8417228  | <0.000020  | <0.000020             | 0.000020 | 8417228  |
| Dissolved Calcium (Ca)          | mg/L  | 170        | 0.30     | 8417829  | 38         | N/A                   | 0.30     | 8417829  |
| Dissolved Chromium (Cr)         | mg/L  | <0.0010    | 0.0010   | 8417228  | <0.0010    | <0.0010               | 0.0010   | 8417228  |
| Dissolved Cobalt (Co)           | mg/L  | 0.0023     | 0.00030  | 8417228  | <0.00030   | <0.00030              | 0.00030  | 8417228  |
| Dissolved Copper (Cu)           | mg/L  | 0.00085    | 0.00020  | 8417228  | <0.00020   | <0.00020              | 0.00020  | 8417228  |
| Dissolved Iron (Fe)             | mg/L  | 0.17       | 0.060    | 8417829  | 0.14       | N/A                   | 0.060    | 8417829  |
| Dissolved Lead (Pb)             | mg/L  | <0.00020   | 0.00020  | 8417228  | <0.00020   | <0.00020              | 0.00020  | 8417228  |
| Dissolved Lithium (Li)          | mg/L  | 0.057      | 0.020    | 8417829  | 0.054      | N/A                   | 0.020    | 8417829  |
| Dissolved Magnesium (Mg)        | mg/L  | 130        | 0.20     | 8417829  | 16         | N/A                   | 0.20     | 8417829  |
| Dissolved Manganese (Mn)        | mg/L  | 0.39       | 0.0040   | 8417829  | 0.067      | N/A                   | 0.0040   | 8417829  |
| Dissolved Molybdenum (Mo)       | mg/L  | 0.0020     | 0.00020  | 8417228  | 0.0014     | 0.0013                | 0.00020  | 8417228  |
| Dissolved Nickel (Ni)           | mg/L  | 0.0065     | 0.00050  | 8417228  | <0.00050   | <0.00050              | 0.00050  | 8417228  |
| Dissolved Phosphorus (P)        | mg/L  | <0.10      | 0.10     | 8417829  | <0.10      | N/A                   | 0.10     | 8417829  |
| Dissolved Potassium (K)         | mg/L  | 6.1        | 0.30     | 8417829  | 4.0        | N/A                   | 0.30     | 8417829  |
| Dissolved Selenium (Se)         | mg/L  | 0.00026    | 0.00020  | 8417228  | <0.00020   | <0.00020              | 0.00020  | 8417228  |
| Dissolved Silicon (Si)          | mg/L  | 5.1        | 0.10     | 8417829  | 3.6        | N/A                   | 0.10     | 8417829  |
| Dissolved Silver (Ag)           | mg/L  | <0.00010   | 0.00010  | 8417228  | <0.00010   | <0.00010              | 0.00010  | 8417228  |
| Dissolved Sodium (Na)           | mg/L  | 320        | 0.50     | 8417829  | 240        | N/A                   | 0.50     | 8417829  |
| Dissolved Strontium (Sr)        | mg/L  | 1.6        | 0.020    | 8417829  | 0.66       | N/A                   | 0.020    | 8417829  |
| Dissolved Sulphur (S)           | mg/L  | 370        | 0.20     | 8417829  | 51         | N/A                   | 0.20     | 8417829  |
| Dissolved Thallium (Tl)         | mg/L  | <0.00020   | 0.00020  | 8417228  | <0.00020   | <0.00020              | 0.00020  | 8417228  |
| Dissolved Tin (Sn)              | mg/L  | <0.0010    | 0.0010   | 8417228  | <0.0010    | <0.0010               | 0.0010   | 8417228  |
| Dissolved Titanium (Ti)         | mg/L  | <0.0010    | 0.0010   | 8417228  | <0.0010    | <0.0010               | 0.0010   | 8417228  |
| Dissolved Uranium (U)           | mg/L  | 0.014      | 0.00010  | 8417228  | 0.00022    | 0.00019               | 0.00010  | 8417228  |
| Dissolved Vanadium (V)          | mg/L  | <0.0010    | 0.0010   | 8417228  | <0.0010    | <0.0010               | 0.0010   | 8417228  |
| Dissolved Zinc (Zn)             | mg/L  | <0.0030    | 0.0030   | 8417228  | <0.0030    | <0.0030               | 0.0030   | 8417228  |
| RDL = Reportable Detection Limi | t     |            | •        |          | •          |                       | •        |          |
|                                 |       |            |          |          |            |                       |          |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable



#### **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

|          | PQ0284                                                                                        |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PQ0285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 2016/09/28<br>17:11                                                                           |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2016/09/28<br>18:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | M031890                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M031890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| UNITS    | MW16-15-16                                                                                    | RDL                                                                                                                                                                                                                                                                                                      | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW16-22-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u> </u> |                                                                                               | •                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| meq/L    | 12                                                                                            | N/A                                                                                                                                                                                                                                                                                                      | 8415152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8415152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| meq/L    | 14                                                                                            | N/A                                                                                                                                                                                                                                                                                                      | 8415152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8415152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 160                                                                                           | 0.50                                                                                                                                                                                                                                                                                                     | 8415148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8415148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N/A      | 1.1                                                                                           | 0.010                                                                                                                                                                                                                                                                                                    | 8415150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8415150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.044                                                                                        | 0.044                                                                                                                                                                                                                                                                                                    | 8415154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8415154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.020                                                                                        | 0.020                                                                                                                                                                                                                                                                                                    | 8415156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8415156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.033                                                                                        | 0.033                                                                                                                                                                                                                                                                                                    | 8415154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8415154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 720                                                                                           | 10                                                                                                                                                                                                                                                                                                       | 8415158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8415158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uS/cm    | 1100                                                                                          | 1.0                                                                                                                                                                                                                                                                                                      | 8416121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8416121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| рН       | 8.18                                                                                          | N/A                                                                                                                                                                                                                                                                                                      | 8416120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8416120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mg/L     | <0.50                                                                                         | 0.50                                                                                                                                                                                                                                                                                                     | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 460                                                                                           | 0.50                                                                                                                                                                                                                                                                                                     | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 560                                                                                           | 0.50                                                                                                                                                                                                                                                                                                     | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.50                                                                                         | 0.50                                                                                                                                                                                                                                                                                                     | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.50                                                                                         | 0.50                                                                                                                                                                                                                                                                                                     | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8416112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 150                                                                                           | 1.0                                                                                                                                                                                                                                                                                                      | 8419661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8419223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 2.4                                                                                           | 1.0                                                                                                                                                                                                                                                                                                      | 8419658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8419222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mg/L     | <0.010                                                                                        | 0.010                                                                                                                                                                                                                                                                                                    | 8416726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8416726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.010                                                                                        | 0.010                                                                                                                                                                                                                                                                                                    | 8416726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8416726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mg/L     | <0.0030                                                                                       | 0.0030                                                                                                                                                                                                                                                                                                   | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.00060                                                                                      | 0.00060                                                                                                                                                                                                                                                                                                  | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 0.0022                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                  | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 0.018                                                                                         | 0.010                                                                                                                                                                                                                                                                                                    | 8417829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8417829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | <0.0010                                                                                       | 0.0010                                                                                                                                                                                                                                                                                                   | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8417228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L     | 0.089                                                                                         | 0.020                                                                                                                                                                                                                                                                                                    | 8417829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8417829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | meq/L<br>meq/L<br>mg/L<br>N/A<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 2016/09/28<br>17:11           M031890           UNITS           MW16-15-16           meq/L           12           meq/L           14           mg/L           MMU16-15-16           MW16-15-16           Meq/L           meq/L           12           meq/L           14           mg/L           <0.044 | 2016/09/28<br>17:11         2016/09/28<br>17:11           M031890         MW16-15-16         RDL           meq/L         12         N/A           meq/L         12         N/A           mg/L         160         0.50           N/A         1.1         0.010           mg/L         <0.044         0.044           mg/L         <0.020         0.020           mg/L         <0.033         0.033           mg/L         <0.033         0.033           mg/L         720         10           uS/cm         1100         1.0           pH         8.18         N/A           mg/L         <0.50         0.50           mg/L         <0.010         0.010           mg/L         <0.010         0.010           mg/L         <0.010         0.010           mg/L         <0.0030         0.0030           mg/L         <0.0030         0.0030           mg/L         <0.0010 | 2016/09/28<br>17:11         2016/09/28<br>17:11         2016/09/28<br>NM 31890         2016           UNITS         MW16-15-16         RDL         QC Batch           meq/L         12         N/A         8415152           meq/L         14         N/A         8415152           mg/L         160         0.50         8415148           N/A         1.1         0.010         8415150           mg/L         <0.020         0.020         8415154           mg/L         <0.033         0.033         8415154           mg/L         <0.020         0.020         8415154           mg/L         <0.033         0.033         8415154           mg/L         <0.020         0.020         8416121           mg/L         <0.033         0.033         8415154           mg/L         <0.050         0.50         8416122           mg/L         <0.50         0.50         8416112           mg/L         <0.50         0.50         8416112           mg/L         <0.50         0.50         8416112           mg/L         <0.50         0.50         8416112           mg/L         <0.50         0.50         8416121 | 2016/09/28<br>17:11         2016/09/28<br>18:34           17:11         18:34           M031890         M031890           UNITS         MW16-15-16         RDL         QC Batch         MW16-22-26           meq/L         12         N/A         8415152         26           meq/L         14         N/A         8415152         26           mg/L         160         0.50         8415148         640           N/A         1.1         0.010         8415150         1.0           mg/L         <0.044 | 2016/09/28<br>17:11         2016/09/28<br>18:34           M031890         M031890           UNITS         MW16-15-16         RDL         QC Batch         MW16-22-26         RDL           meq/L         12         N/A         8415152         26         N/A           meq/L         14         N/A         8415152         26         N/A           mg/L         160         0.50         8415148         640         0.50           N/A         1.1         0.010         8415150         1.0         0.010           mg/L         <0.044 |

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## **ROUTINE WATER & DISS. REGULATED METALS (WATER)**

| Maxxam ID                        |       | PQ0284     |         |          | PQ0285     |         |          |
|----------------------------------|-------|------------|---------|----------|------------|---------|----------|
| Sampling Date                    |       | 2016/09/28 |         |          | 2016/09/28 |         |          |
|                                  |       | 17:11      |         |          | 18:34      |         |          |
| COC Number                       |       | M031890    |         |          | M031890    |         |          |
|                                  | UNITS | MW16-15-16 | RDL     | QC Batch | MW16-22-26 | RDL     | QC Batch |
| Dissolved Calcium (Ca)           | mg/L  | 38         | 0.30    | 8417829  | 170        | 0.30    | 8417829  |
| Dissolved Chromium (Cr)          | mg/L  | <0.0010    | 0.0010  | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Cobalt (Co)            | mg/L  | <0.00030   | 0.00030 | 8417228  | 0.00087    | 0.00030 | 8417228  |
| Dissolved Copper (Cu)            | mg/L  | <0.00020   | 0.00020 | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Iron (Fe)              | mg/L  | 0.15       | 0.060   | 8417829  | 0.11       | 0.060   | 8417829  |
| Dissolved Lead (Pb)              | mg/L  | <0.00020   | 0.00020 | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Lithium (Li)           | mg/L  | 0.053      | 0.020   | 8417829  | 0.064      | 0.020   | 8417829  |
| Dissolved Magnesium (Mg)         | mg/L  | 15         | 0.20    | 8417829  | 54         | 0.20    | 8417829  |
| Dissolved Manganese (Mn)         | mg/L  | 0.066      | 0.0040  | 8417829  | 0.51       | 0.0040  | 8417829  |
| Dissolved Molybdenum (Mo)        | mg/L  | 0.0015     | 0.00020 | 8417228  | 0.0039     | 0.00020 | 8417228  |
| Dissolved Nickel (Ni)            | mg/L  | <0.00050   | 0.00050 | 8417228  | 0.0018     | 0.00050 | 8417228  |
| Dissolved Phosphorus (P)         | mg/L  | <0.10      | 0.10    | 8417829  | <0.10      | 0.10    | 8417829  |
| Dissolved Potassium (K)          | mg/L  | 3.9        | 0.30    | 8417829  | 7.1        | 0.30    | 8417829  |
| Dissolved Selenium (Se)          | mg/L  | <0.00020   | 0.00020 | 8417228  | 0.00023    | 0.00020 | 8417228  |
| Dissolved Silicon (Si)           | mg/L  | 3.6        | 0.10    | 8417829  | 4.8        | 0.10    | 8417829  |
| Dissolved Silver (Ag)            | mg/L  | <0.00010   | 0.00010 | 8417228  | <0.00010   | 0.00010 | 8417228  |
| Dissolved Sodium (Na)            | mg/L  | 230        | 0.50    | 8417829  | 310        | 0.50    | 8417829  |
| Dissolved Strontium (Sr)         | mg/L  | 0.65       | 0.020   | 8417829  | 2.4        | 0.020   | 8417829  |
| Dissolved Sulphur (S)            | mg/L  | 50         | 0.20    | 8417829  | 350        | 0.20    | 8417829  |
| Dissolved Thallium (Tl)          | mg/L  | <0.00020   | 0.00020 | 8417228  | <0.00020   | 0.00020 | 8417228  |
| Dissolved Tin (Sn)               | mg/L  | <0.0010    | 0.0010  | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Titanium (Ti)          | mg/L  | <0.0010    | 0.0010  | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Uranium (U)            | mg/L  | 0.00020    | 0.00010 | 8417228  | 0.0044     | 0.00010 | 8417228  |
| Dissolved Vanadium (V)           | mg/L  | <0.0010    | 0.0010  | 8417228  | <0.0010    | 0.0010  | 8417228  |
| Dissolved Zinc (Zn)              | mg/L  | <0.0030    | 0.0030  | 8417228  | <0.0030    | 0.0030  | 8417228  |
| RDL = Reportable Detection Limit |       |            |         | •        |            |         |          |



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                    |           | PQ0280              | PQ0280               |        | PQ0281              | PQ0281                |          | PQ0282              |        |          |
|------------------------------|-----------|---------------------|----------------------|--------|---------------------|-----------------------|----------|---------------------|--------|----------|
| Sampling Date                |           | 2016/09/28<br>10:16 | 2016/09/28<br>10:16  |        | 2016/09/28<br>10:58 | 2016/09/28<br>10:58   |          | 2016/09/28<br>11:45 |        |          |
| COC Number                   |           | M031890             | M031890              |        | M031890             | M031890               |          | M031890             |        |          |
|                              | UNITS     | MW16-27-9           | MW16-27-9<br>Lab-Dup | RDL    | MW16-26-18          | MW16-26-18<br>Lab-Dup | QC Batch | MW16-3-7            | RDL    | QC Batch |
| Misc. Inorganics             |           |                     |                      |        |                     |                       |          |                     |        |          |
| Dissolved Organic Carbon (C) | mg/L      | 1.8                 | N/A                  | 0.50   | 2.1                 | N/A                   | 8418320  | 8.0                 | 0.50   | 8418320  |
| Microbiological Param.       | •         |                     |                      |        |                     |                       |          |                     |        |          |
| E.Coli DST                   | mpn/100mL | <10 (1)             | N/A                  | 10     | <10 (1)             | N/A                   | 8415435  | <10 (1)             | 10     | 8415435  |
| Fecal Coliforms              | MPN/100mL | <10 (1)             | N/A                  | 10     | <10 (1)             | N/A                   | 8415437  | <10 (1)             | 10     | 8415437  |
| Heterotrophic Plate Count    | CFU/mL    | 980                 | 1100                 | 1.0    | >6000               | >6000                 | 8415432  | >6000               | 1.0    | 8415432  |
| Total Coliforms DST          | mpn/100mL | 850 (1)             | N/A                  | 10     | 580 (1)             | N/A                   | 8415435  | 450 (1)             | 10     | 8415435  |
| Nutrients                    |           |                     |                      |        |                     |                       |          |                     |        |          |
| Dissolved Ammonia (N)        | mg/L      | 0.38                | N/A                  | 0.050  | 0.64                | N/A                   | 8417670  | 0.20                | 0.050  | 8417670  |
| Total Kjeldahl Nitrogen      | mg/L      | 1.1                 | N/A                  | 0.050  | 4.5 (1)             | N/A                   | 8419317  | 1.7 (1)             | 0.25   | 8419317  |
| Orthophosphate (P)           | mg/L      | <0.0030             | N/A                  | 0.0030 | <0.0030             | N/A                   | 8417394  | 0.0099 (2)          | 0.0030 | 8417394  |
| Dissolved Phosphorus (P)     | mg/L      | <0.0030             | N/A                  | 0.0030 | 0.0062              | N/A                   | 8416951  | 0.0067              | 0.0030 | 8416975  |
| DDI Deventelele Detection Li |           |                     |                      |        |                     |                       |          |                     |        |          |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(2) Orthophosphate greater than dissolved and total phosphate. Results within acceptable limits of precision.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                     |           | PQ0282              |        |          | PQ0283              | PQ0283                |          | PQ0284              |        |          |
|-------------------------------|-----------|---------------------|--------|----------|---------------------|-----------------------|----------|---------------------|--------|----------|
| Sampling Date                 |           | 2016/09/28<br>11:45 |        |          | 2016/09/28<br>17:10 | 2016/09/28<br>17:10   |          | 2016/09/28<br>17:11 |        |          |
| COC Number                    |           | M031890             |        |          | M031890             | M031890               |          | M031890             |        |          |
|                               | UNITS     | MW16-3-7<br>Lab-Dup | RDL    | QC Batch | MW16-24-30          | MW16-24-30<br>Lab-Dup | QC Batch | MW16-15-16          | RDL    | QC Batch |
| Misc. Inorganics              |           |                     |        |          |                     |                       |          |                     |        |          |
| Dissolved Organic Carbon (C)  | mg/L      | N/A                 | 0.50   | 8418320  | 1.2                 | 1.2                   | 8418321  | 1.4                 | 0.50   | 8418321  |
| Microbiological Param.        |           | •                   |        |          | •                   |                       |          |                     |        |          |
| E.Coli DST                    | mpn/100mL | N/A                 | 10     | 8415435  | <1.0                | N/A                   | 8415435  | <1.0                | 1.0    | 8415435  |
| Fecal Coliforms               | MPN/100mL | N/A                 | 10     | 8415437  | <1.0                | N/A                   | 8415437  | <1.0                | 1.0    | 8415437  |
| Heterotrophic Plate Count     | CFU/mL    | >6000               | 1.0    | 8415432  | 48                  | 50                    | 8415432  | 120                 | 1.0    | 8415432  |
| Total Coliforms DST           | mpn/100mL | N/A                 | 10     | 8415435  | 2.0                 | N/A                   | 8415435  | 1.0                 | 1.0    | 8415435  |
| Nutrients                     | •         |                     |        | •        | •                   |                       | •        |                     |        |          |
| Dissolved Ammonia (N)         | mg/L      | N/A                 | 0.050  | 8417670  | 0.86                | N/A                   | 8417670  | 0.84 (1)            | 0.050  | 8417670  |
| Total Kjeldahl Nitrogen       | mg/L      | N/A                 | 0.25   | 8419317  | 0.88                | N/A                   | 8419053  | 0.81                | 0.050  | 8419317  |
| Orthophosphate (P)            | mg/L      | N/A                 | 0.0030 | 8417394  | <0.0030             | N/A                   | 8417394  | <0.0030             | 0.0030 | 8417394  |
| Dissolved Phosphorus (P)      | mg/L      | N/A                 | 0.0030 | 8416975  | <0.0030             | N/A                   | 8416951  | 0.0069              | 0.0030 | 8416951  |
| RDL = Reportable Detection Li | mit       | •                   |        | •        | •                   |                       | •        | •                   |        | -        |

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Ammonia greater than TKN. Results are within acceptable limits of precision.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                      |           | PQ0284                |        | PQ0285              | PQ0285                |        |          |
|--------------------------------|-----------|-----------------------|--------|---------------------|-----------------------|--------|----------|
| Sampling Date                  |           | 2016/09/28<br>17:11   |        | 2016/09/28<br>18:34 | 2016/09/28<br>18:34   |        |          |
| COC Number                     |           | M031890               |        | M031890             | M031890               |        |          |
|                                | UNITS     | MW16-15-16<br>Lab-Dup | RDL    | MW16-22-26          | MW16-22-26<br>Lab-Dup | RDL    | QC Batch |
| Misc. Inorganics               |           |                       |        |                     |                       |        |          |
| Dissolved Organic Carbon (C)   | mg/L      | N/A                   | 0.50   | 3.3                 | N/A                   | 0.50   | 8418321  |
| Microbiological Param.         |           |                       |        |                     |                       |        |          |
| E.Coli DST                     | mpn/100mL | <1.0                  | 1.0    | <10 (1)             | N/A                   | 10     | 8415435  |
| Fecal Coliforms                | MPN/100mL | <1.0                  | 1.0    | <10(1)              | N/A                   | 10     | 8415437  |
| Heterotrophic Plate Count      | CFU/mL    | 110                   | 1.0    | >6000               | >6000                 | 1.0    | 8415432  |
| Total Coliforms DST            | mpn/100mL | 1.0                   | 1.0    | 2000 (1)            | N/A                   | 10     | 8415435  |
| Nutrients                      |           |                       |        |                     |                       |        |          |
| Dissolved Ammonia (N)          | mg/L      | N/A                   | 0.050  | 0.68                | N/A                   | 0.050  | 8417670  |
| Total Kjeldahl Nitrogen        | mg/L      | N/A                   | 0.050  | 0.97                | N/A                   | 0.050  | 8419317  |
| Orthophosphate (P)             | mg/L      | N/A                   | 0.0030 | 0.0076 (2)          | N/A                   | 0.0030 | 8417394  |
| Dissolved Phosphorus (P)       | mg/L      | N/A                   | 0.0030 | <0.0030             | N/A                   | 0.0030 | 8416951  |
| RDL = Reportable Detection Lir | nit       |                       |        |                     |                       |        |          |

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

(2) Orthophosphate greater than total phosphate. Results within acceptable limits of precision.



## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                                    |              | PQ0280             |              | PQ0281              | PQ0282              |               | PQ0283             | PQ0284     |                  |                    |  |  |  |  |  |  |
|----------------------------------------------|--------------|--------------------|--------------|---------------------|---------------------|---------------|--------------------|------------|------------------|--------------------|--|--|--|--|--|--|
| Sampling Date                                |              | 2016/09/28         |              | 2016/09/28          | 2016/09/28          |               | 2016/09/28         | 2016/09/28 |                  |                    |  |  |  |  |  |  |
| Sampling Date                                |              | 10:16              |              | 10:58               | 11:45               |               | 17:10              | 17:11      |                  |                    |  |  |  |  |  |  |
| COC Number                                   |              | M031890            |              | M031890             | M031890             |               | M031890            | M031890    |                  |                    |  |  |  |  |  |  |
|                                              | UNITS        | MW16-27-9          | RDL          | MW16-26-18          | MW16-3-7            | RDL           | MW16-24-30         | MW16-15-16 | RDL              | QC Batch           |  |  |  |  |  |  |
| Low Level Elements                           |              |                    |              |                     | Low Level Elements  |               |                    |            |                  |                    |  |  |  |  |  |  |
|                                              |              |                    |              |                     |                     |               |                    |            |                  |                    |  |  |  |  |  |  |
| Dissolved Mercury (Hg)                       | ug/L         | <0.0020            | 0.0020       | <0.0020             | <0.0020             | 0.0020        | <0.0020            | <0.0020    | 0.0020           | 8419725            |  |  |  |  |  |  |
| Dissolved Mercury (Hg)<br>Total Mercury (Hg) | ug/L<br>ug/L | <0.0020<br><20 (1) | 0.0020<br>20 | <0.0020<br><6.0 (1) | <0.0020<br><6.0 (1) | 0.0020<br>6.0 | <0.0020<br><0.0020 |            | 0.0020<br>0.0020 | 8419725<br>8417247 |  |  |  |  |  |  |

RDL = Reportable Detection Limit

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly

| Maxxam ID                        |       | PQ0285                                                                  |        |          |  |  |  |  |  |  |  |
|----------------------------------|-------|-------------------------------------------------------------------------|--------|----------|--|--|--|--|--|--|--|
| Sampling Date                    |       | 2016/09/28<br>18:34                                                     |        |          |  |  |  |  |  |  |  |
| COC Number                       |       | M031890                                                                 |        |          |  |  |  |  |  |  |  |
|                                  | UNITS | MW16-22-26                                                              | RDL    | QC Batch |  |  |  |  |  |  |  |
| Low Level Elements               |       |                                                                         |        |          |  |  |  |  |  |  |  |
| Dissolved Mercury (Hg)           | ug/L  | <0.0020                                                                 | 0.0020 | 8419725  |  |  |  |  |  |  |  |
| Total Mercury (Hg)               | ug/L  | <6.0 (1)                                                                | 6.0    | 8417247  |  |  |  |  |  |  |  |
| RDL = Reportable Detection Limit |       |                                                                         |        |          |  |  |  |  |  |  |  |
|                                  |       | (1) Due to the sample matrix, sample required dilution. Detection limit |        |          |  |  |  |  |  |  |  |

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly



#### **GENERAL COMMENTS**

| Each temperature is the average of up to three cooler temperatures taken at receipt | Each temperature is the | average of up to three cool | er temperatures taken at receipt |
|-------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------------------------|
|-------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------------------------|

| Package 1 | 7.0°C |
|-----------|-------|
| Package 2 | 5.7°C |

As per client request, the client ID for sample PQ0283 was changed from MW16-15-30 to MW16-24-30. The client request was received 2016/10/19.

#### Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

| QA/QC              |            |                                    |                             | Date       |            |          |        |                 |
|--------------------|------------|------------------------------------|-----------------------------|------------|------------|----------|--------|-----------------|
| Batch              | Init       | QC Type                            | Parameter                   | Analyzed   | Value      | Recovery | UNITS  | QC Limits       |
| 8415432            | GK1        | Method Blank                       | Heterotrophic Plate Count   | 2016/10/01 | <1.0       |          | CFU/mL |                 |
| 8415432            | GK1        | RPD [PQ0280-07]                    | Heterotrophic Plate Count   | 2016/10/01 | 12         |          | %      | N/A             |
| 8415432            | GK1        | RPD [PQ0281-07]                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
| 8415432            | GK1<br>GK1 | RPD [PQ0282-07]                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
| 8415432            | GK1<br>GK1 | RPD [PQ0282-07]<br>RPD [PQ0283-07] | Heterotrophic Plate Count   | 2016/10/01 | 4.1        |          | %      | N/A<br>N/A      |
| 8415432            | GK1<br>GK1 | RPD [PQ0283-07]<br>RPD [PQ0284-07] | Heterotrophic Plate Count   | 2016/10/01 | 4.1<br>6.8 |          | %      | N/A<br>N/A      |
| 8415432            | GK1<br>GK1 |                                    |                             |            |            |          | %      |                 |
| 8415432<br>8415432 |            | RPD [PQ0285-07]                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          |        | N/A             |
| 8415432            | GK1        | RPD                                | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
|                    |            |                                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
|                    |            |                                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
|                    |            |                                    | Heterotrophic Plate Count   | 2016/10/01 | NC         |          | %      | N/A             |
| 8415435            | GK1        | Method Blank                       | E.Coli DST                  | 2016/09/30 | <1.0       |          | mpn/10 |                 |
|                    |            |                                    | Total Coliforms DST         | 2016/09/30 | <1.0       |          | mpn/10 |                 |
| 8415435            | GK1        | RPD [PQ0284-07]                    | E.Coli DST                  | 2016/09/30 | NC         |          | %      | N/A             |
|                    |            |                                    | Total Coliforms DST         | 2016/09/30 | NC         |          | %      | N/A             |
| 8415437            | GK1        | Method Blank                       | Fecal Coliforms             | 2016/09/30 | <1.0       |          | MPN/10 |                 |
| 8415437            | GK1        | RPD [PQ0284-07]                    | Fecal Coliforms             | 2016/09/30 | NC         |          | %      | N/A             |
| 8416112            | IK0        | Spiked Blank                       | Alkalinity (Total as CaCO3) | 2016/09/30 |            | 94       | %      | 80 - 120        |
| 8416112            | IK0        | Method Blank                       | Alkalinity (PP as CaCO3)    | 2016/09/30 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Alkalinity (Total as CaCO3) | 2016/09/30 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Bicarbonate (HCO3)          | 2016/09/30 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Carbonate (CO3)             | 2016/09/30 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Hydroxide (OH)              | 2016/09/30 | <0.50      |          | mg/L   |                 |
| 8416112            | IK0        | RPD                                | Alkalinity (PP as CaCO3)    | 2016/09/30 | NC         |          | %      | 20              |
|                    |            |                                    | Alkalinity (Total as CaCO3) | 2016/09/30 | NC         |          | %      | 20              |
|                    |            |                                    | Bicarbonate (HCO3)          | 2016/09/30 | NC         |          | %      | 20              |
|                    |            |                                    | Carbonate (CO3)             | 2016/09/30 | NC         |          | %      | 20              |
|                    |            |                                    | Hydroxide (OH)              | 2016/09/30 | NC         |          | %      | 20              |
| 8416120            | IK0        | Spiked Blank                       | рН                          | 2016/09/30 |            | 100      | %      | 97 - 103        |
| 8416120            | IK0        | RPD                                | рН                          | 2016/09/30 | 0.55       |          | %      | N/A             |
| 8416121            | IK0        | Spiked Blank                       | Conductivity                | 2016/09/30 |            | 100      | %      | 90 - 110        |
| 8416121            | IK0        | Method Blank                       | Conductivity                | 2016/09/30 | <1.0       |          | uS/cm  |                 |
| 8416121            | IK0        | RPD                                | Conductivity                | 2016/09/30 | NC         |          | %      | 20              |
| 8416126            | IK0        | Spiked Blank                       | Alkalinity (Total as CaCO3) | 2016/10/01 |            | 98       | %      | 80 - 120        |
| 8416126            | IK0        | Method Blank                       | Alkalinity (PP as CaCO3)    | 2016/10/01 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Alkalinity (Total as CaCO3) | 2016/10/01 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Bicarbonate (HCO3)          | 2016/10/01 | <0.50      |          | mg/L   |                 |
|                    |            |                                    | Carbonate (CO3)             | 2016/10/01 | < 0.50     |          | mg/L   |                 |
|                    |            |                                    | Hydroxide (OH)              | 2016/10/01 | < 0.50     |          | mg/L   |                 |
| 8416126            | IK0        | RPD                                | Alkalinity (PP as CaCO3)    | 2016/10/01 | NC         |          | %      | 20              |
|                    |            |                                    | Alkalinity (Total as CaCO3) | 2016/10/01 | 5.3        |          | %      | 20              |
|                    |            |                                    | Bicarbonate (HCO3)          | 2016/10/01 | 5.3        |          | %      | 20              |
|                    |            |                                    | Carbonate (CO3)             | 2016/10/01 | NC         |          | %      | 20              |
|                    |            |                                    | Hydroxide (OH)              | 2016/10/01 | NC         |          | %      | 20              |
| 8416129            | IK0        | Spiked Blank                       | pH                          | 2016/10/01 | Ne         | 101      | %      | 97 - 103        |
| 8416129            | IKO        | RPD                                | рп                          | 2016/10/01 | 0.18       | 101      | %      | 97 - 103<br>N/A |
| 8416129            | IKO        | Spiked Blank                       | Conductivity                | 2016/10/01 | 0.10       | 99       | %      | 90 - 110        |
| 8416130            | IKO        | Method Blank                       | Conductivity                | 2016/10/01 | <1.0       | 55       | uS/cm  | 30 - 110        |
|                    |            |                                    |                             |            |            |          |        | 20              |
| 8416130            | IK0        | RPD<br>Matrix Spike                | Conductivity                | 2016/10/01 | 0.32       | 05       | %      | 20              |
| 8416283            | VP4        | Matrix Spike                       | O-TERPHENYL (sur.)          | 2016/10/01 |            | 85       | %      | 50 - 130        |
| 0446000            |            |                                    | F2 (C10-C16 Hydrocarbons)   | 2016/10/01 |            | 89       | %      | 50 - 130        |
| 8416283            | VP4        | Spiked Blank                       | O-TERPHENYL (sur.)          | 2016/10/01 |            | 86       | %      | 50 - 130        |



| QA/QC   |      |                          |                           | Date       |            |          |       |           |
|---------|------|--------------------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                          | F2 (C10-C16 Hydrocarbons) | 2016/10/01 |            | 90       | %     | 70 - 130  |
| 8416283 | VP4  | Method Blank             | O-TERPHENYL (sur.)        | 2016/10/01 |            | 87       | %     | 50 - 130  |
|         |      |                          | F2 (C10-C16 Hydrocarbons) | 2016/10/01 | <0.10      |          | mg/L  |           |
| 8416283 | VP4  | RPD                      | F2 (C10-C16 Hydrocarbons) | 2016/10/01 | NC         |          | %     | 40        |
| 8416726 | JLD  | Matrix Spike [PQ0280-01] | Dissolved Nitrite (N)     | 2016/10/01 |            | 108      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)     | 2016/10/01 |            | 109      | %     | 80 - 120  |
| 8416726 | JLD  | Spiked Blank             | Dissolved Nitrite (N)     | 2016/09/30 |            | 101      | %     | 80 - 120  |
|         |      |                          | Dissolved Nitrate (N)     | 2016/09/30 |            | 101      | %     | 80 - 120  |
| 8416726 | JLD  | Method Blank             | Dissolved Nitrite (N)     | 2016/09/30 | <0.010     |          | mg/L  |           |
|         |      |                          | Dissolved Nitrate (N)     | 2016/09/30 | <0.010     |          | mg/L  |           |
| 8416726 | JLD  | RPD [PQ0280-01]          | Dissolved Nitrite (N)     | 2016/10/01 | NC         |          | %     | 20        |
|         |      |                          | Dissolved Nitrate (N)     | 2016/10/01 | NC         |          | %     | 20        |
| 8416951 | RM9  | Matrix Spike             | Dissolved Phosphorus (P)  | 2016/10/01 |            | 103      | %     | 80 - 120  |
| 8416951 | RM9  | QC Standard              | Dissolved Phosphorus (P)  | 2016/10/01 |            | 104      | %     | 80 - 120  |
| 8416951 | RM9  | Spiked Blank             | Dissolved Phosphorus (P)  | 2016/10/01 |            | 100      | %     | 80 - 120  |
| 8416951 | RM9  | Method Blank             | Dissolved Phosphorus (P)  | 2016/10/01 | 0.0037,    |          | mg/L  |           |
|         |      |                          |                           |            | RDL=0.0030 |          |       |           |
| 8416951 | RM9  | RPD                      | Dissolved Phosphorus (P)  | 2016/10/01 | NC         |          | %     | 20        |
| 8416975 | RM9  | Matrix Spike             | Dissolved Phosphorus (P)  | 2016/10/01 |            | 98       | %     | 80 - 120  |
| 8416975 | RM9  | QC Standard              | Dissolved Phosphorus (P)  | 2016/10/01 |            | 0.0      | %     | N/A       |
| 8416975 | RM9  | Spiked Blank             | Dissolved Phosphorus (P)  | 2016/10/01 |            | 102      | %     | 80 - 120  |
| 8416975 | RM9  | Method Blank             | Dissolved Phosphorus (P)  | 2016/10/01 | <0.0030    |          | mg/L  |           |
| 8416975 | RM9  | RPD                      | Dissolved Phosphorus (P)  | 2016/10/01 | 3.0        |          | %     | 20        |
| 8417228 | PC5  | Matrix Spike [PQ0283-04] | Dissolved Aluminum (Al)   | 2016/09/30 |            | 104      | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/30 |            | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/30 |            | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/30 |            | 99       | %     | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2016/09/30 |            | 89       | %     | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2016/09/30 |            | 92       | %     | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |      |                          | Dissolved Tin (Sn)        | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Titanium (Ti)   | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2016/09/30 |            | 83       | %     | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2016/09/30 |            | 94       | %     | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2016/09/30 |            | 91       | %     | 80 - 120  |
| 8417228 | PC5  | Spiked Blank             | Dissolved Aluminum (Al)   | 2016/09/30 |            | 105      | %     | 80 - 120  |
|         |      |                          | Dissolved Antimony (Sb)   | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2016/09/30 |            | 96       | %     | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2016/09/30 |            | 93       | %     | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2016/09/30 |            | 90       | %     | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2016/09/30 |            | 87       | %     | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2016/09/30 |            | 93       | %     | 80 - 120  |



Report Date: 2016/10/19

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC   |      |                 |                           | Date       |            |          |       |           |
|---------|------|-----------------|---------------------------|------------|------------|----------|-------|-----------|
| Batch   | Init | QC Type         | Parameter                 | Analyzed   | Value      | Recovery | UNITS | QC Limits |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |      |                 | Dissolved Selenium (Se)   | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |      |                 | Dissolved Silver (Ag)     | 2016/09/30 |            | 91       | %     | 80 - 120  |
|         |      |                 | Dissolved Thallium (Tl)   | 2016/09/30 |            | 88       | %     | 80 - 120  |
|         |      |                 | Dissolved Tin (Sn)        | 2016/09/30 |            | 95       | %     | 80 - 120  |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/09/30 |            | 100      | %     | 80 - 120  |
|         |      |                 | Dissolved Uranium (U)     | 2016/09/30 |            | 83       | %     | 80 - 120  |
|         |      |                 | Dissolved Vanadium (V)    | 2016/09/30 |            | 93       | %     | 80 - 120  |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/09/30 |            | 89       | %     | 80 - 120  |
| 8417228 | PC5  | Method Blank    | Dissolved Aluminum (Al)   | 2016/09/30 | <0.0030    |          | mg/L  |           |
|         |      |                 | Dissolved Antimony (Sb)   | 2016/09/30 | <0.00060   |          | mg/L  |           |
|         |      |                 | Dissolved Arsenic (As)    | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Beryllium (Be)  | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |      |                 | Dissolved Cadmium (Cd)    | 2016/09/30 | < 0.000020 |          | mg/L  |           |
|         |      |                 | Dissolved Chromium (Cr)   | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |      |                 | Dissolved Cobalt (Co)     | 2016/09/30 | <0.00030   |          | mg/L  |           |
|         |      |                 | Dissolved Copper (Cu)     | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Lead (Pb)       | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Molybdenum (Mo) | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/09/30 | <0.00050   |          | mg/L  |           |
|         |      |                 | Dissolved Selenium (Se)   | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Silver (Ag)     | 2016/09/30 | <0.00010   |          | mg/L  |           |
|         |      |                 | Dissolved Thallium (TI)   | 2016/09/30 | <0.00020   |          | mg/L  |           |
|         |      |                 | Dissolved Tin (Sn)        | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |      |                 | Dissolved Uranium (U)     | 2016/09/30 | <0.00010   |          | mg/L  |           |
|         |      |                 | Dissolved Vanadium (V)    | 2016/09/30 | < 0.0010   |          | mg/L  |           |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/09/30 | <0.0030    |          | mg/L  |           |
| 8417228 | PC5  | RPD [PQ0283-04] | Dissolved Aluminum (Al)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Antimony (Sb)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Arsenic (As)    | 2016/09/30 | 2.8        |          | %     | 20        |
|         |      |                 | Dissolved Beryllium (Be)  | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Cadmium (Cd)    | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Chromium (Cr)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Cobalt (Co)     | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Copper (Cu)     | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Lead (Pb)       | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Molybdenum (Mo) | 2016/09/30 | 6.0        |          | %     | 20        |
|         |      |                 | Dissolved Nickel (Ni)     | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Selenium (Se)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Silver (Ag)     | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Thallium (Tl)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Tin (Sn)        | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Titanium (Ti)   | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Uranium (U)     | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Vanadium (V)    | 2016/09/30 | NC         |          | %     | 20        |
|         |      |                 | Dissolved Zinc (Zn)       | 2016/09/30 | NC         |          | %     | 20        |
| 8417247 | RK3  | Matrix Spike    | Total Mercury (Hg)        | 2016/09/30 |            | 109      | %     | 80 - 120  |
| 8417247 | RK3  | Spiked Blank    | Total Mercury (Hg)        | 2016/09/30 |            | 104      | %     | 80 - 120  |
| 8417247 | RK3  | Method Blank    | Total Mercury (Hg)        | 2016/09/30 | <0.0020    |          | ug/L  |           |
| 8417247 | RK3  | RPD             | Total Mercury (Hg)        | 2016/09/30 | NC         |          | %     | 20        |
| 8417394 | MB5  | Matrix Spike    | Orthophosphate (P)        | 2016/09/30 |            | 96       | %     | 80 - 120  |





| QA/QC   |      |              |                          | Date       |          |          |       |           |
|---------|------|--------------|--------------------------|------------|----------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                | Analyzed   | Value    | Recovery | UNITS | QC Limits |
| 8417394 | MB5  | Spiked Blank | Orthophosphate (P)       | 2016/09/30 |          | 96       | %     | 80 - 120  |
| 8417394 | MB5  | Method Blank | Orthophosphate (P)       | 2016/09/30 | < 0.0030 |          | mg/L  |           |
| 8417394 | MB5  | RPD          | Orthophosphate (P)       | 2016/09/30 | 1.7      |          | %     | 20        |
| 8417670 | MB5  | Matrix Spike | Dissolved Ammonia (N)    | 2016/09/30 |          | NC       | %     | 80 - 120  |
| 8417670 | MB5  | Spiked Blank | Dissolved Ammonia (N)    | 2016/09/30 |          | 98       | %     | 80 - 120  |
| 8417670 | MB5  | Method Blank | Dissolved Ammonia (N)    | 2016/09/30 | <0.050   |          | mg/L  |           |
| 8417670 | MB5  | RPD          | Dissolved Ammonia (N)    | 2016/09/30 | 3.2      |          | %     | 20        |
| 8417829 | JHC  | Matrix Spike | Dissolved Barium (Ba)    | 2016/10/01 |          | 112      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/10/01 |          | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/01 |          | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/01 |          | 111      | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/01 |          | 114      | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/01 |          | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/01 |          | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/01 |          | 118      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/10/01 |          | 115      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/01 |          | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/01 |          | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/01 |          | 111      | %     | 80 - 120  |
| 8417829 | JHC  | Spiked Blank | Dissolved Barium (Ba)    | 2016/10/01 |          | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)      | 2016/10/01 |          | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/01 |          | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/01 |          | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/01 |          | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/01 |          | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/01 |          | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/01 |          | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)  | 2016/10/01 |          | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/01 |          | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/01 |          | 109      | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/01 |          | 105      | %     | 80 - 120  |
| 8417829 | JHC  | Method Blank | Dissolved Barium (Ba)    | 2016/10/01 | <0.010   |          | mg/L  |           |
|         |      |              | Dissolved Boron (B)      | 2016/10/01 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/01 | <0.30    |          | mg/L  |           |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/01 | <0.060   |          | mg/L  |           |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/01 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/01 | <0.20    |          | mg/L  |           |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/01 | <0.0040  |          | mg/L  |           |
|         |      |              | Dissolved Phosphorus (P) | 2016/10/01 | <0.10    |          | mg/L  |           |
|         |      |              | Dissolved Potassium (K)  | 2016/10/01 | <0.30    |          | mg/L  |           |
|         |      |              | Dissolved Silicon (Si)   | 2016/10/01 | <0.10    |          | mg/L  |           |
|         |      |              | Dissolved Sodium (Na)    | 2016/10/01 | 0.50,    |          | mg/L  |           |
|         |      |              |                          |            | RDL=0.50 |          |       |           |
|         |      |              | Dissolved Strontium (Sr) | 2016/10/01 | <0.020   |          | mg/L  |           |
|         |      |              | Dissolved Sulphur (S)    | 2016/10/01 | <0.20    |          | mg/L  |           |
| 8417829 | JHC  | RPD          | Dissolved Barium (Ba)    | 2016/10/01 | 0.047    |          | %     | 20        |
|         |      |              | Dissolved Boron (B)      | 2016/10/01 | 0.55     |          | %     | 20        |
|         |      |              | Dissolved Calcium (Ca)   | 2016/10/01 | 0.15     |          | %     | 20        |
|         |      |              | Dissolved Iron (Fe)      | 2016/10/01 | 1.3      |          | %     | 20        |
|         |      |              | Dissolved Lithium (Li)   | 2016/10/01 | NC       |          | %     | 20        |
|         |      |              | Dissolved Magnesium (Mg) | 2016/10/01 | 0.13     |          | %     | 20        |
|         |      |              | Dissolved Manganese (Mn) | 2016/10/01 | 0.044    |          | %     | 20        |



Report Date: 2016/10/19

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC              |            |                              |                                                      | Date                     |                 |           |                                        |                |
|--------------------|------------|------------------------------|------------------------------------------------------|--------------------------|-----------------|-----------|----------------------------------------|----------------|
| Batch              | Init       | QC Type                      | Parameter                                            | Analyzed                 | Value           | Recovery  | UNITS                                  | QC Limits      |
|                    |            |                              | Dissolved Phosphorus (P)                             | 2016/10/01               | NC              |           | %                                      | 20             |
|                    |            |                              | Dissolved Potassium (K)                              | 2016/10/01               | 0.21            |           | %                                      | 20             |
|                    |            |                              | Dissolved Silicon (Si)                               | 2016/10/01               | 0.18            |           | %                                      | 20             |
|                    |            |                              | Dissolved Sodium (Na)                                | 2016/10/01               | 0.084           |           | %                                      | 20             |
|                    |            |                              | Dissolved Strontium (Sr)                             | 2016/10/01               | 0.045           |           | %                                      | 20             |
|                    |            |                              | Dissolved Sulphur (S)                                | 2016/10/01               | 0.25            |           | %                                      | 20             |
| 8418320            | MUK        | Matrix Spike                 | Dissolved Organic Carbon (C)                         | 2016/10/01               |                 | NC        | %                                      | 80 - 120       |
| 8418320            |            | Spiked Blank                 | Dissolved Organic Carbon (C)                         | 2016/10/01               |                 | 99        | %                                      | 80 - 120       |
| 8418320            |            | Method Blank                 | Dissolved Organic Carbon (C)                         | 2016/10/01               | <0.50           |           | mg/L                                   |                |
| 8418320            | MUK        | RPD                          | Dissolved Organic Carbon (C)                         | 2016/10/01               | 5.2             |           | %                                      | 20             |
| 8418321            |            | Matrix Spike [PQ0283-03]     | Dissolved Organic Carbon (C)                         | 2016/10/01               |                 | 109       | %                                      | 80 - 120       |
| 8418321            |            | Spiked Blank                 | Dissolved Organic Carbon (C)                         | 2016/10/01               |                 | 97        | %                                      | 80 - 120       |
| 8418321            |            | Method Blank                 | Dissolved Organic Carbon (C)                         | 2016/10/01               | <0.50           |           | mg/L                                   |                |
| 8418321            | MUK        | RPD [PQ0283-03]              | Dissolved Organic Carbon (C)                         | 2016/10/01               | NC              |           | %                                      | 20             |
| 8419053            | MB5        | Matrix Spike                 | Total Kjeldahl Nitrogen                              | 2016/10/03               |                 | NC        | %                                      | 80 - 120       |
| 8419053            | MB5        | QC Standard                  | Total Kjeldahl Nitrogen                              | 2016/10/03               |                 | 93        | %                                      | 80 - 120       |
| 8419053            | MB5        | Spiked Blank                 | Total Kjeldahl Nitrogen                              | 2016/10/03               |                 | 105       | %                                      | 80 - 120       |
| 8419053            | MB5        | Method Blank                 | Total Kjeldahl Nitrogen                              | 2016/10/03               | <0.050          |           | mg/L                                   |                |
| 8419053            | MB5        | RPD                          | Total Kjeldahl Nitrogen                              | 2016/10/03               | 8.0             |           | %                                      | 20             |
| 8419222            | KP9        | Matrix Spike                 | Dissolved Chloride (Cl)                              | 2016/10/02               | 0.0             | NC        | %                                      | 80 - 120       |
| 8419222            | KP9        | Spiked Blank                 | Dissolved Chloride (Cl)                              | 2016/10/02               |                 | 106       | %                                      | 80 - 120       |
| 8419222            | KP9        | Method Blank                 | Dissolved Chloride (Cl)                              | 2016/10/02               | <1.0            | 100       | mg/L                                   | 00 120         |
| 8419222            | KP9        | RPD                          | Dissolved Chloride (Cl)                              | 2016/10/02               | 2.6             |           | %                                      | 20             |
| 8419223            | KP9        | Matrix Spike                 | Dissolved Sulphate (SO4)                             | 2016/10/02               | 2.0             | NC        | %                                      | 80 - 120       |
| 8419223            | KP9        | Spiked Blank                 | Dissolved Sulphate (SO4)                             | 2016/10/02               |                 | 106       | %                                      | 80 - 120       |
| 8419223            | KP9        | Method Blank                 | Dissolved Sulphate (SO4)                             | 2016/10/02               | <1.0            | 100       | mg/L                                   | 00 120         |
| 8419223            | KP9        | RPD                          | Dissolved Sulphate (SO4)                             | 2016/10/02               | 0.91            |           | ////////////////////////////////////// | 20             |
| 8419229            | KP9        | Matrix Spike                 | Dissolved Chloride (Cl)                              | 2016/10/02               | 0.51            | NC        | %                                      | 80 - 120       |
| 8419229            | KP9        | Spiked Blank                 | Dissolved Chloride (Cl)                              | 2016/10/02               |                 | 106       | %                                      | 80 - 120       |
| 8419229            | KP9        | Method Blank                 | Dissolved Chloride (Cl)                              | 2016/10/02               | <1.0            | 100       | ∽<br>mg/L                              | 80 - 120       |
| 8419229            | KP9        | RPD                          | Dissolved Chloride (Cl)                              | 2016/10/02               | 7.3             |           | 111g/L<br>%                            | 20             |
| 8419229            | KP9        |                              |                                                      |                          | 7.5             | NC        | %                                      | 80 - 120       |
| 8419230<br>8419230 | KP9<br>KP9 | Matrix Spike<br>Spiked Blank | Dissolved Sulphate (SO4)<br>Dissolved Sulphate (SO4) | 2016/10/02<br>2016/10/02 |                 | 105       | %                                      | 80 - 120       |
|                    | KP9<br>KP9 | Method Blank                 | Dissolved Sulphate (SO4)                             |                          | -1.0            | 105       |                                        | 80 - 120       |
| 8419230<br>8419230 | KP9<br>KP9 | RPD                          |                                                      | 2016/10/02               | <1.0<br>0.58    |           | mg/L<br>%                              | 20             |
|                    |            |                              | Dissolved Sulphate (SO4)                             | 2016/10/02<br>2016/10/03 | 0.56            | 100       | %                                      | 20<br>80 - 120 |
| 8419317            | MB5        | Matrix Spike<br>QC Standard  | Total Kjeldahl Nitrogen                              |                          |                 | 100<br>97 | %                                      | 80 - 120       |
| 8419317<br>8419317 | MB5        |                              | Total Kjeldahl Nitrogen                              | 2016/10/03               |                 | 109       | %                                      | 80 - 120       |
|                    |            | Spiked Blank                 | Total Kjeldahl Nitrogen                              | 2016/10/03               |                 | 109       |                                        | 80 - 120       |
| 8419317            | MB5        | Method Blank                 | Total Kjeldahl Nitrogen<br>Total Kjeldahl Nitrogen   | 2016/10/03               | < 0.050         |           | mg/L                                   | 20             |
| 8419317            | MB5        | RPD                          |                                                      | 2016/10/03               | 3.2             | NC        | %                                      | 20             |
| 8419658            | KP9        | Matrix Spike                 | Dissolved Chloride (Cl)                              | 2016/10/03               |                 | NC        | %                                      | 80 - 120       |
| 8419658            | KP9        | Spiked Blank                 | Dissolved Chloride (Cl)                              | 2016/10/03               | 4.6             | 105       | %                                      | 80 - 120       |
| 8419658            | KP9        | Method Blank                 | Dissolved Chloride (Cl)                              | 2016/10/03               | 1.6,<br>RDL=1.0 |           | mg/L                                   |                |
| 8419658            | KP9        | RPD                          | Dissolved Chloride (Cl)                              | 2016/10/03               | 0.93            |           | %                                      | 20             |
| 8419661            | KP9        | Matrix Spike                 | Dissolved Sulphate (SO4)                             | 2016/10/03               |                 | NC        | %                                      | 80 - 120       |
| 8419661            | KP9        | Spiked Blank                 | Dissolved Sulphate (SO4)                             | 2016/10/03               |                 | 107       | %                                      | 80 - 120       |
| 8419661            | KP9        | Method Blank                 | Dissolved Sulphate (SO4)                             | 2016/10/03               | <1.0            |           | mg/L                                   |                |
| 8419661            | KP9        | RPD                          | Dissolved Sulphate (SO4)                             | 2016/10/03               | 1.8             |           | %                                      | 20             |
| 8419725            | RK3        | Matrix Spike                 | Dissolved Mercury (Hg)                               | 2016/10/03               | -               | 93        | %                                      | 80 - 120       |
| 8419725            | RK3        | Spiked Blank                 | Dissolved Mercury (Hg)                               | 2016/10/03               |                 | 91        | %                                      | 80 - 120       |
| 8419725            | RK3        | Method Blank                 | Dissolved Mercury (Hg)                               | 2016/10/03               | <0.0020         |           | ug/L                                   |                |



Report Date: 2016/10/19

STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

| QA/QC     |      |              |                              | Date       |          |          |       |           |
|-----------|------|--------------|------------------------------|------------|----------|----------|-------|-----------|
| Batch     | Init | QC Type      | Parameter                    | Analyzed   | Value    | Recovery | UNITS | QC Limits |
| 8419725   | RK3  | RPD          | Dissolved Mercury (Hg)       | 2016/10/03 | NC       |          | %     | 20        |
| 8420469   | RSA  | Matrix Spike | 1,4-Difluorobenzene (sur.)   | 2016/10/04 |          | 109      | %     | 70 - 130  |
|           |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/04 |          | 106      | %     | 70 - 130  |
|           |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/04 |          | 121      | %     | 70 - 130  |
|           |      |              | Benzene                      | 2016/10/04 |          | 111      | %     | 70 - 130  |
|           |      |              | Toluene                      | 2016/10/04 |          | 107      | %     | 70 - 130  |
|           |      |              | Ethylbenzene                 | 2016/10/04 |          | 112      | %     | 70 - 130  |
|           |      |              | m & p-Xylene                 | 2016/10/04 |          | 110      | %     | 70 - 130  |
|           |      |              | o-Xylene                     | 2016/10/04 |          | 114      | %     | 70 - 130  |
|           |      |              | F1 (C6-C10)                  | 2016/10/04 |          | 84       | %     | 70 - 130  |
| 8420469 R | RSA  | Spiked Blank | 1,4-Difluorobenzene (sur.)   | 2016/10/04 |          | 110      | %     | 70 - 130  |
|           |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/04 |          | 106      | %     | 70 - 130  |
|           |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/04 |          | 119      | %     | 70 - 130  |
|           |      |              | Benzene                      | 2016/10/04 |          | 111      | %     | 70 - 130  |
|           |      |              | Toluene                      | 2016/10/04 |          | 108      | %     | 70 - 130  |
|           |      |              | Ethylbenzene                 | 2016/10/04 |          | 114      | %     | 70 - 130  |
|           |      |              | m & p-Xylene                 | 2016/10/04 |          | 113      | %     | 70 - 130  |
|           |      |              | o-Xylene                     | 2016/10/04 |          | 115      | %     | 70 - 130  |
|           |      |              | F1 (C6-C10)                  | 2016/10/04 |          | 102      | %     | 70 - 130  |
| 8420469   | RSA  | Method Blank | 1,4-Difluorobenzene (sur.)   | 2016/10/04 |          | 110      | %     | 70 - 130  |
|           |      |              | 4-Bromofluorobenzene (sur.)  | 2016/10/04 |          | 105      | %     | 70 - 130  |
|           |      |              | D4-1,2-Dichloroethane (sur.) | 2016/10/04 |          | 119      | %     | 70 - 130  |
|           |      |              | Benzene                      | 2016/10/04 | <0.00040 |          | mg/L  |           |
|           |      |              | Toluene                      | 2016/10/04 | <0.00040 |          | mg/L  |           |
|           |      |              | Ethylbenzene                 | 2016/10/04 | <0.00040 |          | mg/L  |           |
|           |      |              | m & p-Xylene                 | 2016/10/04 | <0.00080 |          | mg/L  |           |
|           |      |              | o-Xylene                     | 2016/10/04 | <0.00040 |          | mg/L  |           |
|           |      |              | Xylenes (Total)              | 2016/10/04 | <0.00080 |          | mg/L  |           |
|           |      |              | F1 (C6-C10) - BTEX           | 2016/10/04 | <0.10    |          | mg/L  |           |
|           |      |              | F1 (C6-C10)                  | 2016/10/04 | <0.10    |          | mg/L  |           |
| 8420469   | RSA  | RPD          | Benzene                      | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | Toluene                      | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | Ethylbenzene                 | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | m & p-Xylene                 | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | o-Xylene                     | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | Xylenes (Total)              | 2016/10/04 | NC       |          | %     | 40        |
|           |      |              | F1 (C6-C10) - BTEX           | 2016/10/04 | NC       |          | %     | 40        |



#### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC |      |         |             | Date       |       |                |             |
|-------|------|---------|-------------|------------|-------|----------------|-------------|
| Batch | Init | QC Type | Parameter   | Analyzed   | Value | Recovery UNITS | S QC Limits |
|       |      |         | F1 (C6-C10) | 2016/10/04 | NC    | %              | 40          |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



Report Date: 2016/10/19

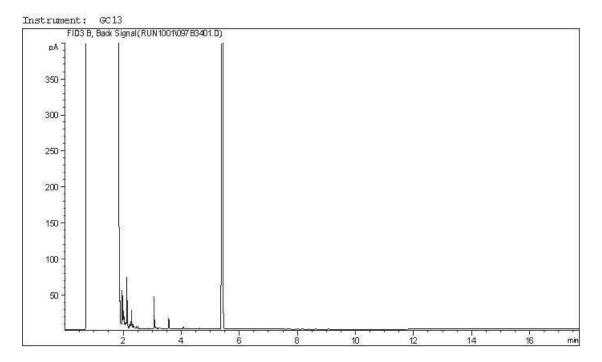
STANTEC CONSULTING LTD Client Project #: 110773396 Site Location: SPRINGBANK SR1 Sampler Initials: DN

## VALIDATION SIGNATURE PAGE

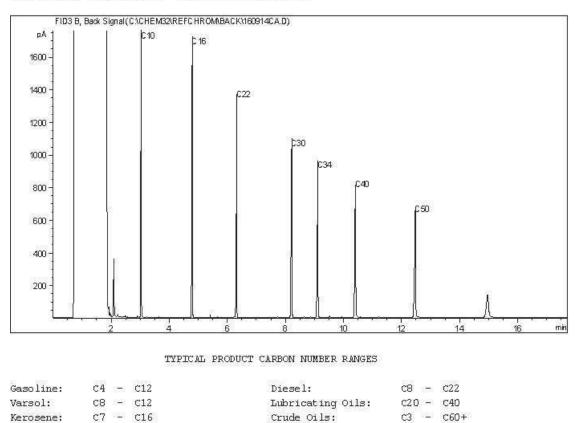
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

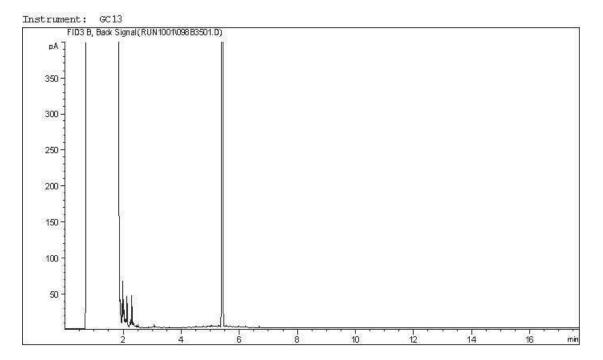
Dennis Ngondu, B.Sc., P.Chem., QP, Supervisor, Organics

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

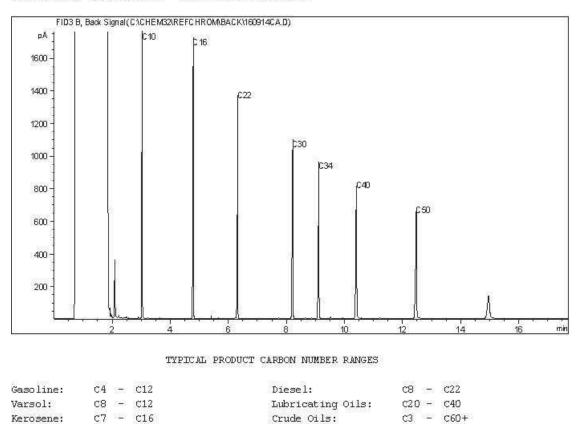

unchi Gras

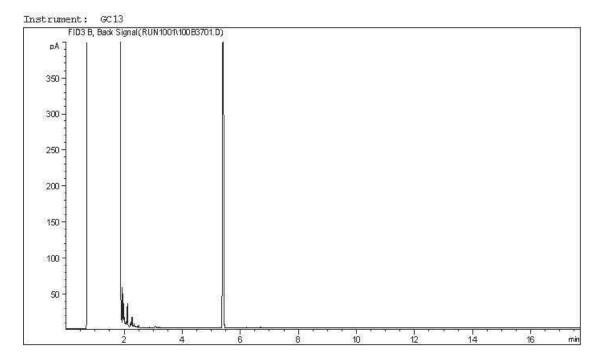
Janet Gao, B.Sc., QP, Supervisor, Organics


Harry (Peng) Liang, Senior Analyst

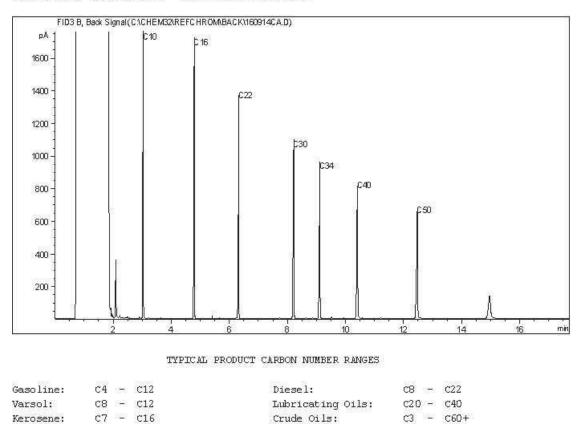

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

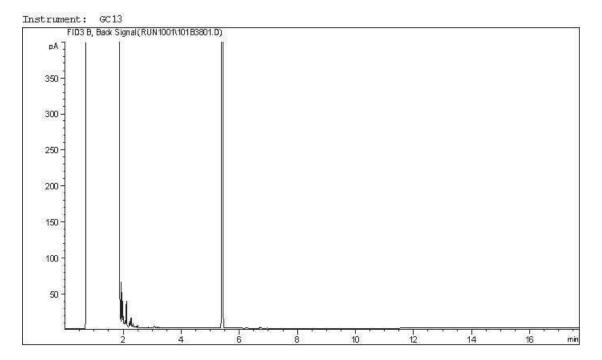
| Invoice Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Report Information (if differs from invoice) |                              |                            |        |        |                               | T                               |               |          | P                     | Project    | t Info  | rmati             | on                   |                   |       |               | Turnaround Time (TAT) Required        |                  |                      |                              |                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------------------|--------|--------|-------------------------------|---------------------------------|---------------|----------|-----------------------|------------|---------|-------------------|----------------------|-------------------|-------|---------------|---------------------------------------|------------------|----------------------|------------------------------|------------------------------------------------------------------|--|
| Stantec consulting Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company                                      |                              |                            |        |        |                               | Que                             | otatio        | on #:    |                       |            |         |                   |                      |                   |       | 1             | L                                     | 5.7              | 7 Day                | s Regu                       | ular (Most analyses)                                             |  |
| e: Dxlan King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact Name:                                |                              |                            |        |        |                               | P.O. #/ AFE#:                   |               |          |                       |            |         |                   |                      |                   |       | PLEA          | SE PRO                                | DVIDE            | ADVA                 | NCE NOTICE FOR RUSH PROJECTS |                                                                  |  |
| 10160 112 st, Edmonton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                              |                            |        |        |                               |                                 |               |          |                       |            |         |                   |                      |                   |       |               | Rush TAT (Surcharges will be applied) |                  |                      |                              |                                                                  |  |
| AB, T3K2LG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                            |                              |                            |        |        |                               | Proj                            | ject #        | t: _     |                       | 077        |         |                   |                      |                   |       |               |                                       | Sam              | ne Day               | Y .*                         | 2 Days                                                           |  |
| (140)969-2223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phone:                                       |                              |                            |        |        | -                             | Site Location: Springbonks      |               |          |                       |            | SRI     |                   |                      |                   | 1 Day |               |                                       | 3-4 Days         |                      |                              |                                                                  |  |
| Dylankingestantec.com<br>Dale.Nisbet.pstantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Email:                                       |                              |                            |        |        |                               | Site #:<br>Sampled By: D.Nisber |               |          |                       |            |         |                   | D                    | Date Required:    |       |               |                                       |                  |                      |                              |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copies:                                      |                              |                            | _      | _      |                               | Sam                             | pled          | By:      |                       | 2.N        | isd     | LF                |                      |                   |       | R             | ush C                                 | onfir            | mati                 | ion #:                       |                                                                  |  |
| Laboratory Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Only                                         | Depot Recepti                |                            | 12,213 | -      |                               | -                               |               | ×        | 18                    | An         | alysis  | Requ              | Jeste                | 4                 |       | _             | _                                     |                  |                      |                              | Regulatory Criteria                                              |  |
| U         Temp         5         7         9           YES         NO         Cooler IO </th <th colspan="5"></th> <th>BTEX F1 🗌 VOC 🗌<br/>RTEX F1.F2</th> <th>F1-F4</th> <th>Routine Water</th> <th>Tot Diss</th> <th>ury Total A Dissolved</th> <th>75 micron)</th> <th>(% Sanc</th> <th>Class II Landfill</th> <th>scoluted photophotus</th> <th>NOS PURA AMPRIMIA</th> <th>2</th> <th>Mal 61.200 mc</th> <th>(di</th> <th>recol colifierms</th> <th>Hastophic plate cant</th> <th>HOLD - DO NOT ANALYZE</th> <th>AT1/CCME Drinking Water Saskatchewan DS0 (Drilling Waste) Other:</th> |                                              |                              |                            |        |        | BTEX F1 🗌 VOC 🗌<br>RTEX F1.F2 | F1-F4                           | Routine Water | Tot Diss | ury Total A Dissolved | 75 micron) | (% Sanc | Class II Landfill | scoluted photophotus | NOS PURA AMPRIMIA | 2     | Mal 61.200 mc | (di                                   | recol colifierms | Hastophic plate cant | HOLD - DO NOT ANALYZE        | AT1/CCME Drinking Water Saskatchewan DS0 (Drilling Waste) Other: |  |
| Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth (Unit)                                 | Date Sampled<br>(YYYY/MM/DD) | Time<br>Sampled<br>(HH-MM) | Matrix | # of c | BTEX F1                       | BTEX                            | Routh         | segul    | Merci                 | Sieve (75  | fexture | Basic             | 30                   | 0                 | ₽P    | ZE            | 2 LU                                  | F                | 卫                    | TOLD                         | Special Instructions                                             |  |
| 146-27-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.00                                        | 2016/09/28                   |                            | W      | 13     | V                             | /                               | V             | V        | 1                     |            |         |                   | 10                   | v                 | 4     |               |                                       |                  | 1                    | 51                           | 7/7                                                              |  |
| U16-26-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                              | 10:58                      | 1      | 1      | 1                             |                                 | 1             | 1        |                       |            |         |                   | 11                   | 1                 | 1     | 1             | 1                                     | 1                |                      | 8.8.                         | Submitted same                                                   |  |
| W16-3-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tellas                                       |                              | 11:45                      | 1      |        |                               |                                 |               |          | 11                    |            |         | _                 |                      | 1                 |       |               | 4                                     | 1                | 1                    | 7,9                          | day as sompled                                                   |  |
| VIC-15-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                              | 17:10                      | -      |        |                               | -                               |               | 1        | 1                     | -          |         | -                 |                      |                   |       |               | 1                                     |                  | 10                   | GA                           |                                                                  |  |
| 16-22-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11111111                                     |                              | 13:11                      |        | 4      | -                             |                                 |               | v ·      |                       |            |         | -                 |                      |                   |       |               |                                       |                  | 3                    | \$16                         | could not eliminate                                              |  |
| 116 dd dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TURNER I                                     | 4                            | 127                        | *      | Y      | X                             |                                 | v             | V        | ¥                     | -          |         |                   | VV                   | V                 | 4     | V             | V                                     | V                | V                    | Gisre                        | headspace in                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                              |                            |        |        |                               |                                 |               | -        |                       | -          |         |                   |                      |                   | -     |               |                                       |                  |                      | -1                           | MW16-27-9 Somple                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | Des Partie                   | Hin :                      |        |        |                               |                                 |               | -        |                       |            |         |                   |                      | 1.1               | -     | 12 11         |                                       |                  |                      |                              | F2 bottle due                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                              |                            |        |        |                               |                                 |               |          |                       |            |         |                   |                      |                   |       | -             |                                       |                  |                      |                              | to ops could from                                                |  |
| Please indicate Filtered, Preserved or Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                              |                            |        | >      |                               |                                 |               |          |                       |            |         |                   |                      |                   |       |               |                                       |                  |                      | 4                            | to ops clattel from when concing with                            |  |
| shed by: (Signature/ Print) DATE (YYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y/MM/DD)                                     | Time (HH:MM)                 | Re                         | ceived | by: (S | ignat                         | ure/ P                          | rint)         | 1        | D                     | ATE (Y     | YYY/N   | IM/D              | D) Ti                | me (H             | H:MN  | 1)            |                                       |                  | 20                   | c                            | -16 07:13                                                        |  |



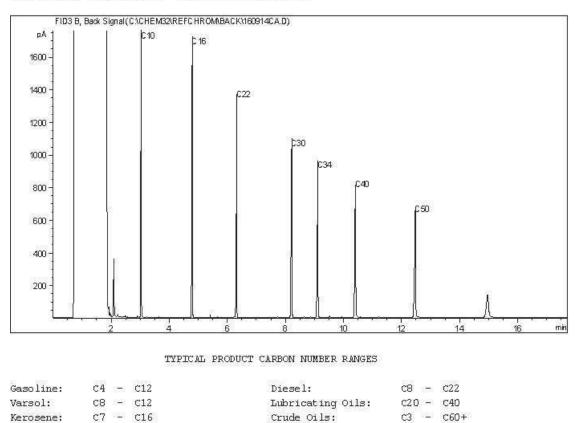


Carbon Range Distribution - Reference Chromatogram

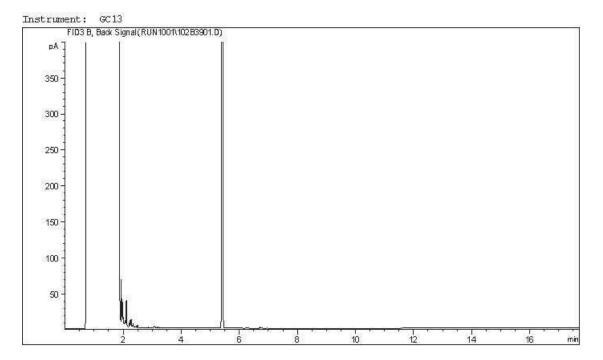




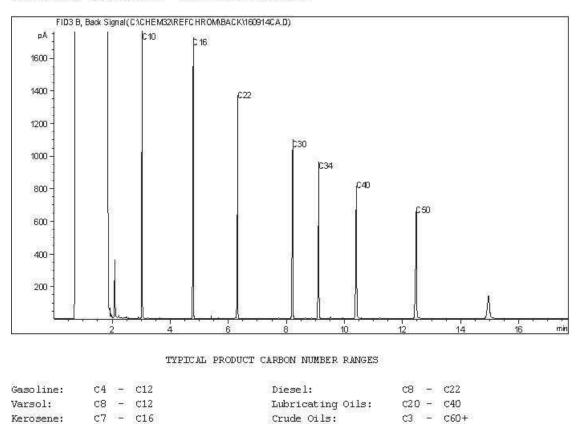


Carbon Range Distribution - Reference Chromatogram

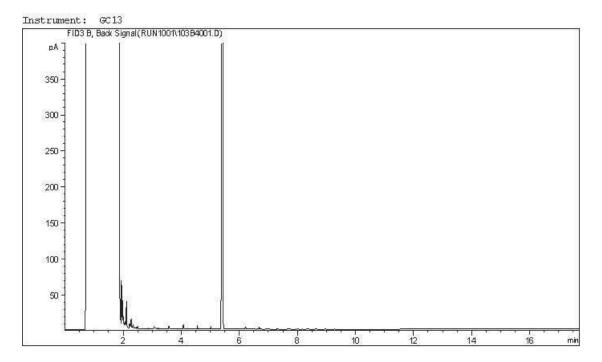




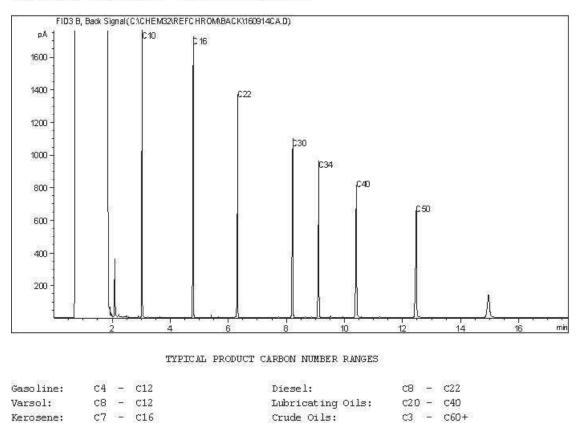


Carbon Range Distribution - Reference Chromatogram







Carbon Range Distribution - Reference Chromatogram






Carbon Range Distribution - Reference Chromatogram





Carbon Range Distribution - Reference Chromatogram



# SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment D QA/QC Data and Analysis May 2019

# Attachment D QA/QC DATA AND ANALYSIS



# SPRINGBANK OFF-STREAM RESERVOIR PROJECT ENVIRONMENTAL IMPACT ASSESSMENT HYDROGEOLOGY TECHNICAL DATA REPORT UPDATE

Attachment D QA/QC Data and Analysis May 2019



## Groundwater Analytical QA/QC Results

| Parameter                                                              | Units        | RDL         |                    | MW16-04              | 1-20                 |           |                      | MW16-24              | -30                  |            |
|------------------------------------------------------------------------|--------------|-------------|--------------------|----------------------|----------------------|-----------|----------------------|----------------------|----------------------|------------|
|                                                                        | UTIIIS       | NDL         | Sample             | Duplicate            | RPD/AD               |           | Sample               | Duplicate RPD/AD     |                      |            |
| Anion Sum                                                              | meq/L        | N/A         | 54                 | 55                   | 1.8                  | RPD       | 13                   | 12                   | 8.0                  | RPD        |
| Cation Sum                                                             | meq/L        | N/A         | 50                 | 51                   | 2.0                  | RPD       | 14                   | 14                   | 0.0                  | RPD        |
| Hardness (as CaCO3)                                                    | mg/L         | 0.5         | 1700               | 1700                 | 0.0                  | RPD       | 160                  | 160                  | 0.0                  | RPD        |
| Ion Balance                                                            | none         | 0.01        | 0.94               | 0.94                 | 0.0                  | RPD       | 1.1                  | 1.1                  | 0.0                  | RPD        |
| Nitrate                                                                | mg/L         | 0.044       | <0.044             | 0.045                | <0.045               | AD        | <0.044               | <0.044               | <0.044               | AD         |
| Nitrate + Nitrite (as N)                                               | mg/L         | 0.02        | <0.020             | < 0.020              | <0.020               | AD        | <0.020               | < 0.020              | < 0.020              | AD         |
| Nitrite<br>Total Dissolved Solids                                      | mg/L         | 0.033<br>10 | <0.033<br>3400     | <0.033<br>3400       | <0.033<br>0.0        | AD<br>RPD | <0.033<br>730        | <0.033<br>720        | <0.033               | AD<br>RPD  |
| Dissolved Organic Carbon (DOC)                                         | mg/L<br>mg/L | 0.5         | 5.1                | 5.2                  | 1.9                  | RPD       | 1.2                  | 1.4                  | 0.2                  | AD         |
| Electrical Conductivity, Lab                                           | μS/cm        | 1           | 4000               | 4000                 | 0.0                  | RPD       | 1100                 | 1100                 | 0.0                  | RPD        |
| РН                                                                     | S.U.         | N/A         | 7.52               | 7.45                 | 0.9                  | RPD       | 8.19                 | 8.18                 | 0.1                  | RPD        |
| BTEX and Petroleum Hydrocarbons                                        |              |             |                    |                      |                      |           |                      |                      |                      |            |
| Benzene                                                                | mg/L         | 0.0004      | <0.00040           | <0.00040             | <0.00040             | AD        | <0.00040             | <0.00040             | <0.00040             | AD         |
| Toluene                                                                | mg/L         | 0.0004      | <0.00040           | <0.00040             | <0.00040             | AD        | <0.00040             | <0.00040             | <0.00040             | AD         |
|                                                                        | mg/L         | 0.0004      | <0.00040           | <0.00040             | <0.00040             | AD        | <0.00040             | <0.00040             | <0.00040             | AD         |
| Xylene, m & p-<br>Xylene, o-                                           | mg/L<br>mg/L | 0.0008      | <0.00080           | <0.00080<br><0.00040 | <0.00080<br><0.00040 | AD<br>AD  | <0.00080<br><0.00040 | <0.00080<br><0.00040 | <0.00080<br><0.00040 | AD<br>AD   |
| Xylenes, Total                                                         | mg/L         | 0.0008      | <0.00080           | <0.00040             | <0.00040             | AD        | <0.00040             | <0.00040             | <0.00040             | AD         |
| PHC F1 (C6-C10 range)                                                  | mg/L         | 0.1         | <0.10              | <0.10                | <0.10                | AD        | <0.10                | <0.10                | <0.10                | AD         |
| PHC F1 (C6-C10 range) minus BTEX                                       | mg/L         | 0.1         | <0.10              | <0.10                | <0.10                | AD        | <0.10                | <0.10                | <0.10                | AD         |
| PHC F2 (>C10-C16 range)                                                | mg/L         | 0.1         | <0.10              | <0.10                | <0.10                | AD        | <0.10                | <0.10                | <0.10                | AD         |
| Anions                                                                 |              |             |                    |                      |                      |           |                      |                      |                      |            |
| Alkalinity (P as CaCO3)                                                | mg/L         | 0.5         | <0.50              | <0.50                | <0.50                | AD        | <0.50                | <0.50                | <0.50                | AD         |
| Alkalinity, Total (as CaCO3)                                           | mg/L         | 0.5         | 460<br>570         | 460                  | 0.0                  | RPD       | 460                  | 460                  | 0                    | RPD<br>RPD |
| Alkalinity, Bicarbonate (as CaCO3)<br>Alkalinity, Carbonate (as CaCO3) | mg/L<br>mg/L | 0.5<br>0.5  | 570<br><0.50       | 560<br><0.50         | 1.8<br><0.50         | RPD<br>AD | 560<br><0.50         | 560<br><0.50         | 0<br><0.50           | AD         |
| Alkalinity, Hydroxide (as CaCO3)                                       | mg/L         | 0.5         | <0.50              | <0.50                | <0.50                | AD        | <0.50                | <0.50                | <0.50                | AD         |
| Sulfate                                                                | mg/L         | 1.0         | 2100               | 2200                 | 4.7                  | RPD       | 160                  | 150                  | 6.5                  | RPD        |
| Chloride                                                               | mg/L         | 1.0         | 3.0                | 3.0                  | 0.0                  | AD        | <1.0                 | 2.4                  | <2.4                 | AD         |
| Nutrients                                                              |              |             |                    |                      |                      |           |                      |                      |                      |            |
| Ammonia (as N)                                                         | mg/L         | 0.05        | 0.96               | 1.0                  | 4.1                  | RPD       | 0.86                 | 0.84                 | 2.4                  | RPD        |
| Nitrite (as N)                                                         | mg/L         | 0.010       | <0.010             | <0.010               | <0.010               | AD        | <0.010               | <0.010               | <0.010               | AD         |
| Nitrate (as N)                                                         | mg/L         | 0.010       | <0.010             | 0.010                | <0.010               | AD        | <0.010               | <0.010<br><0.0030    | <0.010               | AD         |
| Orthophosphate(as P)<br>Phosphorus, Total (Dissolved)                  | mg/L<br>mg/L | 0.0030      | <0.0030<br><0.0030 | <0.0030<br><0.0030   | <0.0030<br><0.0030   | AD<br>AD  | <0.0030              | 0.0030               | <0.0030<br><0.069    | AD<br>AD   |
| Total Kjeldahl Nitrogen                                                | mg/L         | 0.05        | 1.1                | 1.1                  | 0.0                  | RPD       | 0.88                 | 0.81                 | 8.3                  | RPD        |
| Metals, Dissolved                                                      | 0.           |             |                    |                      |                      |           |                      |                      |                      |            |
| Aluminum                                                               | mg/L         | 0.0030      | <0.0030            | <0.0030              | <0.0030              | AD        | <0.0030              | <0.0030              | <0.0030              | AD         |
| Antimony                                                               | mg/L         | 0.00060     | <0.00060           | <0.00060             | <0.00060             | AD        | <0.00060             | <0.00060             | <0.00060             | AD         |
| Arsenic                                                                | mg/L         | 0.0002      | 0.0017             | 0.0019               | 11.1                 |           | 0.0023               | 0.0022               | 4.4                  | RPD        |
| Barium                                                                 | mg/L         | 0.010       | <0.010             | <0.010               | <0.010               | AD        | 0.019                | 0.018                | 0.001                | AD         |
| Beryllium<br>Boron                                                     | mg/L<br>mg/L | 0.0010      | <0.0010<br>0.11    | <0.0010              | <0.0010<br>0.0       | AD<br>RPD | <0.0010<br>0.089     | <0.0010<br>0.089     | <0.0010<br>0.0       | AD<br>AD   |
| Cadmium                                                                | mg/L         | 0.000020    | <0.000020          | <0.000020            | <0.000020            | AD        | <0.00020             | <0.00020             | <0.000020            | AD         |
| Calcium                                                                | mg/L         | 0.3         | 380                | 380                  | 0.0                  | RPD       | 38                   | 38                   | 0.0                  | RPD        |
| Chromium                                                               | mg/L         | 0.0010      | <0.0010            | <0.0010              | <0.0010              | AD        | <0.0010              | <0.0010              | <0.0010              | AD         |
| Cobalt                                                                 | mg/L         | 0.0003      | 0.00034            | 0.00031              | 0.00003              | AD        | <0.00030             | <0.00030             | <0.00030             | AD         |
| Copper                                                                 | mg/L         | 0.00020     | <0.00020           | <0.00020             | <0.00020             | AD        | <0.00020             | <0.00020             | <0.00020             | AD         |
| Iron                                                                   | mg/L         | 0.06        | 2.2                | 2.2                  | 0.0                  | RPD       | 0.14                 | 0.15                 | 0.01                 | AD         |
| Lead                                                                   | mg/L         | 0.00020     | <0.00020           | <0.00020             | <0.00020             | AD        | <0.00020             | <0.00020             | <0.00020             | AD         |
| Lithium<br>Magnesium                                                   | mg/L<br>mg/L | 0.02        | 0.070<br>180       | 0.074<br>180         | 0.004                | AD<br>RPD | 0.054                | 0.053                | 0.001<br>6.5         | AD<br>RPD  |
| Manganese                                                              | mg/L         | 0.004       | 0.60               | 0.60                 | 0.0                  | RPD       | 0.067                | 0.066                | 1.5                  | RPD        |
| Mercury                                                                | µg/L         | 0.0020      | <0.0020            | < 0.0020             | <0.0020              | AD        | <0.0020              | < 0.0020             | <0.0020              | AD         |
| Molybdenum                                                             | mg/L         | 0.0002      | 0.0016             | 0.0015               | 6.5                  | RPD       | 0.0014               | 0.0015               | 6.9                  | RPD        |
| Nickel                                                                 | mg/L         | 0.00050     | <0.00050           | <0.00050             | <0.00050             | AD        | <0.00050             | <0.00050             | <0.00050             | AD         |
| Phosphorus                                                             | mg/L         | 0.10        | <0.10              | <0.10                | <0.10                | AD        | <0.10                | <0.10                | <0.10                | AD         |
| Potassium                                                              | mg/L         | 0.3         | 8.2                | 8.5                  | 3.6                  | RPD       | 4.0                  | 3.9                  | 2.5                  | RPD        |
| Selenium                                                               | mg/L         | 0.00020     | <0.00020<br>4.3    | <0.00020<br>4.4      | <0.00020<br>2.3      | AD<br>RPD | <0.00020             | <0.00020<br>3.6      | <0.00020<br>0.0      | AD<br>RPD  |
| Silver                                                                 | mg/L<br>mg/L | 0.1         | 4.3<br><0.00010    | 4.4<br><0.00010      | <0.00010             | AD        | 3.6                  | 3.6<br><0.00010      | <0.00010             | AD         |
| Sodium                                                                 | mg/L         | 0.5         | 370                | 390                  | 5.3                  | RPD       | 240                  | 230                  | 4.3                  | RPD        |
| Strontium                                                              | mg/L         | 0.02        | 6.0                | 5.9                  | 1.7                  | RPD       | 0.66                 | 0.65                 | 1.5                  | RPD        |
| Sulfur                                                                 | mg/L         | 0.2         | 730                | 720                  | 1.4                  | RPD       | 51                   | 50                   | 2.0                  | RPD        |
| Thallium                                                               | mg/L         | 0.00020     | <0.00020           | <0.00020             | <0.00020             | AD        | <0.00020             | <0.00020             | <0.00020             | AD         |
| Tin                                                                    | mg/L         | 0.0010      | <0.0010            | <0.0010              | <0.0010              | AD        | <0.0010              | <0.0010              | <0.0010              | AD         |
| Titanium                                                               | mg/L         | 0.0010      | <0.0010            | <0.0010              | <0.0010              | AD        | <0.0010              | <0.0010              | <0.0010              | AD         |
| Uranium                                                                | mg/L         | 0.0001      | 0.0023             | 0.0022               | 4.4                  | RPD       | 0.00022              | 0.00020              | 0.00002              | AD         |
| Vanadium<br>Zinc                                                       | mg/L<br>mg/L | 0.0010      | <0.0010<br><0.0030 | <0.0010<br><0.0030   | <0.0010<br><0.0030   | AD<br>AD  | <0.0010<br><0.0030   | <0.0010<br><0.0030   | <0.0010<br><0.0030   | AD<br>AD   |
| Metals, Total                                                          | g/L          | 0.0000      | ~0.0000            | -0.0000              | .0.0000              |           | -0.0000              | -0.0000              | .0.0000              |            |
| Mercury                                                                | µg/L         | 0.002-6     | <2.0               | <6.                  | <6                   | AD        | <0.0020              | <0.0020              | <0.0020              | AD         |
| Microbiological Parameters                                             |              |             |                    |                      |                      |           |                      |                      |                      | •          |
| Microbiological rarameters                                             |              |             |                    |                      |                      |           |                      |                      |                      |            |
| Escherichia coli (E.Coli)                                              | pn/100n      |             | <2.0               | <2.                  | <2                   | AD        | <1.0                 | <1.0                 | <1                   | AD         |
| Escherichia coli (E.Coli)<br>Fecal Coliform                            | 1001/1001    | 1-2         | <2.0               | <2.0                 | <2                   | AD        | <1.0                 | <1.0                 | <1                   | AD         |
| Escherichia coli (E.Coli)                                              |              | 1-2<br>1    |                    |                      |                      |           |                      |                      |                      |            |

RDL - Laboratory reportable detection limit

RPD - Relative Percent Difference

AD - Absolute Difference

Shaded RPD/AD values are outside of reproducibility criteria limits

Attachment E Numerical Model Sensitivity Analysis May 2019

# Attachment E NUMERICAL MODEL SENSITIVITY ANALYSIS

Following steady state calibration of the numerical groundwater flow model and completion of subsequent simulations as were described in Section 5, a sensitivity analysis was conducted to better understand potential uncertainty in the model results that could be caused by uncertainty in the calibrated model parameters used. The objective of the sensitivity analysis is to determine which parameters used in the model have the greatest effect on the modelled heads and the degree to which those simulated heads would change as a result. Model parameters for which relatively small changes in values cause a relatively large change in simulated heads are considered sensitive parameters. Conversely, model parameters that can be changed by relatively large amounts without causing relatively large, corresponding changes in simulated heads are considered less sensitive parameters.

## E.1 SENSITIVITY ANALYSIS METHODS

Three simulation scenarios were developed to support the sensitivity analysis. Two transient simulations with changes in hydraulic parameters were considered together with a third steady-state simulation with changed boundary conditions in the off-stream reservoir area. The three simulation scenarios are summarized in Table E.1-1.

Scenario 1 examines the effect of increasing the permeability of the till and bedrock layers within the model. Hydraulic conductivity values for these units were increased by a factor of 1,000 (well beyond the respective range of natural variability of these geologic materials).

Scenario 2 examines the effect of increasing the storativity and specific yield parameters to values that are reflective of a more porous and elastic geologic material. Again, changes to these parameters were increased well beyond the respective range of natural variability for these geologic materials.

Scenario 3 is a steady-state simulation that examines the effect of turning on specified heads around the perimeter of the off-stream reservoir and assigning them values based on the elevation of water when the reservoir is full. This would simulate the conditions of storing water around the perimeter of the reservoir indefinitely (which is not how the Project will operate). Boundary conditions were only set around the perimeter of the reservoir in this scenario to allow for an understanding how the model responds in both an inward direction and radially outward direction from the reservoir area. While this is not a physical reality, this simulation was prepared to confirm that the model can simulate progression of a phreatic water table surface away from the boundary of the reservoir in both inward and outward directions.



Attachment E Numerical Model Sensitivity Analysis May 2019

| Sensitivity<br>Scenario | Original<br>Scenarios | Changes to K values<br>relative to calibrated<br>values                                   | Changes to storativity<br>values relative to<br>calibrated values                                                | Simulation Mode                                                                                                                    |  |
|-------------------------|-----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 1                       | PPX1/EEX1             | Increased K in the low<br>conductivity till and<br>bedrock layers by a<br>factor of 1,000 | None                                                                                                             | Transient                                                                                                                          |  |
| 2                       | PPX1/EEX1             | None                                                                                      | Increased storativity to<br>represent more<br>compressible units and<br>specific yields to a<br>more porous unit | Transient                                                                                                                          |  |
| 3                       | PPX0/EEX0             | None                                                                                      | None                                                                                                             | Steady-state with<br>specified head<br>boundary<br>conditions turned<br>on around the<br>perimeter of the off-<br>stream reservoir |  |

## Table E.1-1 Sensitivity Analysis Scenarios

The parameter values for the calibrated model and the values used in the sensitivity analysis scenarios are presented in Table E1.2.



Attachment E Numerical Model Sensitivity Analysis May 2019

## Table E.1-2 Modelled Parameter Values

|                              |                                          | Steady State Ca                      | libration                    |                                          | Changes in Se                         | ensitivity Run 1                     | Changes in Sensitivity Run 2 |                                       |
|------------------------------|------------------------------------------|--------------------------------------|------------------------------|------------------------------------------|---------------------------------------|--------------------------------------|------------------------------|---------------------------------------|
| Hydrostratigraphic Unit      | XY<br>Hydraulic<br>Conductivity<br>(m/s) | Z Hydraulic<br>Conductivity<br>(m/s) | Specific<br>Storage<br>(1/m) | Specific<br>Yield<br>(volume/<br>volume) | XY Hydraulic<br>Conductivity<br>(m/s) | Z Hydraulic<br>Conductivity<br>(m/s) | Specific<br>Storage (1/m)    | Specific Yield<br>(volume/<br>volume) |
| Clay                         | 5.1E-06                                  | 5.1E-07                              | 3.5E-03                      | 0.07                                     | 5.1E-06                               | 5.1E-07                              | 1.0E-02                      | 0.14                                  |
| Fluvial sand and gravel      | 2.8E-03                                  | 2.8E-04                              | 2.3E-05                      | 0.25                                     | 2.8E-03                               | 2.8E-04                              | 1.0E-03                      | 0.35                                  |
| Grouped Bedrock layer 6      | 1.4E-06                                  | 1.4E-07                              | 1.1E-05                      | 0.17                                     | 1.4E-03                               | 1.4E-04                              | 1.0E-04                      | 0.30                                  |
| Grouped Bedrock layer 7      | 2.7E-07                                  | 2.7E-09                              | 1.1E-05                      | 0.17                                     | 2.7E-04                               | 2.7E-05                              | 1.0E-04                      | 0.25                                  |
| Lower silt, sand and gravel  | 8.3E-05                                  | 8.3E-06                              | 2.3E-05                      | 0.2                                      | 8.3E-05                               | 8.3E-06                              | 1.0E-03                      | 0.35                                  |
| Till North                   | 7.2E-08                                  | 7.2E-08                              | 4.0E-03                      | 0.04                                     | 7.2E-05                               | 7.2E-05                              | 1.0E-02                      | 0.10                                  |
| Till South                   | 7.2E-07                                  | 7.2E-07                              | 4.0E-03                      | 0.04                                     | 7.2E-04                               | 7.2E-04                              | 1.0E-02                      | 0.10                                  |
| Till-high conductivity North | 8.3E-05                                  | 8.3E-05                              | 3.8E-03                      | 0.04                                     | 8.3E-05                               | 8.3E-05                              | 1.0E-02                      | 0.10                                  |
| Till-high conductivity East  | 1.0E-04                                  | 1.0E-04                              | 3.8E-03                      | 0.04                                     | 1.0E-04                               | 1.0E-04                              | 1.0E-02                      | 0.10                                  |



Attachment E Numerical Model Sensitivity Analysis May 2019

## E.2 SENSITVITY ANALYSIS RESULTS

The results of Scenario 1, which used the higher hydraulic conductivity values, are presented in Figure E.1-1. Increasing the hydraulic conductivity of the low conductivity till and bedrock units resulted in increased lateral extent of net change for a design flood (PPX1-EEX1) in some areas. Hydraulic head increases are observed up to 150 m farther from the northern portion of the dam structure (relative to the original PPX1/EEX1 simulations) and north of the reservoir near Range Road 40. Scenario 1 also resulted in net changes in head extending farther from the diversion channel near the outlet of the channel into the reservoir. Increases are observed up to an additional 600 m from the diversion channel as a result of the higher hydraulic conductivity compared to the calibrated model for net change results.

Additional water level decreases are also observed in Scenario 1 near the south end of the diversion channel where the base of the channel is below the existing water table. The higher hydraulic conductivity results in drawdowns that extend up to an additional 150 m from the channel compared to the calibrated model for net change results. Despite these changes in the lateral extent of effects, the effects are still limited to the LAA and north of Elbow River.

The results of the Scenario 2, which used the higher storativity values, are presented in Figure E.1-2. The net change (PPX1-EEX1) for this sensitivity scenario was very similar to the transient model run for a design flood. The results of Scenario 2 indicate that the model is not sensitive to changes in storativity or specific yield based on a comparison of simulated heads at the 650 timestep (at the point in time when the reservoir has just been filled).

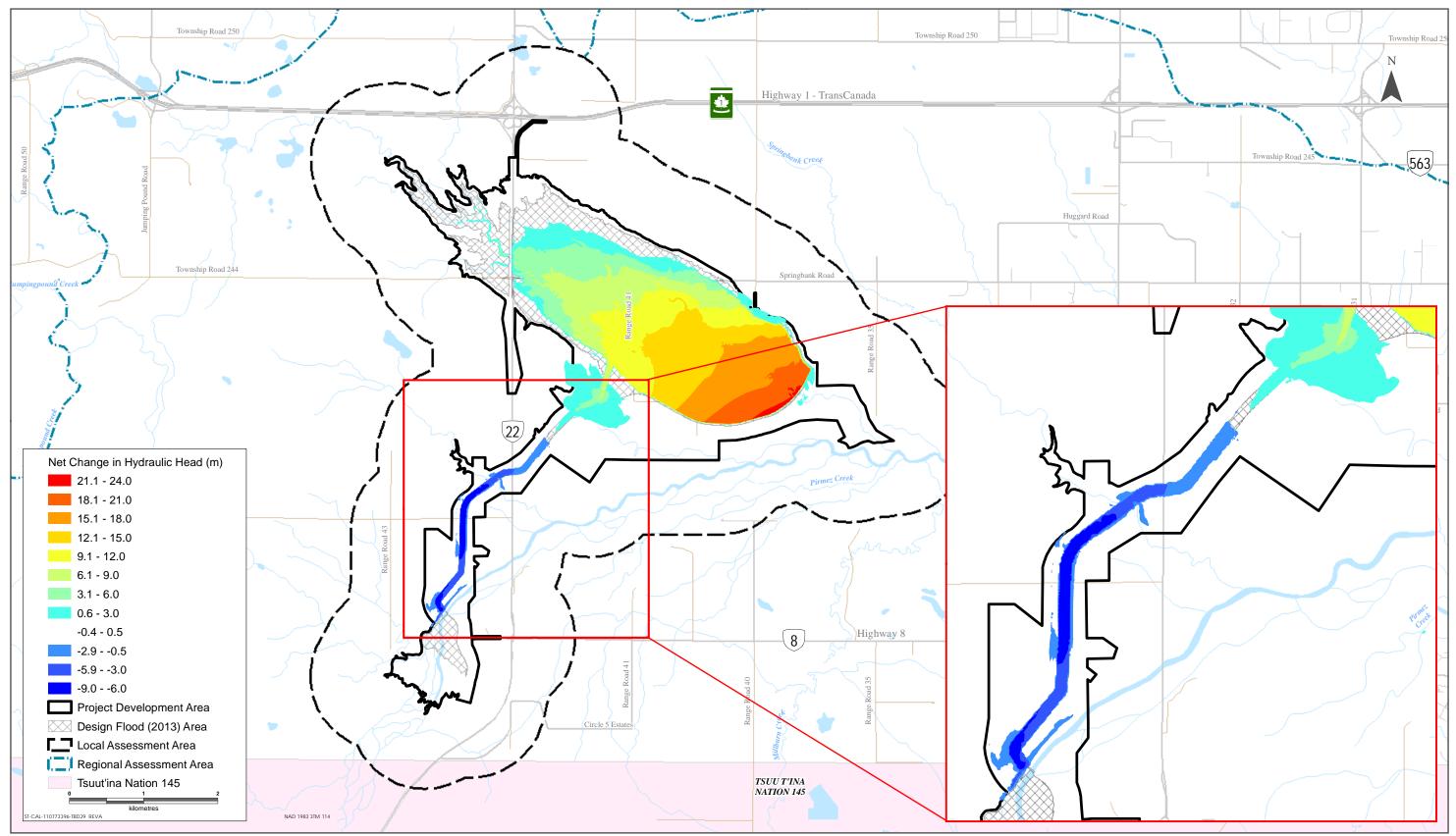
The results of the Scenario 3 are presented in Figure E.1-3, which shows the extent of the net change resulting from hydraulic head values being applied around the perimeter of the wetted area of the reservoir, in perpetuity (this is not the actual operating condition of the reservoir). Net change in head propagates farther away from the reservoir area in all directions except for the northwest.

Net change to the northeast extends approximately 1.5 km from the PDA in most areas, this distance corresponds to the local groundwater discharge feature (Springbank Creek) in that area. The farthest propagation of net effects to the northeast is approximately 3.1 km from the PDA. Similar propagation of net change is observed to the southwest of the reservoir, where it propagates approximately 2 km from the edge.

The net change effects propagate southeast from the reservoir to Elbow River but don't extend beyond the edge of the fluvial deposits. This hypothetical scenario indicates that given enough time, the effects would propagate to Elbow River, but not beyond.

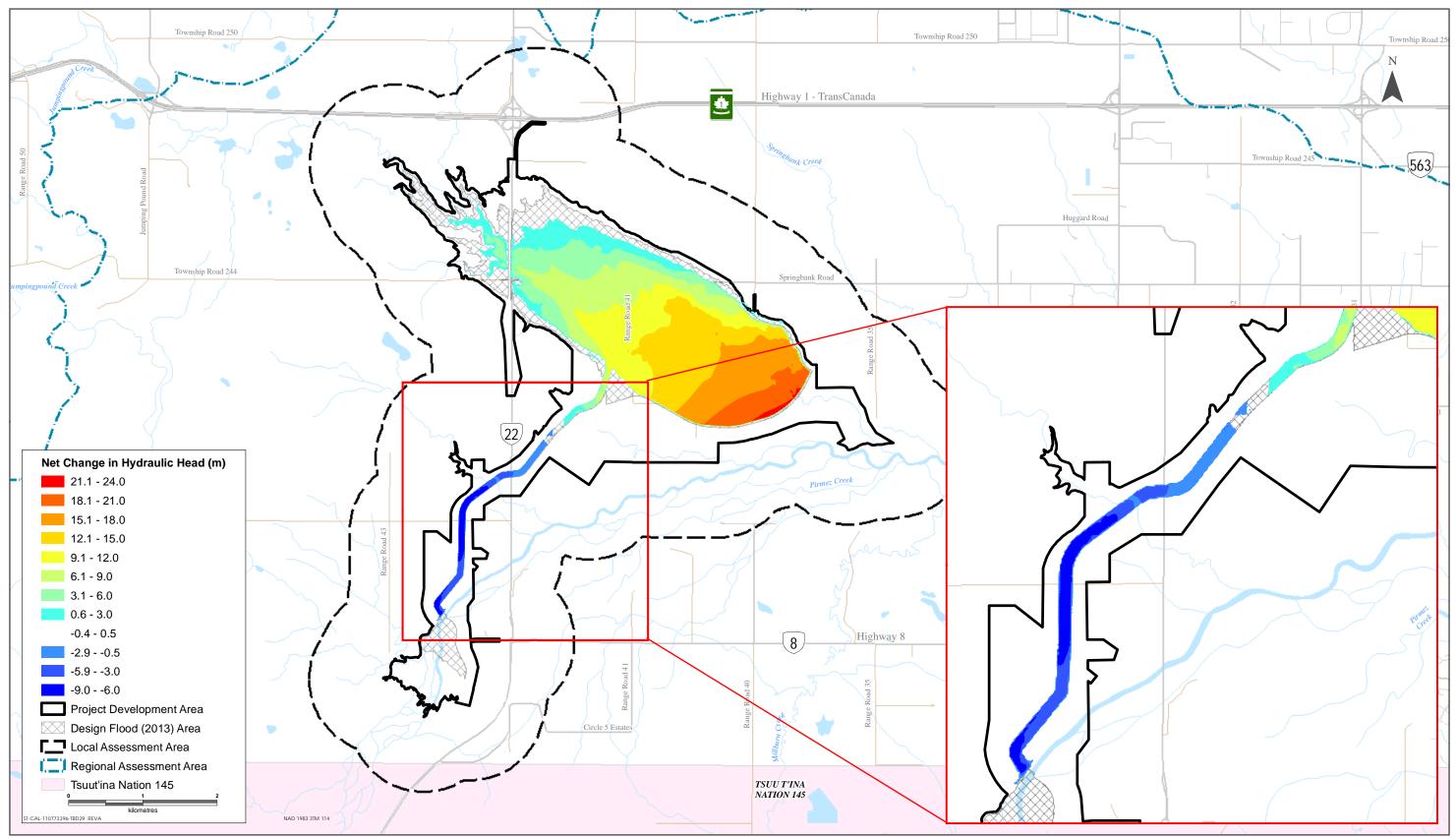


Attachment E Numerical Model Sensitivity Analysis May 2019


The sensitivity analysis results suggest that the model simulations are most affected by parameterization of hydraulic conductivity values. However, even when increasing the hydraulic conductivity values of the low conductivity units, the modelled effects remain within the LAA and north of Elbow River.

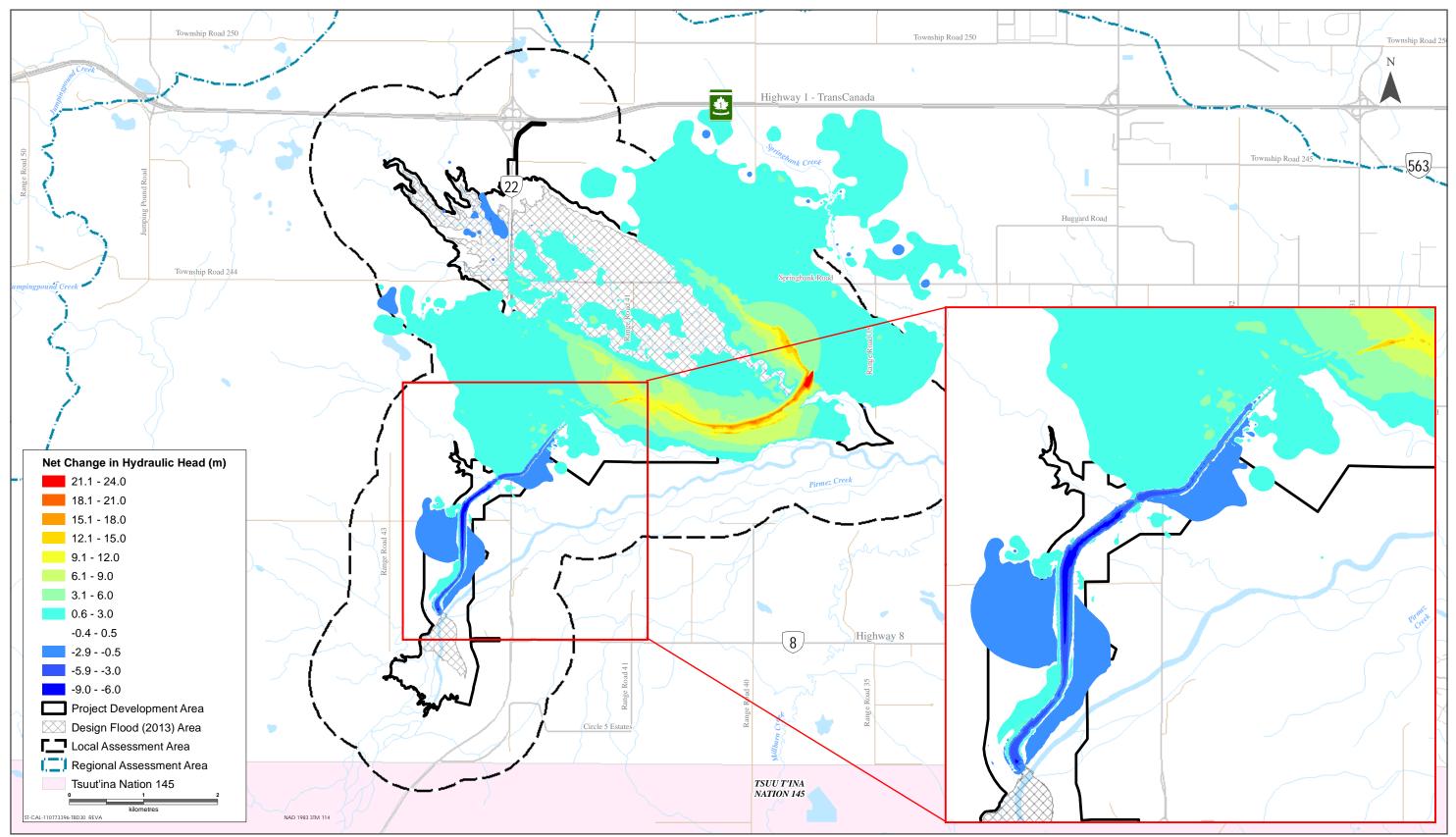
The results also show that given enough time (i.e. long enough to reach steady-state conditions), the effects of water retention in the reservoir could propagate up to 3.1 km away; however, this scenario is provided for illustrative purposes and is unrealistic considering the retention time for water in the reservoir for a design flood is approximately 20 days.




Attachment E Numerical Model Sensitivity Analysis May 2019






Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Simulated Net Change in Head for the PPX1/EEX1 Sensitivity Scenario 1 at Timestep 650 Figure E.1-1



Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Simulated Net Change in Head for the PPX1/EEX1 Sensitivity Scenario 2 at Timestep 650 Figure E.1-2



Sources: Base Data- Government of Alberta, Government of Canada. Thematic Data - Stantec Ltd.

Simulated Net Change in Head for the PPX0/EEX0 Sensitivity Scenario 3 Figure E.1-3

Attachment E Numerical Model Sensitivity Analysis May 2019

